JPH01112643A - Deflection yoke - Google Patents

Deflection yoke

Info

Publication number
JPH01112643A
JPH01112643A JP27137087A JP27137087A JPH01112643A JP H01112643 A JPH01112643 A JP H01112643A JP 27137087 A JP27137087 A JP 27137087A JP 27137087 A JP27137087 A JP 27137087A JP H01112643 A JPH01112643 A JP H01112643A
Authority
JP
Japan
Prior art keywords
coil
conductor
wire
saddle
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27137087A
Other languages
Japanese (ja)
Inventor
Hideo Hishijo
菱城 秀夫
Toshio Kobayashi
敏夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP27137087A priority Critical patent/JPH01112643A/en
Publication of JPH01112643A publication Critical patent/JPH01112643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a deflecting coil, which can generate a magnetic field with less variation, by twisting a plurality of thin wires into a single body, and decreasing variation of the winding distribution. CONSTITUTION:A horizontally deflecting coil 14 constituting a deflecting yoke consists of a conductor part 19 and an insulative covering 20. This covering 20 consists of a cable 17 twisted from a number of conductors 18 in complex constitution of an insulative layer 20a and a molten-fast layer 20b placed one over another in a saddle-shaped space formed from a female die 2 and a male die 4 and wound followed by heating and melting of the molten-fast layer 20b of each conductor 18 through current supply to the cable 17. Then a press tool 8 is moved in the B direction, and the cable 17 at the finish-winding end face is intruded to a specified position, and after molding into a saddle-shaped coil, the tool 8 is moved in the A direction for restitution to the original position followed by cooling for adhesion and solidification of conductors 18 contacting one another, and the female and male dies are separated from each other to obtain a coil 14.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、陰極線管を用いたテレビジョン受像機やコン
ピュータ端末機等の各種デイスプレィ装置に使用される
偏向ヨークに関し、特に、高精細デイスプレィなどに用
いて好適な1刊向ヨークに関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a deflection yoke used in various display devices such as television receivers and computer terminals using cathode ray tubes, and in particular, it relates to a deflection yoke used in various display devices such as television receivers and computer terminals using cathode ray tubes. The present invention relates to a single page yoke suitable for use.

(従来の技術) 富い解像度の要求される陰極線管型デイスプレ −イ装
置に用いられる従来の偏向ヨークでは、偏向コイルでの
渦電流損や表皮効果による損失を低減してコイル自体の
発熱を低減するなめ、実rjFJ昭57−107263
号公報、実開昭59 、5784/1号公報および特開
昭59−186239号公報に記載のように、線径の小
さな導体線を複数本撚り合せた1重撚り線(以下リッツ
線という)が用い   ′られている。
(Prior technology) Conventional deflection yokes used in cathode ray tube display devices that require high resolution reduce heat generation in the coil itself by reducing eddy current loss and loss due to skin effect in the deflection coil. Surname, real rjFJ 1972-107263
As described in Japanese Unexamined Utility Model Publication No. 59, No. 5784/1, and Japanese Unexamined Patent Application Publication No. 59-186239, a single stranded wire (hereinafter referred to as a Litz wire) is made by twisting a plurality of conductor wires with a small wire diameter. is used.

一方、jbi向周波周波数加に件な゛う回路素子等の制
約から、偏向コイルのインダクタンスを小さくしてコイ
ル断面積を一定に保つためには、特開昭61−1144
44号公報に記載のように1ターンの導体線の本数を増
加させる必要がある0例えば、水平偏向周波数が64k
H2,fht向コイルに流す電流を12 AI)−1)
 、 trj向コイルの総導体線の断面積をほぼ25闇
2に保った場合の導体線径、導体線本数と温度上昇値の
関係は、表および第9図示の如くなり、この条件では、
導f4ζ線本数30本+1近から温度上昇値が飽和し、
このような動作条f’トの実際の1■向コイルにおいて
ら、第10図示のように導体線径φ0.14mm、導木
本数7本のリッツ線7a、7b、7c、7d、7eを5
重亜列巻きにした35本の導体線数のものが用いられて
いる。
On the other hand, in order to reduce the inductance of the deflection coil and keep the coil cross-sectional area constant due to constraints on circuit elements, etc. related to the addition of the deflection coil frequency, it is necessary to
For example, when the horizontal deflection frequency is 64k, it is necessary to increase the number of conductor wires in one turn as described in Publication No. 44.
H2, the current flowing through the fht direction coil is 12 AI)-1)
, The relationship between the conductor wire diameter, the number of conductor wires, and the temperature rise value when the total cross-sectional area of the conductor wires of the TRJ direction coil is maintained at approximately 25 mm2 is as shown in the table and Figure 9, and under these conditions,
The temperature rise value becomes saturated when the number of conductive f4ζ wires approaches 30 + 1,
In the actual 1-direction coil of such an operating condition f', as shown in Figure 10, 5 Litz wires 7a, 7b, 7c, 7d, and 7e each having a conductor wire diameter of 0.14 mm and 7 guiding pieces are used.
A conductor with 35 conductor wires wound in heavy metal rows is used.

