JPH01110866A - Exhaust heat recovery device for horizontal water-cooled engine - Google Patents

Exhaust heat recovery device for horizontal water-cooled engine

Info

Publication number
JPH01110866A
JPH01110866A JP62268973A JP26897387A JPH01110866A JP H01110866 A JPH01110866 A JP H01110866A JP 62268973 A JP62268973 A JP 62268973A JP 26897387 A JP26897387 A JP 26897387A JP H01110866 A JPH01110866 A JP H01110866A
Authority
JP
Japan
Prior art keywords
heat
exhaust
water
cooling water
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62268973A
Other languages
Japanese (ja)
Inventor
Mitsumasa Isoda
磯田 光正
Tamotsu Nishitsuji
西辻 保
Yoshimichi Takamatsu
高松 善道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP62268973A priority Critical patent/JPH01110866A/en
Publication of JPH01110866A publication Critical patent/JPH01110866A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To compactly form a device whole unit simplified in structure by mounting a heat absorbing vessel to a cylinder block of a horizontal engine and forming a cooling water heat exchanger and an exhaust heat exchanger in the heat absorbing vessel. CONSTITUTION:Cooling water, absorbing heat of an engine main unit coming out from a water jacket 1, is allowed to flow directly into a cooling water chamber 20 of a heat absorbing vessel 14 from an opening 2, radiating heat to pure water in a pure water chamber 26 through a heat transfer plate 15, and the cooling water, after it again radiates heat in a radiator 25, is circulated in the water jacket 1 of an engine E by a water pump 29. While exhaust of the engine E is allowed to flow into an exhaust heat radiator pipe 27 of the heat absorbing vessel 14 through an exhaust pipe 7, radiating heat to pure water, and the exhaust is emitted to the atmosphere from a muffler 10. On the contrary, pure water, allowed to flow into the heat absorbing vessel 14 by a circulating pump 31 from a pure water supply source 30, absorbs cooling water waste heat and exhaust heat, thereafter the pure water passes through an exhaust heat recovery circuit 12 recirculating to the supply source 30. Accordingly, forming cooling water and exhaust heat exchangers 4, 8 together in the heat absorbing vessel 14, a device whole unit enables compactness to be attained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、横型水冷エンジンの排熱回収装置に関し、エ
ンジンのシリンダブロックに熱交換器をまとめて組み付
けるうえ、流路を短縮して熱回収装置全体の構造を簡略
化できるものを提供する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an exhaust heat recovery device for a horizontal water-cooled engine. To provide something that can simplify the structure of the entire device.

〈従来技術〉 本発明の対象となる水冷エンジンの排熱回収装置の基本
構造は、第1図又は第7図に示すように、横型水冷エン
ジンEのウォータジャケットlを冷却水熱交換器4の放
熱部4ユに接続し、エンジンEの排気ポート6に排気熱
交換器8の放熱部8aを介してマフラ10を接続し、排
熱回収回路12を循環する熱回収液を冷却水熱交換器4
の吸熱部4b及び排気熱交換器8の吸熱部8bに通過さ
せてエンジンEの冷却水熱及び排気熱を回収する形式の
ものである。
<Prior Art> The basic structure of the exhaust heat recovery device for a water-cooled engine, which is the subject of the present invention, is as shown in FIG. A muffler 10 is connected to the exhaust port 6 of the engine E via the heat radiator 8a of the exhaust heat exchanger 8, and the heat recovery liquid circulating through the exhaust heat recovery circuit 12 is transferred to the cooling water heat exchanger. 4
In this type, the cooling water heat and exhaust heat of the engine E are recovered by passing through the heat absorption part 4b of the exhaust heat exchanger 8 and the heat absorption part 8b of the exhaust heat exchanger 8.

