JPH01112612A - Abnormal cooling temperature sensing method in power transmission - Google Patents

Abnormal cooling temperature sensing method in power transmission

Info

Publication number
JPH01112612A
JPH01112612A JP62271374A JP27137487A JPH01112612A JP H01112612 A JPH01112612 A JP H01112612A JP 62271374 A JP62271374 A JP 62271374A JP 27137487 A JP27137487 A JP 27137487A JP H01112612 A JPH01112612 A JP H01112612A
Authority
JP
Japan
Prior art keywords
superconductor
cooling
temp
power transmission
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62271374A
Other languages
Japanese (ja)
Inventor
Hitoshi Hattori
仁 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62271374A priority Critical patent/JPH01112612A/en
Publication of JPH01112612A publication Critical patent/JPH01112612A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To sense abnormality in the cooling temp. and incapability of cooling due to coolant leakage, etc., by arranging superconductors A, B with critical temps. TA, TB under a specific temp. relation while pinching a cooling material whose cooling temp. is T0. CONSTITUTION:With a cooling material 4 of cooling temp. T0 pinched, a superconductor A8 with critical temp. TA contributing to actual power transmission line and another superconductor B9 with critical temp. TB are arranged under the temp. relation TA>TB>=T0. When a voltage V0 is impressed between two points on the superconductor B by the power supply 11, the voltage drop at both ends of a resistance R becomes V0 while the superconductor B is indicating superconductive phenomenon. When superconductive phenomenon is no longer indicated, a small resistance is generated on B to cause voltage drop, so that the voltage drop V1 at both ends of R becomes smaller than V0. Thus abnormal cooling temp. can be sensed thereby it.

Description

【発明の詳細な説明】 [技術分野] 本発明は超電導送電において、異常冷却温度を検知し、
送電10失箇所を容易に検知し得る方法に関する。
[Detailed description of the invention] [Technical field] The present invention detects abnormal cooling temperature in superconducting power transmission,
The present invention relates to a method for easily detecting power transmission failure points.

[従来技術] 超電導体を用いる送電方式には第8図(a)に示すよう
な直流方式と第8図(b)に示すような交流方式とがあ
る。
[Prior Art] Power transmission systems using superconductors include a direct current system as shown in FIG. 8(a) and an alternating current system as shown in FIG. 8(b).

交流送電ケーブルは、超電導体を用いたテープ導体を、
フォーマと称する中空の巻芯に電気絶縁物を介して同軸
状に巻き付けた構造をしている。
AC power transmission cables use tape conductors using superconductors.
It has a structure in which it is coaxially wound around a hollow core called a former through an electrical insulator.

電気的に絶縁された導体系と、これを極低温に維持する
ための高性能断熱を施した熱絶縁容器から構成される。
It consists of an electrically insulated conductor system and a thermally insulated container with high-performance insulation to maintain it at extremely low temperatures.

断熱効果を上げるために中間温度領域が設けられている
。そして、第8図(a)、 (b)の冷却材4として液
体ヘリウムを、中間温度領域用冷却材5として液体窒素
を用いるのが一般的である。それぞれの間の断熱は10
−4〜1o−”torr程度の高真空での多層断熱方式
とすることが多い。超電導体には、NbTiやNb3S
n線等を使う。ちなみに、臨界温度はNbTiがIOK
 、 Nb3Snが18にである。
An intermediate temperature region is provided to increase the insulation effect. Generally, liquid helium is used as the coolant 4 in FIGS. 8(a) and 8(b), and liquid nitrogen is used as the coolant 5 for the intermediate temperature range. The insulation between each is 10
A multilayer insulation system is often used in a high vacuum of -4 to 1" torr. Superconductors include NbTi and Nb3S.
Use n-ray etc. By the way, the critical temperature is IOK for NbTi.
, Nb3Sn is 18.

