JPH01110805A - Blade root member construction in turbo engine - Google Patents

Blade root member construction in turbo engine

Info

Publication number
JPH01110805A
JPH01110805A JP26640387A JP26640387A JPH01110805A JP H01110805 A JPH01110805 A JP H01110805A JP 26640387 A JP26640387 A JP 26640387A JP 26640387 A JP26640387 A JP 26640387A JP H01110805 A JPH01110805 A JP H01110805A
Authority
JP
Japan
Prior art keywords
blade root
blade
pin
center
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26640387A
Other languages
Japanese (ja)
Other versions
JP2753236B2 (en
Inventor
Kiyoshi Namura
清 名村
Masakazu Takazumi
正和 高住
Yoshiaki Yamazaki
義昭 山崎
Kazuo Ikeuchi
和雄 池内
Takeshi Sato
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62266403A priority Critical patent/JP2753236B2/en
Publication of JPH01110805A publication Critical patent/JPH01110805A/en
Application granted granted Critical
Publication of JP2753236B2 publication Critical patent/JP2753236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To strengthen a blade root member, by inclining pin holes formed on a disc in a rotor axial direction. CONSTITUTION:Pin holes 11a to 11c formed on a disc 6, are inclined in a rotor axial direction. The pin holes 11a to 11c forming one hole group are provided in different radial positions, so that a line passing through the centers of the plural pin holes 11a to 11c provided in the different radial positions may be arranged for coinciding with the radial direction. Thereby, the direction line of a blade root member pedestal 4 is inclined to the axial direction, so that the strength of the blade root member can be enhanced against centrifugal force.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般の軸流流体機械の翼に係り、特にその翼根
部構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a blade for a general axial flow fluid machine, and particularly to a blade root structure thereof.

〔従来の技術〕[Conventional technology]

軸流流体機械の翼をロータあるいはディスクなどの回転
体に取付ける構造、方法は種々のものがある。この中で
、例えば特公昭30−6752号公報に記載のような、
いわゆるフォーク形翼根部を有する翼をディスクに取行
ける構造がある。この構造は、翼根元部から半径方向に
延びるフォーク状の複数の脚が設けられ、これら脚形状
に合致するディスク外周上に円周方向に延びる複数のデ
ィスク溝に挿入された後、半径位置の異なる複数位置に
おいて脚及びディスク溝を貫通するように、軸方向にピ
ンを挿入して、翼根部をディスクに固定するものである
。さらに1本従来構造を詳述すれば。
There are various structures and methods for attaching the blades of an axial fluid machine to a rotating body such as a rotor or a disk. Among these, for example, as described in Japanese Patent Publication No. 30-6752,
There is a structure that allows blades with so-called fork-shaped blade roots to be attached to the disk. This structure has a plurality of fork-shaped legs extending radially from the blade root, and after being inserted into a plurality of disk grooves extending circumferentially on the outer circumference of the disk that match the shape of the legs, The blade root portion is fixed to the disk by inserting pins in the axial direction so as to penetrate the leg and disk grooves at a plurality of different positions. Let me explain one more conventional structure in detail.

第2図はその翼根部構造の斜視図であり、第3図は、3
本の翼を組み合わせた場合の第2図のA−A矢視平面図
である。一般に、ある半径位置における翼断面形状及び
、翼列を形成するための翼形の円周方向間隔(円周方向
ピッチ)は、各半径位置において、流体性能を満足する
よう決定される。
Figure 2 is a perspective view of the blade root structure, and Figure 3 is a perspective view of the blade root structure.
FIG. 2 is a plan view taken along the line A-A in FIG. 2 when book wings are combined; Generally, the cross-sectional shape of an airfoil at a certain radial position and the circumferential spacing (circumferential pitch) of the airfoils for forming a row of blades are determined so as to satisfy fluid performance at each radial position.

第3図に示す例においては、翼根元部の翼形形状と円周
方向ピッチPの関係が示されている。第3図かられかる
ように、一般に根元部の翼形形状は、翼間流路の転向が
大きい、いわゆるそりの大きい形状となるため、軸方向
に投影した翼幅dは、円周方向ピッチpよりも大きくな
る。このため、本従来例では限られた円周方向ピッチの
もと、翼根部台座から翼根元部がはみださないように登
載できるように、翼根部台座の軸方向幅の中間部を円周
方向に172ピツチずらせる構造がとられ、翼根部台座
から半径方向に延びる脚も、翼根部台座形状に合わせて
設けられている8また本従来例では、翼根部台座及び脚
の前縁側と後縁側の両端は軸方向に整列し、中間部は両
端よりも円周方向ピッチの−だけ円周方向に偏位して、
軸方向に配列されていることが特徴である。
In the example shown in FIG. 3, the relationship between the airfoil shape of the blade root portion and the circumferential pitch P is shown. As can be seen from Fig. 3, the airfoil shape at the root generally has a large deflection of the flow path between the blades, so-called a large warp shape, so the blade width d projected in the axial direction is the pitch in the circumferential direction. It becomes larger than p. For this reason, in this conventional example, the middle part of the axial width of the blade root pedestal was set in a circle so that the blade root part could be mounted without protruding from the blade root pedestal due to the limited circumferential pitch. The blade root pedestal is shifted by 172 pitches in the circumferential direction, and the legs extending radially from the blade root pedestal are also provided to match the shape of the blade root pedestal. Both ends on the trailing edge side are aligned in the axial direction, and the intermediate part is offset in the circumferential direction from both ends by - of the circumferential pitch,
They are characterized by being arranged in the axial direction.