表 導体線径、導体本数と温度上昇の関係条件:水平偏
向周波数       64 kllz1槌向コイルの
電流      12Ap−p偏向コイルの断面積  
   約25關2偏向コイルのインダクタンス 130
μII一般に、第10図示のような鞍型コイル1は、第
11図示のように鞍型コイルlの背面に対応して鞍型凹
面子が形成された雌型2と鞍型コイル1の内面に対応し
て凸面5が形成された雄型4とを第12図示の如く同一
軸上に回転可能且つ互いに嵌脱可能に配備し、雌型2と
雄型4との嵌合によって雌型2と雄型4との間に鞍型空
間6を形成し、雌型2および雄型4を一体回転させて、
前記鞍型空間6に第13図示の如く導体線7を積み重ね
巻回し、コイル状に巻回された導体線7 (7a。
Table Relationship between conductor wire diameter, number of conductors, and temperature rise: Horizontal deflection frequency 64 kllz1 Hammer direction coil current 12Ap-p Cross-sectional area of deflection coil
Inductance of 2 deflection coils approximately 25° 130
Generally speaking, a saddle-shaped coil 1 as shown in FIG. A male mold 4 having a corresponding convex surface 5 is arranged rotatably on the same axis and removable from each other as shown in FIG. A saddle-shaped space 6 is formed between the male die 4 and the female die 2 and the male die 4 are rotated together,
The conductor wires 7 are stacked and wound in the saddle-shaped space 6 as shown in Figure 13, and the conductor wires 7 are wound into a coil (7a).

7b、7c、7d、7e)に通電して、導体線の融着層
を加熱溶融し、その後ダレスツール8を第13図中矢印
B方向に移動させコイル状に巻回された導体線7の巻き
終り部分を規定位(i!まで押し込みコイルを形成し、
その後同図中矢印へ方向に前記プレスツール8を移動さ
せて元の位置に戻し、このコイルを雌型2と雄型4と共
に冷却させて互いに接触する導体線を固化し、雌型2と
雄型4を互いにば脱せしめて、コイルを取り出す工程に
より製造される。
7b, 7c, 7d, 7e) to heat and melt the adhesive layer of the conductor wire, and then move the Dulles tool 8 in the direction of arrow B in FIG. 13 to separate the conductor wire 7 wound into a coil. Push the end of the winding to the specified position (i!) to form a coil.
Thereafter, the press tool 8 is moved in the direction of the arrow in the figure and returned to its original position, and the coil is cooled together with the female die 2 and the male die 4 to solidify the conductor wires in contact with each other, and the female die 2 and the male die are cooled. It is manufactured by a process of removing the molds 4 from each other and taking out the coil.

ところが、導体線7を積み重ね巻回していく際、導体線
7が雌を側に密着して積み重なり、雄型側に崩れ落ちな
がら鞍型空間部6に巻回されるなめ、巻回終了時には第
13図示のように導体線7と雄型4の凸面5との間に空
間部9ができる。
However, when the conductor wires 7 are piled up and wound, the conductor wires 7 are piled up with the female end close to the side, and the conductor wires 7 are piled up close to the female end, and are wound around the saddle-shaped space 6 while collapsing toward the male end. As shown in the figure, a space 9 is formed between the conductor wire 7 and the convex surface 5 of the male mold 4.

この状態でブレ冬ツー゛ル8を第13図中矢印B方向に
移動させてコイルを成形すると導体線7が空間部9の方
向に崩れ落ちることになる。
In this state, when the wintering tool 8 is moved in the direction of arrow B in FIG. 13 to form a coil, the conductor wire 7 collapses in the direction of the space 9.

(発明が解決しようとする問題点) このような方法で細線やリッツ線を複数本並列巻きして
鞍型偏向コイル1を構成すると、並列巻きし−な複数本
の導体線7は順序よく積み重ねられることなく、それぞ
れバラバラの位置に巻回されることになり、複数本の導
体線7のそれぞれのインダクタンス、に差が生じ、例え
ば、線径φ0.14岨の導体線7を7本撚り合せたリッ
ツ線7a、7b。
(Problem to be Solved by the Invention) When the saddle-shaped deflection coil 1 is constructed by winding a plurality of thin wires or Litz wires in parallel in this manner, the plurality of conductor wires 7 wound in parallel can be stacked in an orderly manner. As a result, each of the conductor wires 7 is wound at different positions, resulting in a difference in the inductance of each of the multiple conductor wires 7. For example, when seven conductor wires 7 with a wire diameter of 0.14 mm are twisted together, Litz wires 7a, 7b.

7c、7d、7eを5重亜列に同時に巻回し、130μ
Hのインダクタンスの鞍型偏向コイルを生産した場合、
各偏向コイルを構成するリッツ線5木のそれぞれのイン
ダクタンスには0.5%〜5.0%程度の範囲内で差が
生じる。
7c, 7d, and 7e are wound at the same time in 5 subrows, 130μ
When producing a saddle-shaped deflection coil with an inductance of H,
The inductance of each of the five litz wires constituting each deflection coil varies within a range of about 0.5% to 5.0%.

このような鞍を偏向コイルを用いて、少なくとも1対の
水平偏向コイルを構成し、コアに導体線を巻回したトロ
イダルコイルを垂直IQ向ココイルして偏向ヨークを組
み上げ動作させた場合、それぞれのリッツv?、7 a
 、 7 b 、 7 c 、 7 d 、 7 eに
流れる電流が均等に115に分割されず、インダクタン
スの少ないものに多く流れたり、インダクタンスの少な
いものと多いもので電流の移相差が生じ、たり、電線間
の相互誘導や分布容量等の結合状態によってバラバラの
電流が流れ、各リッツ線には不均一な電流が流れるもの
が多く発生ずる。
When such a saddle is constructed using deflection coils to form at least one pair of horizontal deflection coils, and a toroidal coil with a conductor wire wound around the core is assembled into a vertical IQ co-coil to assemble a deflection yoke and operate, each Ritz v? ,7a
, 7b, 7c, 7d, and 7e are not evenly divided into 115 parts, and more of the current flows to those with less inductance, and a phase shift difference occurs between those with less and more inductance. Different currents flow depending on the coupling conditions such as mutual induction between wires and distributed capacitance, and uneven currents often flow in each Litz wire.

