JPH01109699A - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH01109699A
JPH01109699A JP62267768A JP26776887A JPH01109699A JP H01109699 A JPH01109699 A JP H01109699A JP 62267768 A JP62267768 A JP 62267768A JP 26776887 A JP26776887 A JP 26776887A JP H01109699 A JPH01109699 A JP H01109699A
Authority
JP
Japan
Prior art keywords
plasma
plate
electrode
substrate
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62267768A
Other languages
Japanese (ja)
Inventor
Kenji Yanagihara
健児 柳原
Mitsuo Kimura
光夫 木村
Masayuki Numata
沼田 公志
Hitoshi Chiyawandani
茶碗谷 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP62267768A priority Critical patent/JPH01109699A/en
Priority to DE3830430A priority patent/DE3830430A1/en
Priority to US07/242,263 priority patent/US4910041A/en
Publication of JPH01109699A publication Critical patent/JPH01109699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Nozzles (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To generate thin plasma with the two-dimensional spread and efficiently process a substrate with a large area by forming an electrode connected to a microwave power source in a plate shape and providing a slit cut inward from the outer edge. CONSTITUTION:A plate-shaped electrode 1 is a rectangular flat plate, a slit 3 is cut in parallel with a short side 4 from one position 2 near one end of a long side and bent several times at a right angle and terminated at one point 5 in the plate. Lead wires 8a and 8b are connected from a coaxial tube 8 to positions 6 and 7 pinching the slit 3 near its base. When plasma is excited by the plate-shaped electrode 1, plasma 21 is generated in a thin sheet shape with the two-dimensional spread so as to cover the whole surface of the electrode 1. A substrate to be processed is arranged in contact with the plasma 21 existing in a sheet shape, thereby the whole surface of the wide substrate can be plasma-processed with high energy efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ処理装置に関し、特に比較的大面積
の基体表面を効率良く処理するのに好適なプラズマ処理
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma processing apparatus, and particularly to a plasma processing apparatus suitable for efficiently processing a relatively large surface area of a substrate.

〔従来の技術〕[Conventional technology]

プラズマ処理装置は、例えば、希ガスプラズマによる基
体表面処理、酸素プラズマまたは窒素プラズマによる基
体表面酸化または基体表面窒化、有機化合物ガスプラズ
マによる基体表面へのプラズマ重合層の形成、無機化合
物ガスによる基体表面へのプラズマCVD等の種々のプ
ラズマ処理に利用されている。
The plasma processing apparatus can, for example, treat the surface of a substrate with rare gas plasma, oxidize or nitride the surface of the substrate with oxygen plasma or nitrogen plasma, form a plasma polymerized layer on the surface of the substrate with organic compound gas plasma, and treat the surface of the substrate with inorganic compound gas. It is used in various plasma treatments such as plasma CVD.

重合のプラズマ処理装置では、プラズマの発生のために
、平行平板型電極、ホローカソード型円筒電極(以上、
直流、低周波および高周波の電源用)、コイル(高周波
電源用)、マイクロ波キャビティー(マイクロ波電源用
)等が用いられている。
Polymerization plasma processing equipment uses parallel plate type electrodes, hollow cathode type cylindrical electrodes (the above,
(for DC, low-frequency, and high-frequency power supplies), coils (for high-frequency power supplies), microwave cavities (for microwave power supplies), etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような従来のプラズマ処理装置は、比較的
大面積の基体表面を処理するには適しておらず、さらに
はエネルギー効率が低いという問題を有している。
However, such conventional plasma processing apparatuses are not suitable for processing a relatively large substrate surface, and furthermore, they have the problem of low energy efficiency.

すなわち、例えばマイクロ波キャビティの場合には発生
させ得るプラズマの体積が本来的に小さいため大面積の
表面を処理するには適しない。その他のプラズマ発生方
式によれば大体積のプラズマを発生させることは可能で
あるが、基体表面の改質、基体表1への従来膜の形成等
のプラズマ処理に実質的に寄与するのは、プラズマの基
体と接触する部分のみであるから、大体積のプラズマの
ほとんどの部分はプラズマ処理に直接役立っていない場
合が多く、エネルギー効率が低い。特に、プラズマ処理
が高温プラズマの領域で行なわれる場合には、プラズマ
のエネルギー密度が高いためプラズマの大体積化は励起
に要する消費電力の著しい増大を招来するので、実用上
大きな問題である。
That is, for example, in the case of a microwave cavity, the volume of plasma that can be generated is inherently small, so it is not suitable for treating a large surface area. Although it is possible to generate a large volume of plasma using other plasma generation methods, what actually contributes to plasma processing such as modifying the substrate surface and forming a conventional film on the substrate surface 1 is the following: Since only the part of the plasma that comes into contact with the substrate, most parts of the large volume of plasma are often not directly useful for plasma processing, resulting in low energy efficiency. Particularly, when plasma processing is performed in a high-temperature plasma region, increasing the plasma volume leads to a significant increase in the power consumption required for excitation due to the high energy density of the plasma, which is a big problem in practice.

そこで、本発明の目的には、2次元的に広がりを有し厚
さの薄いプラズマを発生できるため、大面積の基体表面
を効率よく処理することができるプラズマ処理装置を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a plasma processing apparatus that can generate plasma with a two-dimensional spread and a small thickness, so that a large surface area of a substrate can be efficiently processed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の目的を達成するものとして、マイクロ
波電源に接続される電極を備えるプラズマ処理装置にお
いて、 該電極が、その外縁から内部へ切込まれ形成されてなる
スリットを有する板状電極であることを特徴とするプラ
ズマ処理装置を提供するものである。
To achieve the above object, the present invention provides a plasma processing apparatus equipped with an electrode connected to a microwave power source, wherein the electrode has a plate-shaped electrode having a slit formed by cutting inward from the outer edge of the electrode. The present invention provides a plasma processing apparatus characterized by the following.