(発明が解決しようとする問題点〕 さて、前述したように、一般に翼断面形状とその翼列構
成としての円周方向ピッチは、流体性能を満足するよう
に決定されるが、機械の流体条件に応じて1種々の翼断
面形状、ピッチが可能であり、また、一定ピツチの下で
も、種々の翼断面形状が選択可能である。これに関し、
第4図は、翼根部翼断面形状の比較を模式的に示したも
のであり、翼断面の軸方向幅りの中点を通り、円周方向
に延びる直線に対し、はぼ対象形の翼形Aと非対称な翼
形B(以下このような翼形を単に非対象翼形と称する。
(Problems to be Solved by the Invention) As mentioned above, the blade cross-sectional shape and the circumferential pitch of the blade cascade configuration are generally determined to satisfy fluid performance. Various blade cross-sectional shapes and pitches are possible depending on the pitch, and various blade cross-sectional shapes can be selected even under a certain pitch.
Figure 4 schematically shows a comparison of the cross-sectional shapes of the blade root section. Airfoil B is asymmetrical to shape A (hereinafter, such an airfoil will be simply referred to as an asymmetric airfoil).

)が示されている。また、別の表現をすれば、翼形Aは
断面の2つの慣性主軸ξ、ηが軸方向(X軸)及び円周
方向(y軸)にそれぞれほぼ一致しているような翼形、
翼形Bは2つの慣性主軸ξ、ηがそれぞれ軸方向及び円
周方向と一致せず角度δ (以下この角度を取付角度と
称する)を有しているような翼形である。一般に取付角
度δが増すほど、翼形を軸方向に投影した幅dは、大き
くなる。このため、翼形Bのような非対象の形の翼根光
翼形を持つ翼では、前述したような、対象形の翼根部台
座から、翼形のかなりの部分、特に翼の前縁、後縁など
厚みの薄い部分がはみ出してしまうことになり、回転中
に翼に作用する大きな遠心力を支え、十分な翼強度を確
保する観点からは翼根部形状としては望ましいものでは
ない。
)It is shown. In other words, the airfoil A is an airfoil in which the two principal axes of inertia ξ and η of the cross section approximately coincide with the axial direction (X-axis) and the circumferential direction (y-axis), respectively.
Airfoil B is an airfoil in which two principal axes of inertia ξ and η do not coincide with the axial direction and the circumferential direction, respectively, and have an angle δ (hereinafter this angle is referred to as an attachment angle). Generally, as the mounting angle δ increases, the width d of the airfoil projected in the axial direction increases. For this reason, in a wing with an asymmetrical root light airfoil such as airfoil B, a considerable portion of the airfoil, especially the leading edge of the wing, is Thin parts such as the trailing edge protrude, which is not a desirable blade root shape from the perspective of supporting the large centrifugal force that acts on the blade during rotation and ensuring sufficient blade strength.

本発明は、以上述べたような従来技術の欠点をなくシ、
取付角δを有する非対象翼形の根元形状を有する翼に適
した改良された翼根部構造を、しかも、フォーク形翼根
部の場合について提供することを目的とする。
The present invention eliminates the drawbacks of the prior art as described above,
It is an object of the present invention to provide an improved blade root structure suitable for an airfoil having an asymmetrical airfoil root shape with an attachment angle δ, and in particular for the case of a fork-shaped airfoil root.

〔問題点を解決するための手段〕[Means for solving problems]

以上述べたような目的を達する上で、基本的に重要なこ
とは、非対象形の翼根光断面形状を持つ翼についても翼
根部が、翼根部台座からはみ出ることがないよう、極力
翼根光断面形状に合致した台座形状とすることである。
In order to achieve the above objectives, what is fundamentally important is that even for blades with asymmetrical blade root optical cross-sectional shapes, the blade root should be adjusted as much as possible so that the blade root does not protrude from the blade root pedestal. The purpose is to have a pedestal shape that matches the cross-sectional shape of the light.

しかし、翼根部は翼をディスクに固定し、かつ翼に作用
する大きな遠心力を支える重要部分であり、翼根部及び
ピンに作用する荷重配分の適正化と応力の軽減に関する
特別な工夫を必要とする6本発明においては、翼根部台
座及び翼根部台座より、略半径方向、ロータ中心側延び
る複数の脚において、翼の前縁と後縁に対応する両端を
直線上に配列するとともに、該直線が軸方向に対し傾斜
するよ−うに配列する。
However, the blade root is an important part that fixes the blade to the disk and supports the large centrifugal force acting on the blade, so special measures are required to optimize the load distribution and reduce stress acting on the blade root and pin. 6 In the present invention, in the blade root pedestal and the plurality of legs extending substantially radially toward the center of the rotor from the blade root pedestal, both ends corresponding to the leading edge and the trailing edge of the blade are arranged on a straight line, and the straight line are arranged so that they are inclined with respect to the axial direction.

