JPH01110799A - Manufacture of superconductive magnetic shielding material - Google Patents

Manufacture of superconductive magnetic shielding material

Info

Publication number
JPH01110799A
JPH01110799A JP62267852A JP26785287A JPH01110799A JP H01110799 A JPH01110799 A JP H01110799A JP 62267852 A JP62267852 A JP 62267852A JP 26785287 A JP26785287 A JP 26785287A JP H01110799 A JPH01110799 A JP H01110799A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic shielding
superconducting material
plate
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62267852A
Other languages
Japanese (ja)
Inventor
Akito Yahara
矢原 昭人
Hironori Matsuba
松葉 博則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62267852A priority Critical patent/JPH01110799A/en
Publication of JPH01110799A publication Critical patent/JPH01110799A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a magnetic shielding material which utilizes an oxide series superconductive material stable in a magnetic shielding property by a method wherein an unsintered plate-like oxide series superconductor molded body is wrapped with a partially air-permeable non-superconductive material and subjected to a sintering treatment, and then a sealing treatment is performed onto the air-permeable non-superconductive material layer face. CONSTITUTION:A superconductive magnetic shielding material 17, which has such a structure that a plate-like oxide series superconductive material molded body 11B is completely wrapped with non-superconductive material layers 14-16, is manufactured in such a manner that the unsintered plate-like oxide series superconductive material molded body 11A is made to be completely wrapped with the non-superconductive material 12-14 so as to be, at least, partially wrapped with an air-permeable non-superconductive material layer 14 and subjected to a sintering treatment, and then a sealing treatment is performed onto the permeable non- superconductive material layer 14 face. For example, the plate-like oxide series superconductive material 11A is laminated on a nickel plate 12, and then a composite plate 13 composed of a partially air permeable nickel plate 14 is made to cover the rest face of the molded body 11A. Next, the molded body 11A is made to be sintered in an oxygen atmosphere at a temperature of 900 deg.C, then gradually cooled down to a room temperature, applied with epoxy resin paste, and subjected to a sealing treatment.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は、超電導マグネット等に用いられ、優れた磁気
遮蔽効果を有する超電導磁気遮蔽材の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION C. Industrial Application Field The present invention relates to a method for manufacturing a superconducting magnetic shielding material that is used in superconducting magnets and the like and has an excellent magnetic shielding effect.

〔従来の技術及びその問題点] 医療用NMR等に用いられる超電導マグネノト等は高磁
界を発生する為、計測a器或いは測定者の人体を守る為
に磁気遮蔽を行なう必要がある。
[Prior art and its problems] Superconducting magnetometers used in medical NMR etc. generate a high magnetic field, so it is necessary to provide magnetic shielding to protect the measuring instrument or the human body of the person performing the measurement.

前記磁気遮蔽を行なう材料としては、従来パーマロイ等
の強磁性体や、NbTi、Nb5Sn等の金属系超電導
体が用いられていたが、重量に比較して磁気遮蔽効果が
小さい、或いは液体ヘリウム温度迄冷却する必要があり
、コストがかかる等の欠点があった。
Conventionally, ferromagnetic materials such as permalloy, and metallic superconductors such as NbTi and Nb5Sn have been used as materials for magnetic shielding, but these materials have a small magnetic shielding effect compared to their weight, or have a low temperature up to liquid helium temperature. There are drawbacks such as the need for cooling and high cost.

一方近年La−Ba−Cu−0、La−3r−Cu−0
及びY−Ba−Cu−0&’ニ一代表される酸化物系セ
ラミックス超電導物質が発見され、あるものについては
、液体窒素温度(77°K)以上の高温でも超電導状態
になる事が確認されている。
On the other hand, in recent years La-Ba-Cu-0, La-3r-Cu-0
Oxide-based ceramic superconducting materials such as Y-Ba-Cu-0 and Y-Ba-Cu-0&'2 have been discovered, and it has been confirmed that some of them become superconducting even at high temperatures higher than liquid nitrogen temperature (77°K). There is.