Nb:+SNの製造方法としては、ブロンズ法、パイプ
法等のばか新しい方法として、インサイチュ=(In−
3itu )法、ジェリーロール法等が挙げられる。在
来ケーブルでの延長技術では、送電損失による発熱のた
め、現在の高々2倍の回線当たり1500MVA程度の
送電が限界とされている。極低温において電気抵抗がゼ
ロとなる超電導現象を利用すれば原理的に無損失の高密
度人容母送電を実現できる。そして空間利用率は一桁程
度向上し、送電距離もかなり増加させることができると
期待されている。
As a manufacturing method for Nb:+SN, in-situ = (In-
Examples include the 3itu) method and the jelly roll method. Conventional cable extension technology is said to have a limit of 1,500 MVA per line, which is at most twice the current capacity, due to heat generation due to power transmission losses. In principle, lossless, high-density power transmission can be realized by utilizing superconductivity, where electrical resistance becomes zero at extremely low temperatures. It is expected that space utilization will improve by an order of magnitude and power transmission distance will be significantly increased.

ところが、その超電導ケーブルのかかえる技術的課題は
多く、冷却温度の異常や冷却材洩れ等による冷却不能等
が起こると臨界温度よりも高くなり超電導体が超電導性
を失い、送電が不可能になってしまうが、このにうな現
象の検知方法については未解決のまま残されている。
However, these superconducting cables face many technical issues, and if cooling occurs due to an abnormal cooling temperature or coolant leakage, the temperature will rise above the critical temperature and the superconductor will lose its superconductivity, making power transmission impossible. However, the method for detecting this phenomenon remains unsolved.

[目的] 本発明の目的は、超電導送電において、冷却温度の異常
や冷却材洩れ等による冷却不能等を検知し得る方法を提
供することにある。
[Objective] An object of the present invention is to provide a method for detecting an abnormality in cooling temperature or failure of cooling due to coolant leakage, etc. in superconducting power transmission.

[構成] 上記の目的を達成するために本発明は、超電導材料を用
いた超電導ケーブルにおいて、冷却温度Toの極低温用
冷却材を挾んで、実際の送電に寄与する臨界温度TAの
超電導体Aと、臨界温度TBの超電導体Bとを、 TA >TB  ≧TO なる温度関係のもとで構成、配置し、超電導体Bの超電
導状態消失によって冷却能力の低下および不良を検知す
ることを特徴とする超電導送電における異常冷却温度検
知方法を提供するものである。
[Structure] In order to achieve the above object, the present invention provides a superconducting cable using a superconducting material, in which a superconductor A having a critical temperature TA that contributes to actual power transmission is sandwiched between a cryogenic coolant having a cooling temperature To. and a superconductor B having a critical temperature TB are configured and arranged under a temperature relationship of TA > TB ≧TO, and a decrease in cooling capacity and a defect are detected by the disappearance of the superconducting state of the superconductor B. The present invention provides a method for detecting abnormal cooling temperature in superconducting power transmission.

すなわち、本発明は、冷却温度の異常や冷却材洩れ等に
よる冷却不能等の事態の検知を、超電ン労を利用するこ
とにより可能にしたものである。
That is, the present invention makes it possible to detect situations such as failure of cooling due to an abnormality in the cooling temperature or leakage of coolant by using superelectric power.

次に図面に従い本発明を説明する。Next, the present invention will be explained with reference to the drawings.

第8図には超電導ケーブルの基本構造を、第1図〜第4
図には本発明にお(プる原]!I!構成を示し、第5図
(a)、 (b)および第6図には超電導ウーブルにお
ける具体例を、第7図には本発明の方法を利用した超電
導ケーブルにより構成した送電システムの例を示す。
Figure 8 shows the basic structure of a superconducting cable, and Figures 1 to 4 show the basic structure of a superconducting cable.
The figure shows the (Puruhara) !I! configuration of the present invention, FIGS. 5(a), (b), and 6 show a specific example of a superconducting wobble, and FIG. 7 shows the structure of the present invention. An example of a power transmission system constructed using superconducting cables using this method is shown below.