さらに中間部は両端の配列に関する該直線を基準として
円周方向に、1/2ピツチだけ偏位して配列する。しこ
うして、ロータ中心から円じ半径位置において、上記両
端の脚部の円周方向幅の両端に半円状の溝を、さらに中
間部の脚部の円周方向幅の中央に円形穴を、該半円溝と
円形穴の中心線が一直線上に並ぶようかつ、軸方向と傾
斜を持つように、ピン穴形成し、一方、ディスク外周部
において、上記複数の脚部の円周方向に投影した形状と
合致する、円周方向に延びる複数のディスク溝を設け、
ディスクにも該ディスク溝に取付けられた翼根部のビン
穴を貫通するピン穴を設けて、該ピン穴にピンを挿入し
て翼根部をディス溝に固定し、さらに、同様のピン穴を
、ロータ中心から異なる半径位置に複数個設け、ピンを
挿入しかつ、該複数個のピンの配列は、ロータ中心線に
垂直な平面内で、各ピンの中心を結んだ線が一本の半径
方向を向く直線となるようにすることにより、前記目的
を達成することができる。
Further, the intermediate portions are arranged so as to be offset by 1/2 pitch in the circumferential direction with respect to the straight line regarding the arrangement of both ends. Thus, at a circular radius position from the rotor center, semicircular grooves are formed at both ends of the circumferential width of the legs at both ends, and a circular hole is formed at the center of the circumferential width of the intermediate leg. A pin hole is formed so that the center lines of the semicircular groove and the circular hole are aligned in a straight line and have an inclination with the axial direction, and on the other hand, the pin hole is projected in the circumferential direction of the plurality of legs at the outer periphery of the disk. provided with a plurality of circumferentially extending disc grooves that match the shape of the
The disk is also provided with a pin hole that passes through the pin hole in the blade root attached to the disk groove, and a pin is inserted into the pin hole to fix the blade root in the disk groove. A plurality of pins are provided at different radial positions from the rotor center, and the pins are arranged in a plane perpendicular to the rotor center line, with a line connecting the centers of each pin in the radial direction. The above objective can be achieved by making the straight line facing .

〔作用〕[Effect]

以上述べた本発明の翼根部構造においては、翼根部台座
を軸方向に対して傾斜して設けられるので、翼根部所面
形状が非対象あるいは取付角δを有する翼形についても
、傾斜角を適切に選ぶことにより1台座から翼根元部か
はみでることがない。
In the blade root structure of the present invention described above, the blade root pedestal is provided at an inclination with respect to the axial direction, so even for airfoils in which the surface shape of the blade root is asymmetric or has an attachment angle δ, the inclination angle can be adjusted. By choosing appropriately, the base of the wing will not protrude from the base.

また、前記説明から明らかなように、異なる、半径位置
に複数本設けられるピンは、それぞれ、軸方向に対して
傾斜するように取付けられるとともに、ロータ中心線に
垂直な断面内で、各ピンの中心を結ぶ線は半径方向を向
く一本の直線上に配列されるので、翼根部の軸方向位置
によって、上記複数本のピンの配列方向は、同じく半径
方向ではあっても、互に周方向に角度を有した。異る方
向に配列される。このように配列されたピンは、−般に
、蒸気タービンなどの長翼のような、翼根部から翼先端
部に向けて翼断面の取付角が変化する、いわゆるねじれ
翼に関して、翼に作用する回転中の遠心力を支える作用
をするが、力の作用方向に対して、ピンの各軸方向位置
において、ピンの荷重分担を適切に配分することを可能
にできる配列となっている。
Furthermore, as is clear from the above description, the plurality of pins provided at different radial positions are each installed so as to be inclined with respect to the axial direction, and each pin is The lines connecting the centers are arranged on a straight line pointing in the radial direction, so depending on the axial position of the blade root, the arrangement direction of the plurality of pins may be radial but mutually circumferential. It had an angle to Arranged in different directions. The pins arranged in this manner generally act on a so-called twisted blade, such as a long blade such as a steam turbine, in which the installation angle of the blade cross section changes from the blade root to the blade tip. Although it functions to support centrifugal force during rotation, it has an arrangement that makes it possible to appropriately distribute the load share of the pin at each axial position of the pin with respect to the direction in which the force is applied.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明になる、ターボ機械の翼根部構造を表
わす部分の斜視図で、第5図は一本の翼の部分の翼根部
を示す斜視図である。翼1は翼本体部2及び翼根部3よ
り成り、翼根部3はさらに、翼根部台座4と、該翼根部
台座から、フォーク状に半径方向に延びる6本の脚部5
を備えている。
FIG. 1 is a perspective view of a portion showing the blade root structure of a turbomachine according to the present invention, and FIG. 5 is a perspective view showing the blade root of one blade. The blade 1 consists of a blade main body 2 and a blade root 3, and the blade root 3 further includes a blade root pedestal 4 and six fork-shaped legs 5 extending radially from the blade root pedestal.
It is equipped with

一方翼1が取付けられるディスク6の外周には該翼根部
3の脚部5の円周方向に投影した形状と合致する、6条
の円周方向に延びるディスク溝7が形成される。容具の
翼根部は半径方向の異る位置に互に離隔した、3本のピ
ン11でディスク6に固定される。また、従来の翼取付
構造で周知のように、翼根部の脚部は、ディスクの溝に
よく嵌合するように注意深く仕上げを施し、その後脚部
5とディスクを貫通して、ピン11挿入用のピン穴を穿
ち、翼をディスクに対し正しい位置に置いた状態でリー
マ通しが行れる。また、第1図、第5図で明らかなよう
に、各脚部及びディスク溝は階階状に傾斜し、各階段に
各−個のピンを配置する。
On the other hand, on the outer periphery of the disk 6 to which the blade 1 is attached, six circumferentially extending disk grooves 7 are formed which match the shape projected in the circumferential direction of the leg portion 5 of the blade root portion 3. The blade root of the container is fixed to the disk 6 with three pins 11 spaced apart from each other at different radial positions. In addition, as is well known in conventional wing mounting structures, the leg of the wing root is carefully finished to fit well into the groove of the disc, and then the leg 5 and the disc are passed through for insertion of the pin 11. The pin hole is drilled and the reamer can be threaded with the wing placed in the correct position relative to the disc. Also, as can be seen in FIGS. 1 and 5, each leg and the disc groove are sloped stepwise, and each step is provided with a respective pin.