このことと各リッツ線がバラバラの位置にコイル状に巻
回されていることと合せて局部的に歪んだ不均一・な磁
界を発生させることになり、各電子銃より発射された電
子ビームもこの影響で部分的に歪んだ偏向を受けること
になる。
This, combined with the fact that each litz wire is wound in a coil shape at different positions, generates a locally distorted and non-uniform magnetic field, which causes the electron beams emitted from each electron gun to This effect results in a partially distorted deflection.

このため、面上で局部的に、特に、IQ向ヨークに近い
場所を電子ビームが通過する画面の周辺部で各電子ビー
ム間の不規則なミスコンバーゼンスが生じ、コンバーゼ
ンス品位を著るしく落し、高精細デイスプレィ用として
使えないものが多発すると云う欠点がある。
Therefore, irregular misconvergence between the electron beams occurs locally on the screen, especially in the peripheral area of the screen where the electron beam passes near the IQ yoke, which significantly degrades the convergence quality. The drawback is that there are many products that cannot be used for high-definition displays.

また、水平偏向周波数が可変されるデイスプレィ等に於
いては、水平偏向周波数変化により画面上の各電子ビー
ムのミスコンバーゼンスの状態が変化し、水平1程向周
波数が高くなるほどこの影響が大きいと云う事実が明ら
かになり、この種のデイスプレィ用としても従来の偏向
ヨークでは使用に耐えないものが発生し高精細デイスプ
レィ用の偏向ヨークとしては、非常に生産性が悪く、コ
ストみ高いものになっていた。
In addition, in displays where the horizontal deflection frequency is variable, the state of misconvergence of each electron beam on the screen changes due to changes in the horizontal deflection frequency, and this effect becomes larger as the horizontal deflection frequency increases. The fact has become clear that some conventional deflection yokes cannot withstand use even for this type of display, and as a deflection yoke for high-definition displays, productivity is extremely low and costs are high. Ta.

このように従来の偏向ヨークは、水平偏向コイルの表皮
効果や渦電流による損失を低減させることに重点が置か
れ、少なくとも1対の鞍を水平偏向コイルを用いて高精
度な偏向ヨークをバラツキが少なく生産性を向上させて
低コス1〜でf1ミる点については配慮されていなかっ
た。
In this way, conventional deflection yokes have focused on reducing losses due to the skin effect and eddy currents of horizontal deflection coils, and at least one pair of saddles are constructed using horizontal deflection coils to prevent variations in high-precision deflection yokes. No consideration was given to improving productivity and achieving F1 at a low cost of 1~.

(問題点を解決するための手段) 本発明は、上述のような実情に鑑みてなされたものであ
り、水平面白コイル14および垂直偏向コイル12の少
なくとも一方のコイルを形成する導体線18.21を、
粗い撚りピッチで複数本の導体線18.21を撚り合ぜ
な1本の撚り線17゜22で形成したことを0徴とする
偏向ヨーク10を提供するものである。
(Means for Solving the Problems) The present invention has been made in view of the above-mentioned actual circumstances, and the present invention has been made in view of the above-mentioned circumstances. of,
The present invention provides a deflection yoke 10 which is formed by one twisted wire 17°22 formed by twisting a plurality of conductor wires 18, 21 together at a coarse twisting pitch.

(作 用) 上述のような偏向コイルにおいては、上記1本の撚り線
17.22が、前述の如く形成される+1(を型と雄型
との間の鞍型空間部6の隙間の狭い先端部はMjt長に
つぶされながら巻回されるようにして先端部まで電線が
巻き込まれるようにするとともに、空間部の広いところ
では横長につぶされながら巻回されるようにして空間部
6内での崩れ落ちを極力防ぐことができ、1本の撚り線
が先端部から順序よく巻線されるので、各巻線数で撚り
線がほぼ同じ場所に巻回される。
(Function) In the deflection coil as described above, the single stranded wire 17. The tip is rolled while being crushed to a length of Mjt so that the wire is wound up to the tip, and in the wide area of the space, the wire is rolled while being crushed horizontally so that it can be wound inside the space 6. Since each strand is wound in order starting from the tip, the strands are wound in approximately the same location for each number of windings.

その結果、巻線分布のバラツキも少なく、1本の撚り線
で巻回しているので並列巻きされた各導体間のインダク
タンスの差も無くなり、常にバラツキの少ない磁界を9
発生させる鞍型1mmココイル実現させることができる
As a result, there is little variation in the winding distribution, and since it is wound with a single strand, there is no difference in inductance between each conductor wound in parallel, and the magnetic field with little variation is always maintained at 9.
A saddle-shaped 1 mm cocoil can be generated.

(実施例) 以下、本発明の偏向ヨークの一実施例を第1図ないし第
8図を用いて詳4[1に説明する6第2図において、1
0は偏向ヨークであり、コア11と、コア11の外周に
トロイダルに巻回された垂直1u向コイル12と、コア
11の内面にセパレータ13を介して鞍型に巻回された
水平偏向コイル14とから構成され、七パレータ13の
後部側に形成した固定部15を介して陰極線管16の所
定位置に固定される。
(Embodiment) Hereinafter, an embodiment of the deflection yoke of the present invention will be described in detail using FIGS. 1 to 8.
0 is a deflection yoke, which includes a core 11, a vertical 1U coil 12 wound toroidally around the outer circumference of the core 11, and a horizontal deflection coil 14 wound in a saddle shape around the inner surface of the core 11 with a separator 13 in between. It is fixed to a predetermined position of the cathode ray tube 16 via a fixing part 15 formed on the rear side of the seven pallets 13.