まず、臨界温度TA、TBを有する超電導体A。First, superconductor A has critical temperatures TA and TB.

Bと、冷却温度がTOである冷却材を第1図(a)。B and the coolant whose cooling temperature is TO are shown in FIG. 1(a).

または(b)のように冷却材4を挾むようにして構成す
る。この時、各々の温度関係を TA >TB≧TO となるように設定する。このような構成、設定にすると
、第2図かられかるように、なんらかの原因で超電導体
の冷却温度が1臂した場合、まず、超電導体Bが超電導
を示さなくなり、次にAが示さなくなる。実際に送電に
関与しているのは超電導体Aの方であるから、Aが超電
導現象を示さなくなるなる前に温度異常を検知したいの
で、上述したような、Aよりも先にBの方が超電導現象
を示さなくなることを利用する。そこで、Bが超電導現
象を示さなくなった時にそれを検λ口づるシステムを接
続する。その具体例を第3図に、その冷却温度と電圧降
下との関係を第4図に示す。第3図にd3いて、定電圧
電源で超電導体B上の2点間に電圧V。を印加しておく
と、超電導体Bが超電導現象を示している間はRの両端
における電圧降下はV。でおるが、超電導現象を示さな
くなると、Bには僅かながら抵抗が生じ、電圧降下が起
きるので、Rの両端における電圧降下V1は■。より小
さくなり、それを検知することにより異常冷却温度を検
知することができる。また、この方法では、冷却材の洩
れ等の事故が生じた場合、送電における損失か大きくな
ってしまうので、送電経路において第7図に示すように
一定間隔ごとに検知システムを設置しておけば、損失箇
所を早く発見することができ、処理を施すことか可能で
おる。
Alternatively, as shown in (b), it is configured to sandwich the coolant 4. At this time, each temperature relationship is set so that TA>TB≧TO. With such a configuration and setting, as can be seen from FIG. 2, if the cooling temperature of the superconductor drops to one level for some reason, first the superconductor B will no longer exhibit superconductivity, and then the superconductor A will no longer exhibit superconductivity. Since superconductor A is actually involved in power transmission, we want to detect temperature abnormalities before A stops exhibiting superconducting phenomena. It takes advantage of the fact that it no longer exhibits superconducting phenomena. Therefore, we will connect a system that detects when B no longer exhibits superconducting phenomena. A specific example is shown in FIG. 3, and FIG. 4 shows the relationship between the cooling temperature and the voltage drop. At d3 in Fig. 3, voltage V is applied between two points on superconductor B using a constant voltage power supply. is applied, the voltage drop across R is V while superconductor B exhibits the superconducting phenomenon. However, when the superconducting phenomenon is no longer exhibited, a slight resistance is generated in B and a voltage drop occurs, so the voltage drop V1 at both ends of R is ■. By detecting this, abnormal cooling temperature can be detected. In addition, with this method, if an accident such as a coolant leak occurs, the loss in power transmission will increase, so it is recommended to install a detection system at regular intervals along the power transmission route as shown in Figure 7. , it is possible to quickly discover the location of loss and take appropriate action.

第5図(a)、(b)および第6図は本発明における直
流ケーブルへの応用を示す。第5図では超電導体Bは管
状をなしており、超電導体Bよりなる外管と超電導体A
よりなる内管との間に冷却材4が存在する。そして、第
6図では、超電導体Bは断熱層3に埋設してあり、この
方式では超電導体Bは検知のために必要な極く小さい1
法、すなわら少母の使用量で済む。各材質について例示
すると、冷却材としては、冷却温度4.2にの液体ヘリ
ウム、超電導体Bには臨界温度10にのNbTi、超電
導体Aには臨界温度18にのNb3Snを用いる。
5(a), (b) and FIG. 6 show the application of the present invention to a DC cable. In Figure 5, superconductor B has a tubular shape, with an outer tube made of superconductor B and superconductor A.
A coolant 4 exists between the inner tube and the inner tube. In Fig. 6, the superconductor B is buried in the heat insulating layer 3, and in this method, the superconductor B is an extremely small 1 which is necessary for detection.
Law, in other words, only the amount used is small. For example, as the coolant, liquid helium with a cooling temperature of 4.2, NbTi with a critical temperature of 10 for the superconductor B, and Nb3Sn with a critical temperature of 18 for the superconductor A are used.

