JPH01118127A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPH01118127A
JPH01118127A JP62274670A JP27467087A JPH01118127A JP H01118127 A JPH01118127 A JP H01118127A JP 62274670 A JP62274670 A JP 62274670A JP 27467087 A JP27467087 A JP 27467087A JP H01118127 A JPH01118127 A JP H01118127A
Authority
JP
Japan
Prior art keywords
resist
halogen
layer
layer resist
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62274670A
Other languages
Japanese (ja)
Inventor
Shuzo Oshio
大塩 修三
Koichi Kobayashi
孝一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62274670A priority Critical patent/JPH01118127A/en
Publication of JPH01118127A publication Critical patent/JPH01118127A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the charging up of a lower layer resist, and to enable the processing of a resist pattern at a low temp. by using a material contg. a halogen atom selected from the group comprising fluorine, bromine and iodine atoms in a molecule for a lower layer resist in a multi-layer resist process applying an electron beam lithography. CONSTITUTION:In the method for forming a resist pattern according to the multi-layer resist process applying the electron beam lithography, the material which contains at least one kind of halogen selected from the group comprising the fluorine, the bromine and the iodine atoms in the molecule is used for the lower layer resist. The useful halogen contg. material is exemplified by, for example, an acrylic polymer or a styrene polymer, etc. which is substd. for the halogen atom. Said halogen contg. material is applied on the substrate by a technique such as a spin coating method, followed by baking the obtd. layer to form the lower layer resist. Thus, the charging up of the lower layer resist is prevented, and the processing of the resist pattern at the low temp. is permitted.

Description

【発明の詳細な説明】 〔概 要〕 電子ビームリソグラフィを用いた多層レジストプロセス
によりレジストパターンを形成する方法に関し、 チャージアップを防止しかつ低温での処理を可能とする
ことを目的とし、 下層レジストとして、弗素、臭素及び沃素からなる群か
ら選ばれた少くとも1種のハロゲンを分子中に含有する
材料を使用するように、構成する。
[Detailed Description of the Invention] [Summary] Regarding a method of forming a resist pattern by a multilayer resist process using electron beam lithography, the present invention aims to prevent charge-up and enable processing at low temperatures. The material is configured to use a material containing in its molecule at least one halogen selected from the group consisting of fluorine, bromine, and iodine.

〔産業上の利用分野〕[Industrial application field]

本発明はパターン形成方法に関し、さらに詳しく述べる
と、電子ビームリソグラフィを用いた多層レジストプロ
セスによりレジストパターンを形成する方法に関する。
The present invention relates to a pattern forming method, and more specifically, to a method of forming a resist pattern by a multilayer resist process using electron beam lithography.

本発明方法は、例えば集積回路、バブルメモリー素子等
の半導体装置、その他の製造において有利に使用するこ
とができる。
The method of the present invention can be advantageously used, for example, in the production of integrated circuits, semiconductor devices such as bubble memory devices, and other products.

〔従来の技術〕[Conventional technology]

半導体装置等の製造において、高度に微細なレジストパ
ターンを形成するために、電子ビームリソグラフィと多
層レジストプロセスの組み合せが積極的に用いられてい
ることは周知の通りである。
2. Description of the Related Art As is well known, in the manufacture of semiconductor devices and the like, a combination of electron beam lithography and multilayer resist process is actively used to form highly fine resist patterns.