この形式の従来技術としては、実開昭62−38411
号公報(第7図参照)に示すように、水冷エンジンEの
ウォータジャケット1の出口2を通水管3で冷却水熱交
換器4の放熱部4λを介してウォータジャケットlの入
口5に接続し、排気ポート6に排気管7で排気熱交換器
8を介してマフラ10を接続し、温水加熱装置100と
ヒートポンプ101とを介装させた排熱回収回路12に
排気熱交換器8とラジェータ4を並列状に接続し、温水
加熱装置100により熱交換を終えた熱回収用の低温水
が、ヒートポンプ101で凝縮熱を付与されたのち、ラ
ジェータ4でエンジンEの冷却排水熱を、また、排気熱
交換器8で排気熱を各々回収するように構成したものが
ある。
As a conventional technology of this type, Utility Model Application No. 62-38411
As shown in the publication (see Fig. 7), the outlet 2 of the water jacket 1 of the water-cooled engine E is connected to the inlet 5 of the water jacket l via the heat radiation part 4λ of the cooling water heat exchanger 4 with a water pipe 3. , a muffler 10 is connected to the exhaust port 6 through an exhaust pipe 7 via an exhaust heat exchanger 8, and the exhaust heat exchanger 8 and the radiator 4 are connected to an exhaust heat recovery circuit 12 in which a hot water heating device 100 and a heat pump 101 are interposed. are connected in parallel, and the low-temperature water for heat recovery that has completed heat exchange with the hot water heating device 100 is given condensation heat with the heat pump 101, and then the cooling water of the engine E is transferred with the radiator 4 to the exhaust water. There is one in which the heat exchanger 8 is configured to recover each exhaust heat.

〈発明が解決しようとする問題点〉 しかしながら、上記従来技術では、排気熱交換器8の放
熱部8aに排気管7を接続し、排気熱交換器8の吸熱部
8bに低温水の排熱回収回路12を接続するとともに、
ラジェータ4の放熱部4aに通水管3を接続し、ラジェ
ータ4の吸熱部4bに上記排熱回収回路12を接続しな
ければならず、排熱回収回路12に対して排気熱交換器
8とラジェータ4とを別々に配置しであるので、排熱回
収装置全体の配管が複雑になるうえ、二つの熱交換器4
.8をエンジンEの周囲に独立に設置するために装置全
体が大型になる虞れがある。
<Problems to be Solved by the Invention> However, in the above prior art, the exhaust pipe 7 is connected to the heat radiation part 8a of the exhaust heat exchanger 8, and the exhaust heat recovery of low temperature water is connected to the heat absorption part 8b of the exhaust heat exchanger 8. While connecting the circuit 12,
The water pipe 3 must be connected to the heat radiation part 4a of the radiator 4, and the exhaust heat recovery circuit 12 must be connected to the heat absorption part 4b of the radiator 4. Since the heat exchangers 4 and 4 are arranged separately, the piping for the entire exhaust heat recovery device becomes complicated, and the two
.. Since the engine 8 is installed independently around the engine E, there is a risk that the entire device will become large.

本発明は、排熱回収装置全体の構造を簡略化してコンパ
クトにまとめることを技術的課題とする。
The technical objective of the present invention is to simplify and compact the structure of the entire exhaust heat recovery device.

く問題点を解決するための手段〉 上記課題を達成するための手段を、実施例に対応する図
面を用いて以下に説明する。
Means for Solving the Problems> Means for achieving the above problems will be described below using drawings corresponding to embodiments.