さて、次に、翼根部台座4及び、脚部の取付位置及び形
状について述べる。第1図、第5図において、翼根部台
座4のそれぞれ翼前縁側と後縁側の陵線14a及び14
bは同じ半径位置において一直線上にあるように形成さ
れ、これを翼根部台座方向線8として定義する。この時
台座方向線8は、軸方向線9に対し角度αだけ傾斜する
ように形成される。次に、翼根部台座及び脚部の他の部
分の関係を明らかにするため、第1図の面10で切断し
た断面を半径方向より見た平面図である第6図及び第7
図によって説明する0台座方向線8が軸方向線9に対し
て傾斜させることは、すなわち1台座4の翼後縁側の端
部を基準にして、前縁側の端部を円周方向に偏位させる
ことと略同義である。次に1台座方向1lA8を基準と
して、中間部の翼根部台座及び脚部7b、7c、7d、
7eは円周方向に一ピッチだけ偏位されている。このよ
うに翼根部台座4を形成することにより、翼根元断面形
状が、翼の軸方向幅の中央の円周方向線に対して非対象
もしくは、取付角度を有する翼形に対しても、翼根部台
座4と翼の接ぎ目部分において、翼根元部が台座4より
、はみ出ることのない、強度的に優れた翼根部構造を提
供できる。すなわち、台座方向線8はと軸方向線9のな
す角αは一定の値に固定されるものではなく、翼根元断
面形状に応じて、翼根部が台座4よりはみ出ることのな
いように選ぶことが可能である0次に、両端の脚7a、
7fと、円周方向に偏位した中間の脚7b、7c、7d
、7eに対する、ピン穴の配置について述べる。中間の
脚7b、7c、7d、7eのうち両端の脚から偏位する
境界にかかるため。
Next, the mounting positions and shapes of the blade root pedestal 4 and the legs will be described. In FIGS. 1 and 5, ridge lines 14a and 14 on the wing leading edge side and the trailing edge side of the wing root pedestal 4, respectively.
b are formed to be on a straight line at the same radial position, and this is defined as the blade root pedestal direction line 8. At this time, the pedestal direction line 8 is formed to be inclined at an angle α with respect to the axial direction line 9. Next, in order to clarify the relationship between the wing root pedestal and other parts of the leg, FIGS. 6 and 7 are plan views of a cross section cut along plane 10 of FIG.
The fact that the 0 pedestal direction line 8 is inclined with respect to the axial direction line 9, which will be explained with reference to the figure, means that the leading edge side end of the 1 pedestal 4 is offset in the circumferential direction with respect to the blade trailing edge side end of the 1 pedestal 4. It is almost synonymous with causing. Next, based on the pedestal direction 1lA8, the intermediate blade root pedestal and leg portions 7b, 7c, 7d,
7e is offset by one pitch in the circumferential direction. By forming the blade root pedestal 4 in this way, the blade root cross-sectional shape is asymmetrical to the circumferential line at the center of the blade's axial width, or even for airfoils that have an attachment angle. At the joint portion between the root pedestal 4 and the wing, a blade root structure with excellent strength can be provided in which the blade root does not protrude beyond the pedestal 4. In other words, the angle α formed by the pedestal direction line 8 and the axial direction line 9 is not fixed to a constant value, but should be selected in accordance with the blade root cross-sectional shape so that the blade root does not protrude beyond the pedestal 4. is possible, the legs 7a at both ends,
7f and circumferentially offset intermediate legs 7b, 7c, 7d.
, 7e will be described. This is because it spans the boundary of the intermediate legs 7b, 7c, 7d, and 7e that deviates from the legs at both ends.

断面形はやや丸みを帯びる以外は、円周方向と台座方向
線に略一致する平行線で囲まれた、平行四辺形を持って
おり1脚部7b、7c、7d、7eの断面のほぼ正確に
中央を貫通して1台座方向線8と略平行にピン穴12が
形成されている。これは、翼に作用する遠心力が各脚に
均斉のとれた荷重としてかかるようにするために重要で
ある。以上の説明でピン穴12の方向は台座方向線8と
略平行と述べたが、厳密には平行ではない。これについ
ては後述する。
Except for its slightly rounded cross-sectional shape, it has a parallelogram surrounded by parallel lines that roughly match the circumferential direction and the pedestal direction line, and the cross-sections of the leg parts 7b, 7c, 7d, and 7e are almost exactly the same. A pin hole 12 is formed extending through the center and substantially parallel to the pedestal direction line 8. This is important so that the centrifugal force acting on the wing is a balanced load on each leg. In the above explanation, the direction of the pin hole 12 is said to be approximately parallel to the pedestal direction line 8, but strictly speaking, it is not parallel. This will be discussed later.

次に、両端の脚7a、?fに対しては、それぞれの円周
方向の両端に半円状のピン溝13が設けられ、隣接する
翼根部の両端の脚における半円状のピン溝13とによっ
て円形の穴が形成され、この円形の穴に嵌合するととも
にピン11は該中央部の脚7b、7c、7d、7eの円
周方向中の中心に設けられた円形のピン穴12を貫通し
て嵌合する。
Next, the legs 7a at both ends, ? For f, semicircular pin grooves 13 are provided at both ends in the circumferential direction, and a circular hole is formed by the semicircular pin grooves 13 in the legs at both ends of the adjacent blade root. While fitting into this circular hole, the pin 11 passes through and fits into a circular pin hole 12 provided at the center in the circumferential direction of the central legs 7b, 7c, 7d, and 7e.

