JPH01110710A - Manufacture of oxide superconducting coil - Google Patents

Manufacture of oxide superconducting coil

Info

Publication number
JPH01110710A
JPH01110710A JP62267812A JP26781287A JPH01110710A JP H01110710 A JPH01110710 A JP H01110710A JP 62267812 A JP62267812 A JP 62267812A JP 26781287 A JP26781287 A JP 26781287A JP H01110710 A JPH01110710 A JP H01110710A
Authority
JP
Japan
Prior art keywords
wire
core wire
powder
superconducting
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62267812A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ikeno
池野 義光
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Masaru Sugimoto
優 杉本
Shinya Aoki
青木 伸哉
Toshio Usui
俊雄 臼井
Atsushi Kume
篤 久米
Kenji Goto
謙次 後藤
Mikio Nakagawa
中川 三紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62267812A priority Critical patent/JPH01110710A/en
Publication of JPH01110710A publication Critical patent/JPH01110710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to manufacture a superconducting coil having excellent superconducting characteristics and sufficient mechanical strength by a method wherein a diameter-reducing processing is conducted on a complex in which the raw material powder and the like of oxide superconducting material is filled, and after a wire material has been wound in coil form, a metal coated layer is removed, and after heat-treatment has been conducted, a resin layer is formed in cylindrical form. CONSTITUTION:A complex 3 is formed by filling into a metal tube 1 at least one of the raw material powder of an oxide superconducting body or superconducting powder or the molded body of these powder. Then, a diameter-reducing work is conducted on the complex 3, and a wire material 6, equipped with the metal covered layer 4 consisting of the metal tube 1 and the core wire 5 consisting of powder or a molded body, is formed. Then, after the wire material 6 has been wound in coil form, the core wire 5 is exposed by removing the metal coated layer 4 from the wire material 6. Then, after heat-treatment has been conducted on the core wire 5, a resin layer 8 is formed covering the coil-formed core wire 5, and a cylindrical superconducting coil 9 is formed. As the material for the above-mentioned resin layer 8, the highly insulative synthetic resin such as epoxy resin, silicone resin, vinyl chloride resin, polyethylene and the like, and the coating material and the like to be used for enamel wire is used.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、核磁気共鳴イメージング装置や粒子加速器
等の超電導機器などに用いられろ酸化物系超電導コイル
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing a oxide-based superconducting coil used in superconducting equipment such as nuclear magnetic resonance imaging devices and particle accelerators.

「従来の技術」 近時、常電導状態から超電導状態に遷移する臨界温度(
Tc)が極めて高い値を示す酸化物系超電導材料が種々
発見されつつある。
"Conventional technology" Recently, the critical temperature at which the normal conductive state transitions to the superconducting state (
Various oxide-based superconducting materials that exhibit extremely high values of Tc) are being discovered.

このような酸化物系超電導コイル 体を製造するには、例えばY −B a−Cu−0系の
超電導体の場合、Y t O3粉末とBaO粉末とCu
O粉末とを混合した混合粉末を圧粉成形してコイン状の
バルクとし、次いでこのバルクに熱処理を施す方法など
が知られている。
In order to manufacture such an oxide-based superconducting coil body, for example, in the case of a Y-Ba-Cu-0 based superconductor, Y t O3 powder, BaO powder, and Cu
A method is known in which a mixed powder mixed with O powder is compacted into a coin-shaped bulk, and then this bulk is heat-treated.

また、この種の酸化物系超電導体を得る方法として、例
えば銅、銀などの金属シース内に上記混合粉末を充填し
たのち、縮径加工および熱処理を施して超電導線を得、
さらにこれをコイル状に巻回して超電導コイルとする試
みもなされている。
In addition, as a method for obtaining this type of oxide-based superconductor, for example, after filling the above-mentioned mixed powder in a metal sheath such as copper or silver, diameter reduction processing and heat treatment are performed to obtain a superconducting wire.
Furthermore, attempts have been made to wind this into a coil to make a superconducting coil.

「発明が解決しようとする問題点」 しかしながら、上記の方法にあっては以下に述べるよう
な不都合がある。
"Problems to be Solved by the Invention" However, the above method has the following disadvantages.

上記方法では、熱処理に際し熱膨張率の違いによって金
属シースとこの金属シース内の超電導体との間に応力が
発生し、この応力によって超電導体にクラッタなどの欠
陥部分が生じ易くなり、よって長さ方向に沿って均一な
超電導特性を示す超電導線が得られにくくなり、このよ
うな超電導線を巻回して形成した超電導コイルにおいて
も十分な超電導特性が得られにくくなる。ちなみに、本
発明者らが縮径加工および熱処理後の超電導線と前述の
バルクの超電導特性を臨界電流密度(Jc)の面で比較
してみたところ、前者は後者の172〜1710程度の
値しか示さないものがあるとの結果が得られた。
In the above method, stress is generated between the metal sheath and the superconductor within the metal sheath due to the difference in thermal expansion coefficient during heat treatment, and this stress tends to cause defects such as clutter in the superconductor, resulting in the length It becomes difficult to obtain a superconducting wire that exhibits uniform superconducting properties along the direction, and it becomes difficult to obtain sufficient superconducting properties even in a superconducting coil formed by winding such a superconducting wire. Incidentally, when the present inventors compared the superconducting properties of the superconducting wire after diameter reduction and heat treatment with that of the above-mentioned bulk in terms of critical current density (Jc), the former had a value of only about 172 to 1710 of the latter. The results showed that there were some items that were not shown.