かかる多層レジストプロセスでは、通常、耐ドライエツ
チング性の大きな下層レジストと電子ビーム露光に感度
を有する上層レジストからなる二層構造レジスト、二層
構造レジストの下層と上層の間に中間層を介在せしめた
三層構造レジストなどが用いられている。二層構造レジ
ストを用いた例で説明すると、基板上に例えばノボラッ
ク系のレジスト材料、例えば東京応化(株)製の0FP
R系レジストを塗布して下層レジストを形成する。この
下層レジストは、上層レジスト塗布時の溶解を防止する
ために、200℃前後の高温度での熱処理により不溶化
させておくのが一般的である。引き続いて、この下層レ
ジスト上に例えばシリコーン系のレジスト材料、例えば
シリル化ポリメチルシルセスキオキサン(PMSS)を
塗布して上層レジストを形成する。レジスト膜の形成が
完了した後、上層レジストを電子ビーム露光によってパ
ターニングし、現像す多。次いで、得られた上層レジス
トパターンをマスクとして、下層レジストを酸素プラズ
マでエツチングする。微細な上層レジストパターンがそ
のま\下層レジストに転写されることの結果、微細で厚
膜な、すなわち、高アスペクト比のレジストパターンが
最終的に得られる。このように、レジストに必要とされ
る機能を二層もしくはそれ以上のレジストに分離しても
たせると、単層レジストで屡々問題となった下地段差の
問題や解像性及び耐ドライエツチング性の問題を解決す
ることができる。
In such a multilayer resist process, a two-layer resist is usually formed, consisting of a lower resist with high dry etching resistance and an upper resist that is sensitive to electron beam exposure, and an intermediate layer is interposed between the lower and upper layers of the two-layer resist. A three-layer resist is used. To explain with an example using a two-layer structure resist, for example, a novolak resist material, such as 0FP manufactured by Tokyo Ohka Co., Ltd., is placed on the substrate.
An R-based resist is applied to form a lower resist. This lower resist layer is generally insolubilized by heat treatment at a high temperature of about 200° C. in order to prevent it from dissolving when the upper resist layer is applied. Subsequently, a silicone-based resist material, such as silylated polymethylsilsesquioxane (PMSS), for example, is applied onto the lower resist to form an upper resist. After the formation of the resist film is completed, the upper resist layer is patterned by electron beam exposure and developed. Next, using the obtained upper layer resist pattern as a mask, the lower layer resist is etched with oxygen plasma. As a result of the fine upper layer resist pattern being directly transferred to the lower layer resist, a fine and thick resist pattern, that is, a high aspect ratio resist pattern is finally obtained. In this way, if the functions required for the resist are provided by separating them into two or more layers of resist, problems such as the difference in base level, resolution, and dry etching resistance that often occur with single-layer resists can be solved. can be solved.

ところで、電子ビーム露光により上層レジストや中間レ
ジストのパターニングを行った場合には、レジストの帯
電(チャージアップ)現象が新たな問題として発生する
。すなわち、上記したようなノボラック系のレジスト材
料等に電子ビームを照射してパターニングを行う際には
、照射されたビームの電荷がレジスト膜に残存し、新た
に照射されてくるビームに斥力を与える結果、電子ビー
ムが曲げられ、位置合せマーク検出の不良や重ね合せの
ズレ、パターンの位置ズレ等が生じる。
By the way, when patterning an upper layer resist or an intermediate resist by electron beam exposure, a new problem arises in which the resist is charged (charge-up). In other words, when patterning is performed by irradiating a novolak resist material such as the one described above with an electron beam, the charge of the irradiated beam remains on the resist film and provides a repulsive force to the newly irradiated beam. As a result, the electron beam is bent, resulting in poor alignment mark detection, misalignment of the alignment marks, misalignment of the pattern, and the like.