さて、次に、異なる半径位置に設けられたピンの作用に
ついて述べる。第8図は、3本のピン11a、llb、
llcとロータ中心との関係を模式的に示したものであ
る。これまでの説明がら明らかなようにピンlla、l
lb、llcの中心軸AA’ 、BB’ 、CC’はそ
れぞれ半径Ra。
Next, the effects of pins provided at different radial positions will be described. FIG. 8 shows three pins 11a, llb,
This is a diagram schematically showing the relationship between llc and the rotor center. As is clear from the explanation so far, pins lla, l
The central axes AA', BB', and CC' of lb and llc each have a radius Ra.

Rh、Rcの円筒面内にあり、かつ、A、B、Cは翼の
前縁側に対応し、ロータ中心0を通りロータ中心軸00
′に垂直な面内にあり、かつ、ロータ中心Oを通る直線
(半径方向線)上にある。一方のA’ B’ C’も同
様にロータ中心O′を通りoo′に垂直な面内で、ロー
タ中心0′を通る直線(半径方向線)上にある。また、
直線EE’は説明の補助のために描いたもので、AA’
の中点りを通り、00′に平行な線(軸方向線)である
Rh and Rc are in the cylindrical plane, and A, B, and C correspond to the leading edge side of the blade, and pass through the rotor center 0 and are connected to the rotor center axis 00.
' and on a straight line (radial direction line) passing through the rotor center O. Similarly, one A'B'C' lies on a straight line (radial direction line) passing through the rotor center O' in a plane that passes through the rotor center O' and is perpendicular to oo'. Also,
Straight line EE' is drawn to assist in explanation, and AA'
It is a line (axial direction line) that passes through the midpoint of and is parallel to 00'.

以上の説明から明らかなように、面0EDE’O’はロ
ータ中心線00′を通る平面であるのに対し、面0CB
ADA’ B’ C’ O’はもはや平面ではなく、ピ
ンの配置を半径方向から見た平面図である第9図からも
明らかなように、ロータ中心からの半径が増すに伴い軸
方向線からの傾き角がしだいに大きくなる直線群で張ら
れた曲面である。従って、前に説明した。翼根部台座の
台座方向線8も、該曲面上にあることは明らかであるが
、前述の説明では簡単のため、台座方向線8とピンの中
心軸の方向は略平行と述べたが、厳密には本説明のよう
な平行ではない、また半径方向面0EDE’ 0’を基
準にとれば、翼前縁側に対応する半径方向線0CBAは
、ロータ回転方向側に、また半径方向線0’ C’ B
’ Aは回転逆方向側に配列されている。
As is clear from the above explanation, the plane 0EDE'O' is a plane passing through the rotor center line 00', whereas the plane 0CB
ADA'B'C'O' is no longer a plane, but as the radius from the rotor center increases, it changes from the axial line. It is a curved surface defined by a group of straight lines whose inclination angle gradually increases. Therefore, as explained above. It is clear that the pedestal direction line 8 of the wing root pedestal is also on the curved surface, but in the above explanation, for the sake of simplicity, it was stated that the pedestal direction line 8 and the central axis of the pin are approximately parallel. are not parallel as in this description, and if the radial plane 0EDE'0' is taken as a reference, the radial line 0CBA corresponding to the blade leading edge side is parallel to the rotor rotation direction side, and the radial line 0' C 'B
'A is arranged in the opposite direction of rotation.

さて、以上のようなピンの配列関係を認識しておくこと
は、以下で述べる翼に作用する遠心力とその作用方向及
び、それを支える翼根部及びピンの荷重条件との関係を
考える上で特に重要である。
Now, it is important to be aware of the arrangement of the pins as described above in order to consider the relationship between the centrifugal force acting on the blade, its direction of action, and the load conditions of the blade root and pins that support it, which will be described below. This is especially important.

例えば、蒸気タービンの低圧最終段長翼では、第10図
に翼根元部、中央部、及び先端部の翼形15a、15b
、15cの例を示すように、流体条件に合致して性能を
発揮するため一般に根元部から先端部に向うにつれ、ね
じりが増す、すなわち取付角が増すように構成されてお
り、この結果、翼先端部はど、軸方向に投影した円周方
向幅は翼根元部の円周方向幅より大きくなり、かつ、翼
前縁部は回転方向側に、翼縁縁部は回転逆方向に張り出
すようになるのが一般である。第11図は、この間の事
情を、本実施例の翼根部に取付けられた翼について、軸
方向より見た側面図によって示したものである。翼に作
用する遠心力について考えると、言うまでもなく、翼の
各部分には、ロータ中心からの距離に比例し、ロータ中
心と各部分を結んだ半径方向に遠心力が作用する。しこ
うして、上記のように、ねじれた翼に作用する遠心力の
力の流れ(方向)を考察すれば、翼の前縁側の力の流れ
と後縁側の力の流れは、同一半径方向を向くものにはな
らず、前縁側では回転方向側に、後縁側では回転逆方向
の成分を有することになる。
For example, in a low-pressure final stage long blade of a steam turbine, FIG.
, 15c, in order to meet the fluid conditions and exhibit performance, the blade is generally configured so that the torsion increases from the root to the tip, that is, the installation angle increases. At the tip, the circumferential width projected in the axial direction is larger than the circumferential width of the blade root, and the leading edge of the blade extends in the direction of rotation, and the edge of the blade extends in the opposite direction of rotation. Generally, it becomes like this. FIG. 11 shows the situation during this period using a side view of the blade attached to the blade root of this embodiment as viewed from the axial direction. When considering the centrifugal force acting on the blade, it goes without saying that centrifugal force acts on each part of the blade in a radial direction connecting each part to the rotor center in proportion to the distance from the rotor center. Therefore, as mentioned above, if we consider the flow (direction) of centrifugal force acting on a twisted wing, we can see that the flow of force on the leading edge and the flow of force on the trailing edge of the wing are directed in the same radial direction. The leading edge side has a component in the rotational direction, and the trailing edge side has a component in the opposite rotational direction.