而して、前記従来の磁気遮蔽材の欠点を克服するものと
して、液体窒素温度(77°K)で高い磁気遮蔽効果の
得られるこれら酸化物系超電導物質の利用が試みられて
いる。
In order to overcome the drawbacks of the conventional magnetic shielding materials, attempts have been made to utilize these oxide-based superconducting materials which have a high magnetic shielding effect at liquid nitrogen temperature (77°K).

然しなから前記酸化物系超電導物質は、水と接触或いは
反応する事により、その組成或いは結晶構造が変化し、
その超電導体としての磁気遮蔽効果が著しく低下すると
いう問題があり、その対策として、酸化物系超電導物質
を非超電導物質で完全に包被した防水構造の磁気遮蔽材
が提案されている。第2図(a)〜(c)はこの様な磁
気遮蔽材の製造方法の1例を示す断面図であって、(a
)未焼結の板状の酸化物系超電導物質成形体21Aを板
状の非超電導物質層22の上に積層し、(b)更に非超
電導物質層23で前記酸化物系超電導物質成形体21A
の残りの表面を包被し、(c)焼結処理した後室温迄徐
冷する事によって、板状の酸化物系超電導物質成形体2
1Bの全表面を非超電導物質層24で被った構造の磁気
遮蔽材25が製造される(面この際非超電導物質N22
及び23は、例えばこれらの接合面に予め挿入されたろ
う材が加熱により溶融する事によって接合されて一体化
し、非超電導物質層24となる)。
However, when the oxide-based superconducting material comes into contact with or reacts with water, its composition or crystal structure changes,
There is a problem in that the magnetic shielding effect as a superconductor is significantly reduced, and as a countermeasure to this problem, a waterproof magnetic shielding material in which an oxide-based superconducting material is completely covered with a non-superconducting material has been proposed. FIGS. 2(a) to 2(c) are cross-sectional views showing an example of a method for manufacturing such a magnetic shielding material, and (a)
) An unsintered plate-shaped oxide-based superconducting material molded body 21A is laminated on the plate-shaped non-superconducting material layer 22;
The remaining surface of the plate-shaped oxide-based superconducting material molded body 2 is formed by enveloping the remaining surface of the oxide-based superconducting material body 2, and (c) sintering and then slowly cooling it to room temperature.
A magnetic shielding material 25 having a structure in which the entire surface of 1B is covered with a non-superconducting material layer 24 is manufactured (at this time, the non-superconducting material N22
and 23 are joined and integrated, for example, by heating and melting a brazing filler metal inserted in advance into these joint surfaces to form a non-superconducting material layer 24).

一方、酸化物系超電導物質の超電導特性は、結晶中の酸
素量に大きく依存し、良好な超電導特性を得る為には、
900″C以上の高温で焼結処理後、酸素雰囲気中で室
温迄徐冷し、結晶内に一定量の酸素を取り込む必要があ
る。然しなから前記構造の磁気遮蔽材を製造する際には
、未焼結の酸化物系超電導物質を非超電導物質で完全に
包被した状態で焼結処理を行なう為、その後室温迄徐冷
する工程において前記酸化物系超電導物質は酸素に接触
しなく、結晶内に一定量の酸素を取り込む事が出来ない
ので、超電導体としての所望の磁気遮蔽特性が得られな
いという問題点があった。
On the other hand, the superconducting properties of oxide-based superconducting materials largely depend on the amount of oxygen in the crystal, and in order to obtain good superconducting properties,
After sintering at a high temperature of 900"C or higher, it is necessary to slowly cool it to room temperature in an oxygen atmosphere to incorporate a certain amount of oxygen into the crystal. However, when manufacturing a magnetic shielding material with the above structure, Since the sintering process is performed with the unsintered oxide-based superconducting material completely covered with a non-superconducting material, the oxide-based superconducting material does not come into contact with oxygen during the subsequent step of slowly cooling to room temperature. Since it is not possible to incorporate a certain amount of oxygen into the crystal, there is a problem in that the desired magnetic shielding properties as a superconductor cannot be obtained.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは安定した磁気遮蔽特性を
有する、酸化物系超電導物質を応用した磁気遮蔽材の製
造方法を提供する事である。
The present invention was made as a result of intensive studies in view of the above points, and its purpose is to provide a method for manufacturing a magnetic shielding material using an oxide-based superconducting material, which has stable magnetic shielding properties. It is.