偏向ヨーク10を構成する水平偏向コイル14は、第3
図(a)図示の如く線径dがφ0゜14關の導線部分1
9と絶縁被覆部20とからなり、絶縁被覆部20はポリ
エステルイミド等からなる絶縁層20aとその表面に被
着されたポリアミド等からなる融着層20bとの複合構
成となされている導体線18を35木、撚りピッチPを
18〜30市で撚り合せた第1図示の撚り線17を用い
て、従来例と同様の手順で雌型2と雄型4とで形成され
る鞍型空間部6に績み重ね巻回され、撚り線17に通電
して各導体線18の融着層20bを加熱溶融し、プレス
ツール8を第゛13図中矢印B方向に移動させ、巻き終
り端面の撚り線17を規定位置まで押し込み鞍型コイル
状に成形後、前記プレスツール8を第13図中矢印A方
向に移動させて元の位置に戻し、冷却させて互いに接触
する導体線18を接着固化し、雌型2とa型4を互いに
離脱せしめて得られる第4図示の如く鞍型形状の水平偏
向コイル14である。
The horizontal deflection coil 14 constituting the deflection yoke 10 has a third
Figure (a) As shown in the figure, the conductor portion 1 has a wire diameter d of φ0°14
9 and an insulating coating part 20, the insulating coating part 20 having a composite structure of an insulating layer 20a made of polyesterimide or the like and a fusion layer 20b made of polyamide or the like adhered to the surface of the conductor wire 18. Using the strands 17 shown in FIG. The strands 17 are energized to heat and melt the fusion layer 20b of each conductor wire 18, and the press tool 8 is moved in the direction of arrow B in FIG. After pushing the stranded wire 17 to a specified position and forming it into a saddle-shaped coil, the press tool 8 is moved in the direction of arrow A in FIG. As shown in FIG. 4, a saddle-shaped horizontal deflection coil 14 is obtained by separating the female mold 2 and the a-form 4 from each other.

この撚り線17は、撚りピッチPを大きくすることによ
り、すなわち撚りとッチp f!−mr くすることに
より本数が多く太い撚り線にもかかわらず、弱い外力で
断面形状が変り易い構成になっている。
This twisted wire 17 can be made by increasing the twisting pitch P, that is, by increasing the twisting pitch P f! -mr Even though the number of strands is large and thick, the cross-sectional shape can be easily changed by a weak external force.

このような撚り線17を用いて鞍型形状の偏向コイル1
4を巻回すると、雌型2と雄型4との間に形成される鞍
型空間部6の形状に馴染み易く、第5図示の如く鞍型空
間部6の隙間の狭い先端部は縦長につぶされながら巻回
され、従来と同様先端部まで電線が巻き込まれ、空間部
の広いところでは横長につぶされながら順序よく積み重
ね巻回され雄型側にも電線が順序よく巻き込まれるので
鞍型空間部6内での崩れ落ちが少なく、巻終り部におい
ても雄型4の凸面5との間に出来る空間部9も少ないコ
イルに巻回され、各導体線18の融着層20bの加熱溶
融のための通電により巻線間に働く電磁力やプレスツー
ル8によるコイル端面の成形時の撚り線17の鞍型空間
部内への押し込みの際の撚り線相互間の位置ズレによる
巻始め側と巻終り側との撚り線の逆転現象も少なく巻始
めから巻終りまで順序よく積み重ねられた巻線分布のバ
ラツキの小さい鞍型状の水平偏向コイル14が得られる
A saddle-shaped deflection coil 1 is made using such stranded wires 17.
4, it easily adapts to the shape of the saddle-shaped space 6 formed between the female mold 2 and the male mold 4, and as shown in FIG. The wires are rolled while being crushed, and the wires are wound up to the tip as in the conventional case, and in the wide part of the space, the wires are piled up and wound in an orderly manner while being crushed horizontally, and the wires are also wound in an orderly manner on the male side, so that the saddle-shaped space 6 is created. It is wound into a coil with less collapse within the coil, and there is less space 9 formed between the convex surface 5 of the male die 4 and the convex surface 5 of the male die 4 at the end of the winding. Due to the electromagnetic force acting between the windings and the positional deviation between the strands when the strands 17 are pushed into the saddle-shaped space when forming the coil end face with the press tool 8, the winding start side and the winding end side are It is possible to obtain a saddle-shaped horizontal deflection coil 14 in which there is little reversal of the twisted wires and the windings are stacked in an orderly manner from the beginning to the end of the winding, with little variation in the winding distribution.