これに対して、前述したピンの配列関係を合わせて考察
すれば、ピンの半径方向の配列方向は、前縁側では回転
方向側の半径方向線上に、後縁側では回転逆方向の半径
方向線上に配列されていることにより、ピンに作用する
荷重配分上極めて好しい結果が得られることになる。こ
れは、ピンの半径方向の配列方向と、遠心力の作用する
半径方向が近づけば近づくほど、各ピンの円周方向に作
用する余分なせん断力あるいはこじり力などを減じるこ
とができることからも明白である。なお、付記すれば、
以上の説明では、説明の都合上、翼前縁側と後縁側を例
にとって説明したが、その中間部分についても、漸次変
化する翼の遠心力作用方向と、同じく漸次変化するピン
の中間部の半径方向の配列方向についても良好な対応関
係が発揮される。
On the other hand, if we also consider the arrangement relationship of the pins mentioned above, the radial arrangement direction of the pins is on the radial line in the direction of rotation on the leading edge side, and on the radial line in the opposite direction of rotation on the trailing edge side. By arranging them, very favorable results can be obtained in terms of load distribution acting on the pins. This is clear from the fact that the closer the radial arrangement direction of the pins is to the radial direction in which centrifugal force acts, the more the excess shearing force or prying force acting in the circumferential direction of each pin can be reduced. It is. In addition, if you add,
In the above explanation, for convenience of explanation, the leading edge side and trailing edge side of the blade were explained as an example, but in the intermediate part as well, the direction of centrifugal force acting on the blade changes gradually, and the radius of the intermediate part of the pin also changes gradually. Good correspondence is also exhibited in the arrangement direction.

さらに、付記すれば、本発明をはじめ、フォーク形翼根
部においてピンが翼に作用する遠心力を支える作用は、
主として各脚部とディスク溝の接合面において、ピンに
発生するせん断荷重によっており、同じせん断荷重であ
れば、せん断面積が大きいほどせん断路力を低くできる
ことは周知である。これに対し、本発明では、ピンを軸
方向に対して傾斜させていることにより、せん断面積を
大きくとることが可能である。すなわち、第12図に示
すように、同じ径のピンであってもピンを軸方向に対し
て傾斜させない場合のせん断面積はピン断面積16であ
るのに対し、傾斜させた場合は、□倍だけ大きくなる。
Furthermore, in addition to the present invention, the function of the pin in the fork-shaped blade root portion to support the centrifugal force acting on the blade is as follows:
This is mainly due to the shear load generated on the pin at the joint surface between each leg and the disc groove, and it is well known that the larger the shear area, the lower the shear path force, as long as the shear load is the same. On the other hand, in the present invention, by making the pin inclined with respect to the axial direction, it is possible to increase the shearing area. In other words, as shown in Figure 12, even if the pin has the same diameter, the shear cross-sectional area when the pin is not tilted with respect to the axial direction is 16, but when it is tilted, the shear cross-sectional area is □ times only becomes larger.

この量は例えばαCO3α =10@の場合は、1.O15倍、15°の場合1.0
35倍、20°の場合1.064倍という値であり、一
般に厳しい荷重条件にさらされるピンのせん断路力を少
しでも軽減する意味から、決して小さな値ではない。
For example, when αCO3α = 10@, this amount is 1. O15 times, 1.0 at 15°
In the case of 35 times and 20 degrees, the value is 1.064 times, which is by no means a small value from the point of view of reducing the shear road force of the pin, which is generally exposed to severe load conditions.

以上述べた本発明の一実施例においては、説明の都合上
、脚部が6本の場合について示したが、前縁側、後縁側
及び少くとも一本以上の中間部の脚部の合計3本以上の
脚部を有する翼根部について適用可能なことは明らかで
ある6また、異る半径位置に設けられるピンの数も3本
の場合について示したが、発明の主旨から明らかなよう
に、少くとも2本以上のピンの場合に適用できる。
In the embodiment of the present invention described above, for convenience of explanation, the case where there are six legs is shown, but there are a total of three legs on the leading edge side, the trailing edge side, and at least one or more intermediate legs. It is clear that the application is applicable to blade roots having the above-mentioned leg parts.6Also, although the number of pins provided at different radial positions has been shown for the case of three, as is clear from the gist of the invention, Both can be applied to cases with two or more pins.

また、第13図に示すように、翼形根本断面形状が、中
間部において円周方向にあまり突状になっていない翼形
については1台座中間部を円周方向に一ピッチ偏位させ
ないものであってもよい。
In addition, as shown in Fig. 13, for airfoils whose root cross-sectional shape is not very convex in the circumferential direction at the intermediate portion, the intermediate portion of the base should not be displaced by one pitch in the circumferential direction. It may be.

