JPH01112515A - Thin film magnetic recording medium - Google Patents

Thin film magnetic recording medium

Info

Publication number
JPH01112515A
JPH01112515A JP26912487A JP26912487A JPH01112515A JP H01112515 A JPH01112515 A JP H01112515A JP 26912487 A JP26912487 A JP 26912487A JP 26912487 A JP26912487 A JP 26912487A JP H01112515 A JPH01112515 A JP H01112515A
Authority
JP
Japan
Prior art keywords
layer
magnetic
atoms
base material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26912487A
Other languages
Japanese (ja)
Inventor
Takeshi Miyabayashi
毅 宮林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP26912487A priority Critical patent/JPH01112515A/en
Publication of JPH01112515A publication Critical patent/JPH01112515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a medium having high coercive force and high recording density by superposing a 2nd layer contg. the 2nd magnetic atoms of the crystal grain sizes larger than the crystal grain sizes of the magnetic atoms of a 1st layer and an alloy layer which is obtd. by local etching in a soln. contg. the salt of the nonmagnetic atoms having the oxidation-reduction potential nobler than the oxidation-reduction potential of the 2nd magnetic atoms on the 1st layer consisting of the magnetic atoms having very small crystal grain sizes as the main constituting elements. CONSTITUTION:A nonmagnetic layer 12 consisting of Ni-P is formed on an Al base material 11. The magnetic Co-P film 14 having the crystal grains larger than the crystal grains of the 1st layer is obtd. on the defectless magnetic film when the base material is immersed in a tartaric acid soln. after the base material is immersed in a citric acid soln. and the magnetic Co-P film 13 is formed by hot electroplating. The base material is then immersed in a liquid contg. CoSO4, NaH2PO2, (NH4)SO4, tartaric acid, and Ag(CN)2<->NaI to substitute the Co on the front layer of the 2nd layer partly with the Ag and to form a Co-Ag-P alloy layer 15. The isolation of the Co crystal grains of the front layer is assisted by the Ag and the coercive force is improved. The content of the Ag is preferably >=10%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜磁気記録媒体に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to thin film magnetic recording media.

[従来技術] この種の磁気記録媒体に要求される品質特性の1つに磁
気記録媒体が挙げられる。この記録密度は、保磁力HC
1残留磁束Br、及び磁性居の厚ざδの3つの主要パラ
メータからなる。そしてこれらのパラメータは電磁気特
性と次の関係にある。
[Prior Art] One of the quality characteristics required of this type of magnetic recording medium is magnetic recording media. This recording density is based on coercive force HC
It consists of three main parameters: the residual magnetic flux Br, and the thickness difference δ of the magnetic layer. These parameters have the following relationship with the electromagnetic properties.

すなわち、磁気ヘッドの再生出力をE、再生波形の波形
幅をWとすると、 E   oc   BrX  (Hc/Br) B x
 δ菖 −αW oc δα/(Hc/Br)B ここで、α=0.85〜0.50 β=0.15〜0.50 そこで、磁気記録密度の向上には再生出力巳の低下をで
きるだけ抑え、波形幅Wを極力小さくすればよい。その
ためには、保磁力HCを大きくすればよいことは上記関
係より明らかである。
That is, if the reproduction output of the magnetic head is E and the waveform width of the reproduction waveform is W, then E oc BrX (Hc/Br) B x
δIris −αW oc δα/(Hc/Br)B Here, α=0.85 to 0.50 β=0.15 to 0.50 Therefore, to improve the magnetic recording density, the reproduction output should be reduced as much as possible. It is only necessary to suppress the waveform width W and make the waveform width W as small as possible. It is clear from the above relationship that for this purpose, the coercive force HC should be increased.

[発明が解決しようとする問題点] ところで、この保磁力Haは、第3図に実線カーブで示
す如く、一般的には磁気記録層の厚ざδと大概反比例の
関係にある。従って、保磁力Hcを大ぎくするためには
磁気記録層の厚さδを小さくすればよいことになる。し
かし、磁気記録密度の高度化の要請から既に十分薄膜化
が進んでいて、これ以上薄くするには膜厚の均−性等の
品質管理上限界があり、薄くなりすぎると、媒体欠陥が
多発する。
[Problems to be Solved by the Invention] Incidentally, the coercive force Ha is generally inversely proportional to the thickness δ of the magnetic recording layer, as shown by the solid curve in FIG. Therefore, in order to greatly increase the coercive force Hc, it is sufficient to reduce the thickness δ of the magnetic recording layer. However, due to the demand for higher magnetic recording densities, films have already been made thinner enough, and there are limits to quality control such as film thickness uniformity in making them any thinner.If they become too thin, media defects will occur frequently. do.