即ち本発明は、板状の酸化物系81電導物質成形体を非
超電導物質層で完全に包被した構造の磁気遮蔽材を製造
するに際して、未焼結の板状酸化物系超電導物質成形体
を、少なく共一部分が通気性を有する非超電導物質で被
われる様に非Pa電導物質で全面を包被した後、これに
焼結処理を施し、しかる後前記通気性を有する非超電導
物lJ1層面に封口処理を施す事を特徴とする超電導磁
気遮蔽材の製造方法である0本発明は酸化物系超電導物
質として、一般式(L、M)xCuvoz (式中りは
1種又は2種以上の3価の希土類元素、Mは1種又は2
1g!以上の2価のアルカリ土金属、Cuは銅、0は酸
素、8.7.2は正数)で示される超電導物質を用いた
場合に、特に優れた磁気遮蔽効果が得られるものである
That is, the present invention provides a method for producing a magnetic shielding material having a structure in which a plate-shaped oxide-based 81 conductive material molded body is completely covered with a non-superconducting material layer. The entire surface is covered with a non-Pa conductive material so that at least a common part is covered with a non-superconducting material having air permeability, and then a sintering treatment is performed on this, and then the layer surface of the non-superconducting material having air permeability is The present invention is a method for manufacturing a superconducting magnetic shielding material characterized by applying a sealing treatment to the oxide-based superconducting material. Trivalent rare earth element, M is 1 or 2
1g! Particularly excellent magnetic shielding effects can be obtained when using the above-mentioned superconducting materials represented by divalent alkaline earth metals (Cu is copper, 0 is oxygen, 8.7.2 is a positive number).

本発明は、未焼結の板状酸化物系超電導物質成形体を、
少なく共一部分が通気性を有する非超電導物質で被われ
る様に非超電導物質で全面を包被した状態、即ちその後
室温迄徐冷する工程において結晶内に一定量の酸素を取
り込む事が出来る状態で焼結処理を行ない、しかる後前
記通気性を有する非超電導物質層面に封口処理を施して
、前記酸化物系超電導物質が水と接触或いは反応する事
による磁気遮蔽効果の低下を防止しようとするものであ
る0本発明において前記通気性を有する非超電導物質と
しては、例えばニッケルや銀メツキを施した鉄等の焼結
金属或いはセラミックス発泡材料等を用いる事が出来る
The present invention provides an unsintered plate-shaped oxide-based superconducting material molded body,
A state in which the entire surface is covered with a non-superconducting material such that at least the common parts are covered with a non-superconducting material that has air permeability, that is, a state in which a certain amount of oxygen can be taken into the crystal during the subsequent step of slowly cooling it to room temperature. A method in which a sintering treatment is performed, and then a sealing treatment is applied to the surface of the air-permeable non-superconducting material layer to prevent a decrease in the magnetic shielding effect due to contact or reaction of the oxide-based superconducting material with water. In the present invention, as the non-superconducting substance having air permeability, for example, sintered metal such as nickel or silver-plated iron, ceramic foam material, etc. can be used.

又本発明においては、未焼結の板状酸化物系超電導物質
成形体の全面を通気性を有する非超電導物質で包被して
も良く、或いは前記超電導物質成形体の一部分のみを通
気性を有する非超電導物質で包被し、これを該超電導物
質のその他の部分を包被した通気性を有さない非超電導
物質とろう付は等の手段によって接合しても差し支えな
い。
In the present invention, the entire surface of the unsintered plate-shaped oxide-based superconducting material molded body may be covered with a non-superconducting material having air permeability, or only a portion of the superconducting material molded body may be covered with a non-superconducting material having air permeability. It is also possible to cover the superconducting material with a non-superconducting material that has a non-superconducting material, and to join it to a non-superconducting material that does not have air permeability and covers other parts of the superconducting material by brazing or other means.