即ち、本発明は、前記基本構造の水冷エンジンの排熱回
収装置において、 排熱回収回路12に熱吸収容器14を介装させ、熱吸収
容器14を横型水冷エンジンEのシリンダブロック16
に搭載し、熱吸収容器14の内側上部に排気熱交換器8
の放熱部8aを設け、熱吸収容器14の内側下部に冷却
水熱交換器4の放熱部4aを冷却水熱交換器4の吸熱部
4bから伝熱板15で区画して設け、熱吸収容器14の
内部空間において冷却水熱交換器4の吸熱部4bを排気
熱交換器8の吸熱部8bに連通させるとともに、冷却水
熱交換器4の放熱部4aを横型水冷エンジンEのウォー
タジャケットlに直接的に連通したことを特徴とするも
のである。
That is, the present invention provides an exhaust heat recovery device for a water-cooled engine having the above basic structure, in which the heat absorption container 14 is interposed in the exhaust heat recovery circuit 12, and the heat absorption container 14 is connected to the cylinder block 16 of the horizontal water-cooled engine E.
The exhaust heat exchanger 8 is mounted on the inside upper part of the heat absorption vessel 14.
The heat radiation part 8a of the cooling water heat exchanger 4 is separated from the heat absorption part 4b of the cooling water heat exchanger 4 by a heat transfer plate 15, and the heat radiation part 4a of the cooling water heat exchanger 4 is provided at the inner lower part of the heat absorption container 14. 14, the heat absorption part 4b of the cooling water heat exchanger 4 is communicated with the heat absorption part 8b of the exhaust heat exchanger 8, and the heat radiation part 4a of the cooling water heat exchanger 4 is connected to the water jacket l of the horizontal water-cooled engine E. It is characterized by direct communication.

く作用〉 エンジン本体熱を吸収した冷却水は、ウォータジャケッ
トlから直接的に熱吸収容器14の中の冷却水熱交換器
4の放熱部4aに流入して、伝熱板15を介して冷却水
熱交換器4の吸熱部4bに冷却水熱を伝える。
Effect> The cooling water that has absorbed the engine body heat flows directly from the water jacket l into the heat radiation part 4a of the cooling water heat exchanger 4 in the heat absorption container 14, and is cooled via the heat transfer plate 15. Cooling water heat is transferred to the heat absorption part 4b of the water heat exchanger 4.

これと同時に、排気ポート出口6を出た排気は、熱吸収
容器14内の排気熱交換器8の放熱部8aに入り、排気
熱交換器8の吸熱部8bに排気熱を伝える。
At the same time, the exhaust gas that has exited the exhaust port outlet 6 enters the heat radiation section 8a of the exhaust heat exchanger 8 in the heat absorption container 14, and transfers the exhaust heat to the heat absorption section 8b of the exhaust heat exchanger 8.

この結果、熱吸収液は、熱吸収容器14内に連通状にま
とめて配置された冷却水熱交換器4の吸熱部4bと排気
熱交換器8の吸熱部8bとを通過するあいだに、冷却排
水熱と排気熱とを吸熱して熱吸収容器14−排熱回収回
路12に循環するのである。
As a result, the heat-absorbing liquid is cooled while passing through the heat-absorbing part 4b of the cooling water heat exchanger 4 and the heat-absorbing part 8b of the exhaust heat exchanger 8, which are arranged in communication in the heat absorbing container 14. The wastewater heat and the exhaust heat are absorbed and circulated between the heat absorption container 14 and the exhaust heat recovery circuit 12.

〈発明の効果〉 (1)熱吸収容器を横型エンジンのシリンダブロックに
搭載し、熱吸収容器内に冷却水熱交換器と排気熱交換器
とをまとめるので、画然交換器を別々に配置する従来技
術に比べて、装置全体をコンパクト化することができる
<Effects of the Invention> (1) The heat absorption container is mounted on the cylinder block of a horizontal engine, and the cooling water heat exchanger and exhaust heat exchanger are combined in the heat absorption container, so the exchangers are arranged separately. Compared to the conventional technology, the entire device can be made more compact.

(2)冷却水熱交換器の放熱部をエンジンのウォータジ
ャケットに直接的に連通して、ウォータジャケット出口
から当該放熱部に至る通水管を省略できるうえ、冷却水
熱交換器の放熱部と吸熱部を伝熱板で区画して伝熱構造
をシンプルにできるので、排熱回収装置の構造を簡略化
できる。
(2) The heat radiation part of the cooling water heat exchanger is directly connected to the water jacket of the engine, and the water pipe from the water jacket outlet to the heat radiation part can be omitted, and the heat radiation part of the cooling water heat exchanger and heat absorption Since the heat transfer structure can be simplified by dividing the parts with heat transfer plates, the structure of the exhaust heat recovery device can be simplified.