また、この時、ピンはすべての脚部の円周方向のほぼ中
央部を貫通するものであっても良い。
Further, at this time, the pin may penetrate approximately the center of all the legs in the circumferential direction.

また、翼形根元部の円周方向幅が、円周方向ピッチに比
して大きな種々の翼根部がはみ出ない台座形状としては
、第14図のように前縁部から中央部にかけて一ピッチ
偏位したもの、第15図のように二段階に偏位したもの
、第16図のように中央部の脚が一本で、中央部のみ傾
斜させたものなど、いずれも、ピンの取付方向は軸方向
にした翼根部構造が可能であるが、それぞれピンの半径
方向配列と遠心力作用方向の対応が不充分、台座形状の
加工が複雑、脚本数に制約があるなどの欠点を有してい
る。
In addition, as a pedestal shape in which the circumferential width of the airfoil root part is larger than the circumferential pitch so that the various blade root parts do not protrude, one pitch deviation from the leading edge to the center as shown in Fig. 14 is possible. The mounting direction of the pin is fixed, such as the one that is tilted in the center, the one that is offset in two stages as shown in Figure 15, and the one that has one leg in the center and only the center part is tilted as shown in Figure 16. Although it is possible to have a blade root structure oriented in the axial direction, each has drawbacks such as insufficient correspondence between the radial arrangement of pins and the direction of centrifugal force action, complicated machining of the pedestal shape, and restrictions on the number of blades. There is.

〔発明の効果〕〔Effect of the invention〕

かくして、以上説明したように、本発明によれば、翼形
根元断面の円周方向幅が、翼の円周方向配列ピッチより
も大幅に大きい翼についても、翼根部台座の方向線を軸
方向に対して任意に傾斜させることにより、翼形根元が
台座からはみ出ることがない改良された翼根部構造を提
供できるので、翼に作用する遠心力に対し、強度的に優
れた信頼性の高い翼根部構造を提供できる。
Thus, as explained above, according to the present invention, even for blades in which the circumferential width of the airfoil root cross section is significantly larger than the circumferential arrangement pitch of the blades, the direction line of the blade root pedestal is aligned in the axial direction. By tilting the airfoil arbitrarily to the pedestal, it is possible to provide an improved blade root structure that prevents the airfoil root from protruding from the pedestal, resulting in a highly reliable blade with excellent strength against centrifugal force acting on the blade. Can provide root structure.

またさらに、翼先端部にいくに従いねじれた蒸気タービ
ンの長翼などに対し、翼各部の軸方向位置によって作用
する方向が異る遠心力に対しても、それらの方向に対応
したビンの半径方向配列がなされているので、ビンに作
用する余分なせん断力などを軽減でき、また、ビンのせ
ん断面積も増加でき、せん断路力を軽減できるなどの効
果がある。
Furthermore, when centrifugal force acts in different directions depending on the axial position of each part of the blade, such as a long blade of a steam turbine that is twisted toward the tip of the blade, it is possible to Because they are arranged, it is possible to reduce excess shearing force acting on the bins, and the shearing area of the bins can also be increased, which has the effect of reducing shearing road forces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の翼根部構造の部分の斜視図
、第2図は従来例の一本の翼の翼根部構造の斜視図、第
3図は同じく半径方向の平面図、第4図(A)、(B)
は2種類の翼根元部翼形の平面図、第5図は本発明の一
実施例を示す一本の翼の翼根部構造の斜視図、第6図は
第1図の斜視図を面10による切断面を半径方向から見
た平面図、第7図は第5図のB−B矢視平面図、第8図
は本発明の一実施例のビンの配置関係を示す斜視図、第
9図は第8図の半径方向より見た平面図、第10図は、
3つの翼断面を半径方向に重ねた平面図、第11図は本
発明の一実施例の翼根部構造を備えた一本の翼を軸方向
より見た側面図、第12図は同じく一本のビンの半径方
向より見た平面図、第13図は本発明の他の実施例の翼
根部構造の平面図、第14図ないし第16図は、それぞ
$1(21 第20 早3(2) 半7(2) 第3口 茅lI図
FIG. 1 is a perspective view of a blade root structure according to an embodiment of the present invention, FIG. 2 is a perspective view of a blade root structure of a conventional blade, and FIG. 3 is a plan view in the radial direction. Figure 4 (A), (B)
5 is a plan view of two types of blade root airfoil shapes, FIG. 5 is a perspective view of the blade root structure of one blade showing an embodiment of the present invention, and FIG. 6 is a perspective view of FIG. FIG. 7 is a plan view taken along the line B-B in FIG. The figure is a plan view seen from the radial direction of Figure 8, and Figure 10 is
FIG. 11 is a plan view of three blade sections superimposed in the radial direction, FIG. 11 is a side view of one blade having a blade root structure according to an embodiment of the present invention, viewed from the axial direction, and FIG. 13 is a plan view of the blade root structure of another embodiment of the present invention, and FIGS. 14 to 16 are $1 (21, 20, 3) 2) Half 7 (2) 3rd mouth 1I figure

Claims (1)