[発明の目的] 本発明は、上述した問題点を解決するためになされたも
のであり、その目的とするところは、媒体欠陥が少ない
高保磁力の薄膜磁気記録媒体を提供することである。
[Object of the Invention] The present invention has been made to solve the above-mentioned problems, and its object is to provide a thin film magnetic recording medium with a high coercive force and fewer medium defects.

[問題点を解決するための手段] この目的を発生するために本発明の薄膜磁気記録媒体は
、微小な結晶粒を有する第11性原子を主構成元素とす
る第1層と、該第1層上に配設される第1層に備えられ
る結晶粒より大きな結晶粒の第2磁性原子を主構成元素
とする第2層と、該第2層を形成する第2磁性原子より
も、酸化還元電位が員である非磁性原子の塩を含む溶液
中において該第2層表面を局部エツチングすることによ
り形成される第2磁性原子と非磁性原子との合金層の第
3層とを備える。
[Means for Solving the Problems] In order to achieve this object, the thin film magnetic recording medium of the present invention includes a first layer whose main constituent element is eleventh atoms having minute crystal grains, A second layer that is mainly composed of second magnetic atoms with crystal grains larger than the crystal grains provided in the first layer disposed on the layer, and a second layer that is oxidized more than the second magnetic atoms forming the second layer. A third layer of an alloy layer of second magnetic atoms and non-magnetic atoms is formed by locally etching the surface of the second layer in a solution containing a salt of non-magnetic atoms having a reduction potential of 1.

[作用] 磁性原子より成る(例えばCo系)薄膜磁気記録媒体は
、媒体厚さが300〜1000人の範囲の、一定膜厚の
媒体の場合、結晶粒の大きざと媒体欠陥の数とは比例関
係にあることがわかっている。また、第2の磁性原子(
例えばCo)よりも酸化還元電位が員である非磁性原子
の塩を含む溶液中で、第2磁性原子(例えばGo)を主
構成要素とする第2層の表面に微細な縞状に非磁性原子
層を形成しながら、第2磁性原子(例えばCo)表面を
局部エツチングして第2Rの表面上に、第2f!i性原
子と非磁性原子との合金層を形成することで、磁性薄膜
の表面及び内部の第2磁性原子の結晶ブレーンの孤立化
が助長される。その結果、上述の磁性膜の保磁力は向上
する。ここで、その保磁力の向上度合は上述の磁性薄膜
の結晶ブレーンサイズに依存しており、ブレーンサイズ
が100〜2000人の範囲内では保磁力の向上度合は
結晶ブレーンサイズと比例関係におることがわかってい
る。そこで、基材上に媒体欠陥の少ない第1層を形成す
るために、第1層を結晶粒の小さな層とし、この上に結
晶粒の大きな層を形成すると、欠陥が少ない高保磁力の
薄膜磁気記録媒体を形成することが可能となる。
[Function] In a thin film magnetic recording medium made of magnetic atoms (for example, Co-based), the size of crystal grains is proportional to the number of medium defects in the case of a medium with a constant film thickness in the range of 300 to 1000 particles. I know they are in a relationship. In addition, the second magnetic atom (
In a solution containing a salt of a non-magnetic atom whose redox potential is lower than that of Co (for example, Co), fine stripes of non-magnetic atoms are formed on the surface of a second layer mainly composed of second magnetic atoms (for example, Go). While forming an atomic layer, the second magnetic atom (eg Co) surface is locally etched to form a second f! on the second R surface. By forming an alloy layer of i-type atoms and non-magnetic atoms, isolation of the crystal brains of the second magnetic atoms on the surface and inside of the magnetic thin film is facilitated. As a result, the coercive force of the above-mentioned magnetic film is improved. Here, the degree of improvement in coercive force depends on the crystal brain size of the above-mentioned magnetic thin film, and within the range of 100 to 2000 people, the degree of improvement in coercive force is proportional to the crystal brain size. I know. Therefore, in order to form a first layer with fewer media defects on the base material, the first layer is a layer with small crystal grains, and a layer with large crystal grains is formed on top of this. It becomes possible to form a recording medium.

[実施例] 以下、本発明を具体化した一実施例を図面を参照して説
明する。
[Example] Hereinafter, an example embodying the present invention will be described with reference to the drawings.