本発明のプラズマ処理装置(以下、単に「装置」という
)に用いられる前記のスリットを有する板状電極(以下
、単に「板状電極」という)に接続されるマイクロ波電
源は、通常、前記スリットの基部(即ち、スリットが切
込まれた電極の外縁部)の近傍であって、かつ該スリッ
トを挟む2箇所に接続される。この板状電極へのマイク
ロ波の導入方法は、特に制限されず、例えば、TE、I
モード導波管からプローブ式にて同軸受ケーブルまたは
同軸管にカップリングし、それを電極まで導いて接続す
る方法、該同軸ケーブルまたは同軸管を平行線路に接続
した後、該電極に接続する方法、導波管からアンテナを
通して結合する方法等を用いることができる。
The microwave power source connected to the plate-shaped electrode (hereinafter simply referred to as "plate-shaped electrode") having the above-mentioned slits used in the plasma processing apparatus (hereinafter simply referred to as "apparatus") of the present invention is usually (i.e., the outer edge of the electrode in which the slit is cut) and at two points sandwiching the slit. The method of introducing microwaves into this plate-like electrode is not particularly limited, and examples include TE, I
A method in which a mode waveguide is coupled to a coaxial bearing cable or coaxial tube using a probe method, and then guided to an electrode for connection. A method in which the coaxial cable or coaxial tube is connected to a parallel line and then connected to the electrode. , a method of coupling from a waveguide through an antenna, etc. can be used.

板状電極が有するスリットの形状は特に制限されず、例
えば折れ曲っていてもよく、また弧状に曲った部分があ
ってもよいが、長さをlとした場合、式: %式% (ここで、λは導入されるマイクロ波の波長で、nは1
以上の整数で、好ましくは1〜8、さらに好ましくは1
〜4である。)で表わされる条件を満たす実質的に直線
の部分(以下、「有効直線部」という)を少なくとも1
箇所備えている。スリットに有効直線部が存在しないと
、マイクロ波放電が正常には起らず、望ましい状態にプ
ラズマを励起することができない。
The shape of the slit of the plate-shaped electrode is not particularly limited, and for example, it may be bent or have an arcuate portion, but when the length is l, the formula: % formula % (here where λ is the wavelength of the microwave to be introduced, and n is 1
or more integer, preferably 1 to 8, more preferably 1
~4. ) at least one substantially straight part (hereinafter referred to as "effective straight part")
There are some places. If an effective linear portion does not exist in the slit, microwave discharge will not occur normally and plasma cannot be excited to a desired state.

さらに、このスリットはプラズマで処理しようとする基
体表面または、板状電極の面積に対して、有効直線部の
総長が0.1〜6cm/−となるように設けられている
ことが好ましい。
Further, it is preferable that the slit is provided such that the total length of the effective linear portion is 0.1 to 6 cm/- with respect to the area of the substrate surface or plate electrode to be treated with plasma.

図1は、板状電極の1例を表わす斜視図である。FIG. 1 is a perspective view showing one example of a plate-shaped electrode.

この板状電極1は、金属等の導電材料からなり、全体が
長方形である平板で構成されている。この板状電極1の
一方の長辺に、その一端に近い箇所2からスリット3が
短辺4と平行に切込まれ、該スリット3は複数回直角に
折れ曲がって板状電極1内の一点5で終端となっている
This plate-shaped electrode 1 is made of a conductive material such as metal, and is a flat plate having a rectangular shape as a whole. A slit 3 is cut into one long side of the plate electrode 1 from a point 2 near one end parallel to the short side 4, and the slit 3 is bent multiple times at right angles to form a point in the plate electrode 1. It ends with.

図1において、スリット3は、板状電極1の短辺4に平
行で比較的長い6本の有効直線部Aと長辺に平行で短か
い6本の有効直線部ではない直線部(以下、「非有効直
線部」とういう)Bとから構成されており、始端(切込
み箇所)2から終端5まで連続した1本のスリットであ
る。スリット3の基部近傍であって、スリット3を挟む
2箇所(図中、6および7)に同軸管8からの2本の導
線3a、8bがそれぞれ接続されている。この板状電極
1を用いて、プラズマを励起したときのプラズマの発生
状態を図2に示す。プラズマ21は、板状電極lの全面
をあたかも被覆するように、薄いしかも2次元的な広が
りを有するシート状に発生する。したがって、プラズマ
で処理しようとする基体をシート状に存在するプラズマ
21に接触させて配置することにより、基体の広い表面
全体を余すところなく処理することができ、しかもプラ
ズマで処理しようとする基体表面と同等の面積の板状電
極を使用すれば、基体の処理に利用されないプラズマ部
分がほとんどないので、極めて高いエネルギー効率で大
面積の基体をプラズマ処理することができる。
In FIG. 1, the slit 3 consists of six relatively long effective straight parts A that are parallel to the short side 4 of the plate electrode 1, and six straight parts A that are not effective straight parts that are short and parallel to the long side (hereinafter referred to as It is a single slit that is continuous from the starting end (cutting point) 2 to the terminal end 5. Two conductive wires 3a and 8b from a coaxial tube 8 are connected to two locations (6 and 7 in the figure) near the base of the slit 3 and sandwiching the slit 3, respectively. FIG. 2 shows how plasma is generated when plasma is excited using this plate-shaped electrode 1. The plasma 21 is generated in the form of a thin, two-dimensionally spread sheet so as to cover the entire surface of the plate-shaped electrode l. Therefore, by placing the substrate to be treated with plasma in contact with the plasma 21 existing in the form of a sheet, the entire wide surface of the substrate can be thoroughly treated. If a plate-shaped electrode with an area equivalent to that of 1 is used, there will be almost no plasma portion that is not used for processing the substrate, so a large area of the substrate can be plasma-treated with extremely high energy efficiency.

板状電極では、前記のようにスリット中の有効直線部が
マイクロ波放電およびプラズマの励起に貢献するので、
板状電極面内に有効直線部が偏りなく多数存在し、その
数密度が高いほど励起されるプラズマの均一性が高まる
ので望ましい処理効果が得られる。ただし、スリット間
隔が狭すぎると電極の抵抗が増し、機械的強度も低下す
るので、スリット間の間隔は通常1〜30mであり、3
〜20寵が好ましい。スリット中の有効直線部以外の部
分はマイクロ波放電およびプラズマの励起にほとんど寄
与しないのでなるべく短い方が望ましく、特にλ/2よ
り短いこと、さらにはλ/4より短いことが好ましい。
In a plate electrode, the effective straight part in the slit contributes to microwave discharge and plasma excitation, as described above.
A large number of effective linear portions exist evenly within the plane of the plate-shaped electrode, and the higher the number density of the linear portions, the more uniform the excited plasma becomes, so that a desirable processing effect can be obtained. However, if the slit spacing is too narrow, the resistance of the electrode will increase and the mechanical strength will decrease, so the spacing between the slits is usually 1 to 30 m.
~20 min is preferable. Since the portion of the slit other than the effective linear portion hardly contributes to microwave discharge and plasma excitation, it is preferable that the length be as short as possible, particularly shorter than λ/2, and more preferably shorter than λ/4.