〈実施例〉 以下、本発明の実施例を図面に基づいて述へる。<Example> Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図は本発明の第1実施例を示す横型水冷工ンジンを
組み込んだ熱併給発電装置の概略縦断面図であって、当
該熱併給発電gi置は、横型水冷エンジンEに発電器G
をベルト50で連動連結し、この全体を防音ケース51
で覆って、発電とエンジン排熱の供給を同時に行うよう
に構成したものである。
FIG. 1 is a schematic longitudinal sectional view of a cogeneration power generation device incorporating a horizontal water-cooled engine according to a first embodiment of the present invention.
are interlocked and connected by a belt 50, and the whole is enclosed in a soundproof case 51.
It is constructed to simultaneously generate electricity and supply engine exhaust heat.

上記横型水冷エンジンEのシリンダブロック16の中央
にシリンダ21を横向きに形成し、当該シリンダ21に
ピストン22を水平摺動自在に内嵌する。
A cylinder 21 is formed horizontally in the center of the cylinder block 16 of the horizontal water-cooled engine E, and a piston 22 is fitted into the cylinder 21 so as to be horizontally slidable.

上記シリンダブロック16の横側方にシリンダヘッド2
2を固定し、シリンダ21の周囲に形成したシリンダジ
ャケット24とシリンダヘッド22に形成したヘッドジ
ャケット23とによりウォータジケット1を構成する。
A cylinder head 2 is provided on the lateral side of the cylinder block 16.
2 is fixed, and the water jacket 1 is constituted by a cylinder jacket 24 formed around the cylinder 21 and a head jacket 23 formed around the cylinder head 22.

また、上記シリンダブロック16の上方に面状の熱吸収
容器14を搭載するとともに、横型エンジンEの前方に
吹出し式冷却ファン33を備えたラジェータ25を配置
する。
Further, a planar heat absorption container 14 is mounted above the cylinder block 16, and a radiator 25 equipped with a blow-out type cooling fan 33 is arranged in front of the horizontal engine E.

上記熱吸収容器14の清浄水室26の上方に細径の排気
放熱管27の管群を貫通させ、清浄氷室26の前部下方
に面状の伝熱板15で区画された冷却水室20を設ける
とともに、清浄氷室26の後部下方に清浄水入口14a
を、また、その上部に清浄水出口+4bを各々設ける。
A cooling water chamber 20 is provided above the clean water chamber 26 of the heat absorption container 14 through which a tube group of small-diameter exhaust heat radiation tubes 27 is passed, and below the front of the clean ice chamber 26 is partitioned by a planar heat transfer plate 15. In addition, a clean water inlet 14a is provided at the rear and lower part of the clean ice chamber 26.
In addition, a clean water outlet +4b is provided at the top of each.

上記冷却水室20を前記シリンダブロック16の土壁に
空けた開口2を通してウォータジャケット24に直接的
に連通し、冷却水室20の出口20aを前記ラジェータ
25の上タンク25aに同じく通水管3で、また、ラジ
ェータ25の下タンク25bを水ポンプ29を介してウ
ォータジャケットlの入口5に通水管3で夫々接続する
The cooling water chamber 20 is directly connected to the water jacket 24 through an opening 2 made in the clay wall of the cylinder block 16, and the outlet 20a of the cooling water chamber 20 is connected to the upper tank 25a of the radiator 25 through a water pipe 3. Further, the lower tank 25b of the radiator 25 is connected to the inlet 5 of the water jacket l via the water pump 29 with the water pipe 3, respectively.

さらに、上記排気放熱管27の人口27aをシリンダヘ
ッド22に設けた排気ポート6に排気管7で接続し、排
気放熱管27の出口27bをマフラ10に同じく排気管
7で接続する。
Further, the exhaust pipe 27a of the exhaust heat radiation pipe 27 is connected to the exhaust port 6 provided in the cylinder head 22 by the exhaust pipe 7, and the outlet 27b of the exhaust heat radiation pipe 27 is connected to the muffler 10 by the same exhaust pipe 7.