また、超電導体は酸化物であることから金属等に比較し
て脆弱であり、よってコイルとした場合に使用に耐え得
る十分な機械強度を保つのが困難であるという問題もあ
る。
Furthermore, since superconductors are oxides, they are weaker than metals, and therefore, when made into coils, it is difficult to maintain sufficient mechanical strength to withstand use.

したがって、良好な超電導特性、特に高いJc値を有す
る酸化物系超電導体からなり、さらに十分な機械強度を
備えた超電導コイルの製造技術の開発が望まれている。
Therefore, it is desired to develop a manufacturing technology for a superconducting coil made of an oxide superconductor having good superconducting properties, particularly a high Jc value, and having sufficient mechanical strength.

「問題点を解決するための手段」 この発明では、酸化物系超電導体の原料粉末または超電
導体粉末か、あるいはこれら粉末の成形体の少なくとも
1つを金属管に充填して複合体とし、次にこの複合体に
縮径加工を施して上記金属管からなる金属被覆層と上記
粉末あるいは成形体からなる芯線とを具備した線材とし
、次いでこの線材をコイル状に巻回したうえで、該線材
より金属被覆層を除去して芯線を露出させ、次いでこの
芯線に熱処理を施した後、このコイル状の芯線を覆って
樹脂層を形成して円筒状の超電導コイルとすることを上
記問題点の解決手段とした。
"Means for Solving the Problems" In the present invention, a metal tube is filled with at least one of raw material powder of an oxide superconductor, superconductor powder, or a compact of these powders to form a composite, and then This composite is then subjected to diameter reduction processing to obtain a wire having a metal coating layer made of the metal tube and a core wire made of the powder or molded body, and then this wire is wound into a coil shape, and then the wire is made into a wire. To solve the above problems, the metal coating layer is removed to expose the core wire, and then the core wire is subjected to heat treatment, and then a resin layer is formed to cover the coiled core wire to form a cylindrical superconducting coil. It was used as a solution.

以下、この発明の酸化物系超電導コイルの製造方法を図
面を利用して詳しく説明する。
Hereinafter, the method for manufacturing an oxide-based superconducting coil according to the present invention will be explained in detail with reference to the drawings.

まず、第1図に示すように銀、銅、あるいはこれらの合
金、さらにはアルミニウム、ステンレス等からなる金属
管lを用意し、この金属管lに酸化物系超電導体をなす
原料粉末または超電導体粉末、あるいはこれら粉末の成
形体の少なくとも1つを充填して複合体とする。ここで
、第1図は金属管1中に超電導体粉末からなる成形体2
を充填して作製した複合体3を示すものである。そして
、上記酸化物系超電導体とは、A −B −C−D 系
(ただし、AはY 、S c、L a、Y b、E r
、Ho、D y等の周期律表第[[a族元素のうち1種
あるいは2種以上を表し、BはSr、Ba、Ca等の周
期律表第11a族元索のうち1種あるいは2種以上を表
し、CはCu。
First, as shown in Figure 1, a metal tube l made of silver, copper, or an alloy thereof, aluminum, stainless steel, etc. is prepared, and a raw material powder or superconductor for forming an oxide-based superconductor is placed in this metal tube l. It is filled with powder or at least one molded body of these powders to form a composite. Here, FIG. 1 shows a molded body 2 made of superconductor powder in a metal tube 1.
This figure shows a composite 3 prepared by filling. The above-mentioned oxide-based superconductor is an A-B-C-D system (where A is Y, S c, La, Y b, Er
, Ho, D y, etc.; B represents one or more elements of group 11a of the periodic table, such as Sr, Ba, Ca, etc.; C means Cu.

Ag、Auの周期律表第1b族元素およびNbのうちC
uあるいはCuを含む2種以上を表し、Dは0、S、S
e等の周期律表第■b族元素およびF。
Group 1b elements of the periodic table of Ag and Au and C of Nb
Represents two or more types containing u or Cu, D is 0, S, S
Periodic Table Group ■b elements such as e and F.

