JPH01109627A - Magnet relay driving method - Google Patents

Magnet relay driving method

Info

Publication number
JPH01109627A
JPH01109627A JP26846487A JP26846487A JPH01109627A JP H01109627 A JPH01109627 A JP H01109627A JP 26846487 A JP26846487 A JP 26846487A JP 26846487 A JP26846487 A JP 26846487A JP H01109627 A JPH01109627 A JP H01109627A
Authority
JP
Japan
Prior art keywords
coil
resistance
resistance value
relay
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26846487A
Other languages
Japanese (ja)
Inventor
Seiji Tada
多田 清二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26846487A priority Critical patent/JPH01109627A/en
Publication of JPH01109627A publication Critical patent/JPH01109627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Relay Circuits (AREA)

Abstract

PURPOSE:To prevent the consumption of contacts and the generation ot a poor adhesion by measuring the variation of resistance value of a magnet relay coil to predict the temperature scope of the coil, and controlling the driving timing of the magnet relay with the predicted value. CONSTITUTION:The resistance value of a coil 3 increases about 12% as the coil temperature rises 30 deg.C. Therefore, by making the resistance value of the coil 3 when the coil temperature is 30 deg.C as r30OMEGA, and the resistance value of the resistance R1 as r1OMEGA, the resistance r2 of the standard resistance R2 is selected as r1+r30OMEGA, and the resistance r3 of the standard resistance R3 is selected as r1+1.12.r30OMEGA. As a result, by comparing the potentials fed through the resistances R1 to R3 in a comparator 6, the variation of resistance value of the coil 3 can be detected. In a zero cross control circuit 7, the operation time to the coil temperature is stored beforehand, and a zero cross control signal 13 of the relay operation timing is set and output by the coil resistance data 11 from the comparator 6 and the zero cross phase signal 12 of an AC power source 4. A driving circuit 8 receives the signal 13 and outputs a coil driving signal 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマグネットリレー駆動方式に関し、特に交流電
源負荷を開閉制御する場合にマグネットリレーの接点開
閉タイミングを交流電源のゼロクロス近傍に設定するマ
グネット駆動方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic relay drive system, and in particular, a magnetic drive that sets the contact opening/closing timing of a magnetic relay near the zero cross of an AC power supply when controlling the opening/closing of an AC power supply load. Regarding the method.

〔従来の技術〕[Conventional technology]

一般に、この種のマグネットリレー駆動方式に用いるリ
レー駆動回路としては、マグネットリレーのコイル駆動
用のトランジスタのエミッタとコレクタ間にダイオード
を接続し、復旧時間のばらつきを小さくするとともに、
交流電源負荷のゼロクロス点近傍で接点を開閉するよう
にしたものが用いられていた。
Generally, the relay drive circuit used in this type of magnetic relay drive system connects a diode between the emitter and collector of the transistor for driving the coil of the magnetic relay to reduce variations in recovery time.
A device in which the contacts were opened and closed near the zero-crossing point of the AC power supply load was used.

通常、大電力を遮断あるいは投入すると、リレー接点開
閉時の火花放電によって、ノイズが発生し、リレーの接
点損耗に伴なうリレー内部の汚染により絶縁抵抗が低下
し、接点の溶着不良を発生しやすいために、ノイズ防止
対策を要しがっリレーが大型化する問題がある。
Normally, when a large amount of power is cut off or turned on, noise is generated by spark discharge when the relay contacts open and close, and insulation resistance decreases due to contamination inside the relay due to contact wear and tear, resulting in poor welding of the contacts. Because of this, there is a problem that noise prevention measures are required and the size of the relay increases.