一方、熱吸収容器14の清浄氷室人口26gL及び出口
26bを排熱回収回路12と循環ポンプ31とを介して
清浄水供給源30に接続して、清浄氷室26内を清浄水
が流通して排気熱及び冷却排水熱を吸熱可能に構成して
いる。
On the other hand, the clean ice chamber population 26 gL and the outlet 26b of the heat absorption container 14 are connected to a clean water supply source 30 via the exhaust heat recovery circuit 12 and the circulation pump 31, so that clean water flows through the clean ice chamber 26 and is exhausted. It is configured to absorb heat and cooling wastewater heat.

従って、この場合、前記熱吸収容器14にいわば冷却水
熱交換器4と排気熱交換器8とが一体的に組み付けられ
ている。
Therefore, in this case, the cooling water heat exchanger 4 and the exhaust heat exchanger 8 are integrally assembled in the heat absorption container 14, so to speak.

これをより具体的に説明すると、冷却水室20及び伝熱
板15が、冷却水熱交換器4の放熱部4aに、そして、
当該冷却水室20の周囲の清浄水の層及び伝熱板15が
冷却水熱交換器4の吸熱部4bに各々相当する。
To explain this more specifically, the cooling water chamber 20 and the heat transfer plate 15 are connected to the heat radiation part 4a of the cooling water heat exchanger 4, and
The clean water layer around the cooling water chamber 20 and the heat transfer plate 15 each correspond to the heat absorption part 4b of the cooling water heat exchanger 4.

また、排気放熱管28の管群が、排気熱交換器8の放熱
部8aに、そして、当該管群の周囲を流通する清浄水の
層が排気熱交換器8の吸熱部8bに各々相当する。
Further, the tube group of the exhaust heat radiation pipes 28 corresponds to the heat radiation part 8a of the exhaust heat exchanger 8, and the layer of clean water flowing around the tube group corresponds to the heat absorption part 8b of the exhaust heat exchanger 8. .

そこで、上記排熱回収装置の機能を述べる。Therefore, the functions of the above-mentioned exhaust heat recovery device will be described.

(1)エンジン本体熱を吸熱してウォータジャケットl
を出た冷却水は、開口2から直接的に熱吸収容器14の
冷却水室20に流入し、伝熱板15を介して清浄氷室2
6を満たす清浄ざに放熱する。
(1) Water jacket l absorbs engine body heat
The cooling water that has exited flows directly into the cooling water chamber 20 of the heat absorption container 14 through the opening 2, and passes through the heat transfer plate 15 to the clean ice chamber 2.
Dissipate heat to a clean zone that satisfies 6.

放熱を終えた冷却水は、ラジェータ25で再び放熱した
のち、水ポンプ29によりエンジンEのウォータジャケ
ットlに循環される。
After the cooling water has finished dissipating heat, the heat is dissipated again by the radiator 25, and then the water pump 29 circulates it to the water jacket l of the engine E.

(2)エンジンEの排気は、排気管7を介して熱□吸収
容器14の排気放熱管27に流入し、清浄水に放熱する
(2) The exhaust gas from the engine E flows into the exhaust heat radiation pipe 27 of the heat absorbing container 14 through the exhaust pipe 7, and radiates heat to the clean water.

放熱を終えた排気は、マフラ10で消音されて大気に放
出される。
The exhaust gas that has finished dissipating heat is muffled by the muffler 10 and released into the atmosphere.