更に前記通気性を有する非超電導物質層面に封口処理を
施す手段としては、この非超電導物質層面に、・水を通
さない非超電導物質を積層しても良く、成いは通気性を
有する非超電導物質層面に例えば半田、プラスチック等
の水を通さない非超電導物質を含浸して封口処理を施し
ても差し支えない。
Furthermore, as a means for sealing the surface of the non-superconducting material layer having air permeability, a non-superconducting material that does not pass water may be laminated on the surface of the non-superconducting material layer, or a non-superconducting material having air permeability may be laminated on the surface of the non-superconducting material layer. The surface of the material layer may be impregnated with a water-impermeable non-superconducting material such as solder or plastic for sealing treatment.

尚本発明において、前記通気性を有する非超電導物質層
面に封口処理を施す為に用いられる非超電導物質として
は、例えばニッケル、銅、アルミ等の導電体を用いても
良く、或いはセラミックス(例えばジルコニア)、プラ
スチック(例えばエポキシ樹脂)等の非透水性の絶縁体
を用いても差し支えない。
In the present invention, as the non-superconducting material used for sealing the surface of the air-permeable non-superconducting material layer, a conductive material such as nickel, copper, or aluminum may be used, or a ceramic material (such as zirconia) may be used. ), a water-impermeable insulator such as plastic (eg, epoxy resin) may be used.

次に本発明の実施態様を図面を用いて具体的に説明する
。第1図(a)〜(d)は、本発明方決るよる磁気遮蔽
材の製造方法の1例を示す断面Vであって、IIA、I
IBは板状の酸化物系超電導物質成形体、12.13は
非超電導物質層、14は通気性を有する非超電導物質層
、15及び16は非超電導物質層、17は磁気遮蔽材で
ある。
Next, embodiments of the present invention will be specifically described using the drawings. FIGS. 1(a) to 1(d) are cross sections V showing an example of the method of manufacturing a magnetic shielding material according to the present invention,
IB is a plate-shaped oxide-based superconducting material molded body, 12.13 is a non-superconducting material layer, 14 is a breathable non-superconducting material layer, 15 and 16 are non-superconducting material layers, and 17 is a magnetic shielding material.

(a)未焼結の板状の酸化物系超電導物質成形体11A
を板状の非超電導物質12の上に積層し、(b>更にそ
の一部分が通気性を有する非超電導物質14で構成され
ているところの非超電導物質成形体13で前記板状酸化
物系超電導物質成形体11Δの残りの表面を包被する。
(a) Unsintered plate-shaped oxide-based superconducting material compact 11A
is laminated on a plate-shaped non-superconducting material 12, and a part of the non-superconducting material molded body 13 is made of a non-superconducting material 14 having air permeability. The remaining surface of the material molded body 11Δ is covered.

(c)Lかる後前記全面を非超電導物質で包被した板状
体に焼結処理を施した後室温迄徐冷する。(d)その後
前記通気性を有する非超電導物’Jt14面上に、非超
電導物質16を積層する等して、該部分の通気性を失な
わしめる事によって目的の磁気遮蔽材17が製造される
(c) The plate-shaped body whose entire surface is covered with a non-superconducting material is subjected to a sintering treatment, and then slowly cooled to room temperature. (d) Thereafter, the desired magnetic shielding material 17 is manufactured by layering the non-superconducting material 16 on the surface of the non-superconducting material 'Jt 14 having air permeability, thereby causing the air permeability of the part to be lost. .