パターンの精度低下をひきおこすチャージアップを防止
するために、現在いくつかの方法が提案されている。例
えば、研究実用化報告第33巻第4号(1984)、P
、 655−663には、チャージアップ防止技術とし
て、下層レジスト上に導電性金属であるモリブデン(M
o)を蒸着し、■0蒸着層上に上層レジストを形成する
ことが提案されている。また、84年秋季応物学会、1
2p −T−12には、フェニルメタクリレート−メタ
クリル酸共重合体レジスト上にアルミニウム(/l )
を蒸着することが提案されている。しかし、このように
金属の蒸着を行うことには工程の複雑さがあり、また、
金属が層間にあることにより、電子の透過率が低くなる
ので位置合せマークの検出が困難になる。さらにまた、
86年秋季応物学会、Ip−Z−13には、三層レジス
トの下層の0FPR−800(東京応化(株)製のノボ
ラック系レジスト)上に導電性ITO膜を形成すること
が、そして同i p−Z−IOには、導電性カーボン膜
を二層レジストの下層に用いることが、それぞれ提案さ
れている。しかし、このように塗布導電膜を中間層に用
いる方法や導電性カーボン膜を用いる方法では、約30
0℃以上の高温度で処理を行うことが必須であって、そ
れに原因するところの、基板へのダメージといった不都
合が発生する。さらに、中間層塗布型導電膜では、必ず
三層以上の層構成としなければならない、下層レジスト
についても高温処理が必要であり、膜の除去が困難であ
る、といった不都合が存在し、一方、導電性カーボン膜
では成膜の複雑さが存在する。
Several methods are currently being proposed to prevent charge-up that causes a decrease in pattern accuracy. For example, Research and Practical Application Report Vol. 33, No. 4 (1984), P.
, 655-663, a conductive metal, molybdenum (M
It has been proposed to deposit o) and form an upper resist layer on the 0 vapor deposited layer. In addition, 1984 Autumn Society of Applied Physics, 1
2p-T-12 has aluminum (/l) on phenyl methacrylate-methacrylic acid copolymer resist.
It has been proposed to deposit However, performing metal vapor deposition in this way has a complicated process, and
The presence of metal between the layers reduces electron transmission, making it difficult to detect alignment marks. Furthermore,
At the 1986 Autumn Chemical Science Conference, Ip-Z-13, it was proposed that a conductive ITO film be formed on 0FPR-800 (novolac resist manufactured by Tokyo Ohka Co., Ltd.), which is the lower layer of the three-layer resist, and that the same i For p-Z-IO, it has been proposed to use a conductive carbon film as a lower layer of a two-layer resist. However, with the method of using a coated conductive film as an intermediate layer or the method of using a conductive carbon film, the
It is essential to perform the processing at a high temperature of 0° C. or higher, which causes disadvantages such as damage to the substrate. Furthermore, the intermediate layer coating type conductive film has disadvantages such as the layer structure must be three or more layers, the lower resist layer also requires high-temperature treatment, and the film is difficult to remove. However, in the case of carbon films, there are complications in film formation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、従来の技術の項において説明したよう
な問題点を解決して、電子ビームリソグラフィを用いた
多層レジストプロセスにおいて、チャージアップを防止
しかつ低温での処理を可能とすることにある。
An object of the present invention is to solve the problems described in the prior art section, and to prevent charge-up and enable low-temperature processing in a multilayer resist process using electron beam lithography. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、電子ビームリソグラフィを用いた多層レ
ジストプロセスによりレジストパターンを形成するに当
って、下層レジストとして、弗素、臭素及び沃素からな
る群から選ばれた少くとも1種のハロゲンを分子中に含
有する材料を使用することによって、上記した目的を達
成し得るということを見い出した。
In forming a resist pattern by a multilayer resist process using electron beam lithography, the present inventors used at least one halogen selected from the group consisting of fluorine, bromine, and iodine in the molecule as a lower layer resist. It has been found that the above-mentioned object can be achieved by using a material containing .

本発明の実施において下層レジストとして使用するハロ
ゲン含有材料は、それが下層レジストに必須の特性、例
えば耐ドライエツチング性等を有する限りにおいて特に
限定されるものではない。
The halogen-containing material used as the lower resist in the practice of the present invention is not particularly limited as long as it has properties essential to the lower resist, such as dry etching resistance.

有用なハロゲン含有材料としては、ハロゲン置換された
重合体、例えばアクリル重合体、スチレン重合体等、例
えばポリ−2,3−ジブロモアクリレート、ポリへキサ
フルオロブチルメタクリレート、四ヨード化ポリスチレ
ン、4−ブロモポリスチレン、ポリテトラフルオロプロ
ピルメタクリレートなどをあげることができる。これら
のハロゲン含有材料は、例えばスピンコード法のような
常用の手法を用いて下地上に塗布し、焼付けして下層レ
ジストとなすことができる。
Useful halogen-containing materials include halogen-substituted polymers such as acrylic polymers, styrene polymers, etc., such as poly-2,3-dibromoacrylate, polyhexafluorobutyl methacrylate, tetraiodinated polystyrene, 4-bromo Examples include polystyrene and polytetrafluoropropyl methacrylate. These halogen-containing materials can be applied onto a substrate using conventional techniques, such as spin-coding, and baked to form the underlying resist.

下層レジスト上に形成されるべきレジスト膜は、多層レ
ジストプロセスにおいて通常用いられている中間レジス
ト、上層レジストであることができる。・例えば、二層
レジストの場合の上層レジストとしては、シリル化ポリ
メチルシルセスキオキサン(PMSS) 、クロロメチ
ル化ポリジフェニルシロキサン、その他をあげることが
できる。これらの上層レジストは、電子ビーム露光に対
する感度ばかりでなく、X線、遠紫外線、イオンビーム
等の露光に対しても感度を有し、したがって、本願明細
書では、“電子ビーム”とは、広く電離放射線を指すこ
とを理解されたい。
The resist film to be formed on the lower layer resist can be an intermediate resist or an upper layer resist that is commonly used in a multilayer resist process. - For example, in the case of a two-layer resist, examples of the upper resist include silylated polymethylsilsesquioxane (PMSS), chloromethylated polydiphenylsiloxane, and others. These upper layer resists have sensitivity not only to electron beam exposure but also to exposure to X-rays, deep ultraviolet rays, ion beams, etc. Therefore, in this specification, "electron beam" is used broadly. Please understand that it refers to ionizing radiation.