(3)清浄水供給源30から循環ポンプ31で熱吸収容
器14に流入した清浄水は、清浄氷室26内で伝熱板1
5及び排気放熱管27に接触して冷却排水熱と排気熱を
吸熱したのち、排熱回収回路12を通って供給源30に
還流される。
(3) The clean water flowing into the heat absorption container 14 from the clean water supply source 30 by the circulation pump 31 is transferred to the heat transfer plate 1 in the clean ice chamber 26.
5 and the exhaust heat dissipation pipe 27 to absorb cooling drainage heat and exhaust heat, the exhaust heat is returned to the supply source 30 through the exhaust heat recovery circuit 12.

第2図は本発明の第2実施例を示し、伝熱板15の熱伝
導効率を上げるために、当該伝熱板15の表面に複数の
フィン35を突出したものである。
FIG. 2 shows a second embodiment of the present invention, in which a plurality of fins 35 are protruded from the surface of the heat exchanger plate 15 in order to increase the heat conduction efficiency of the heat exchanger plate 15.

第3図は本発明の第3実施例を示し、平坦な伝熱板15
を熱板収容314の上下中央に横断して、清浄氷室26
と冷却水室20とを上下に区画したものである。
FIG. 3 shows a third embodiment of the present invention, in which a flat heat exchanger plate 15
The clean ice chamber 26
and a cooling water chamber 20 are divided into upper and lower sections.

第4図及び第5図は本発明の第4実施例を示し、熱吸収
容器14の上部に貫通した排気放熱管27に達するまで
に冷却水室20を大きく設け、伝熱板15の表面積を増
加して熱伝導効率を上昇させである。
4 and 5 show a fourth embodiment of the present invention, in which a large cooling water chamber 20 is provided before reaching the exhaust heat radiation pipe 27 penetrating the upper part of the heat absorption container 14, and the surface area of the heat exchanger plate 15 is increased. This increases the heat transfer efficiency.

また、上記第1〜4実施例の場合、ラジェータ25を省
略するとともに、冷却水室20の出口20aを封鎖して
、連通状になったエンジンEのウォータジャケットlと
冷却水室20との閉鎖水系にエンジン排熱を蓄熱し、伝
熱板15を介して清浄氷室26に放熱するようにしても
差し支えない。
In the case of the first to fourth embodiments described above, the radiator 25 is omitted and the outlet 20a of the cooling water chamber 20 is closed, thereby closing the water jacket l of the engine E and the cooling water chamber 20, which are in communication with each other. Engine exhaust heat may be stored in the water system and radiated to the clean ice compartment 26 via the heat transfer plate 15.

尚、排熱回収1回路12における清浄水の循環ポンプ3
1は、第6図(横型エンジンEの平面図)に示すように
、■ベルト54によりクランク軸53にベルト伝動させ
た機械式ポンプにすると、電動ポンプに比べてポンプ吐
出量を大幅に増加できるとともに、長期耐久性と耐熱性
を向上でき、電源も不要となる。
In addition, the clean water circulation pump 3 in the exhaust heat recovery circuit 12
1, as shown in Fig. 6 (plan view of the horizontal engine E), ■ By using a mechanical pump in which the belt 54 transmits power to the crankshaft 53, the pump discharge amount can be significantly increased compared to an electric pump. At the same time, long-term durability and heat resistance can be improved, and a power source is not required.