〔作用〕[Effect]

本発明方法においては、板状の酸化物系超電導物質成形
体を、少なく共一部分が通気性を有する非超電導物質で
被われる様に非超電導物質で包被した状態で焼結処理を
行なっているので、その後室温迄徐冷する工程において
結晶内に一定量の酸素を取り込む事が可能であって、優
れた磁気遮蔽効果を有する磁気遮蔽材を製造することが
出来る。
In the method of the present invention, a plate-shaped oxide-based superconducting material molded body is sintered in a state in which it is covered with a non-superconducting material such that at least a common portion thereof is covered with a non-superconducting material having air permeability. Therefore, it is possible to incorporate a certain amount of oxygen into the crystal in the subsequent step of slowly cooling it to room temperature, and it is possible to manufacture a magnetic shielding material having an excellent magnetic shielding effect.

しかも焼結処理後に前記通気性を有する非超電導物質層
面に封口処理を施しているので、前記酸化物系超電導物
てが経時において水と接駐或いは反応する事による磁気
遮蔽効果の低下も起こらなく、長期間安定した磁気遮蔽
特性を得る事が出来る。
Moreover, since the surface of the air-permeable non-superconducting material layer is sealed after the sintering process, the magnetic shielding effect will not deteriorate due to the oxide-based superconductor coming into contact with or reacting with water over time. , it is possible to obtain stable magnetic shielding characteristics over a long period of time.

〔実施例〕〔Example〕

次に本発明を実施例により更に具体的に説明する。酸化
物系超電導物質の原料粉末として、BaC0,、Y z
 O3及びCuOを用い、モル比で〔Y+Ba):Cu
=] : 1となる様に混合した。前記混合物を酸素雰
囲気中で950°C×6 h r予備焼成した後、粉砕
、分級した。この様にして得られた原料粉末混合体を厚
さ1mmの板状に成形加工し、第1図(a)〜(b)に
おける酸化物系超電導物質1 ’I Aとして用いた。
Next, the present invention will be explained in more detail with reference to Examples. As raw material powder for oxide superconducting material, BaC0,, Y z
Using O3 and CuO, the molar ratio is [Y+Ba):Cu
=] : Mixed so that it becomes 1. The mixture was preliminarily calcined at 950° C. for 6 hours in an oxygen atmosphere, and then pulverized and classified. The raw material powder mixture thus obtained was molded into a plate shape with a thickness of 1 mm, and used as the oxide-based superconducting material 1'IA shown in FIGS. 1(a) to 1(b).

該板状の酸化物系超電導物質成形体11Aを厚さ1mm
のニッケル板12の上に積層した後、その一部分が通気
性を存するニッケル板(厚さl mm)からなり、他の
部分とろう付けによって接合されている複合板13で前
記板状酸化物系超電導物質成形体11Aの残りの面を包
被した。而して得られた全面包被物を酸素雰囲気中で9
00°CX1hr焼結処理を行ない、ついで室温迄2℃
/ m i nの冷却速度で徐冷した(尚この際ニッケ
ル板12及び13は、これらの接合面に予め挿入された
ろう材が溶融する事によって接合されて一体15となっ
た)、シかる後前記通気性を有する焼結ニッケル板層上
に厚さ0.3 m mにエポキシ樹脂ペーストを塗布し
て封口処理を施し、磁気遮蔽材17を製造した。この様
にして得られた磁気遮蔽材17を液体窒素温度(77°
K)に冷却して遮蔽磁気量を測定したところ、20Gの
値が得られ、優れた磁気遮蔽特性を有している事が分か
った。又前記磁気遮蔽材17を室温で大気中に100日
間放置後、再度同様にして遮蔽磁気量を測定したところ
、20Gの遮蔽磁気量(77°K)を有しており、水分
の吸収による磁気遮蔽特性の低下は殆ど認められなかっ
た。
The plate-shaped oxide-based superconducting material molded body 11A has a thickness of 1 mm.
After laminating on the nickel plate 12 of The remaining surface of the superconducting material compact 11A was covered. The entire surface thus obtained was heated in an oxygen atmosphere for 90 minutes.
Perform sintering treatment at 00°C for 1 hour, then heat to room temperature at 2°C.
/ min (at this time, the nickel plates 12 and 13 were joined together into a single piece 15 by melting the brazing filler metal inserted in advance into their joining surfaces). An epoxy resin paste was applied to a thickness of 0.3 mm on the air-permeable sintered nickel plate layer, and a sealing treatment was performed to produce a magnetic shielding material 17. The magnetic shielding material 17 obtained in this way was heated to liquid nitrogen temperature (77°
When the shielding magnetic amount was measured after cooling to K), a value of 20G was obtained, indicating that it had excellent magnetic shielding properties. In addition, after the magnetic shielding material 17 was left in the atmosphere at room temperature for 100 days, the amount of shielding magnetism was measured again in the same manner, and it was found that it had a shielding magnetic amount of 20G (77°K), which is due to the magnetism due to absorption of moisture. Almost no decrease in shielding properties was observed.