さらに、有効直線部ではなく、かつλ/2より長い部分
は少ない方が好ましい。
Furthermore, it is preferable that the number of portions that are not effective linear portions and that are longer than λ/2 is small.

板状電極の厚さは、0.1〜10mが好ましく、1〜5
fiがより好ましい、また、形成されるスリットの幅は
、0.1〜1ONが好ましく、0.5〜5鶴がより好ま
しい、板状電極の大きさは、例えば、図1に示す長方形
状の電極の場合には80鶴X100m〜80wx300
 tm程度であるが、プラズマ処理を施す基板の面積に
よって複数個並べて使用することもできる。
The thickness of the plate electrode is preferably 0.1 to 10 m, and 1 to 5 m.
fi is more preferable, and the width of the slit to be formed is preferably 0.1 to 1 ON, and more preferably 0.5 to 5 ON. The size of the plate electrode is, for example, the rectangular shape shown in FIG. In case of electrodes, 80 cranes x 100 m ~ 80 w x 300
However, depending on the area of the substrate to be subjected to plasma processing, a plurality of them can be used in parallel.

板状電極に形成されるスリットの形状は、前記のように
有効直線部を少なくとも1本有する限り特に制限はなく
、図1に示した例のほか、例えば、図3.4および5に
示す形状が挙げられる。図3の例では、有効直線部A′
のみが角αを介して連続的に連なっており、図4の例で
は角βを介して連なる2本の有効直線部A#のセットが
短い非有効直線部B“を間に置いて多数繰返されている
The shape of the slit formed in the plate electrode is not particularly limited as long as it has at least one effective straight part as described above, and in addition to the example shown in FIG. 1, for example, the shape shown in FIGS. can be mentioned. In the example of FIG. 3, the effective straight section A'
In the example of Fig. 4, a set of two effective straight line parts A# connected through angle β are repeated many times with a short ineffective straight line part B'' in between. It is.

図5の例では、長辺51の中央52から切込まれたスリ
ット53が点54の位置で左右に分岐した後、図1と同
様に折れ曲りそれぞれの終端55および56で停止して
いる。
In the example of FIG. 5, the slit 53 cut from the center 52 of the long side 51 branches left and right at a point 54, then bends and stops at the respective terminal ends 55 and 56, as in FIG.

また、本発明に用いられる板状電極は、その形状は制限
されず、輪郭は基体の非処理面に応じて長方形状のほか
、円形状など種々の形状をとることができる。
Further, the shape of the plate electrode used in the present invention is not limited, and the outline can take various shapes such as a rectangular shape or a circular shape depending on the non-processed surface of the substrate.

さらに、特に平板状である必要はなく、基体の被処理面
の立体的形状に応じて全体的にまたは部分的に曲面でも
よく、あるいは凸部もしくは凹部が存在してもよい。図
6は、基体61の球面62をプラズマ処理するのに適し
た板状電極63を示す断面図で、該電極63の下面64
は、基体61の球面62に適合して凹曲面に形成されて
いる。また図7は、方杖の特記部71を有する基体72
の表面73をプラズマ処理するのに適した板状電極74
を示す断面図で、該電極74は、基体72の突起部71
で適合した方杖凹部が形成されており、全体として基体
72の上面73全体にまんべんなくプラズマ処理するこ
とができるようになっている。
Furthermore, it is not particularly necessary to have a flat plate shape, and depending on the three-dimensional shape of the surface to be processed of the substrate, it may be entirely or partially curved, or there may be convex portions or concave portions. FIG. 6 is a sectional view showing a plate-shaped electrode 63 suitable for plasma-treating the spherical surface 62 of the base 61.
is formed into a concave curved surface that conforms to the spherical surface 62 of the base body 61. Further, FIG. 7 shows a base body 72 having a special mention part 71 of the support
a plate-shaped electrode 74 suitable for plasma-treating the surface 73 of the
In the cross-sectional view showing the electrode 74, the protrusion 71 of the base 72
A suitable concave portion is formed so that the entire upper surface 73 of the base body 72 can be uniformly plasma-treated.

図8は、板状の基体81の表面82および83を同時に
プラズマ処理するのに適した板状電極84を示す断面図
で、該電極84はコの字型に折れ曲っており、基体81
の両表面82.83の全体をプラズマ処理することがで
きるようになっている。また、板状電極を適当な間隔な
もって平行に複数配置し、その間に基体を配置すること
により、基体の両表面を同時にプラズマ処理することも
できる。
FIG. 8 is a sectional view showing a plate-shaped electrode 84 suitable for simultaneously plasma-treating surfaces 82 and 83 of a plate-shaped substrate 81. The electrode 84 is bent in a U-shape, and the substrate 81
Both surfaces 82 and 83 can be entirely plasma-treated. Furthermore, by arranging a plurality of plate-shaped electrodes in parallel at appropriate intervals and placing the substrate between them, both surfaces of the substrate can be plasma-treated at the same time.