本発明を三層レジストに適用する場合には、中間レジス
トとして酸化珪素(Si02)膜等を、また、上層レジ
ストとして前記二層レジストの場合と同じものを、それ
ぞれ有利に使用することができる。
When the present invention is applied to a three-layer resist, a silicon oxide (Si02) film or the like can be advantageously used as the intermediate resist, and the same one as in the case of the two-layer resist can be used as the upper resist.

〔作 用〕[For production]

本発明によるパターン形成方法においては、下層レジス
トとして用いられるハロゲン含有材料のハロゲン、すな
わち、弗素、臭素及び沃素の作用が重要である。これら
のハロゲン原子がチャージアップの防止等にいかに作用
するのか、その正確なメカニズムは判明していないけれ
ども、本発明者らの今までの研究の成果から、弗素、臭
素及び沃素の存在によりイオン伝導性をもたせることが
でき、これがチャージアップの防止作用として働いてい
るものと考えられる。
In the pattern forming method according to the present invention, the effects of halogen, ie, fluorine, bromine, and iodine in the halogen-containing material used as the lower resist layer are important. Although the exact mechanism by which these halogen atoms act to prevent charge-up is unknown, the results of the present inventors' research to date indicate that the presence of fluorine, bromine, and iodine increases ionic conduction. This is thought to work as a charge-up prevention effect.

〔実施例〕〔Example〕

汎± P−DBA(ポリ−2,3−ジブロモアリルアクリレー
ト)のトルエン溶液をアルミニウム基板上に2.0μの
厚さに塗布し、100℃で20分間ベークした。このP
−DBA膜に遠紫外線(Xe−Hgランプ、500 W
 )を40秒間照射した。引き続いて、末端ヒドロキシ
ル基をトリメチルクロロシランでシリル化したシリル化
ポリメチルシルセスキオキサン(PMSS)のジ−n−
ブチルエーテル溶液を先に形成したP−DBA膜上に0
.2IITaの厚さに塗布し、80℃で20分間ベータ
した。目的とする二層レジストが得られた。
A toluene solution of poly-P-DBA (poly-2,3-dibromoallyl acrylate) was applied to a thickness of 2.0 μm on an aluminum substrate and baked at 100° C. for 20 minutes. This P
- DBA film was exposed to far ultraviolet light (Xe-Hg lamp, 500 W
) was irradiated for 40 seconds. Subsequently, di-n-silylated polymethylsilsesquioxane (PMSS) whose terminal hydroxyl group was silylated with trimethylchlorosilane was used.
A butyl ether solution was applied to the P-DBA film formed earlier.
.. It was coated to a thickness of 2IITa and betaed for 20 minutes at 80°C. The desired two-layer resist was obtained.

次いで、得られた二層レジスト付きのアルミニウム基板
を電子ビーム露光装置に収容し、加速電圧20kV及び
露光ff12 X 10−’C/cdで所定のパターン
で電子ビーム露光を行った。露光の完了後、基板をMi
BK (メチルイソブチルケトン)中に1分間浸漬して
現像を行い、さらにIPA(イソプロピルアルコール)
中に30秒間浸漬してすすぎを行った。
Next, the obtained aluminum substrate with the two-layer resist was placed in an electron beam exposure apparatus, and electron beam exposure was performed in a predetermined pattern at an accelerating voltage of 20 kV and an exposure rate of ff12 x 10-'C/cd. After the exposure is completed, the substrate is
Develop by immersing in BK (methyl isobutyl ketone) for 1 minute, and then develop with IPA (isopropyl alcohol).
It was rinsed by immersing it in water for 30 seconds.

次いで、上層レジスト現像後のアルミニウム基板をプラ
ズマエツチング装置(rfパワー: 300 W、Oz
  :  101005c、圧カニ 0.02Torr
)に収容し、残留せる上層レジスト(PMSS)のパタ
ーンをマスクとしてかつカーボンターゲットを用いて、
酸素プラズマで下層レジスト(P−DBA)をエツチン
グした。
Next, the aluminum substrate after developing the upper resist layer was subjected to plasma etching equipment (RF power: 300 W, Oz
: 101005c, pressure crab 0.02Torr
) and using the remaining upper layer resist (PMSS) pattern as a mask and a carbon target,
The lower resist layer (P-DBA) was etched with oxygen plasma.