〔比較例] 実施例と同様の方法で得られた板状の酸化物超電導成形
体を第1図(a)〜(b)における酸化物系超電導物質
21Aとして用いた。該酸化物系超電導物質成形体21
Aを厚さ1mmのニッケル板22の上に積層した後、厚
さ1mmのニッケル板23で前記酸化物系超電導物質成
形体21Aの残りの表面を包被した。しかる後前記全面
包被物を酸素雰囲気中で900℃×1h「焼結処理を行
ない、ついで室温迄2℃/minの冷却速度で徐冷して
、磁気遮蔽材25を製造した。この様にして得られた磁
気遮蔽材25を液体窒素温度(77”K)に冷却して遮
蔽磁気量を測定したところ、0.2Gの値しか得られな
かった。
[Comparative Example] A plate-shaped oxide superconducting molded body obtained by the same method as in the example was used as the oxide superconducting material 21A in FIGS. 1(a) to 1(b). The oxide-based superconducting material molded body 21
A was laminated on a nickel plate 22 with a thickness of 1 mm, and then the remaining surface of the oxide-based superconducting material molded body 21A was covered with a nickel plate 23 with a thickness of 1 mm. Thereafter, the entire surface was sintered at 900° C. for 1 hour in an oxygen atmosphere, and then gradually cooled to room temperature at a cooling rate of 2° C./min to produce the magnetic shielding material 25. When the obtained magnetic shielding material 25 was cooled to liquid nitrogen temperature (77''K) and the amount of shielding magnetism was measured, a value of only 0.2G was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、優れた磁気遮蔽効果を有する磁気
遮蔽材を製造する事が出来、工業上顕著な効果を奏する
ものである。
According to the method of the present invention, it is possible to produce a magnetic shielding material having an excellent magnetic shielding effect, resulting in a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図°(a)〜(d)は本発明方法による磁気遮蔽材
の製造方法を示す断面図、第2図(a)〜(c)は従来
方法による磁気遮蔽材の製造方法を示す断面図である。 11A、IIB・・板状の酸化物系超電導物質成形体、
12.13−・非超電導物M層、14・・・−通気性を
有する°非超電導物質層、15.16・・・非超電導物
質層、17・・−磁気遮蔽材、21A、21 B −板
状の酸化物系超電導物質成形体、22〜24−・・非超
電導物質層、25−・磁気遮蔽材。 特許出願人 古河電気工業株式会社
Figures 1 (a) to (d) are cross-sectional views showing a method of manufacturing a magnetic shielding material according to the method of the present invention, and Figures 2 (a) to (c) are cross-sectional views showing a method of manufacturing a magnetic shielding material using a conventional method. It is a diagram. 11A, IIB...Plate-shaped oxide-based superconducting material molded body,
12.13--Non-superconducting M layer, 14...-Non-superconducting material layer with air permeability, 15.16--Non-superconducting material layer, 17...-Magnetic shielding material, 21A, 21 B- Plate-shaped oxide-based superconducting material molded body, 22-24--non-superconducting material layer, 25--magnetic shielding material. Patent applicant Furukawa Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1) 板状の酸化物系超電導物質成形体を非超電導物
質層で完全に包被した構造の超電導磁気遮蔽材を製造す
るに際して、未焼結の板状酸化物系超電導物質成形体を
、少なく共一部分が通気性を有する非超電導物質層で被
われる様に非超電導物質で全面を包被した後、これに焼
結処理を施し、しかる後前記通気性を有する非超電導物
質層面に封口処理を施す事を特徴とする超電導磁気遮蔽
材の製造方法。