CI2.Br等の周期律表第■b族元素のうち0あるい
はOを含む2種以上を表す。)として表される超電導体
を示すものであり、この酸化物系超電導体をなす原料粉
末とは、上記A元素の酸化物とB元素の炭酸塩または酸
化物とC元素の酸化物との混合粉末か、あるいはこの混
合粉末を仮焼処理した後粉砕してなるものである。また
この場合、各元素からなる化合物の混合比は目的とする
超電導体の組成に応じて適宜決定されるものとする。さ
らに、超電導体粉末とは、上記した原料粉末に加熱処理
等を施し、これにより酸化物系超電導体とした後、粉砕
して粉末にしたものとする。さらにまた、成形体2は、
上記超電導体粉末に仮焼処理、圧粉処理等を施して小径
円柱状に成形したものとする。ここで、仮焼処理温度と
しては、上記超電導体粉末の場合400〜900℃程度
とされる。
CI2. Represents two or more elements containing 0 or O among elements of group 1b of the periodic table, such as Br. ), and the raw material powder forming this oxide-based superconductor is a mixture of the oxide of element A and the carbonate of element B, or the oxide and oxide of element C. It is made by pulverizing a powder or a mixed powder after calcining. Further, in this case, the mixing ratio of the compounds made of each element shall be appropriately determined depending on the composition of the intended superconductor. Further, the superconductor powder is obtained by subjecting the above-described raw material powder to heat treatment, etc. to form an oxide-based superconductor, and then pulverizing it into powder. Furthermore, the molded body 2 is
The superconductor powder is subjected to calcination treatment, powder compaction treatment, etc., and is formed into a small-diameter cylindrical shape. Here, the calcination treatment temperature is about 400 to 900°C in the case of the above-mentioned superconductor powder.

また、圧粉処理には例えばラバープレス法等が採用され
る。
In addition, for example, a rubber press method or the like is employed for the powder compaction treatment.

次に、この複合体3に縮径加工を施して第2図に示すよ
う上記金属管1からなる金属被覆層4と上記成形体2か
らなる芯線5とを具備した線材6を得る。この場合の縮
径加工方法としては、鍛造法が好適に採用される。
Next, this composite body 3 is subjected to a diameter reduction process to obtain a wire rod 6 having a metal coating layer 4 made of the metal tube 1 and a core wire 5 made of the molded body 2, as shown in FIG. As the diameter reduction method in this case, a forging method is suitably employed.

そして、鍛造法により縮径加工を施すにあたっては、例
えば第3図に示すロータリースウェージング装置Aが用
いられる。このロータリースウェージング装置Aは、図
示略の駆動装置によって移動自在に設けられた複数のダ
イス7・・・を備えてなるものである。これらダイス7
・・・は、棒状の複合体3をその長さ方向に移動させる
際の移動空間の周囲に、この移動空間を囲むように設け
られたもので、上記移動空間と直交する方向(第3図中
矢印B方向)に移動自在に、かつ移動空間の周方向(第
3図中矢印C方向)に回転自在に保持されている。また
、各ダイス7の内面には、上記複合体3を縮径加工する
ためのテーパ面7aが形成されており、各ダイス7のテ
ーパ面7aで囲む間隙か先窄まり状となるようになって
いる。
When performing the diameter reduction process using the forging method, for example, a rotary swaging device A shown in FIG. 3 is used. This rotary swaging device A includes a plurality of dies 7 that are movably provided by a drive device (not shown). These dice 7
. . . are provided around the movement space when the rod-shaped composite body 3 is moved in its length direction, and are provided in a direction perpendicular to the movement space (see Fig. 3). It is held so as to be movable in the direction of arrow B in the middle and rotatable in the circumferential direction of the movement space (in the direction of arrow C in FIG. 3). Further, a tapered surface 7a for reducing the diameter of the composite body 3 is formed on the inner surface of each die 7, so that the gap surrounded by the tapered surface 7a of each die 7 becomes tapered. ing.

このようなロータリースウェージング装置Aによって上
記複合体3を縮径するには、該ロータリースウエージン
グ装置Aを作動させるとともに、第3図に示すように複
合体3の一端をダイス7・・・の間の間隙に押し込む。
In order to reduce the diameter of the composite body 3 using such a rotary swaging device A, the rotary swaging device A is operated and one end of the composite body 3 is inserted into the die 7 as shown in FIG. Push it into the gap between.

ここで上記ダイス7・・・は、第3図中矢印B方向に所
定間隔往復移動しつつ矢印C方向に回転しているため、
複合体3は一端側から順次鍛造されて縮径され、第3図
中二点鎖線に示す線径にまで縮径されて線材6となる。
Here, the dice 7 are rotating in the direction of arrow C while reciprocating at a predetermined interval in the direction of arrow B in FIG.
The composite body 3 is sequentially forged and reduced in diameter from one end side, and the wire rod 6 is reduced in diameter to the wire diameter shown by the two-dot chain line in FIG.

この縮径加工にあっては、回転しつつ往復運動する複数
のダイス7・・・によって複合体3を鍛造しつつ縮径す
るため、縮径加工中の複合体3に断線をもたらすことな
く大きな加工率で縮径加工することができる。そしてこ
の場合、通常は1回の加工として5〜25%の減面率で
縮径加工される。
In this diameter reduction process, the composite body 3 is forged and reduced in diameter by a plurality of dies 7 that move reciprocatingly while rotating, so that large wires are not broken in the composite body 3 during the diameter reduction process. Diameter reduction processing can be performed at the processing rate. In this case, diameter reduction processing is usually performed at a reduction rate of 5 to 25% in one processing.