板状電極の材料は導電材料であれば特に制限されず、具
体的には、室温で10”Ω−ICIl−1以上の導電率
を有し、通常、600°以上の耐熱性を有する材料であ
れば使用することができる。このような材料としては、
例えば、鉄、コバルト、ニッケル、マンガン、クロム、
バナジウム、チタン、銅、亜鉛、イツトリウム、ルテニ
ウム、ジルコニウム、ニオブ、モリブデン、ロジウム、
パラジウム、銀、タンタル、タングステン、レニウム、
白金、金、タリウム、鉛、ビスマス等の遷移金属、アル
ミニウム:ステンレス、黄銅、青銅、スーパーアロイ等
の前記遷移金属やアルミニウムの合金:銅−アルミナ、
銅−酸化ケイ素、銀−アルミナ、銀−酸化カドミウム、
ニッケルー酸化イツトリウム等の金属中に金属酸化物が
分散してなる分散強化型合金;カーボン、グラファイト
等の炭素材料;ポリアセチレン、TTP−TCNQ等の
導電性ポリマーが挙げられ、中でも好ましいものは室温
での導電率が10’Ω−’ Cm −’以上の材料で、
銅、銀、アルミニウム、銅合金、銅−アルミナ分散強化
型合金等を挙げることができる。なお、これらの材料の
表面をガラス、セラミックス、ポリマー、シリコン、ダ
イヤモンド等の電気絶縁体や半導電性材料で被覆しても
よい、板状電極は、使用する反応器内に、通常電気wA
縁体で固定される。使用することのできる電気絶縁体と
しては、例えば、アルミナ、ボロンナイトライド、石英
ガラス、窒化ケイ素、酸化ジルコニウム等の無機材料:
ナイロン、ポリエチレン等の有機ポリマーなどが挙げら
れる。ただし、高温になる場合には、無機材料を使用す
る必要がある。
The material of the plate electrode is not particularly limited as long as it is a conductive material. Specifically, it is a material that has a conductivity of 10"Ω-ICIl-1 or more at room temperature and usually has a heat resistance of 600° or more. If available, it can be used.Such materials include:
For example, iron, cobalt, nickel, manganese, chromium,
Vanadium, titanium, copper, zinc, yttrium, ruthenium, zirconium, niobium, molybdenum, rhodium,
palladium, silver, tantalum, tungsten, rhenium,
Transition metals such as platinum, gold, thallium, lead, and bismuth, aluminum: Alloys of the transition metals and aluminum such as stainless steel, brass, bronze, and super alloys: copper-alumina,
Copper-silicon oxide, silver-alumina, silver-cadmium oxide,
Examples include dispersion-strengthened alloys in which metal oxides are dispersed in metals such as nickel-yttrium oxide; carbon materials such as carbon and graphite; and conductive polymers such as polyacetylene and TTP-TCNQ. A material with an electrical conductivity of 10'Ω-'Cm-' or more,
Examples include copper, silver, aluminum, copper alloys, copper-alumina dispersion strengthened alloys, and the like. Note that the surface of these materials may be coated with electrical insulators or semiconducting materials such as glass, ceramics, polymers, silicon, and diamond.
It is fixed with a rim. Electrical insulators that can be used include, for example, inorganic materials such as alumina, boron nitride, quartz glass, silicon nitride, zirconium oxide, etc.
Examples include organic polymers such as nylon and polyethylene. However, if the temperature is high, it is necessary to use inorganic materials.

本発明のプラズマ処理装置を用いてプラズマを発生させ
ることができるが反応ガスとしては例えばメタン、エタ
ン、プロパン、ブタン、ペンタン、オクタン、シクロヘ
キサン等の鎖状もしくは環状の飽和炭化水素;エチレン
、プロピレン、ブタジェン、ベンゼン、スチレン、アセ
チレン、アレン等の二重結合もしくは三重結合を含む不
飽和炭化水素;モルフルオロメタン、ジフルオロメタン
、トリフルオロメタン、テトラフルオロメタン、モノク
ロロメタン、ジクロロメタン、トリクロロメタン、テト
ラクロロメタン、モノフルオロジクロロメタン、モノフ
ルオロエタン、トリフルオロエタン、テトラフルオロエ
タン、ペンタフルオロエタン、ヘキサフルオロエタン、
ジクロロエタン、テトラクロロエタン、ヘキサクロロエ
タン、ジフルオロジクロロエタン、トリフルオロトリク
ロロエタン、モノフルオロプロパン、トリフルオロプロ
パン、ペンタフルオロプロパン、パーフルオロプルパン
、ジクロロプロパン、テトラクロロプロパン、ヘキサク
ロロプロパン、パークロロプロパン、ジフルオロジクロ
ロプロパン、テトラフルオロジクロロプロパン、ブロモ
メタン、メチレンブロマイド、ブロモホルム、カーボン
テトラブロマイド、テトラブロモエタン、ペンタブロモ
エタン、メチルヨーシト、ショートメタン、モノフルオ
ロブタン類、トリフルオロブタン類、テトラフルオロブ
タン類、オクタフルオロブタン類、ジフルオロブタン類
、モノフルオロペンタン類、ペンタフルオロペンタン類
、オクタクロロペンタン類、パークロロペンタン類、ト
リフルオロトリクロロペンタン類、テトラフルオロヘキ
サン類、ノナクロロヘキサン類、ペンタフルオロトリク
ロロヘキサン類、テトラフルオロへブタン類、ヘキサフ
ルオロへブタン類、トリフルオロペンタクロロへブタン
類、ジフルオロ−オクタン類、ペンタフルオロオクタン
類、ジフルオロテトラフルオロオクタン類、モノフルオ
ロノナン類、ヘキサフルオロノナン類、デカクロロノナ
ン類、ヘプタフルオロへキサクロロノナン類、ジフルオ
ロデカン類、ペンタフルオロデカン類、テトラクロロデ
カン類、テトラフルオロテトラクロロデカン類、オクタ
デカクロロデカン類等のハロゲン化アルカン(なお、以
上において、例えば、「ペンタン類」はn−ペンタンお
よびその異性体であるアルカンを意味する);アリルア
ミン、メチルアミン、エチルアミン、ピリジン、ピリミ
ジン、プリン、ピコリン、アクリルアミド等の含窒素有
機化合物:二硫化炭素、メチルメルカプタン、エチルメ
ルカプタン等の含イオウ有機化合物;メタノール、エタ
ノール、プロパツール等のアルコール:フェノール、ク
レゾール等のフェノール化合物;ホルムアルデヒド、ア
セトアルデヒド等のアルデヒド化合物;アセトン、メチ
ルエチルケトン等のケトン化合物;ならびにギ酸、酢酸
、プロピオン酸等の脂肪酸;これら脂肪酸のメチルエス
テル、エチルエステル、ブチルエステル等のアルキルエ
ステル等を挙げることができる。また、含炭素化合物の
別の例として、−酸化炭素、二酸化炭素、ジアゾメタン
、二酸化炭素等の無機含炭素化合物を挙げることができ
る。
Plasma can be generated using the plasma processing apparatus of the present invention, and reactive gases include, for example, linear or cyclic saturated hydrocarbons such as methane, ethane, propane, butane, pentane, octane, and cyclohexane; ethylene, propylene, Unsaturated hydrocarbons containing double or triple bonds such as butadiene, benzene, styrene, acetylene, arene; molar fluoromethane, difluoromethane, trifluoromethane, tetrafluoromethane, monochloromethane, dichloromethane, trichloromethane, tetrachloromethane, Monofluorodichloromethane, monofluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, hexafluoroethane,
Dichloroethane, tetrachloroethane, hexachloroethane, difluorodichloroethane, trifluorotrichloroethane, monofluoropropane, trifluoropropane, pentafluoropropane, perfluoropurpane, dichloropropane, tetrachloropropane, hexachloropropane, perchloropropane, difluorodichloropropane, tetrafluoro Dichloropropane, bromomethane, methylene bromide, bromoform, carbon tetrabromide, tetrabromoethane, pentabromoethane, methyl iosito, short methane, monofluorobutanes, trifluorobutanes, tetrafluorobutanes, octafluorobutanes, difluorobutanes , monofluoropentanes, pentafluoropentanes, octachloropentanes, perchloropentanes, trifluorotrichloropentanes, tetrafluorohexanes, nonachlorohexanes, pentafluorotrichlorohexanes, tetrafluorohbutanes, hexa Fluorohbutanes, trifluoropentachlorohebutanes, difluoro-octanes, pentafluorooctanes, difluorotetrafluorooctanes, monofluorononanes, hexafluorononanes, decachlorononanes, heptafluorohexachlorononanes, Halogenated alkanes such as difluorodecanes, pentafluorodecanes, tetrachlorodecanes, tetrafluorotetrachlorodecanes, and octadecachlorodecanes (in the above, for example, "pentanes" refers to n-pentane and its isomers) nitrogen-containing organic compounds such as allylamine, methylamine, ethylamine, pyridine, pyrimidine, purine, picoline, and acrylamide; sulfur-containing organic compounds such as carbon disulfide, methyl mercaptan, and ethyl mercaptan; methanol, Alcohols such as ethanol and propatool; phenolic compounds such as phenol and cresol; aldehyde compounds such as formaldehyde and acetaldehyde; ketone compounds such as acetone and methyl ethyl ketone; and fatty acids such as formic acid, acetic acid, and propionic acid; methyl esters and ethyl of these fatty acids. Examples include alkyl esters such as esters and butyl esters. Other examples of carbon-containing compounds include inorganic carbon-containing compounds such as -carbon oxide, carbon dioxide, diazomethane, and carbon dioxide.