(1) When manufacturing a superconducting magnetic shielding material having a structure in which a plate-shaped oxide-based superconducting material molded body is completely covered with a non-superconducting material layer, an unsintered plate-shaped oxide-based superconducting material molded body is After covering the entire surface with a non-superconducting material so that at least a common part is covered with a non-superconducting material layer having air permeability, this is subjected to a sintering treatment, and then a sealing treatment is applied to the surface of the non-superconducting material layer having air permeability. A method for manufacturing a superconducting magnetic shielding material, characterized by subjecting the material to a superconducting magnetic shielding material.
(2) 酸化物系超電導物質として、一般式(L,M)
_XCu_YO_Z(式中Lは1種又は2種以上の3価
の希土類元素、Mは1種又は2種以上の2価のアルカリ
土金属、Cuは銅、Oは酸素、_X、_Y、_Zは正数
)で示される超電導物質を用いる事を特徴とする特許請
求の範囲第1項記載の超電導磁気遮蔽材の製造方法。
(2) As an oxide-based superconducting material, the general formula (L, M)
_XCu_YO_Z (in the formula, L is one or more trivalent rare earth elements, M is one or more divalent alkaline earth metals, Cu is copper, O is oxygen, _X, _Y, _Z are positive A method for producing a superconducting magnetic shielding material according to claim 1, characterized in that a superconducting material represented by the following formula is used.
(3) 通気性を有する非超電導物質層面に、水を通さ
ない非超電導物質を積層して封口処理を施す事を特徴と
する特許請求の範囲第1項記載の超電導磁気遮蔽材の製
造方法。
(3) The method for producing a superconducting magnetic shielding material according to claim 1, characterized in that a non-superconducting material that does not allow water to pass through is laminated on the surface of the non-superconducting material layer that has air permeability and a sealing treatment is performed.
(4) 通気性を有する非超電導物質層面に、水を通さ
ない非超電導物質を含浸して封口処理を施す事を特徴と
する特許請求の範囲第1項記載の超電導磁気遮蔽材の製
造方法。
(4) The method for manufacturing a superconducting magnetic shielding material according to claim 1, characterized in that the surface of the layer of a non-superconducting material having air permeability is impregnated with a non-superconducting material that does not allow water to pass therethrough to perform a sealing treatment.
(5) 非超電導物質として導電体を用いる事を特徴と
する特許請求の範囲第1項、第3項及び第4項記載の超
電導磁気遮蔽材の製造方法。
(5) A method for manufacturing a superconducting magnetic shielding material according to claims 1, 3, and 4, characterized in that a conductor is used as the non-superconducting material.
(6) 非超電導物質として非透水性の絶縁体を用いる
事を特徴とする特許請求の範囲第1項、第3項及び第4
項記載の超電導磁気遮蔽材の製造方法。
(6) Claims 1, 3, and 4 characterized in that a non-water permeable insulator is used as the non-superconducting material.
A method for producing a superconducting magnetic shielding material as described in 2.
JP62267852A 1987-10-23 1987-10-23 Manufacture of superconductive magnetic shielding material Pending JPH01110799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267852A JPH01110799A (en) 1987-10-23 1987-10-23 Manufacture of superconductive magnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267852A JPH01110799A (en) 1987-10-23 1987-10-23 Manufacture of superconductive magnetic shielding material