その結果、偏向コイルに電流を流すことによって発生さ
れる主1n向磁界分布のバラツキも小さくなることは勿
論であるが、細線を複数本撚り合せて1本化しているの
で、並列巻きされた各細線間の相互誘導や分布容量等の
結合状態も安定しており、各′FP体線量線間ンダクタ
ンスのバラツキや電流の移相差や局部的なアンバランス
電流の発生が防げるため、高周波電流を流しても局部的
に歪んだ不均一な磁界の発生により、偏向磁界に非対称
成分が生じることにより発生ずる第6図(a>図示のよ
うな横線サイドビームB、Hのうねりミスコンバーゼン
スや同図(b)図示のようなサイドビームB、Hの横線
のクロスミスコンバーゼンスXvの発生がほとんど無く
なり、水平偏向周波数64 kllz以上の超高精細デ
イスプレィに於いても実用−F全く支障の無いレベルに
できた。
As a result, it goes without saying that the variation in the main 1n direction magnetic field distribution generated by passing current through the deflection coil becomes smaller, but since multiple thin wires are twisted together into one, each The coupling conditions such as mutual induction between thin wires and distributed capacitance are also stable, and it is possible to prevent variations in the inductance between each FP body dose line, current phase shift differences, and local unbalanced currents, so high-frequency current can be passed. However, due to the generation of a locally distorted and non-uniform magnetic field, an asymmetrical component is generated in the deflection magnetic field. b) The cross misconvergence Xv of the horizontal lines of the side beams B and H as shown in the figure has almost disappeared, and the horizontal deflection frequency has been reduced to a level that does not cause any problems even in ultra-high definition displays with a horizontal deflection frequency of 64 kllz or more. .

また、水平11i向周波数fl+を約2倍の2f、、程
度にまで連続可変させると、fld向磁界磁界対称成分
により偏向周波数が高くなる程ズレ社が大きくなる第6
図(a)図示のような横線サイドビームI3.Rのうね
りミスコンバーゼンスの変化もほとんど認められなくな
った。
In addition, when the horizontal 11i direction frequency fl+ is continuously varied to about twice 2f, the deviation becomes larger as the deflection frequency becomes higher due to the fld direction magnetic field magnetic field symmetric component.
Figure (a) Horizontal line side beam I3 as shown. Changes in R waviness misconvergence are almost no longer observed.

また、第8図は、本発明の別の実施例に用いた撚り線2
2の導体線構成を説明するための断面図で、第2図(a
)図示の絶縁皮膜20aとその表面に被着された融着層
20bを有する導体線18と第3図(b)図示の絶縁皮
膜20aのみを有する導体線21とをそれぞれ複数本混
合して撚り合せて1木化したものである。
Moreover, FIG. 8 shows the twisted wire 2 used in another embodiment of the present invention.
2 is a cross-sectional view for explaining the conductor wire configuration of No. 2.
) A plurality of conductor wires 18 having the illustrated insulating coating 20a and a fusion layer 20b adhered to the surface thereof and a plurality of conductor wires 21 having only the insulating coating 20a illustrated in FIG. 3(b) are mixed and twisted. They are combined into one tree.

第8図示のような構成において、導体線18として、d
=φ0.14m+n、  d’ =φ0.18Oram
、  d” =0.200 mmを採用すると、その断
面積SはS=0.031 m+n’ テあり、導体線2
1としテd=、A0.14nw+、d″=0.180m
+nを採用すると、その断面積Sは、S = 0.02
5 n++n ”となり、第8図示のように導体線18
を29木、導体線22を6本用いた場合の撚り線22の
導体断面積SSは、5S=29XO,03! + 6 
xo、025 =1.05關2となる。
In the configuration shown in FIG. 8, as the conductor wire 18, d
=φ0.14m+n, d' =φ0.18Oram
, d" = 0.200 mm, the cross-sectional area S is S = 0.031 m + n', conductor wire 2
1, d=, A0.14nw+, d″=0.180m
+n, its cross-sectional area S is S = 0.02
5 n++n'', and conductor wire 18 as shown in Figure 8.
When using 29 wood and 6 conductor wires 22, the conductor cross-sectional area SS of the stranded wire 22 is 5S=29XO,03! +6
xo, 025 = 1.05 x 2.

一方、前述の第1図示の実施例のように、導体線18を
全部用いた場合の撚り線17の導体断面積SSは、S 
S = 35 X O,031= 1.085 m’と
なり、撚り線22の方が導体断面積を小さくすることが
できる。
On the other hand, the conductor cross-sectional area SS of the stranded wire 17 when all the conductor wires 18 are used as in the embodiment shown in the first drawing is
S = 35 x O, 031 = 1.085 m', and the stranded wire 22 allows the conductor cross-sectional area to be smaller.

更に、導体線21の本数を増して導体線18を24木、
導体線21を11本の組み合せにすると約6%導体断面
を小さくできる。
Furthermore, the number of conductor wires 21 is increased to 24 conductor wires 18,
By combining 11 conductor wires 21, the conductor cross section can be reduced by about 6%.

なお、導体線18と導体線21の混合割合は、@型偏向
コイル14を形成した場合の各導体線間の接着強度が問
題にならない範囲であれば、導体線21のV1合が多け
れば多いほどその効果が大きくなる。
The mixing ratio of the conductor wire 18 and the conductor wire 21 is such that the larger the V1 combination of the conductor wire 21 is, the higher the amount is, as long as the adhesion strength between the conductor wires is not a problem when forming the @-type deflection coil 14. The more the effect becomes greater.

このことにより、複数の相線を撚り合せて1木化したこ
とにより、細線を撚らないで複数本並列に巻線した場合
よりも鞍型空間部6内に電線が詰る割合(占積率)が悪
くなるのを防げ、占積率が悪くなるために鞍型状のコイ
ルが標準(設計時点のもの)のものより大きく仕上る場
合もあるが、融着層20bのない導体線21を一部使用
することにより、占積率が悪くなるのをカバーできるだ
けでなく、導体線18.21の線径dを太くしたり、導
体線の本数を増すことが可能になり、その分、銅線の温
度上昇の低減が図れ、大きな電力用途や、更に高い水平
偏向周波数用途への対応も可能になる。
As a result, by twisting multiple phase wires into one tree, the rate at which wires are clogged in the saddle-shaped space 6 (space factor ), and the space factor worsens, so the saddle-shaped coil may be finished larger than the standard one (at the time of design). By using copper wire, it is possible not only to compensate for the poor space factor, but also to increase the wire diameter d of the conductor wire 18, 21 and increase the number of conductor wires. temperature rise can be reduced, making it possible to support large power applications and even higher horizontal deflection frequency applications.