そのため、従来のリレー駆動回路は、第4図に示すよう
に、コイル駆動用のトランジスタQ2のエミッタとコレ
クタ間にリレー駆動定格電圧の1.5倍以上のツェナー
電圧を有するツェナーダイオードD2を並列に接続する
ことによって、マグネットリレーの復旧時間のばらつき
を抑制しかつトランジスタへ過電圧が印加されるのを防
止するとともに、接点開閉タイミングを交流電源負荷の
ゼロクロス点近傍に設定して開閉動作を行なわせている
Therefore, in the conventional relay drive circuit, as shown in Fig. 4, a Zener diode D2 having a Zener voltage of 1.5 times or more than the relay drive rated voltage is connected in parallel between the emitter and collector of the coil drive transistor Q2. By connecting it, it is possible to suppress variations in the recovery time of the magnetic relay and prevent overvoltage from being applied to the transistor, and also to set the contact opening/closing timing near the zero-crossing point of the AC power supply load to perform the opening/closing operation. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のマグネットリレー駆動方式は、マグネッ
トコイルの温度変化に対応する抵抗値変化による動作時
間の変動に対する保償がなされていないので、周囲温度
の変動幅が大きい使用条件では開閉タイミングがゼロク
ロス近傍から外れるという欠点がある。
The conventional magnetic relay drive method described above does not guarantee against fluctuations in operating time due to changes in resistance value that correspond to changes in temperature of the magnetic coil, so under operating conditions where the ambient temperature fluctuates widely, the opening/closing timing may be close to the zero cross. The disadvantage is that it deviates from the

〔問題点を解決するための手段〕[Means for solving problems]

本発明のマグネットリレー駆動方式は、交流電源負荷を
開閉するマグネットリレーのコイルの温度変化に対応す
る前記コイルの抵抗値変化による前記マグネットリレー
の動作時間の変化量を予め格納し、前記マグネットリレ
ーの駆動用電源に対して前記コイルに直列に接続した抵
抗と並列に接続した前記コイルの温度変化に対応する抵
抗値の変化分を加算した異なる抵抗値の少くとも2個の
基準抵抗とからの電位を比較し、該比較結果に基づき前
記コイルの温度を検出して前記動作時間の変化量から前
記マグネットリレーの動作時間を設定し、該設定された
動作時間に合せて前記コイルの駆動電源を制御して前記
マグネットリレーの接点を開閉するように構成される。
The magnetic relay driving method of the present invention stores in advance the amount of change in the operating time of the magnetic relay due to a change in the resistance value of the coil corresponding to the temperature change of the coil of the magnetic relay that opens and closes an AC power supply load, and A potential from a resistor connected in series to the coil and at least two reference resistors having different resistance values, which are obtained by adding a change in resistance value corresponding to a temperature change of the coil connected in parallel to the driving power source. , detect the temperature of the coil based on the comparison result, set the operating time of the magnetic relay from the amount of change in the operating time, and control the driving power source of the coil in accordance with the set operating time. The magnetic relay is configured to open and close the contacts of the magnetic relay.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例に用いるリレー駆動回路の回
路図である。
FIG. 1 is a circuit diagram of a relay drive circuit used in one embodiment of the present invention.

第1図に示すように、負荷5に電力を供給する交流電源
4を開閉する接点2とコイル3とを有するマグネットリ
レー1と、電圧■のリレー駆動用電源に接続されるコイ
ル3のリレー駆動用電源側の一端に一端が接続される2
個の基準抵抗R2+R3と、コイル3の他端に一端が接
続される抵抗R,と、抵抗R1及び基準抵抗R2+ R
Sの他端にそれぞれの入力端子が接続される比較器6と
、比較器6の出力が入力されるゼロクロス制御回路7と
、ゼロクロス制御回路7の出力が入力される駆動回路8
と、駆動回路8がらの出力信号でコイル3に対する駆動
電流の制御を行うトランジスタQ1と、トランジスタQ
lのエミッタ、コレクタ間に並列接続されるツェナーダ
イオードDlとを含む。ここで、ツェナーダイオードD
1はコイル3の逆起電力によってトランジスタQtが破
壊されることを防止するものである。
As shown in FIG. 1, a magnetic relay 1 has contacts 2 and a coil 3 that open and close an AC power supply 4 that supplies power to a load 5, and a relay drive of a coil 3 connected to a relay drive power supply of voltage ■. One end is connected to one end of the power supply side for 2
a reference resistor R2+R3, a resistor R whose one end is connected to the other end of the coil 3, a resistor R1 and a reference resistor R2+R
A comparator 6 whose respective input terminals are connected to the other end of S, a zero-cross control circuit 7 to which the output of the comparator 6 is input, and a drive circuit 8 to which the output of the zero-cross control circuit 7 is input.
, a transistor Q1 that controls the drive current to the coil 3 using an output signal from the drive circuit 8, and a transistor Q
A Zener diode Dl is connected in parallel between the emitter and collector of the zener diode Dl. Here, Zener diode D
1 prevents the transistor Qt from being destroyed by the back electromotive force of the coil 3.