また、上記実施例では排熱回収回路12に流す熱回収液
は清浄水であるが、水の代替液として、例えば、オイル
、エチレングリコールなどであっても差し支えない。
Further, in the above embodiment, the heat recovery liquid flowing into the exhaust heat recovery circuit 12 is clean water, but as a substitute for water, for example, oil, ethylene glycol, etc. may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明の実施例を示し、第1図は本発
明の第1実施例を示す横型水冷エンジンを組み込んだ熱
併給発電装置の概略縦断面図、第2図は第2実施例を示
す熱吸収容器周辺の要部縦断面図、第3図は第3実施例
を示す第2図相当図、第4図は第4実施例を示す第2図
相当図、第5図は同第4実施例を示す横型水冷エンジン
の左側面図、第6図は熱回収回路における循環ポンプの
変形例を示す横型水冷エンジンの平面図、第7図は従来
技術を示す排熱回収装置の概略系統図である。 1・・・ウォータジャケット、2・・・1の出口、3・
・・通水管、4・・・冷却水熱交換器、4a・・・4の
放熱部、4b・・・4の吸熱部、5・・・lの入口、6
・・・排気ポート、7・・・排気管、8・・・排気熱交
換器、8a・・・8の放熱部、8b・・;8の吸熱部、
10・・・マフラ、12・・・排熱回収回路、14・・
・熱吸収容器、15・・・伝熱板、E・・・横型水冷エ
ンジン。 第5図 第6図 第7図
1 to 6 show embodiments of the present invention, FIG. 1 is a schematic longitudinal cross-sectional view of a cogeneration power generation device incorporating a horizontal water-cooled engine showing the first embodiment of the present invention, and FIG. 3 is a longitudinal sectional view of the main part around the heat absorption container showing the second embodiment, FIG. 3 is a view equivalent to FIG. 2 showing the third embodiment, FIG. 4 is a view equivalent to FIG. 2 showing the fourth embodiment, and FIG. The figure is a left side view of a horizontal water-cooled engine showing the fourth embodiment, FIG. 6 is a plan view of a horizontal water-cooled engine showing a modification of the circulation pump in the heat recovery circuit, and FIG. 7 is a conventional technology for exhaust heat recovery. It is a schematic system diagram of an apparatus. 1... Water jacket, 2... Exit of 1, 3...
...Water pipe, 4...Cooling water heat exchanger, 4a...4 heat radiation part, 4b...4 heat absorption part, 5...1 inlet, 6
...exhaust port, 7...exhaust pipe, 8...exhaust heat exchanger, 8a...heat radiation part of 8, 8b...; heat absorption part of 8,
10...Muffler, 12...Exhaust heat recovery circuit, 14...
・Heat absorption container, 15...Heat exchange plate, E...Horizontal water-cooled engine. Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、横型水冷エンジンEのウォータジャケット1を冷却
水熱交換器4の放熱部4aに接続し、エンジンEの排気
ポート6に排気熱交換器8の放熱部8aを介してマフラ
10を接続し、排熱回収回路12を循環する熱回収液を
冷却水熱交換器4の吸熱部4b及び排気熱交換器8の吸
熱部8bに通過させてエンジンEの冷却水熱及び排気熱
を回収する横型水冷エンジンの排熱回収装置において、 排熱回収回路12に熱吸収容器14を介装させ、熱吸収
容器14を横型水冷エンジンEのシリンダブロック16
に搭載し、熱吸収容器14の内側上部に排気熱交換器8
の放熱部8aを設け、熱吸収容器14の内側下部に冷却
水熱交換器4の放熱部4aを冷却水熱交換器4の吸熱部
4bから伝熱板15で区画して設け、熱吸収容器14の
内部空間において冷却水熱交換器4の吸熱部4bを排気
熱交換器8の吸熱部8bに連通させるとともに、冷却水
熱交換器4の放熱部4aを横型水冷エンジンEのウォー
タジャケット1に直接的に連通したことを特徴とする横
型水冷エンジンの排熱回収装置
[Claims] 1. The water jacket 1 of the horizontal water-cooled engine E is connected to the heat radiation part 4a of the cooling water heat exchanger 4, and the water jacket 1 of the horizontal water-cooled engine E is connected to the heat radiation part 4a of the exhaust heat exchanger 8 to the exhaust port 6 of the engine E. The muffler 10 is connected, and the heat recovery liquid circulating in the exhaust heat recovery circuit 12 is passed through the heat absorption part 4b of the cooling water heat exchanger 4 and the heat absorption part 8b of the exhaust heat exchanger 8, and the cooling water heat of the engine E is released. In the exhaust heat recovery device for a horizontal water-cooled engine that recovers heat, a heat absorption container 14 is interposed in the exhaust heat recovery circuit 12, and the heat absorption container 14 is connected to the cylinder block 16 of the horizontal water-cooled engine E.
The exhaust heat exchanger 8 is mounted on the inside upper part of the heat absorption vessel 14.
A heat radiating part 8a is provided, and the heat radiating part 4a of the cooling water heat exchanger 4 is separated from the heat absorbing part 4b of the cooling water heat exchanger 4 by a heat transfer plate 15 at the inner lower part of the heat absorbing container 14. 14, the heat absorption part 4b of the cooling water heat exchanger 4 is communicated with the heat absorption part 8b of the exhaust heat exchanger 8, and the heat radiation part 4a of the cooling water heat exchanger 4 is connected to the water jacket 1 of the horizontal water-cooled engine E. Exhaust heat recovery device for horizontal water-cooled engine characterized by direct communication
JP62268973A 1987-10-23 1987-10-23 Exhaust heat recovery device for horizontal water-cooled engine Pending JPH01110866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268973A JPH01110866A (en) 1987-10-23 1987-10-23 Exhaust heat recovery device for horizontal water-cooled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268973A JPH01110866A (en) 1987-10-23 1987-10-23 Exhaust heat recovery device for horizontal water-cooled engine