第1図において、アルミニウム(Aりよりなる基材11
には非磁性層12が形成されている。
In FIG. 1, a base material 11 made of aluminum (A) is shown.
A nonmagnetic layer 12 is formed thereon.

非磁性層12は本実施例ではニッケルーリン(Ni−P
)より構成され、公知の薄膜形成方法で形成している。
In this embodiment, the nonmagnetic layer 12 is made of nickel-phosphorous (Ni-P).
), and is formed using a known thin film forming method.

尚、前記基材11はアルミニウムに限定されず、例えば
ポリザルホン、ポリイソイミド、ポリイミド等の合成樹
脂又はその他の材料から構成されてもよい。又、非磁性
層12もニッケルーリン(Ni−P)にて成形したがそ
の他の非磁性材料で実施してもよい。
Note that the base material 11 is not limited to aluminum, and may be made of synthetic resin such as polysulfone, polyisoimide, polyimide, or other materials. Further, although the nonmagnetic layer 12 is also molded from nickel-phosphorus (Ni-P), it may be formed from other nonmagnetic materials.

前記非磁性層12の上には磁性膜13が形成され、主構
成原子としての第11性原子がコバルトであり、この磁
性膜13はコバルト−リン(C0−P)よりなる磁性材
料の結晶膜にて構成されている。この磁性膜13を形成
しているコバルト−リン(Co−P)の結晶構造はブレ
ーンサイズの小さな結晶構造となっている。
A magnetic film 13 is formed on the non-magnetic layer 12, and the 11th atom as the main constituent atom is cobalt, and the magnetic film 13 is a crystalline film of a magnetic material made of cobalt-phosphorus (C0-P). It is composed of. The crystal structure of cobalt-phosphorus (Co--P) forming this magnetic film 13 has a small brain size.

磁性層13の上には、磁性層14が形成され、主構成原
子としての第2磁性原子がコバルトであり、この磁性1
114もコバルト−リン(Co−P)より構成されてい
るが、第2vii性原子の結晶ブレーンサイズは第1磁
性原子よりも大きい。
A magnetic layer 14 is formed on the magnetic layer 13, and the second magnetic atom as the main constituent atom is cobalt, and this magnetic layer 14 is formed on the magnetic layer 13.
114 is also composed of cobalt-phosphorus (Co-P), but the crystal brain size of the second vii magnetic atom is larger than that of the first magnetic atom.

前記磁性膜14の上に、磁性原子コバルト(CO)と非
磁性原子リン(P)と銀(Act>が混在したコバルト
−銀−リン(Go−ACt−P)合金層15が形成され
ている。
A cobalt-silver-phosphorus (Go-ACt-P) alloy layer 15 in which magnetic atoms cobalt (CO), nonmagnetic atoms phosphorus (P), and silver (Act) are mixed is formed on the magnetic film 14. .

次に、上記のように構成した薄膜磁気記録媒体の製造方
法について説明する。
Next, a method for manufacturing the thin film magnetic recording medium configured as described above will be described.

まず、表面にニッケルーリン(Ni−P)よりなる非磁
性層12を形成したアルミニウム(A#)よりなる基材
11を無電解メツキ液に浸漬し、無電解メツキにより磁
性膜13を非磁性層12上に形成する。この無電解メツ
キ液はクエン酸溶液と称され、そのクエン酸溶液は、 C03Oa 7H20:EEIJ/−gNaHPO2・
H20: 15g/A?Na3Ca H507・2H2
0: 50g/A?83 BO3:  50Q/6 ラウリル硫酸ナトリウム:o、5q/IPH:9.5 Temp : 80℃ からなる。同メツキ液に基材11を浸漬することにより
、無電解メツキにて非磁性層12の表面にコバルト−リ
ン(Go−P)の磁性膜が形成される。この磁性膜の結
晶成長に関しては浸漬時間が経過するにつれ、やはり結
晶粒は大きくなるが、第2図(a)に示すように膜厚3
00〜400人程度の厚みでは初期状態と比較してさほ
どの変化はなく比較的レベリングの良い、媒体欠陥の少
ない磁性膜が得られる。
First, a base material 11 made of aluminum (A#) on which a nonmagnetic layer 12 made of nickel-phosphorus (Ni-P) is formed is immersed in an electroless plating solution, and the magnetic film 13 is formed on the nonmagnetic layer by electroless plating. 12. This electroless plating solution is called a citric acid solution, and the citric acid solution is C03Oa 7H20:EEIJ/-gNaHPO2.
H20: 15g/A? Na3Ca H507・2H2
0: 50g/A? 83 BO3: 50Q/6 Sodium lauryl sulfate: o, 5q/IPH: 9.5 Temp: 80°C. By immersing the base material 11 in the plating solution, a magnetic film of cobalt-phosphorous (Go--P) is formed on the surface of the non-magnetic layer 12 by electroless plating. Regarding the crystal growth of this magnetic film, the crystal grains become larger as the immersion time passes, but as shown in Figure 2(a), the film thickness is 3.
At a thickness of about 0.00 to 400.000 nm, there is no significant change compared to the initial state, and a magnetic film with relatively good leveling and few medium defects can be obtained.