第2図は第1図のマグネットリレーの周囲温度変化に対
する動作時間変化率を示す特性図である。
FIG. 2 is a characteristic diagram showing the rate of change in operating time of the magnetic relay shown in FIG. 1 with respect to changes in ambient temperature.

第2図に示すように、周囲温度の変化に対しマグネット
リレー1(第1図参照)の動作時間が変化する場合、コ
イル3の温度は周囲温度にコイル発熱による温度上昇を
加算した値であり、コイル温度はコイル3の抵抗値から
推定することができることから、コイル3の抵抗値の変
化を検出して動作時間の変化量を予測することができる
As shown in Figure 2, when the operating time of magnetic relay 1 (see Figure 1) changes due to changes in ambient temperature, the temperature of coil 3 is the sum of the ambient temperature and the temperature rise due to coil heat generation. Since the coil temperature can be estimated from the resistance value of the coil 3, it is possible to predict the amount of change in the operating time by detecting a change in the resistance value of the coil 3.

いま、コイル3の温度が0〜90’Cの範囲にあるとす
る。コイル3の抵抗値はコイル温度が30℃上昇するご
とに約12%増加するので、コイル温度が30℃のとき
のコイル3の抵抗値をr30Ωとし抵抗R1の抵抗値を
I”lΩとしたとき、基準抵抗R2の抵抗r2を’rl
+r31]JΩに選定し、基準抵抗R3の抵抗r3を「
r1十1.12・r3oJΩに選定する。
Assume now that the temperature of the coil 3 is in the range of 0 to 90'C. The resistance value of coil 3 increases by approximately 12% every time the coil temperature rises by 30°C, so if the resistance value of coil 3 when the coil temperature is 30°C is r30Ω, and the resistance value of resistor R1 is I”lΩ. , the resistance r2 of the reference resistance R2 is 'rl
+r31] JΩ, and the resistance r3 of the reference resistor R3 is
Select r11.12・r3oJΩ.

従って、抵抗R1と基準抵抗R2,R3を介して供給さ
れるリレー駆動電源からの電位を比較器6で比較するこ
とにより、コイル3の抵抗値r30の変化、即ち、コイ
ル3の温度が30℃未満が、30〜60℃の範囲が、6
0’Cを超しているがを検出できる。
Therefore, by comparing the potential from the relay driving power supply supplied via the resistor R1 and the reference resistors R2 and R3 with the comparator 6, the change in the resistance value r30 of the coil 3, that is, the temperature of the coil 3 is determined by 30°C. less than 30~60℃ is 6
It is possible to detect temperatures exceeding 0'C.

次に、第3図は第1図のリレー駆動回路の動作を説明す
るための各信号の波形図である。以下に、第3図を参照
して第1図のリレー駆動回路の動作について説明する。
Next, FIG. 3 is a waveform diagram of each signal for explaining the operation of the relay drive circuit of FIG. 1. The operation of the relay drive circuit shown in FIG. 1 will be explained below with reference to FIG.

比較器6は、上述したように、コイル3の抵抗値を示す
コイル抵抗データ11を出力する。
As described above, the comparator 6 outputs the coil resistance data 11 indicating the resistance value of the coil 3.