【特許請求の範囲】 1、軸流ターボ機械の翼の根元部の台座より半径方向に
延びる複数の脚を備え、各脚部のうち、少くとも一本の
脚の円周方向幅の中央を貫通する円形穴を設け、あるい
は、少くとも一本の脚の円周方向幅の両端に半円状の溝
を設けるか、もしくは該円形穴を設けた脚と半円溝を設
けた脚の両方を備え、該円形穴の各中心線および、また
は該半円溝の各中心線が、ロータ中心より同じ半径位置
において一直線となる貫通部を形成した翼根部の脚をロ
ータディスク外周に設けられた円周方向に延びる複数の
ディスク溝に挿入し、ディスクに該翼根部の貫通部と同
一中心を持つディスク穴とを貫通するピン穴を設け、該
ピン穴を貫通してピンを挿入することにより、翼をロー
タディスクに固定する翼根部構造において、該ピン穴の
方向を、ロータ軸方向に対して傾斜させるとともに、該
ピン穴を異る半径位置に複数個設け、該異る半径位置の
複数のピン穴中心を結んだ線が半径方向と一致するよう
形成したことを特徴とするターボ機械の翼根部構造。 2、特許請求の範囲第1項において、翼根部の軸方向幅
の両端に位置する脚の円周方向幅の両端に半円溝を設け
、内側の脚の円周方向幅の中央に円形穴を設けるように
したことを特徴とするターボ機械の翼根部構造。 3、特許請求の範囲第1項において、翼根部のすべての
脚の円周方向幅の中央を貫通する円形穴を設けたことを
特徴とするターボ機械の翼根部構造。
[Claims] 1. A plurality of legs extending in the radial direction from a pedestal at the root of the blade of an axial flow turbomachine, the center of the circumferential width of at least one of each leg being A penetrating circular hole is provided, or a semicircular groove is provided at both ends of the circumferential width of at least one leg, or both the leg with the circular hole and the leg with the semicircular groove are provided. The blade root leg is provided on the outer periphery of the rotor disk, and each center line of the circular hole and/or each center line of the semicircular groove is in a straight line at the same radial position from the rotor center. By inserting the pin into a plurality of disk grooves extending in the circumferential direction, providing a pin hole in the disk that passes through a disk hole having the same center as the penetrating portion of the blade root, and inserting the pin through the pin hole. In the blade root structure for fixing the blade to the rotor disk, the direction of the pin hole is inclined with respect to the rotor axial direction, and a plurality of pin holes are provided at different radial positions, and a plurality of pin holes are provided at different radial positions. A blade root structure for a turbomachine characterized in that the line connecting the centers of the pin holes is formed so that it coincides with the radial direction. 2. In claim 1, semicircular grooves are provided at both ends of the circumferential width of the legs located at both ends of the axial width of the blade root, and a circular hole is provided at the center of the circumferential width of the inner leg. A blade root structure of a turbomachine, characterized in that it is provided with a. 3. A blade root structure for a turbomachine according to claim 1, characterized in that a circular hole is provided passing through the center of the circumferential width of all the legs of the blade root.
JP62266403A 1987-10-23 1987-10-23 Blade root structure of turbomachinery Expired - Lifetime JP2753236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266403A JP2753236B2 (en) 1987-10-23 1987-10-23 Blade root structure of turbomachinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266403A JP2753236B2 (en) 1987-10-23 1987-10-23 Blade root structure of turbomachinery

Publications (2)

Publication Number Publication Date
JPH01110805A true JPH01110805A (en) 1989-04-27
JP2753236B2 JP2753236B2 (en) 1998-05-18

Family

ID=17430446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266403A Expired - Lifetime JP2753236B2 (en) 1987-10-23 1987-10-23 Blade root structure of turbomachinery

Country Status (1)

Country Link
JP (1) JP2753236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837482A (en) * 2009-03-16 2010-09-22 常州市三维技术成套设备有限公司 Processing technology of steam turbine seven-fork blade root pin holes and special fixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513061B1 (en) * 2013-10-16 2015-04-17 두산중공업 주식회사 Steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837482A (en) * 2009-03-16 2010-09-22 常州市三维技术成套设备有限公司 Processing technology of steam turbine seven-fork blade root pin holes and special fixture

Also Published As

Publication number Publication date
JP2753236B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
JP2983033B2 (en) Turbine rotor
EP1559871B1 (en) Rotor blade for a turbomachine
EP1559869B1 (en) Rotor blade for a turbomachine
US4919593A (en) Retrofitted rotor blades for steam turbines and method of making the same
JP5956737B2 (en) Swing axial insertion method for closure buckets used in tangential rows in steam turbines
JPS59134301A (en) Blade assembly having pin fixing root part
EP1911935B1 (en) Steam turbine rotor blade
US4734010A (en) Damping element for independent turbomachine blades
GB2208529A (en) Turbine blade platform sealing and vibration damping apparatus
US5445498A (en) Bucket for next-to-the-last stage of a turbine
CA1324765C (en) Turbine blade with integral shroud and method of assembling the blades in a circular array
JPH03138404A (en) Rotor for steam turbine
GB2100809A (en) Root formation for rotor blade
US20220034229A1 (en) Bladed rotor system and corresponding method of servicing
US20040191068A1 (en) Moving-blade row for fluid-flow machines
WO2017209752A1 (en) Asymmetric attachment system for a turbine blade
US7134838B2 (en) Rotor blade for a rotary machine
EP3596312B1 (en) Snubbered blades with improved flutter resistance
JPH01110805A (en) Blade root member construction in turbo engine
EP1559870B1 (en) Shrouded rotor blade for a turbomachine
US2861775A (en) Tubular blades
JP6554482B2 (en) Rotationally symmetrical parts for a turbine engine rotor, and related turbine engine rotors, turbine engine modules and turbine engines
US20060193726A1 (en) Torque-tuned, integrally-covered bucket and related method
CN110612382B (en) Shrouded blade with improved flutter resistance
JPH10184305A (en) Turbine having shroud moving blade

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10