エツチングの結果として、上層レジストパターンがその
ま\下層レジストに転写され、0.31ライン&スペー
スのレジストパターンが形成された。
As a result of etching, the upper resist pattern was directly transferred to the lower resist, forming a resist pattern of 0.31 lines and spaces.

この時のチャージアップ量は0.1μ以内であった。The charge-up amount at this time was within 0.1μ.

劃」工 前記例1に記載の手法を繰り返した。但し、本例の場合
、下層レジストとして、P−DBAに代えてFBM (
ポリへキサフルオロブチルメタクリレート)を使用し、
このFBMのメチルイソブチルケトン溶液をアルミニウ
ム基板上に2.0μの厚さに塗布し、170℃で20分
間ベータした。また、本例の場合、上層レジスト(PM
SS)の現像のために、電子ビーム露光後の基板をIP
A中に1分間浸漬して現像を行い、さらにアセトニトリ
ル中に30秒間浸漬してすすぎを行った。酸素プラズマ
を用いたエツチングの後、0.3nライン&スペースの
レジストパターンが形成された。この時のチャージアッ
プ量も、前記例1の場合と同様、0.1pm以内であっ
た。
The procedure described in Example 1 above was repeated. However, in this example, FBM (
using polyhexafluorobutyl methacrylate),
This solution of FBM in methyl isobutyl ketone was coated on an aluminum substrate to a thickness of 2.0 μm, and was incubated at 170° C. for 20 minutes. In addition, in the case of this example, the upper layer resist (PM
For development of SS), the substrate after electron beam exposure is subjected to IP
It was immersed in A for 1 minute for development, and further immersed in acetonitrile for 30 seconds for rinsing. After etching using oxygen plasma, a resist pattern of 0.3n lines and spaces was formed. The charge-up amount at this time was also within 0.1 pm, as in the case of Example 1 above.

貫ユ 前記例1に記載の手法を繰り返した。但し、本例の場合
、下層レジストとして、P−DBAに代えて四ヨード化
ポリスチレンを使用した。酸素プラズマを用いたエツチ
ングの後、0.3趨ライン&スペースのレジストパター
ンが形成された。この時のチャージアップ量も、前記例
1の場合と同様、0.1μ以内であった。
The procedure described in Example 1 above was repeated. However, in this example, tetraiodinated polystyrene was used instead of P-DBA as the lower resist. After etching using oxygen plasma, a resist pattern of 0.3 lines and spaces was formed. The charge-up amount at this time was also within 0.1 μ, similar to the case of Example 1 above.

■↓」止較班し 前記例1に記載の手法を繰り返した。但し、本例の場合
、下層レジストとして、P−DBAに代えて0FPR−
800(ノボラック系レジスト、商品名)を使用し、こ
の0FPR−800のエチルセロソルブアセテート溶液
をアルミニウム基板上に2.0−の厚さに塗布し、25
0℃で1時間ベータした。酸素プラズマを用いたエツチ
ングの後、0.31Raライン&スペースルジストパタ
ーンが形成された。この時のチャージアップ量は2.4
−であった。
■↓'' Stop comparison group and repeat the procedure described in Example 1 above. However, in this example, 0FPR- was used instead of P-DBA as the lower resist.
800 (novolak resist, trade name), apply this 0FPR-800 ethyl cellosolve acetate solution on an aluminum substrate to a thickness of 2.0 mm.
Beta for 1 hour at 0°C. After etching using oxygen plasma, a 0.31 Ra line and space resist pattern was formed. The charge up amount at this time is 2.4
-It was.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多層レジストプロセスによるパターン
形成において、チャージアップを防止し、よって、高精
度のパターンを形成することができ、また、低温での処
理が可能となるので、作業性を著しく高めることができ
る。
According to the present invention, in pattern formation using a multilayer resist process, charge-up can be prevented, a highly accurate pattern can be formed, and processing can be performed at low temperatures, thereby significantly improving workability. be able to.