また、従来と同様の使い方の場合には、余裕が生じた分
だけ小型化が可能となる。
Further, in the case of usage similar to the conventional one, the size can be reduced by the amount of margin.

さらに、鞍型状のコイルが標準のものより大きくなれば
なるほど第7図示のような、ミスコンバーゼンス量が大
きくなる欠点があるが、このような欠点も防げる。
Furthermore, as the saddle-shaped coil becomes larger than the standard one, there is a drawback that the amount of misconvergence increases as shown in FIG. 7, but this drawback can also be prevented.

なお、本発明の偏向ヨークの実施例においては、水平偏
向コイル14を鞍型、垂直偏向コイル12をトロイダル
型にそれぞれ巻いて偏向ヨークを構成するものについて
述べたが、コイルの右同形状は実施例に同等限定される
ものでなく、水平垂直偏向コイルを共に鞍型に巻回して
構成しても良いものである。
In the embodiment of the deflection yoke of the present invention, the deflection yoke is constructed by winding the horizontal deflection coil 14 in a saddle shape and the vertical deflection coil 12 in a toroidal shape, but the same shape of the coil on the right side is not implemented. The present invention is not limited to the same example, and the horizontal and vertical deflection coils may be wound together in a saddle shape.

また、本発明の実施例においては、水平偏向コイルのみ
1本の撚り線17.22を用いて巻回した(“−1成の
ものについて述べたが、必要に応じて垂直偏向コイルに
も1本化した撚り線を用いて巻回してもよい。
In addition, in the embodiment of the present invention, only the horizontal deflection coil was wound using one stranded wire 17. It is also possible to wind the wire using a stranded wire.

さらに、撚り線17.22を構成する導体線18.21
の本数や太さは、水平走査周波数や偏向電力に応じて、
水平・垂直偏向コイルともに最適な構成を選べばよく、
実施例に限定されるものでない。
Furthermore, the conductor wire 18.21 constituting the stranded wire 17.22
The number and thickness of the lines depend on the horizontal scanning frequency and deflection power.
All you have to do is choose the optimal configuration for both horizontal and vertical deflection coils.
It is not limited to the examples.

また、本発明に用いた撚り線17.22は、導体線の本
数が多数本になっても仕上り外径が太くなっても弱い外
力で断面形状が変り易く、即ち、鞍型空間部すの形状に
馴染み易く、第5図示の如く鞍型空間部6の隙間の狭い
先端部は縦長につぶされながら巻回され、従来構成のも
のと同様先端まで電線が巻き込まれ、空間部の広いとこ
ろでは、横長につぶされながら順序よく積み重ね巻回さ
れるようにするために、粗い撚りピッチPで撚り合せる
必要があるが、ピッチPは実施例のものに限定されるも
のではなく、撚りピッチは、撚り線の構成によって最適
なものを用いればよいが、本発明に採用できるものは、
前記理由よりP=1011III+以上のものが必要で
ある。
Furthermore, the stranded wires 17 and 22 used in the present invention tend to have a cross-sectional shape that easily changes due to a weak external force even when the number of conductor wires increases or the finished outer diameter increases. It is easy to adapt to the shape, and as shown in Figure 5, the tip of the saddle-shaped space 6 with a narrow gap is rolled while being crushed vertically, and the electric wire is wound up to the tip as in the conventional structure, and the wire is wound in the wide space. In order to stack and wind in an orderly manner while being flattened horizontally, it is necessary to twist the strands at a coarse twisting pitch P, but the pitch P is not limited to that in the example. The most suitable one may be used depending on the line configuration, but the ones that can be adopted in the present invention are:
For the above reason, P=1011III+ or more is required.

(発明の効果) 以上述べた如く、本発明の偏向ヨークの鞍型面内コイル
は、複数本の導体線を狙いピッチで撚り合せて1本化す
ることにより、鞍型空間部内の形状に馴染み易くし、巻
き始め部から巻き終り側へ順序よく巻型の鞍型空間部へ
積み重なりながら巻回されるようにしたので並列に接続
される複数本の導体線間のインダクタンスのバラツキと
巻線分布のバラツキを小さくして局所的な不均一な磁界
の発生により偏向磁界の非対称成分が生じることにより
、特に高周波数の水平偏向周波数になるほど顕著になる
横線のサイドビームのミスコンバーゼンスの址を超高解
1象のデイスプレィ装置に於いても実用上支障のないレ
ベルにでき、その品位を著しく向上することができた。
(Effects of the Invention) As described above, the saddle-shaped in-plane coil of the deflection yoke of the present invention adapts to the shape inside the saddle-shaped space by twisting a plurality of conductor wires at a targeted pitch into one. Since the coils are stacked in the saddle-shaped space of the winding form in an orderly manner from the winding start to the winding end, variations in inductance between multiple conductor wires connected in parallel and winding distribution can be avoided. By reducing the dispersion and generating locally non-uniform magnetic fields, asymmetrical components of the deflection magnetic field are generated, resulting in extremely high resolution of the misconvergence of horizontal side beams, which becomes more prominent as the horizontal deflection frequency increases. Even a simple display device can be made to a level that does not pose any practical problems, and its quality has been significantly improved.