なお、この鍛造法による縮径加工は一回に限ることなく
、得られた線材6の線径が未だ所望する線径に達してい
ない場合には、上記ロータリースウェージング装置Aに
設けられたダイス7・・・よりもさらに小さい成形空隙
を有するダイスを備えたロータリースウェージング装置
により、線材6に加工を施して所望する線径にまで縮径
する。
Note that the diameter reduction process by this forging method is not limited to one time, and if the diameter of the obtained wire 6 has not yet reached the desired wire diameter, the die installed in the rotary swaging device A may be used. Using a rotary swaging device equipped with a die having a forming gap smaller than 7..., the wire 6 is processed to reduce its diameter to a desired wire diameter.

また、このようにして得られた線材6にあっては、内部
の成形体2がロータリースウェージング装置Aにより鍛
造がなされて縮径されたものであるので、十分に圧密化
された芯線5が得られる。
In addition, in the wire rod 6 obtained in this way, since the inner molded body 2 is forged and reduced in diameter by the rotary swaging device A, the core wire 5 is sufficiently consolidated. can get.

次いで、この線材6をコイル状に巻回する。この場合、
線材6中の芯線5は縮径加工によって十分圧密化されて
いるので、巻回された際にも断線する恐れがない。また
、万一断線する恐れのある場合には、予め芯線5が十分
細径になるように成形体2を形成したり、さらには巻回
する際適宜加熱処理を施すなどの手段をとってもよい。
Next, this wire 6 is wound into a coil. in this case,
Since the core wire 5 in the wire rod 6 is sufficiently consolidated by the diameter reduction process, there is no fear of wire breakage when it is wound. In addition, in the event that there is a risk of wire breakage, measures may be taken such as forming the molded body 2 in advance so that the core wire 5 has a sufficiently small diameter, or further applying heat treatment as appropriate during winding.

次いで、このコイル状の線材6より金属管lを除去し、
第4図および第5図に示すようにコイル状の芯線5を露
出せしめる。この場合に金属管lを除去する手段として
は、線材6を酸またはアルカリの溶液中に浸漬し、金属
管1を溶解せしめる化成処理法が好適に採用される。す
なわち、金属管1として例えば銀、銅あるいはこれらの
合金を用いた場合には希硝酸等の酸を、またアルミニウ
ムを用いた場合には水酸化ナトリウム等のアルカリを、
さらにステンレスを用いた場合には王水を用い、これに
より金属管lを溶解して線材6から除去し、芯線5を露
出せしめる。そして、金属管Iを除去した後、芯線5を
水洗するか、あるいは中和処理を施した後水洗するのが
、作製する超電導コイルへの不純物の混入を防止すると
ともに、作業上設備等の腐食を防止するうえで望ましい
Next, the metal tube l is removed from this coiled wire 6,
As shown in FIGS. 4 and 5, the coiled core wire 5 is exposed. In this case, as a means for removing the metal tube 1, a chemical conversion treatment method in which the wire 6 is immersed in an acid or alkali solution to dissolve the metal tube 1 is preferably employed. That is, when the metal tube 1 is made of silver, copper, or an alloy thereof, an acid such as dilute nitric acid is used, and when aluminum is used, an alkali such as sodium hydroxide is used.
Further, when stainless steel is used, aqua regia is used to dissolve the metal tube 1 and remove it from the wire 6, exposing the core wire 5. After removing the metal tube I, washing the core wire 5 with water or washing it with water after performing a neutralization treatment is recommended to prevent impurities from entering the superconducting coil to be fabricated, and to prevent corrosion of equipment during work. It is desirable to prevent this.

なお、金属管lを除去する手段として酸・アルカリによ
る化成処理を採用する理由は、通常縮径加工した後の線
材6はその径が細く、したがって芯線5の径も細いため
、機賊的な切削手段を用いた場合に金属に比して脆弱な
芯線5が断線するといった問題があるからである。また
、化成処理に用いられる酸、アルカリとしては上記種類
に限るものでなく、金属管1の材質に応じて例えば塩酸
、暁酸、リン酸など、およびそれらの希釈液なども適宜
使用される。
The reason for adopting acid/alkali chemical conversion treatment as a means of removing the metal tube l is that the diameter of the wire rod 6 after diameter reduction is usually small, and therefore the diameter of the core wire 5 is also small, making it difficult for pirates to attack. This is because when a cutting means is used, there is a problem that the core wire 5, which is weaker than metal, may break. Further, the acids and alkalis used in the chemical conversion treatment are not limited to the above-mentioned types, and depending on the material of the metal tube 1, for example, hydrochloric acid, acid acid, phosphoric acid, etc., and diluted solutions thereof may be used as appropriate.