さらに、水素、酸素、窒素等のガスを挙げることができ
る。
Further examples include gases such as hydrogen, oxygen, and nitrogen.

これらの反応ガスには、ヘリウム、アルゴン、キセノン
等の希ガスを混合してもよい。
These reaction gases may be mixed with a rare gas such as helium, argon, or xenon.

プラズマ処理においては、反応ガスや希ガスを反応器に
流す、これらのガスの流量は、一般に反応器の内容積1
001あたり0.1〜10.000cc(STP)/s
inである。また、反応器内の圧力は1mTorr〜3
00Torrであり、プラズマのエネルギー密度は11
IIII4/−〜200W/cdである。これらは、−
船釣な範囲であるが、具体的には以下の条件範囲が好ま
しい。
In plasma processing, reactive gases and rare gases are flowed into a reactor, and the flow rate of these gases is generally equal to the internal volume of the reactor.
0.1 to 10.000cc (STP)/s per 001
It is in. In addition, the pressure inside the reactor is 1 mTorr to 3 mTorr.
00 Torr, and the plasma energy density is 11
III4/- to 200 W/cd. These are −
Although this is a range suitable for boat fishing, specifically, the following condition ranges are preferable.

希ガスプラズマや酸素プラズマによる高分子材料表面の
改質においては、ガス流量は、反応器の内容積100β
あたり0.1〜100cc(STP)/min、圧力は
10mTorr 〜l Torr、プラズマのエネルギ
ー密度は1〜200mW/ c4である。プラズマ重合
による基体表面上への薄膜形成においても上の範囲と同
様である。
When modifying the surface of a polymer material using rare gas plasma or oxygen plasma, the gas flow rate is based on the internal volume of the reactor, 100β.
per minute, the pressure is 10 mTorr to 1 Torr, and the plasma energy density is 1 to 200 mW/c4. The above range also applies to the formation of a thin film on the substrate surface by plasma polymerization.

金属表面のイオン窒化や酸化の場合は、ガス流量は、反
応器の内容積1001あたり、10〜10.000cc
(STP)/min %圧力は10mTorr 〜10
Torr、プラズマのエネルギー密度は101/−〜I
OW/cdである。
In the case of ion nitriding or oxidation of metal surfaces, the gas flow rate is 10 to 10.000 cc per 1001 internal volume of the reactor.
(STP)/min% pressure is 10mTorr ~10
Torr, the plasma energy density is 101/-~I
It is OW/CD.

銅−アルミニウム合金等を内部酸化する場合は、ガス流
量は反応器の内容積1001あたりlO〜1 、000
cc(STP)/min 、圧力は0.1〜10Tor
r、プラズマのエネルギー密度は1〜l、00抛−/−
である。
When internally oxidizing copper-aluminum alloys, etc., the gas flow rate is 1,000 to 1,000 lO per 1,001 internal volume of the reactor.
cc(STP)/min, pressure is 0.1-10 Tor
r, the energy density of plasma is 1~l, 00抛-/-
It is.

高分子化合物の灰化処理の場合は酸素ガス流量は反応器
の内容積100 Jあたり100〜10.0OOcc(
STP)/min 、圧力は0.5〜5 Torrsプ
ラズマエネルギー密度は1〜200mW/ dである。
In the case of ashing of polymer compounds, the oxygen gas flow rate is 100 to 10.0 OOcc per 100 J of internal volume of the reactor (
STP)/min, the pressure is 0.5-5 Torrs, and the plasma energy density is 1-200 mW/d.