次に、第1磁性層の結晶粒より大きな結晶粒を得るため
に以下に示す酒石酸溶液と称す浴へ基材11を浸漬する
。その酒石酸溶液は、 C03Ot  : 10g/# NOH2PO2: 20g/A’ (NH4)2304  : 80g/A’酒石酸200
Q/Jl? PH: 10 温度80℃ からなる。
Next, in order to obtain crystal grains larger than those of the first magnetic layer, the base material 11 is immersed in a bath called a tartaric acid solution as shown below. The tartaric acid solution is: C03Ot: 10g/# NOH2PO2: 20g/A' (NH4)2304: 80g/A'Tartaric acid 200
Q/Jl? PH: 10 Temperature: 80°C.

その結果、第2図(a>に示すように第1層と比較して
結晶粒の大きな磁性層が得られる。この場合、結晶粒が
大きいので、媒体欠陥の増加に継がることか予測された
が、N1−P上へのC0−Pメツキを行う場合とは異な
り、C0−P上へのCo−Pメツキの場合には、結晶粒
が大きくなっても媒体欠陥数にはさほど影響がなかった
As a result, a magnetic layer with larger crystal grains compared to the first layer is obtained as shown in Figure 2 (a).In this case, since the crystal grains are large, it is predicted that this will lead to an increase in media defects. However, unlike the case of C0-P plating on N1-P, in the case of Co-P plating on C0-P, even if the crystal grains become larger, the number of defects in the medium is not affected much. There wasn't.

このようにして形成された第2図(a)に示す基材を以
下に示す微細エツチング浴と称す浴へ浸漬する。その微
細エツチング浴は、 CO3O4: 10g/6 NaH2PO2: 20(j/6 (NHa  >  304  :  80Q/#酒石酸
200g/6 Ag(CN)2   : 20ppm NaI:10ppm からなる。
The thus formed substrate shown in FIG. 2(a) is immersed in a bath called a fine etching bath as shown below. The fine etching bath consisted of: CO3O4: 10g/6 NaH2PO2: 20(j/6 (NHa>304: 80Q/#tartaric acid 200g/6) Ag(CN)2: 20ppm NaI: 10ppm.

その結果、第2図(b)に示すように、第2層の表層の
コバルト原子が銀原子によって一部置換され、コバルト
と銀との合金属である第3層が形成される。ここで、表
層のコバルト結晶粒はAQ原子によって孤立化が助長さ
れ保磁力が向上する。
As a result, as shown in FIG. 2(b), some of the cobalt atoms in the surface layer of the second layer are replaced by silver atoms, forming a third layer which is an alloy of cobalt and silver. Here, the isolation of the cobalt crystal grains in the surface layer is promoted by the AQ atoms, and the coercive force is improved.

尚、この場合に得られたコバルト−銀−リン(CO−A
CI−P)の組成はコバルト77%、銀20%、リン3
%を示した。そして、この時の銀の含有量は10%以上
入れるほうが保磁力等磁気特性に良い影響を与える。
In addition, the cobalt-silver-phosphorus (CO-A
CI-P) has a composition of 77% cobalt, 20% silver, and 3 phosphorus.
%showed that. At this time, if the silver content is 10% or more, it will have a better effect on magnetic properties such as coercive force.