次いで、上記コイル状の芯線5に熱処理を施し、上述し
たA、−B−C−D 系の酸化物系超電導体とする。こ
の場合の処理条件としては、酸素雰囲気中にて800〜
1000℃程度で数時間〜数百時間程度加熱し、50〜
500°C/ H程度の冷却速度で冷却するものとされ
る。このように金属管1を除去し、露出した芯線5に熱
処理を施すため、雰囲気中の酸素が十分供給されること
により芯線5は良好な酸素量を有する超電導体となる。
Next, the coiled core wire 5 is heat-treated to form the above-mentioned A, -BCD-based oxide superconductor. In this case, the processing conditions are as follows:
Heating at about 1000℃ for several hours to several hundred hours, 50 to
It is assumed that the cooling rate is approximately 500°C/H. Since the metal tube 1 is removed in this way and the exposed core wire 5 is heat-treated, sufficient oxygen in the atmosphere is supplied, so that the core wire 5 becomes a superconductor having a good oxygen content.

また、芯線5と熱膨張率の異なる金属管1が取り除かれ
ているので、熱膨張率の差によって応力が生じこの応力
に起因してクラック等の欠陥が芯線5に発生することが
防止される。なお、熱処理を酸素雰囲気中にて行ったが
、これに限ることなく、例えばS、Se等の0以外の周
期律表第1Vb族元素を含むガスや、F、CI2等の周
期律表第■b族元素を含むガスの雰囲気にて処理しても
よく、このようなガスを用いることにより、ガスを構成
する元素を超電導体の構成元素の一部とすることができ
、よって超電導特性の向上を図ることができる。
Further, since the metal tube 1 having a different coefficient of thermal expansion from the core wire 5 is removed, stress is generated due to the difference in the coefficient of thermal expansion, and defects such as cracks are prevented from occurring in the core wire 5 due to this stress. . Although the heat treatment was carried out in an oxygen atmosphere, the present invention is not limited to this, and for example, gases containing Group 1 Vb elements of the periodic table other than 0 such as S and Se, and gases containing Group 1 Vb elements of the periodic table such as F and CI2 are used. The treatment may be carried out in an atmosphere of a gas containing Group B elements, and by using such a gas, the elements constituting the gas can become part of the constituent elements of the superconductor, thus improving the superconducting properties. can be achieved.

その後、超電導体とされたコイル状の芯線5の周囲に、
第6図に示すように芯線5を覆って樹脂層8を形成し、
円筒状の超電導コイル9を得る。
After that, around the coiled core wire 5, which has become a superconductor,
As shown in FIG. 6, a resin layer 8 is formed covering the core wire 5,
A cylindrical superconducting coil 9 is obtained.

この場合に樹脂層8の材料としては、エポキシ樹脂、ケ
イ素樹脂、塩化ビニル樹脂、ポリエチレン等の絶縁性の
高い合成樹脂や、ホルマール、ポリアミドイミドエナメ
ル、ナイロンエナメル等のエナメル線用塗料などが用い
られる。そして、上記エポキシ樹脂を用いて樹脂層8を
形成するには、例えば第5図ウニ点鎖線で示すような、
コイル状の芯線5のコイル径に比較して大径の円筒りと
小径の円柱Eとを用意し、次に円筒り内にコイル状の芯
線5を挿入配置し、さらに芯線5のコイル内に第5図に
示すように円柱Eを挿入配置する。次いで、円筒りと円
柱Eとの間に、ビスフェノールA系エポキシ樹脂を充填
しさらにアミン系の硬化剤を適量加え、エポキシ樹脂を
硬化せしめて芯線5の周囲に樹脂層8を形成する。その
後、円筒りと円柱Eとを樹脂層8から剥離し、第6図に
示すような円筒状の超電導コイル9とする。ここで、第
6図中して示す樹脂層の厚さは、コイル状の芯線5の径
によって異なるものの、芯線5の径の、0.5〜2倍程
度とするのが芯線5を十分補強し得るので好ましい。
In this case, the material for the resin layer 8 is a synthetic resin with high insulation properties such as epoxy resin, silicone resin, vinyl chloride resin, or polyethylene, or a paint for enamel wire such as formal, polyamide-imide enamel, or nylon enamel. . In order to form the resin layer 8 using the above-mentioned epoxy resin, for example, as shown by the dotted chain line in FIG.
Prepare a cylinder whose diameter is larger than the coil diameter of the coiled core wire 5 and a cylinder E whose diameter is smaller than that of the coiled core wire 5. Next, the coiled core wire 5 is inserted into the cylinder, and then the coiled core wire 5 is inserted into the coil of the core wire 5. The cylinder E is inserted and arranged as shown in FIG. Next, a bisphenol A-based epoxy resin is filled between the cylinder and the cylinder E, and an appropriate amount of an amine-based curing agent is added to harden the epoxy resin to form a resin layer 8 around the core wire 5. Thereafter, the cylinder and the cylinder E are peeled off from the resin layer 8 to form a cylindrical superconducting coil 9 as shown in FIG. Here, although the thickness of the resin layer shown in FIG. 6 varies depending on the diameter of the coiled core wire 5, it is recommended that the thickness be about 0.5 to 2 times the diameter of the core wire 5 to sufficiently reinforce the core wire 5. This is preferable because it can be done.