また、シリコン、酸化シリコン等の無機物質のエツチン
グの場合は、パーフルオロメタン等の)反応ガス流量は
反応器の内容積100 Nあたり50〜5.000cc
(STP)/l1lin、圧力は10mTorr 〜5
 Torr、プラズマエネルギー密度は10〜500s
W/cjである。
In addition, in the case of etching inorganic substances such as silicon and silicon oxide, the flow rate of the reaction gas (such as perfluoromethane) is 50 to 5.000 cc per 100 N of internal volume of the reactor.
(STP)/l1lin, pressure is 10mTorr ~5
Torr, plasma energy density is 10-500s
W/cj.

さらに、プラズマCVDによってTiN、TiC等の無
機薄膜を基体表面上に形成する場合は、ガス流量は反応
器の内容積100 Nあたり流量lO〜10.0OOc
c(STP)/win 、圧力は100n+Torr〜
1OTorr。
Furthermore, when forming an inorganic thin film such as TiN or TiC on the substrate surface by plasma CVD, the gas flow rate is 10 to 10.0 OOc per 100 N of internal volume of the reactor.
c(STP)/win, pressure is 100n+Torr~
1OTorr.

プラズマのエネルギー密度は100s+W/aa〜20
−/−である、また、ダイヤモンド状膜を形成する場合
はガス流量10〜10.000cc/min、圧力0.
5〜300Torr、エネルギー密度3〜200W/ 
cdである。以上が、各種プラズマ処理のプラズマ条件
範囲であるが場合によっては、この範囲を超えることも
ある0例えば、プラズマ加熱やマイクロ波による誘導加
熱を同時に必要とする場合は、処理に必要なプラズマエ
ネルギー密度以上の高いエネルギー密度が必要である。
The energy density of plasma is 100s+W/aa~20
-/-, and when forming a diamond-like film, the gas flow rate is 10 to 10.000 cc/min and the pressure is 0.
5 to 300 Torr, energy density 3 to 200 W/
It is a CD. The above is the plasma condition range for various plasma treatments, but in some cases, this range may be exceeded.For example, if plasma heating and microwave induction heating are required at the same time, the plasma energy density required for the treatment A higher energy density than that is required.

− 本発明の装置に用いられる反応器の種類は特に限定され
ず、ベルジャ型反応器のほか、例えば、直方体状反応器
等を挙げることができる。反応器に接続される真空排気
装置も特に制限されず、通常用いられる種々のものを使
用することができる。
- The type of reactor used in the apparatus of the present invention is not particularly limited, and in addition to a bell jar reactor, examples include a rectangular parallelepiped reactor. The vacuum evacuation device connected to the reactor is also not particularly limited, and various commonly used devices can be used.

本発明の装置には、その他必要に応じて、例えば基体支
持台等の基体支持手段、基体加熱手段および基体冷却手
段を設けることかできる。そして、基体を加熱する必要
がある場合には、赤外線イメージ炉、抵抗加熱電気炉を
基体支持台として使用し、基体を冷却する必要がある場
合には、水冷式冷却台を基体支持台として使用すること
もできる。
The apparatus of the present invention may be provided with a substrate support means such as a substrate support stand, a substrate heating means, and a substrate cooling means, if necessary. When the substrate needs to be heated, an infrared image furnace or a resistance heating electric furnace is used as the substrate support, and when the substrate needs to be cooled, a water-cooled cooling table is used as the substrate support. You can also.

〔実施例1〕 図1に示す形の電極を用いて、銅−アルミニウム合金板
を酸素−窒素混合ガスプラズマによるアルミニウム内部
酸化を行った。
[Example 1] Internal oxidation of aluminum was performed on a copper-aluminum alloy plate using an oxygen-nitrogen mixed gas plasma using an electrode having the shape shown in FIG.

図9に示すベルジャ型反応器(内径500φ、高さ70
0璽璽)内に801mX400璽−X2mの大きさの銅
からなる板状電極を水平に設は二それより5 ++n下
に被処理体である銅−アルミニウム合金板(70寵X3
50 tm)を設置した。さらに該合金板の下にそれを
加熱するための加熱用ヒーター板を設けた。
The bell jar type reactor shown in Figure 9 (inner diameter 500φ, height 70mm)
A copper plate electrode measuring 801 m x 400 m x 2 m is installed horizontally in a copper-aluminum alloy plate (70 cm x 3 m) below which is the object to be treated.
50 tm) was installed. Furthermore, a heater plate for heating the alloy plate was provided below the alloy plate.

板状電極は図1においてA=6.1ms、B−7m、ス
リット幅2鶴のものであり、有効直線部(Aに相当)を
40本設けた。マイクロ波は同軸管によって反応器中に
導かれ、図1に示すような直結法によって板状電極に波
長約12.2cmのマイクロ波を導入した。
In FIG. 1, the plate electrode had A=6.1 ms, B-7 m, and a slit width of 2 mm, and had 40 effective straight portions (corresponding to A). Microwaves were introduced into the reactor by a coaxial tube, and the microwaves with a wavelength of about 12.2 cm were introduced into the plate electrode by a direct connection method as shown in FIG.

酸素および窒素の流入量はそれぞれ20および70cc
(STP) /lll1nであり、圧力はI Torr
s 10Torrおよび50Torrでそれぞれ実験を
行った。基体温度は赤外線温度計によって検知し、加熱
用ヒーター電力を調節しつつ、800℃に保った。マイ
クロ波電力(入射電力−反射電力)−は上記それぞれの
圧力の時、1.7KW 、1.9 K−および1.9K
Wであった。発光している部分をプラズマの拡がりとし
て電機表面からのプラズマの厚みを測定すると上記のそ
れぞれの圧力において、20fl、8日および61mで
あり、被処理合金板の表面はプラズマに接していた。
Oxygen and nitrogen inflows are 20 and 70cc respectively
(STP) /lll1n and the pressure is I Torr
Experiments were conducted at s 10 Torr and 50 Torr, respectively. The substrate temperature was detected by an infrared thermometer and maintained at 800° C. while adjusting the heating heater power. Microwave power (incident power - reflected power) is 1.7 KW, 1.9 K and 1.9 K at each pressure above.
It was W. When the thickness of the plasma from the surface of the electric machine was measured using the emitting part as the spread of the plasma, it was found to be 20 fl, 8 days, and 61 m at each of the above pressures, indicating that the surface of the alloy plate to be treated was in contact with the plasma.