Publications (1)

Publication Number Publication Date
JPH01110866A true JPH01110866A (en) 1989-04-27

Family

ID=17465877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268973A Pending JPH01110866A (en) 1987-10-23 1987-10-23 Exhaust heat recovery device for horizontal water-cooled engine

Country Status (1)

Country Link
JP (1) JPH01110866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190140A (en) * 2009-02-19 2010-09-02 Takagi Ind Co Ltd Exhaust heat recovering method, exhaust heat recovering apparatus, and cogeneration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190140A (en) * 2009-02-19 2010-09-02 Takagi Ind Co Ltd Exhaust heat recovering method, exhaust heat recovering apparatus, and cogeneration system
US8499551B2 (en) 2009-02-19 2013-08-06 Purpose Company Limited Exhaust heat recovering method, exhaust heat recovering apparatus and cogeneration system

Similar Documents

Publication Publication Date Title
CN208889811U (en) Liquid cooling plate and the battery modules for installing it
WO2020140882A1 (en) Integrated heat sink assembly
CN107275710A (en) Battery bag heat conducting and heat radiating device
CN205882115U (en) Microchannel battery heat managing system based on waste heat recovery
JPH01110866A (en) Exhaust heat recovery device for horizontal water-cooled engine
CN109818110A (en) A kind of new-energy automobile power battery structure
CN201548015U (en) Heat exchanger
CN212337417U (en) Heat exchange pipe cooling type engine exhaust device
JP2016023608A (en) Generating set using heat of exhaust gas of internal combustion engine
JPH0642406A (en) Heat jointly supplied power generator and exhaust heat recovery device thereof
KR20120026177A (en) Water cooling type heat exchange system for motor vehicle
JPH01117972A (en) Exhaust heat recovering device for water-cooled engine
CN218293704U (en) Automobile radiator with multiple layers of radiating pipes
CN110792506A (en) Water-cooling and air-cooling integrated cooler for internal combustion engine
CN209896179U (en) Liquid cooling radiator
RU163311U1 (en) THERMOELECTRIC DEVICE FOR INTERNAL COMBUSTION ENGINE WITH FUNCTIONS OF COOLING RADIATOR AND HEATING ENERGY COOLING LIQUID IN ELECTRIC ENERGY
CN219812394U (en) Liquid cooling heat radiation structure for cabinet type energy storage
CN214438909U (en) Thermal reaction device cooling structure
CN212529295U (en) Power assembly and electric automobile
CN210799113U (en) Dual cycle cooling system
CN212132321U (en) High-power LED car light of samming board circulation heat dissipation
CN215109136U (en) Radiator assembly of automobile water tank
CN111472872B (en) Heat exchange tube cooling type engine exhaust device
CN218214050U (en) Computer water-cooling radiator
JPH01106964A (en) Exhaust heat recovery device of water cooled engine