[発明の効果] 以上詳述したことから明らかなように、本発明によれば
、薄膜磁気記録媒体において磁性層の厚さを極端に薄く
することなく、媒体欠陥の少ない、高い保磁力を持ち非
常に高い記録密度の媒体を形成することができる。
[Effects of the Invention] As is clear from the detailed description above, according to the present invention, a thin film magnetic recording medium can have a high coercive force with few medium defects without making the thickness of the magnetic layer extremely thin. It is possible to form media with very high recording densities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第2図までは本発明を具体化した実施例を示
すもので、第1図は磁気記録媒体の断面図、第2図(a
)はCo系の磁気記録媒体の断面図、第2図(b)はC
o系の磁気記録媒体の詳細断面図、第3図は従来の磁性
記録媒体にお(プる保磁力と媒体厚の関係を示した図で
ある。 図中、11は基材、12は非磁性層、13は磁性層、1
4は磁性層、15はC0−A(J−P合金属である。
1 to 2 show embodiments embodying the present invention; FIG. 1 is a sectional view of a magnetic recording medium, and FIG.
) is a cross-sectional view of a Co-based magnetic recording medium, and FIG. 2(b) is a cross-sectional view of a Co-based magnetic recording medium.
FIG. 3 is a detailed cross-sectional view of an o-based magnetic recording medium, which shows the relationship between coercive force and medium thickness in a conventional magnetic recording medium. In the figure, 11 is a base material, and 12 is a magnetic layer, 13 magnetic layer, 1
4 is a magnetic layer, and 15 is C0-A (JP alloy metal).

Claims (1)

【特許請求の範囲】 微小な結晶粒を有する第1磁性原子を主構成元素とする
第1層と、 該第1層上に配設される該第1層に備えられる第1磁性
原子の結晶粒より大きな結晶粒の第2磁性原子を主構成
元素とする第2層と、 該第2層を形成する第2磁性原子よりも、酸化還元電位
が員である非磁性原子の塩を含む溶液中において該第2
層表面を局部エッチングすることにより第2層上に形成
される第2磁性原子と非磁性原子との合金層の第3層と
を備える多層状の薄膜磁気記録媒体。
[Scope of Claims] A first layer whose main constituent element is a first magnetic atom having minute crystal grains, and a crystal of the first magnetic atom provided in the first layer disposed on the first layer. A solution containing a second layer whose main constituent element is a second magnetic atom of a crystal grain larger than the crystal grain, and a salt of a non-magnetic atom whose redox potential is lower than that of the second magnetic atom forming the second layer. inside the second
A multilayer thin film magnetic recording medium comprising a third layer of an alloy layer of second magnetic atoms and nonmagnetic atoms formed on the second layer by locally etching the layer surface.
JP26912487A 1987-10-23 1987-10-23 Thin film magnetic recording medium Pending JPH01112515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26912487A JPH01112515A (en) 1987-10-23 1987-10-23 Thin film magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26912487A JPH01112515A (en) 1987-10-23 1987-10-23 Thin film magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01112515A true JPH01112515A (en) 1989-05-01

Family

ID=17468019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26912487A Pending JPH01112515A (en) 1987-10-23 1987-10-23 Thin film magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01112515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416324A2 (en) * 1989-09-05 1991-03-13 Studer Revox Ag Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416324A2 (en) * 1989-09-05 1991-03-13 Studer Revox Ag Magnetic recording medium

Similar Documents

Publication Publication Date Title
US4780781A (en) Thin film magnetic head having magnetic film of Co-Ni-Fe alloy
US7192662B2 (en) Ultra high saturation moment soft magnetic thin film
US6025978A (en) Composite type thin-film magnetic head with improved recording characteristics and high resolution
EP0243627B1 (en) Electro-deposited conife alloy for thin film heads
US5372698A (en) High magnetic moment thin film head core
US4150172A (en) Method for producing a square loop magnetic media for very high density recording
US4239587A (en) Method of manufacturing a thin-film magnetic head with a nickel-iron pattern having inclined edges
US4108739A (en) Plating method for memory elements
US4388367A (en) Perpendicular magnetic recording medium and fabrication
US3704211A (en) Process for electroplating magnetic films for high density recording
JPH01112515A (en) Thin film magnetic recording medium
US4472248A (en) Method of making thin-film magnetic recording medium having perpendicular anisotropy
US3702239A (en) Magnetic storage medium
US5935403A (en) Magnetic thin film and magnetic thin film manufacturing method
JP2522246B2 (en) Method of manufacturing thin film magnetic recording medium
US3715285A (en) Process of electrodepositing magnetic metal layer on electrically conductive substrate
US20020192503A1 (en) Thin film magnetic head and method of fabricating the head
US3905776A (en) Method of making a thin, ferro-magnetic memory layer and article made thereby
JPH04297004A (en) Magnetic thin-film for magnetic head and manufacture thereof
US3549418A (en) Magnetic recording films of cobalt
JPS63149827A (en) Magnetic recording medium and its production
JP2521932B2 (en) Method of manufacturing magnetic recording medium
US5182009A (en) Plating process
JPH1064725A (en) Magnetic material thin film and manufacture thereof
JPH0229753B2 (en) MUDENKAIMETSUKIHOHO