さらに、融i4層の無い導体線を混合して複数本の導−
棒線を粗いピッチで撚り合せて1木化した撚り線を用い
ると、全部融着層を有する導体線を用いた撚り線よりは
、融着層が無くなった分に相当する総面積の分だけ導体
線が鞍型空間部内に詰る割合(占積率)が改善され、導
体線を撚り合せたことにより、導体線間の空隙部が多く
なることによる占積率の低下をカバーすることができ、
鞍型状のコイルが標準のものより大きくなることによる
ミスコンバーゼンスの発生を防げるだけでなく、各導体
線の線径を太くしたり、導体線の本数を増すことが可能
になり、その分銅線の温度上昇の低減が図れ、大きな電
力やさらに高い水平1荷内周波数用途への対応が可能と
なる。
Furthermore, by mixing conductor wires without a fused i4 layer, multiple conductor wires can be formed.
When using a stranded wire made by twisting rod wires together at a coarse pitch to form a single piece of wood, compared to a stranded wire using a conductor wire that all has a fusion layer, the total area is reduced by the amount corresponding to the amount of the fusion layer removed. The rate at which the conductor wires get stuck in the saddle-shaped space (space factor) has been improved, and by twisting the conductor wires, it is possible to compensate for the decrease in the space factor caused by the increase in the number of gaps between the conductor wires. ,
This not only prevents misconvergence caused by the saddle-shaped coil being larger than the standard one, but also makes it possible to increase the diameter of each conductor wire and increase the number of conductor wires. It is possible to reduce the temperature rise of the system, making it possible to handle large electric power and even higher horizontal single load frequency applications.

また融着層のない導体線は、融着層の有る導体線よりも
製造原価が安いので、融着層の無い導水線を混合して用
いることにより撚り線の価格も安くできる等の数々の利
点を前述の効果に追加できる。
In addition, since conductor wires without a fusion layer are cheaper to manufacture than conductor wires with a fusion layer, the cost of stranded wire can be lowered by mixing and using water conductor wires without a fusion layer. Benefits can be added to the aforementioned effects.

さらに、複数本の導体線を同時に多数本撚り合せ1本の
撚り線を構成することは、あらかじめ比較的本数の少な
い複数本の導体線を撚り合せた撚9線単位を、複数単位
撚り合せて1本の撚り線を構成する場合よりも、仕上り
外径を小さくできるとともに、撚り工程が一工程少なく
なる分だけ生産コストが安くなる利点がある。
Furthermore, to construct a single stranded wire by simultaneously twisting a large number of conductor wires together, it is possible to construct a single stranded wire by twisting a relatively small number of conductor wires together in units of 9 wires in advance. Compared to the case where a single stranded wire is used, the finished outer diameter can be made smaller, and the production cost is reduced by one less twisting step.

さらにまた、従来多数の導体線または撚り線(リッツ線
)を並列に同時に巻回していたために、巻線機の送線系
統が複雑な構成になり、各導体線間のテンションのバラ
ツキや各導体線の巻型内への滑り落ちる際の滑り方等の
バラツキら大きく安定なコイルを得るためには巻線機の
運転管理も大変であったが、本発明のように1本化すれ
ば送線系統も単純になり、各導体線間のテンションのバ
ラツキらなくなるし、巻線途中で電線が無くなることに
よる電線供給のために巻線機を停止させる回数も少なく
なることや単純な構成なのでトラブルの発生も少なくで
きる等巻線機を連続で長く運転することが可能となり、
巻型温度も安定することになり、単純な構成の安価な巻
線機で安定した鞍型1u向コイルを生産性よく生産する
ことができ、品位の優れた高解像デイスプレィ等に使用
される難度の高い偏向ヨークを歩留よく生産することが
でき、その工業的価値は大きなものがある。
Furthermore, because conventionally a large number of conductor wires or stranded wires (Litz wires) were wound simultaneously in parallel, the wire transmission system of the winding machine became complicated, resulting in variations in the tension between each conductor wire and In order to obtain a stable coil, it was difficult to manage the operation of the winding machine due to variations in the way the wire slides into the winding form, etc. However, if the winding machine is unified as in the present invention, the wire feeding becomes easier. The system becomes simpler, there is no variation in the tension between each conductor wire, the number of times the winding machine has to stop to supply the wire due to a wire being lost in the middle of winding is reduced, and the simple configuration reduces troubles. It is now possible to operate the equal winding machine continuously for a long time with less generation.
The winding temperature becomes stable, and a stable saddle-shaped 1U coil can be produced with high productivity using a simple and inexpensive winding machine, which is used for high-quality, high-resolution displays, etc. It is possible to produce a highly difficult deflection yoke with a high yield, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施した撚り線の一実施例を示す一
部破断斜視図、第2図は、本発明の一実被覆の構成を説
明する断面図、第4図は本発明1苗向ヨークの鞍型状の
偏向コイルの斜視図、第5図は、本発明のコイルが巻か
れた状態の巻型を示す断面図、第6図(a)、(b)及
び第7図は、本発明の偏向ヨークで改善したミスコンバ
ーゼンスパターン、第8図は本発明を実施した他の実施
例に用いた撚り線の断面図、第9図は、水平偏向周波数
64 kHzの場合の鞍を水平偏向コイルの導体線本数
と温度上昇値の関係を示すグラフ、第10図は、鞍型状
の偏向コイルの斜視図、第11図は、巻型の形状を示す
斜視図、第12図は、突き合わせ状態の巻型を示す断面
図、第13図は、コイルが巻かれた状態の巻型を示す断
面図とプレスツールの動きを説明する図である。 12・・・垂直偏向コイル、14・・・水平偏向コイル
、17.22・・・撚り線、18.22・・・導体線。 語7図      p図 導体線本数、(A−) ヌ′?図 ′$10図 第・11図
FIG. 1 is a partially cutaway perspective view showing an embodiment of the stranded wire according to the present invention, FIG. 2 is a sectional view illustrating the structure of the solid coating of the present invention, and FIG. FIG. 5 is a perspective view of the saddle-shaped deflection coil of the Naeda yoke; FIG. 5 is a cross-sectional view showing the winding form in which the coil of the present invention is wound; FIGS. 8 shows the misconvergence pattern improved by the deflection yoke of the present invention, FIG. 8 is a cross-sectional view of the twisted wire used in another embodiment of the present invention, and FIG. 9 shows the saddle when the horizontal deflection frequency is 64 kHz. FIG. 10 is a perspective view of a saddle-shaped deflection coil, FIG. 11 is a perspective view showing the shape of a winding form, and FIG. 13 is a cross-sectional view showing the winding form in a butted state, and FIG. 13 is a cross-sectional view showing the winding form in a state where a coil is wound, and a diagram for explaining the movement of the press tool. 12... Vertical deflection coil, 14... Horizontal deflection coil, 17.22... Twisted wire, 18.22... Conductor wire. Word 7 Diagram p Diagram Number of conductor wires, (A-) Nu'? Figure '$10 Figure 11