なお、樹脂層8の形成については、上記の例に限ること
なく、他に例えば上記したエナメル線用塗料を予めコイ
ル状の芯線5に塗布、焼付して絶縁層を形成し、その後
この絶縁層上に上述の方法等によって樹脂層を形成し、
これら絶縁層と樹脂層とからなる樹脂層8を作製しても
よい。このように予め絶縁層を形成しておけば、樹脂層
8を構成する樹脂として非絶縁性のものも十分使用可能
となり、超電導コイル9の製造に際しての自由度が大き
くなる。
Note that the formation of the resin layer 8 is not limited to the above example, and for example, the above-mentioned enamelled wire paint may be applied to the coiled core wire 5 in advance and baked to form an insulating layer, and then this insulating layer may be formed. A resin layer is formed on top by the method described above,
A resin layer 8 made of these insulating layers and a resin layer may be produced. By forming the insulating layer in advance in this way, it becomes possible to use a non-insulating resin as the resin constituting the resin layer 8, and the degree of freedom in manufacturing the superconducting coil 9 increases.

このような酸化物系超電導線の製造方法によれば、酸化
物系超電導材料からなる芯線5をシース等で覆うことな
く直接酸素雰囲気中にて熱処理し、十分遅い冷却速度を
とるので、酸素が十分供給されて芯線5が良好な酸素量
を有する超電導体となり、よって優れた超電導特性を呈
する超電導コイル9を得ることができる。また、芯線5
と熱膨張率の異なる金属管Iを取り除いて熱処理を施す
ので、熱膨張率の差に起因してクラック等の欠陥が芯線
5に発生することを防止することができる。
According to this method of manufacturing oxide-based superconducting wire, the core wire 5 made of oxide-based superconducting material is directly heat-treated in an oxygen atmosphere without covering it with a sheath or the like, and a sufficiently slow cooling rate is achieved, so that oxygen With sufficient oxygen supply, the core wire 5 becomes a superconductor having a good oxygen content, and thus a superconducting coil 9 exhibiting excellent superconducting properties can be obtained. In addition, core wire 5
Since the heat treatment is performed after removing the metal tube I having a different coefficient of thermal expansion, it is possible to prevent defects such as cracks from occurring in the core wire 5 due to the difference in coefficient of thermal expansion.

さらに、芯線5の周囲に樹脂層8を形成して円筒状の超
電導コイル9とするので、超電導体であるコイル状の芯
線5が樹脂層8に覆われて補強され、したがって芯線5
は使用に際しての振動や衝突といった不測の外力からも
十分保護される。さらにまた、樹脂層8の材料として絶
縁性の樹脂を用いれば、コイル自身のターン間が良好に
絶縁されるとともに漏電等も十分防止されたものとなる
Furthermore, since a resin layer 8 is formed around the core wire 5 to form a cylindrical superconducting coil 9, the coil-shaped core wire 5, which is a superconductor, is covered with the resin layer 8 and reinforced, so that the core wire 5
is sufficiently protected from unexpected external forces such as vibrations and collisions during use. Furthermore, if an insulating resin is used as the material for the resin layer 8, the turns of the coil itself can be well insulated and electrical leakage can be sufficiently prevented.

「実施例」 以下、実施例によりこの発明をさらに具体的に説明する
"Examples" The present invention will be explained in more detail below using Examples.

まず、Y B a2c L130 X(ただし、x=7
−δ、0≦δ≦5とする。)の組成の超電導体からなる
超電導体粉末を仮焼・圧粉処理して小径円柱状成形体を
形成し、この成形体を銀パイプ中に挿通して複合体とし
た。次に、この複合体を線引きして縮径し、外径1 、
4 mm、芯線の径が0.9mmの線材を得た。
First, Y B a2c L130 X (where x=7
−δ, 0≦δ≦5. ) A superconductor powder consisting of a superconductor having the composition shown in Table 1 was calcined and compacted to form a small-diameter cylindrical molded body, and this molded body was inserted into a silver pipe to form a composite body. Next, this composite is drawn to reduce its diameter to an outer diameter of 1,
A wire rod having a diameter of 4 mm and a core wire diameter of 0.9 mm was obtained.

次いで、この線材を円柱体上に巻回して、巻数50ター
ンのコイル形状としたうえで、円柱体を線材から外した
Next, this wire was wound onto a cylindrical body to form a coil shape with 50 turns, and the cylindrical body was removed from the wire.

次いで、このコイル形状とした線材を希硝酸溶液中に浸
漬し、銀パイプを溶解して芯線を露出せしめ、さらにこ
の芯線を水洗した後、酸素雰囲気中にて850〜950
℃で24時間加熱処理した。
Next, this coiled wire is immersed in a dilute nitric acid solution to dissolve the silver pipe and expose the core wire, and after washing the core wire with water, it is heated to a temperature of 850 to 950 in an oxygen atmosphere.
It was heat-treated at ℃ for 24 hours.