本発明の他分野への応用としては1.■電導を用いた電
気信号の伝送・伝搬(電子回路等)において不良箇所を
検知する場合等がある。
Applications of the present invention to other fields include 1. ■There are cases where defective locations are detected in the transmission and propagation of electrical signals (electronic circuits, etc.) using conduction.

[効果] 上記の説明で明らかなように本発明によれば、超電導を
用いた大電力・長距離送電において、送電損失箇所を簡
単に検知することができ、また、事前に保守することが
可能になる。
[Effects] As is clear from the above explanation, according to the present invention, it is possible to easily detect power transmission loss points in high-power, long-distance power transmission using superconductivity, and it is also possible to perform maintenance in advance. become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は本発明の原L!I! 構成を
示すための説明図、第2図は第1図(a)、 (b)の
構成品の温度と超電導状態を示すグラフ、第3図は第1
図(a)の検知システムを具体化した構成を示す説明図
、第4図は第3図の構成における冷却温度と電圧降下と
の関係を示すグラフ、第5図(a)、(b)は本発明の
方法を具体化した超電導ケーブルを示し、(a)は横断
面図、(b)は縦断面図、第6図は超電導体Bを送電ケ
ーブルに埋設した超電導ケーブルを示す説明図、第7図
は送電ケーブルの一定間隔ごとに検知システムを配置し
、中央監視室にて監視可能に構成した送電システムを示
す説明図、第8図(a)、 (b)は従来の直流方式の
超電導ケーブルの基本構成を示す断面図で(a)は直流
方式を、(b)は交流方式を示す。 1・・・防食被覆外管、2・・・熱シールド、3・・・
断熱層、4・・・冷却材、 5・・・中間温度領域用冷却材、6・・・電気絶縁、7
・・・超電導体、8・・・超電導体A、9・・・超電導
体B、10・・・検知システム、11・・・電源、12
・・・発電地、13・・・供給地、14・・・中央監視
室、15・・・検知システム装着の中継器
FIGS. 1(a) and 1(b) show the original L! of the present invention. I! An explanatory diagram to show the configuration. Figure 2 is a graph showing the temperature and superconducting state of the components in Figures 1 (a) and (b). Figure 3 is a graph showing the superconducting state of the components in Figures 1 (a) and (b).
An explanatory diagram showing a configuration embodying the detection system in Figure (a), Figure 4 is a graph showing the relationship between cooling temperature and voltage drop in the configuration in Figure 3, and Figures 5 (a) and (b) are 6 shows a superconducting cable embodying the method of the present invention, (a) is a cross-sectional view, (b) is a longitudinal sectional view, FIG. Figure 7 is an explanatory diagram showing a power transmission system in which detection systems are placed at regular intervals on power transmission cables and can be monitored from a central monitoring room. Figures 8 (a) and (b) are conventional DC superconducting systems. In the cross-sectional views showing the basic structure of the cable, (a) shows the DC system, and (b) shows the AC system. 1... Corrosion-proof coated outer tube, 2... Heat shield, 3...
Heat insulation layer, 4...Cooling material, 5...Cooling material for intermediate temperature range, 6...Electrical insulation, 7
...Superconductor, 8...Superconductor A, 9...Superconductor B, 10...Detection system, 11...Power source, 12
...Generating site, 13... Supply site, 14... Central monitoring room, 15... Relay with detection system installed

Claims (1)