Claims (1)

【特許請求の範囲】 1、電子ビームリソグラフィを用いた多層レジストプロ
セスによりレジストパターンを形成する方法であって、
下層レジストとして、弗素、臭素及び沃素からなる群か
ら選ばれた少くとも1種のハロゲンを分子中に含有する
材料を使用することを特徴とするパターン形成方法。 2、前記ハロゲン含有材料がハロゲン置換された重合体
である、特許請求の範囲第1項に記載のパターン形成方
法。 3、前記重合体がアクリル重合体である、特許請求の範
囲第2項に記載のパターン形成方法。 4、前記重合体がスチレン重合体である、特許請求の範
囲第2項に記載のパターン形成方法。
[Claims] 1. A method for forming a resist pattern by a multilayer resist process using electron beam lithography, comprising:
A pattern forming method characterized in that a material containing at least one halogen selected from the group consisting of fluorine, bromine and iodine in its molecule is used as the lower resist. 2. The pattern forming method according to claim 1, wherein the halogen-containing material is a halogen-substituted polymer. 3. The pattern forming method according to claim 2, wherein the polymer is an acrylic polymer. 4. The pattern forming method according to claim 2, wherein the polymer is a styrene polymer.
JP62274670A 1987-10-31 1987-10-31 Pattern forming method Pending JPH01118127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62274670A JPH01118127A (en) 1987-10-31 1987-10-31 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62274670A JPH01118127A (en) 1987-10-31 1987-10-31 Pattern forming method

Publications (1)

Publication Number Publication Date
JPH01118127A true JPH01118127A (en) 1989-05-10

Family

ID=17544923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62274670A Pending JPH01118127A (en) 1987-10-31 1987-10-31 Pattern forming method

Country Status (1)

Country Link
JP (1) JPH01118127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593058B1 (en) 1998-09-23 2003-07-15 E. I. Du Pont De Nemours And Company Photoresists, polymers and processes for microlithography
US6849377B2 (en) 1998-09-23 2005-02-01 E. I. Du Pont De Nemours And Company Photoresists, polymers and processes for microlithography
EP1790703A3 (en) * 1998-04-24 2009-08-12 JGC Catalysts and Chemicals Ltd. Coating liquid for forming silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
US20100081081A1 (en) * 2007-02-27 2010-04-01 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition for electron beam lithography
JP2012125140A (en) * 2010-12-07 2012-06-28 Industry-Academic Cooperation Foundation Yonsei Univ Multilayer electroactive polymer device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790703A3 (en) * 1998-04-24 2009-08-12 JGC Catalysts and Chemicals Ltd. Coating liquid for forming silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
US6593058B1 (en) 1998-09-23 2003-07-15 E. I. Du Pont De Nemours And Company Photoresists, polymers and processes for microlithography
US6849377B2 (en) 1998-09-23 2005-02-01 E. I. Du Pont De Nemours And Company Photoresists, polymers and processes for microlithography
US7276323B2 (en) 1998-09-23 2007-10-02 E. I. Du Pont De Nemours And Company Photoresists, polymers and processes for microlithography
US20100081081A1 (en) * 2007-02-27 2010-04-01 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition for electron beam lithography
US8603731B2 (en) * 2007-02-27 2013-12-10 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition for electron beam lithography
JP2012125140A (en) * 2010-12-07 2012-06-28 Industry-Academic Cooperation Foundation Yonsei Univ Multilayer electroactive polymer device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR930000293B1 (en) Fine pattern forming method
JP2919004B2 (en) Pattern formation method
JPS59153A (en) Formation of resist mask having resistance to plasma etching
JPH01118126A (en) Pattern forming method
JPS5851412B2 (en) Microfabrication method for semiconductor devices
JPH02191957A (en) Resist composition
JPH01118127A (en) Pattern forming method
JPS61218133A (en) Pattern formation of semiconductor device
US4259369A (en) Image hardening process
JP2516968B2 (en) Flattening material for two-layer electron beam resist
JPH06244156A (en) Formation of pattern
JPH0795509B2 (en) Method of forming resist pattern
KR20010037049A (en) Lithography method using silylation
JPS6256947A (en) Composition for flattened layer for resist having two-layered structure
JPS6074521A (en) Pattern forming process
JP2738693B2 (en) Fine pattern forming method
JP2001297970A (en) Thin film pattern and its forming method
JPS61214433A (en) Formation of resist coating and pattern
JPH081884B2 (en) Method of forming resist pattern
JPS6259950A (en) Ionizing radiation sensitive positive type resist
JPS6152567B2 (en)
JPH02252231A (en) Fine pattern forming method
JPH02174216A (en) Manufacture of semiconductor device
JPS646448B2 (en)
JPH0318179B2 (en)