Claims (5)

【特許請求の範囲】[Claims] (1)水平偏向コイルおよび垂直偏向コイルの少なくと
も一方のコイルを形成する導体線を、粗い撚りピッチで
複数本の導体線を撚り合せた1本の撚り線としたことを
特徴とする偏向ヨーク。
(1) A deflection yoke characterized in that the conductor wire forming at least one of the horizontal deflection coil and the vertical deflection coil is a single twisted wire obtained by twisting a plurality of conductor wires at a coarse twisting pitch.
(2)互に絶縁層を有する導体線を用いたことを特徴と
する特許請求の範囲第1項記載の偏向ヨーク。
(2) The deflection yoke according to claim 1, characterized in that conductor wires each having an insulating layer are used.
(3)互に絶縁皮膜とその表面に被着された融着層を有
する導体線を用いたことを特徴とする特許請求の範囲第
1項記載の偏向ヨーク。
(3) The deflection yoke according to claim 1, characterized in that conductor wires each having an insulating film and a fusion layer adhered to the surface thereof are used.
(4)絶縁皮膜とその表面に被着された融着層を有する
導体線と絶縁皮膜のみを有する導体線とをそれぞれ複数
本混合して撚り合せた撚り線を用いたことを特徴とする
特許請求範囲第1項記載の偏向ヨーク。
(4) A patent characterized in that a stranded wire is used in which a plurality of conductor wires having an insulating film and a fusion layer adhered to the surface thereof and a plurality of conductor wires having only an insulating film are mixed and twisted together. A deflection yoke according to claim 1.
(5)撚りピッチを10mm以上としたことを特徴とす
る特許請求範囲第1項記載の偏向ヨーク。
(5) The deflection yoke according to claim 1, characterized in that the twisting pitch is 10 mm or more.
JP27137087A 1987-10-27 1987-10-27 Deflection yoke Pending JPH01112643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27137087A JPH01112643A (en) 1987-10-27 1987-10-27 Deflection yoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27137087A JPH01112643A (en) 1987-10-27 1987-10-27 Deflection yoke

Publications (1)

Publication Number Publication Date
JPH01112643A true JPH01112643A (en) 1989-05-01

Family

ID=17499122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27137087A Pending JPH01112643A (en) 1987-10-27 1987-10-27 Deflection yoke

Country Status (1)

Country Link
JP (1) JPH01112643A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186239A (en) * 1983-04-05 1984-10-23 Matsushita Electronics Corp Deflection yoke

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186239A (en) * 1983-04-05 1984-10-23 Matsushita Electronics Corp Deflection yoke

Similar Documents

Publication Publication Date Title
JPH01112643A (en) Deflection yoke
US4494097A (en) Electromagnetic deflection unit
US3169207A (en) Electromagnetic deflection yoke having interconnected multifilar strands
JP2897544B2 (en) Deflection yoke
EP0572192B1 (en) Saddle type bobbin for deflection coil
JPS62216140A (en) Deflecting yoke
JPH01107436A (en) Deflection yoke
JP3410491B2 (en) Collective stranded wire for deflection yoke and deflection yoke
JP2002270096A (en) Deflection coil manufacturing method, its manufacturing device and deflection yoke device
JP2580242Y2 (en) Core for deflection yoke
KR100332613B1 (en) Manufacture Method of DY Coil for broun tube
JP3109241B2 (en) Deflection coil and method of manufacturing the same
JPH10199743A (en) Method for manufacturing high voltage transformer
KR0144201B1 (en) CRT yoke deflection yoke core
JPH06295685A (en) Deflection yoke and coil bobbin thereof
JP2672104B2 (en) Deflection yoke
JPH0620531A (en) Multiple-stranded wire and deflection yoke
JPH06131991A (en) Deflection yoke and distribution adjusting method for its deflection magnetic field
JPH07161312A (en) Deflection yoke device
JPH1021851A (en) Deflecting yoke apparatus
JPH10125257A (en) Deflection yoke
JPH01197945A (en) Deflecting yoke
JPH02215031A (en) Deflection coil
JP2002367535A (en) Deflection yoke device
JPH06243799A (en) Deflecting yoke