その後、この熱処理後の芯線を第5図ウニ点鎖線で示し
た円筒りおよび円柱Eの間に配置し、エポキシ樹脂を充
填硬化せしめて第6図中りで示す樹脂層の厚さが2mm
の超電導コイルを得た。
After that, this heat-treated core wire was placed between the cylinder and the cylinder E shown by the dotted chain line in Figure 5, and filled with epoxy resin and hardened to form a resin layer with a thickness of 2 mm as shown in the middle of Figure 6.
A superconducting coil was obtained.

このようにして得た超電導コイルにおける超電導体(芯
線)の超電導特性を調べたところ、液体窒素中にて臨界
電流密度(Jc)が3000〜10000A/am’程
度の値が得られた。
When the superconducting properties of the superconductor (core wire) in the superconducting coil thus obtained were investigated, a critical current density (Jc) of about 3,000 to 10,000 A/am' was obtained in liquid nitrogen.

「発明の効果」 以上説明したように、この発明の超電導コイルの製造方
法は、酸化物系超電導体の原料粉末または超電導体粉末
か、あるいはこれら粉末の成形体の少なくとも1つを金
属管に充填して複合体とし、次にこの複合体に縮径加工
を施して上記金属管からなる金属被覆層と上記粉末ある
いは成形体からなる芯線とを具備した線材とし、次いで
この線材をコイル状に巻回したうえで、該線材より金属
被覆層を除去して芯線を露出させ、次いでこの芯線に熱
処理を施した後、このコイル状の芯線を覆って樹脂層を
形成して円筒状の超電導コイルとするものであるから、
芯線と熱膨張率の異なる金属管を取り除いて熱処理を施
すことにより、熱膨張率の差に起因してクラック等の欠
陥が芯線に発生することを防止することができ、よって
この芯線から超電導コイルを得ることにより、特に高臨
界電流密度を呈するなど優れた超電導特性を有する超電
導コイルを作製することができる。また、脆弱な酸化物
系超電導体であるコイル状の芯線を樹脂層で覆って補強
するので、使用に際しての振動や衝突といった不測の外
力から芯線を保護することができる。
"Effects of the Invention" As explained above, the method for manufacturing a superconducting coil of the present invention is to fill a metal tube with at least one of the raw material powder of an oxide superconductor, the superconductor powder, or a compact of these powders. This composite is then subjected to diameter reduction processing to obtain a wire having a metal coating layer made of the metal tube and a core wire made of the powder or compact, and then this wire is wound into a coil. After turning the wire, the metal coating layer is removed from the wire to expose the core wire, and then the core wire is heat treated, and a resin layer is formed to cover the coiled core wire to form a cylindrical superconducting coil. Because it is something that
By removing the metal tube with a different coefficient of thermal expansion from the core wire and applying heat treatment, it is possible to prevent defects such as cracks from occurring in the core wire due to the difference in coefficient of thermal expansion. By obtaining such a superconducting coil, a superconducting coil having excellent superconducting properties such as exhibiting particularly high critical current density can be produced. Furthermore, since the coiled core wire, which is a fragile oxide-based superconductor, is covered with a resin layer for reinforcement, the core wire can be protected from unexpected external forces such as vibrations and collisions during use.

さらに、樹脂層の材料として絶縁性の樹脂を用いれば、
コイル自身のターン間が良好に絶縁されるとともに漏電
等も十分防止され、よってコイルとしての優れた特製を
呈するものとなる。さらにまた、芯線に熱処理を施すに
際し、酸素雰囲気中にて行えば、芯線中に酸素が十分供
給され、これにより芯線が良好な酸素虫を有する超電導
体となり、よって優れた超電導特性を呈する超電導コイ
ルを得ることができる。
Furthermore, if an insulating resin is used as the material for the resin layer,
The turns of the coil itself are well insulated and electrical leakage is sufficiently prevented, resulting in an excellent special feature as a coil. Furthermore, if heat treatment is performed on the core wire in an oxygen atmosphere, sufficient oxygen will be supplied to the core wire, thereby making the core wire a superconductor with good oxygen content, and thus a superconducting coil exhibiting excellent superconducting properties. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図はこの発明の超電導コイルの製造方
法の一具体例を説明するためのもので、第1図はこの発
明に好適に用いられる複合体を示す横断面図、第2図は
第1図に示した複合体を縮径して得た線材を示す横断面
図、第3図は上記縮径加工を説明するための概略断面図
、第4図は縮径しコイル状にした線材から金属管を除去
して得た芯線を示す横断面図、第5図は第4図に示した
芯線の概略構成図、第6図は超電導コイルの概略構成図
である。 1・・・・・・金属管、2・・・・・・成形体、3・・
・・・・複合体、4・・・金属被覆層、5・・・・・・
芯線、6・・・・・・線材、8・・・・・・樹脂層、9
・・・・・・超電導コイル。
1 to 6 are for explaining a specific example of the method for manufacturing a superconducting coil according to the present invention, and FIG. 1 is a cross-sectional view showing a composite body suitably used in the present invention, and FIG. 1 is a cross-sectional view showing a wire rod obtained by reducing the diameter of the composite shown in FIG. 1, FIG. 3 is a schematic cross-sectional view for explaining the diameter reduction process, and FIG. FIG. 5 is a schematic diagram of the core wire shown in FIG. 4, and FIG. 6 is a schematic diagram of the superconducting coil. 1...metal tube, 2...molded body, 3...
...Composite, 4...Metal coating layer, 5...
Core wire, 6... Wire rod, 8... Resin layer, 9
...Superconducting coil.