Publications (1)

Publication Number Publication Date
JPH01110799A true JPH01110799A (en) 1989-04-27

Family

ID=17450526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267852A Pending JPH01110799A (en) 1987-10-23 1987-10-23 Manufacture of superconductive magnetic shielding material

Country Status (1)

Country Link
JP (1) JPH01110799A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269997A (en) * 1988-09-05 1990-03-08 Mitsubishi Mining & Cement Co Ltd Ceramic superconductive magnetic shield and manufacture of the same
JPH07226539A (en) * 1994-02-09 1995-08-22 Chodendo Sensor Kenkyusho:Kk Superconducting magnetic shield
EP0951588A1 (en) * 1996-08-30 1999-10-27 American Superconductor Corporation Cryogen protected superconducting ceramic tape
US6444917B1 (en) 1999-07-23 2002-09-03 American Superconductor Corporation Encapsulated ceramic superconductors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269997A (en) * 1988-09-05 1990-03-08 Mitsubishi Mining & Cement Co Ltd Ceramic superconductive magnetic shield and manufacture of the same
JPH07226539A (en) * 1994-02-09 1995-08-22 Chodendo Sensor Kenkyusho:Kk Superconducting magnetic shield
EP0951588A1 (en) * 1996-08-30 1999-10-27 American Superconductor Corporation Cryogen protected superconducting ceramic tape
EP0951588A4 (en) * 1996-08-30 2001-05-16 American Superconductor Corp Cryogen protected superconducting ceramic tape
US6444917B1 (en) 1999-07-23 2002-09-03 American Superconductor Corporation Encapsulated ceramic superconductors
US6784362B1 (en) 1999-07-23 2004-08-31 American Superconductor Corporation Polymer encapsulated ceramic superconductors

Similar Documents

Publication Publication Date Title
Maeda et al. Synthesis and characterization of the superconducting cuprates (Pb, Cu) Sr 2 (Y, Ca) Cu 2 O z
JPH01100020A (en) Superconductive oxide of copper with mixed atomic value and manufacture
JPH0643268B2 (en) Oxide high temperature superconductor
JPH01110799A (en) Manufacture of superconductive magnetic shielding material
De Leeuw et al. Compounds and phase compatibilities in the system Y2O3-(BaO)-SrO-CuO at 950° C
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
US6605569B2 (en) Mg-doped high-temperature superconductor having low superconducting anisotropy and method for producing the superconductor
JP3328941B2 (en) Superconducting conductor
JP3522306B2 (en) Bi-based oxide superconducting wire and method for producing the same
US4983571A (en) Method of producing YBa2 Cu3 O6+x superconductors with high transition temperatures
JPH06219736A (en) Superconductor
Jin et al. High critical currents in c-axis textured Bi-Pb-Sr-Ca-Cu-O superconductor ribbons
JPH03108704A (en) Manufacture of oxide superconducting coil
Yang et al. Structural, magnetic and electrical studies on Pr (Ba1− xSrx) 2Cu2NbO8− y
JPH02302379A (en) Cylindrical unit structure of oxide superconductor
Shi et al. Anisotropic superconducting properties of aligned (Bi, Pb) 2 Ca n− 1 Sr 2 Cu n O 2 n+ 4+ δ powders (n= 1, 2, 3) with T c= 32, 94, and 110 K
Shimoyama et al. Properties of Bi 2 Sr 2 CaCu 2 O y/Ag Composite Tapes and Coils Melt-Solidified with Bi 2 Al 4 O 9
JPS63291311A (en) Superconducting wire
Zeng et al. Fabrication and properties of some Ag-alloy sheathed Bi-2223 tapes
JPH01140622A (en) Device having superconducting film
Kim et al. Magnetic and Electrical Properties of High-Tc Superconductor YBa, Cu, O “
Lim et al. Improvement of properties of BSCCO superconductor tapes with thermal processing
JPH03199124A (en) Bi-based oxide superconductor powder and production of wire thereof
JP2828631B2 (en) Manufacturing method of superconducting material
JPH02111628A (en) Hydrogen-containing oxide including superconductive phase and its production