この条件にて銅−アルミニウム合金板の内部酸化を30
分間行い、その後試料の断面を光学顕微鏡を用いて観察
し、内部酸化速度を算出した。結果を表1に示す。
Under these conditions, the internal oxidation of the copper-aluminum alloy plate was
After that, the cross section of the sample was observed using an optical microscope, and the internal oxidation rate was calculated. The results are shown in Table 1.

表1 〔実施例2〕 図4に示す形のスリットを有する板状電極を用いて、メ
タンとテトラフルオロメタンの混合ガスプラズマによっ
て、ダイヤモンド状膜を作製した。
Table 1 [Example 2] A diamond-like film was produced by a mixed gas plasma of methane and tetrafluoromethane using a plate-shaped electrode having a slit in the shape shown in FIG.

図10に示す高さ100鶴×幅500鶴×奥行き20O
nの反応器を用い、基板は厚み50μmのPET(ポリ
エチレンテレフタレート)フィルムを用いた。PETフ
ィルム101は反応器102に左方から連続的に送り込
まれ、ダイヤモンド状膜で被覆された後右方へ出ていく
0本装置においては反応器の前後に図示しない差動排気
室があり、PETフィルムは空気中から連続的に反応器
内へ送り込まれコーティングされた後、反応器外の空気
中で巻き取られる。
Height 100 cranes x width 500 cranes x depth 20 O as shown in Figure 10
A PET (polyethylene terephthalate) film with a thickness of 50 μm was used as the substrate. The PET film 101 is continuously fed into the reactor 102 from the left, and after being coated with a diamond-like film, it exits to the right.In this apparatus, there are differential pumping chambers (not shown) before and after the reactor. After the PET film is continuously fed into the reactor from the air and coated, it is wound up in the air outside the reactor.

アルミニウムからなる板状電極103は15011x4
00 tm x 51Bであり、図4におけるA“が6
1111゜B#が15H5スリツトの幅は5111角度
βが120 @のものであった。また、有効直線部の数
(61fl長のA“を−本として)は31本である。波
長約12.2cmのマイクロ波の導入は同軸管を用いて
行い、板状電極に直接接続した。
The plate electrode 103 made of aluminum is 15011x4
00 tm x 51B, and A" in Fig. 4 is 6
The width of the slit 1111°B# was 15H5 and the angle β was 120@. Further, the number of effective straight parts (assuming A" having a length of 61 fl as a minus part) was 31. Microwaves having a wavelength of about 12.2 cm were introduced using a coaxial tube, which was directly connected to the plate electrode.

プラズマ発生条件におけるメタンガス流入量は9 cc
(STP)/lll1n−、テトラフルオロメタンガス
流入量は5 cc(STP)/+min 、%圧力は5
0mTorr 、マイクロ波電力(入射電力−反射電力
)は0.8KW 、P E Tフィルムの送り速度は1
OcIl/lll1nである。この条件での電極表面か
らのプラズマの厚みは約20寵であり、PETフィルム
と板状電極との間隔は約10鶴に保った。
The amount of methane gas inflow under plasma generation conditions is 9 cc
(STP)/lll1n-, tetrafluoromethane gas inflow rate is 5 cc (STP)/+min, % pressure is 5
0mTorr, microwave power (incident power - reflected power) is 0.8KW, PET film feeding speed is 1
It is OcIl/llll1n. Under these conditions, the thickness of the plasma from the electrode surface was about 20 mm, and the distance between the PET film and the plate electrode was maintained at about 10 mm.

この条件にて作製したダイヤモンド状膜で被覆されたP
ETフィルムの耐傷性能は大幅に上昇し酸素ガスバリヤ
−性能も約4倍になった。また形成されたダイヤモンド
状膜の厚みを、PETフィルムと同時に走行させて同様
に被覆したシリコンウェハーの切片をエリプソメーター
で測定することによって求めた。その結果、1900人
±100人であり、ダイヤモンド状膜の成長速度は、約
600人/winであった。これはRFプラズマやAF
(オーディオ周波数)プラズマを用いた場合の2〜3倍
の速さである。
P coated with a diamond-like film prepared under these conditions
The scratch resistance of the ET film has been greatly improved, and the oxygen gas barrier performance has also increased approximately four times. Further, the thickness of the formed diamond-like film was determined by measuring with an ellipsometer a section of a silicon wafer that was run simultaneously with the PET film and coated in the same manner. The result was 1900 ± 100 people, and the growth rate of the diamond-like film was about 600 people/win. This is RF plasma or AF
(Audio frequency) This is 2 to 3 times faster than when plasma is used.

〔発明の効果〕〔Effect of the invention〕

本発明のプラズマ処理装置によれば、比較的大面積の基
体表面を高いエネルギー効率で処理することができる。
According to the plasma processing apparatus of the present invention, a relatively large substrate surface can be processed with high energy efficiency.

本発明のプラズマ処理装置は、高分子材料表面の改質、
プラズマ重合薄膜の形成、金属表面のイオン窒化や酸化
、各種合金の内部酸化、無機薄膜の形成、ダイヤモンド
状物質の製造、高分子化合物の灰化処理等のプラズマ処
理に好適に用いることができる。
The plasma processing apparatus of the present invention can modify the surface of a polymer material,
It can be suitably used in plasma treatments such as formation of plasma polymerized thin films, ion nitriding and oxidation of metal surfaces, internal oxidation of various alloys, formation of inorganic thin films, production of diamond-like substances, and ashing of polymer compounds.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明に用いられる板状電極の一例を示す斜視図
であり、図2は該板状電極によりシート状のプラズマを
発生させた状態の図である。 図3、図4および図5は、板状電極の別の例を表わす平
面図である。 図6および図7は、本発明に用いられる板状電極の立体
的凹凸を有する基体との配置関係を表わす図である。 図8は、板状電極と基体との別の配置関係を表わす図で
ある。 図9および図10は本発明の装置例を示す概略図である
。 1・・・板状電極、3・・・スリット、8・・・同軸管
、21・・・プラズマ、91・・・ベルジャ型反応器、
92・・・板状電極、96・・・基体、101・・・直
方体状反応器。 代理人   弁理士 岩見谷 同志 図2 (b)    11 図3     図4 μ 図5 図6     図7 図8 因9
FIG. 1 is a perspective view showing an example of a plate-shaped electrode used in the present invention, and FIG. 2 is a diagram showing a state in which sheet-shaped plasma is generated by the plate-shaped electrode. 3, 4, and 5 are plan views showing other examples of plate-shaped electrodes. FIGS. 6 and 7 are diagrams showing the arrangement relationship between the plate-shaped electrode used in the present invention and a base body having three-dimensional unevenness. FIG. 8 is a diagram showing another arrangement relationship between the plate electrode and the base. 9 and 10 are schematic diagrams showing an example of the device of the present invention. DESCRIPTION OF SYMBOLS 1... Plate electrode, 3... Slit, 8... Coaxial tube, 21... Plasma, 91... Belljar type reactor,
92... Plate electrode, 96... Substrate, 101... Rectangular parallelepiped reactor. Agent Patent attorney Comrade Iwamiya Figure 2 (b) 11 Figure 3 Figure 4 μ Figure 5 Figure 6 Figure 7 Figure 8 Reason 9