Claims (1)

【特許請求の範囲】[Claims]  酸化物系超電導体の原料粉末または超電導体粉末か、
あるいはこれら粉末の成形体の少なくとも1つを金属管
に充填して複合体とし、次にこの複合体に縮径加工を施
して上記金属管からなる金属被覆層と上記粉末あるいは
成形体からなる芯線とを具備した線材とし、次いでこの
線材をコイル状に巻回したうえで、該線材より金属被覆
層を除去して芯線を露出させ、次いでこの芯線に熱処理
を施した後、このコイル状の芯線を覆って樹脂層を形成
して円筒状の超電導コイルとすることを特徴とする酸化
物系超電導コイルの製造方法。
Raw material powder of oxide superconductor or superconductor powder,
Alternatively, a metal tube is filled with at least one of the molded bodies of these powders to form a composite, and then this composite is subjected to diameter reduction processing to form a metal coating layer made of the metal tube and a core wire made of the powder or molded body. This wire is then wound into a coil, the metal coating layer is removed from the wire to expose the core wire, the core wire is heat treated, and then the coiled core wire is A method for producing an oxide-based superconducting coil, comprising forming a resin layer covering the oxide-based superconducting coil to obtain a cylindrical superconducting coil.
JP62267812A 1987-10-23 1987-10-23 Manufacture of oxide superconducting coil Pending JPH01110710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267812A JPH01110710A (en) 1987-10-23 1987-10-23 Manufacture of oxide superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267812A JPH01110710A (en) 1987-10-23 1987-10-23 Manufacture of oxide superconducting coil

Publications (1)

Publication Number Publication Date
JPH01110710A true JPH01110710A (en) 1989-04-27

Family

ID=17449947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267812A Pending JPH01110710A (en) 1987-10-23 1987-10-23 Manufacture of oxide superconducting coil

Country Status (1)

Country Link
JP (1) JPH01110710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507283A1 (en) * 1991-04-02 1992-10-07 Sumitomo Electric Industries, Limited High-temperature superconducting coil and method of manufacturing thereof
EP0602647A1 (en) * 1992-12-18 1994-06-22 Hitachi, Ltd. Superconducting magnet, superconducting magnet coil, and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507283A1 (en) * 1991-04-02 1992-10-07 Sumitomo Electric Industries, Limited High-temperature superconducting coil and method of manufacturing thereof
AU654339B2 (en) * 1991-04-02 1994-11-03 Sumitomo Electric Industries, Ltd. High temperature superconducting coil and method of manufacturing thereof
US5512867A (en) * 1991-04-02 1996-04-30 Sumitomo Electric Industries, Ltd. High temperature superconducting coil and method of manufacturing thereof
EP0602647A1 (en) * 1992-12-18 1994-06-22 Hitachi, Ltd. Superconducting magnet, superconducting magnet coil, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2914331B2 (en) Method for producing composite oxide ceramic superconducting wire
JPH01110710A (en) Manufacture of oxide superconducting coil
JPH01110709A (en) Manufacture of oxide superconducting coil
JPS63279523A (en) Manufacture of compound superconductive wire
JPH01130428A (en) Manufacture of oxide superconductive moulded matter
JP2549706B2 (en) Method for producing T1-based oxide superconducting wire
JP2517597B2 (en) Manufacturing method of oxide superconducting wire
JPH0193010A (en) Manufacture of oxide type superconductive wire
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH01138167A (en) Production of oxide superconductor
JPS63281319A (en) Manufacture of compound superconductive wire
JP2612009B2 (en) Method for producing oxide-based superconducting wire
JPH01115858A (en) Oxide superconductor and its production
JPH01175126A (en) Manufacture of multi-core oxide superconducting wire
JP2574161B2 (en) Manufacturing method of ceramic superconductor coil
JPS63310518A (en) Manufacture of compound superconductive wire
JPH01144517A (en) Oxide-based superconductive cable
JPH01105414A (en) Manufacture of oxide superconducting wire
JPS63318023A (en) Manufacture of compound superconductive wire
JPH01206516A (en) Manufacture of oxide superconductor
JPH01122520A (en) Manufacture of oxide superconducting wire
JPH01227311A (en) Manufacture of oxide superconductor wire
JPH01241714A (en) Manufacture of oxide superconductor wire
JPH04259203A (en) Manufacture of ceramic superconductor coil
JPH01175125A (en) Manufacture of multi-core oxide superconducting wire