【特許請求の範囲】 超電導材料を用いた超電導ケーブルにおいて、冷却温度
TOの極低温用冷却材を挾んで、実際の送電に寄与する
臨界温度TAの超電導体Aと、臨界温度TBの超電導体
Bとを、 TA>TB≧TO なる温度関係のもとで構成、配置し、超電導体Bの超電
導状態消失によって冷却能力の低下および不良を検知す
ることを特徴とする超電導送電における異常冷却温度検
知方法。
[Scope of Claims] In a superconducting cable using superconducting materials, a superconductor A with a critical temperature TA and a superconductor B with a critical temperature TB, which contribute to actual power transmission, sandwich a cryogenic coolant with a cooling temperature TO. A method for detecting abnormal cooling temperature in superconducting power transmission, characterized by configuring and arranging them under the temperature relationship of TA>TB≧TO, and detecting a decrease in cooling capacity and failure due to loss of superconducting state of superconductor B. .
JP62271374A 1987-10-27 1987-10-27 Abnormal cooling temperature sensing method in power transmission Pending JPH01112612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271374A JPH01112612A (en) 1987-10-27 1987-10-27 Abnormal cooling temperature sensing method in power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271374A JPH01112612A (en) 1987-10-27 1987-10-27 Abnormal cooling temperature sensing method in power transmission

Publications (1)

Publication Number Publication Date
JPH01112612A true JPH01112612A (en) 1989-05-01

Family

ID=17499181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271374A Pending JPH01112612A (en) 1987-10-27 1987-10-27 Abnormal cooling temperature sensing method in power transmission

Country Status (1)

Country Link
JP (1) JPH01112612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238455A (en) * 2010-05-10 2011-11-24 Fujikura Ltd Superconducting wire rod, superconducting coil, and superconductivity protective device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280033A (en) * 1985-10-04 1987-04-13 東レ株式会社 Incombustible heat-insulating composite material
JPS62102915A (en) * 1985-10-30 1987-05-13 Aida Eng Ltd Scrap processor in bar steel cutting machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280033A (en) * 1985-10-04 1987-04-13 東レ株式会社 Incombustible heat-insulating composite material
JPS62102915A (en) * 1985-10-30 1987-05-13 Aida Eng Ltd Scrap processor in bar steel cutting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238455A (en) * 2010-05-10 2011-11-24 Fujikura Ltd Superconducting wire rod, superconducting coil, and superconductivity protective device

Similar Documents

Publication Publication Date Title
US7692338B2 (en) Direct current superconducting power transmission cable and system
Maguire et al. Installation and testing results of long island transmission level HTS cable
US3643002A (en) Superconductive cable system
KR20090115751A (en) HTS Wire
US9552906B1 (en) Current lead for cryogenic apparatus
CN110570988A (en) Three-phase high-temperature superconducting electrified conductor
US20020153162A1 (en) Superconducting cable
US3675042A (en) Apparatus for power transmission utilizing superconductive elements
Shibata et al. Development of high temperature superconducting power cable prototype system
JPH01112612A (en) Abnormal cooling temperature sensing method in power transmission
US20030019660A1 (en) Superconducting cable
CN110931162A (en) Self-shielding cold insulation direct current high-temperature superconducting current-limiting cable
JP4703545B2 (en) Superconducting devices and current leads
Sohn et al. Fabrication and characteristics of 2G HTS current leads
US5324891A (en) Superconducting connecting leads having thermal plug
Dolgosheyev et al. Design and first stage test of 50-meter flexible superconducting cable
US3359516A (en) Aysmmetric superconductive device
JPH01283710A (en) Superconductive power transmission cable and power transmission
Coletta et al. Application of electrical and calorimetric methods to the AC loss characterization of cable conductors
Gannon et al. Performance summary of a 4,000 A high temperature superconducting cable conductor prototype
CN213779105U (en) Three-phase coaxial high-temperature superconducting cable thermal balance monitoring device
Duckworth et al. On the effect of NiW on the inductance and AC loss of HTS cables
GB1190949A (en) Superconducting Electrical Power Cables
JPH0412412A (en) Superconductive conductor
Tomita et al. Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled-and Pressurized-Liquid Nitrogen