Claims (1)

【特許請求の範囲】 1)マイクロ波電源に接続される電極を備えるプラズマ
処理装置において、 該電極が、その外縁から内部へ切込まれ形成されてなる
スリットを有する板状電極であることを特徴とするプラ
ズマ処理装置。
[Claims] 1) A plasma processing apparatus equipped with an electrode connected to a microwave power source, characterized in that the electrode is a plate-shaped electrode having a slit formed by cutting inward from its outer edge. plasma processing equipment.
JP62267768A 1987-09-11 1987-10-23 Plasma processing device Pending JPH01109699A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62267768A JPH01109699A (en) 1987-10-23 1987-10-23 Plasma processing device
DE3830430A DE3830430A1 (en) 1987-09-11 1988-09-07 METHOD FOR PRODUCING COVERS
US07/242,263 US4910041A (en) 1987-09-11 1988-09-09 Film formation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267768A JPH01109699A (en) 1987-10-23 1987-10-23 Plasma processing device

Publications (1)

Publication Number Publication Date
JPH01109699A true JPH01109699A (en) 1989-04-26

Family

ID=17449317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267768A Pending JPH01109699A (en) 1987-09-11 1987-10-23 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH01109699A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252071A (en) * 1992-12-28 1994-09-09 Semiconductor Energy Lab Co Ltd Plasma processing method and plasma processing device
US5501740A (en) * 1993-06-04 1996-03-26 Applied Science And Technology, Inc. Microwave plasma reactor
US5556475A (en) * 1993-06-04 1996-09-17 Applied Science And Technology, Inc. Microwave plasma reactor
US7264850B1 (en) 1992-12-28 2007-09-04 Semiconductor Energy Laboratory Co., Ltd. Process for treating a substrate with a plasma
JP2010525534A (en) * 2007-04-27 2010-07-22 フォルシュングスフェアブント ベルリン エー ファウ Electrode for plasma generator
JP2011228475A (en) * 2010-04-20 2011-11-10 Hitachi High-Technologies Corp Plasma processing apparatus employing dense slot transmissive electrode body
JPWO2015098672A1 (en) * 2013-12-26 2017-03-23 住友化学株式会社 Laminated film and flexible electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252071A (en) * 1992-12-28 1994-09-09 Semiconductor Energy Lab Co Ltd Plasma processing method and plasma processing device
US7264850B1 (en) 1992-12-28 2007-09-04 Semiconductor Energy Laboratory Co., Ltd. Process for treating a substrate with a plasma
US5501740A (en) * 1993-06-04 1996-03-26 Applied Science And Technology, Inc. Microwave plasma reactor
US5556475A (en) * 1993-06-04 1996-09-17 Applied Science And Technology, Inc. Microwave plasma reactor
JP2010525534A (en) * 2007-04-27 2010-07-22 フォルシュングスフェアブント ベルリン エー ファウ Electrode for plasma generator
JP2011228475A (en) * 2010-04-20 2011-11-10 Hitachi High-Technologies Corp Plasma processing apparatus employing dense slot transmissive electrode body
JPWO2015098672A1 (en) * 2013-12-26 2017-03-23 住友化学株式会社 Laminated film and flexible electronic device

Similar Documents

Publication Publication Date Title
US4910041A (en) Film formation process
TWI554634B (en) Ultra high selectivity ashable hard mask film
JP3693388B2 (en) Electrostatic chuck for magnetic flux processing
JP3384795B2 (en) Plasma process equipment
TWI364792B (en)
CN1118090C (en) Method and device for plasma treatment
TWI557794B (en) Etching method and etching device
US8889225B2 (en) Chemical vapor deposition of fluorocarbon polymers
TW200401043A (en) Dielectric-coated electrode, plasma discharge treatment and method for forming thin film
Tatsumi et al. Mechanism of radical control in capacitive RF plasma for ULSI processing
TW201127221A (en) Plasma processing apparatus and plasma processing method
JP5317162B2 (en) Plasma apparatus, plasma processing apparatus and plasma processing method
JP2002275635A (en) Process and apparatus for microwave plasma treatment
JPH01109699A (en) Plasma processing device
Park et al. Surface modification of tetrafluoroethylene–hexafluoropropylene (FEP) copolymer by remote H2, N2, O2, and Ar plasmas
WO2004086483A1 (en) Plasma film-forming method and plasma film-forming apparatus
KR20000075467A (en) Plasma etching using polycarbonate etch mask
JPH1112735A (en) Production of diamond-like thin carbon film
JPH03241739A (en) Atmospheric pressure plasma reaction method
JP3455610B2 (en) Method and apparatus for modifying porous body
JP3042208B2 (en) Microwave plasma processing equipment
Smith et al. Use of polymethylmethacrylate as an initial pattern transfer layer in fluorine-and chlorine-based reactive-ion etching
JPS6196732A (en) Manufacture of device
JP3445657B2 (en) ECR plasma etching method for diamond thin film
WO2024024817A1 (en) Microwave plasma generation device, microwave plasma processing device, and microwave plasma processing method