ゼロクロス制御回路7には、予めコイル温度が30℃未
満のときの動作時間と、30〜60℃の範囲内のときの
動作時間と、60℃を超したとき、の動作時間とが格納
されていて、別に供給される交流電源4のゼロクロス位
相信号12とコイル抵抗データ11から選定された上記
の3種の動作時間のうちの一つとからリレー動作タイミ
ングを設定したゼロクロス制御信号13を出力する。
The zero cross control circuit 7 stores in advance the operating time when the coil temperature is less than 30°C, the operating time when it is within the range of 30 to 60°C, and the operating time when it exceeds 60°C. Then, it outputs a zero-crossing control signal 13 in which the relay operation timing is set based on the zero-crossing phase signal 12 of the AC power supply 4 supplied separately and one of the three types of operating times mentioned above selected from the coil resistance data 11.

駆動回路8はゼロクロス制御信号13を受けて別に入力
される負荷5を制御するための負荷制御信号14と同期
したコイル駆動信号15を出力し、トランジスタQlの
導通及び非導通を制御する。トランジスタQlが導通状
態となることにより、コイル3に駆動電流が流れて接点
2が閉じ、非導通状態となることにより接点2が開く。
The drive circuit 8 receives the zero-cross control signal 13 and outputs a coil drive signal 15 synchronized with a separately input load control signal 14 for controlling the load 5, thereby controlling conduction and non-conduction of the transistor Ql. When the transistor Ql becomes conductive, a drive current flows through the coil 3, closing the contact 2, and when the transistor Ql becomes non-conductive, the contact 2 opens.

このように、交流電源4のゼロクロス点近傍に開閉タイ
ミングを設定することにより、接点が投入又は遮断する
電力を小さくできる。
In this way, by setting the opening/closing timing near the zero-crossing point of the AC power source 4, it is possible to reduce the power that the contacts turn on or cut off.

前述した第2図に示すように、マグネットリレー1の周
囲温度変化90°Cに対する動作時間変化率は±12%
であるのに対し、本実施例では±5%に抑制することが
でき、従って、動作時間が平均10m5のときは動作時
間の変動を±1.2msから±0.5msに低減できる
As shown in Fig. 2 mentioned above, the operating time change rate of the magnetic relay 1 with respect to an ambient temperature change of 90°C is ±12%.
On the other hand, in this embodiment, it can be suppressed to ±5%, and therefore, when the average operating time is 10 m5, the variation in operating time can be reduced from ±1.2 ms to ±0.5 ms.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、マグネットリレーのコイ
ルの抵抗値の変化を測定してコイルの温度範囲を予測し
、その予測から動作時間を設定してマグネットリレーの
駆動タイミングを制御することにより、接点を交流電源
のゼロクロス位相近傍において動作させることができる
ので、接点負荷を小さくすることができ、従って、接点
の損耗及び溶着不良の発生を防止してマグネットリレー
の寿命を長くできるという効果がある。又、接点動作時
の電気的雑音を低減できるという効果がある。
As explained above, the present invention measures the change in the resistance value of the coil of a magnetic relay, predicts the temperature range of the coil, sets the operating time based on the prediction, and controls the drive timing of the magnetic relay. Since the contacts can be operated near the zero-crossing phase of the AC power supply, the contact load can be reduced, which has the effect of preventing contact wear and welding defects and extending the life of the magnetic relay. . Further, it has the effect of reducing electrical noise during contact operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いるリレー駆動回路の回
路図、第2図は第1図のマグネットリレーの周囲温度変
化に対する動作時間変化率を示す特性図、第3図は第1
図のリレー駆動回路の動作を説明するための各信号の波
形図、第4図は従来のマグネットリレー駆動方式の一例
に用いるリレー駆動回路の回路図である。 1・・・マグネットリレー、2・・・接点、3・・・コ
イル、4・・・交流電源、5・・・負荷、6・・・比較
器、7・・・ゼロクロス制御回路、8・・・駆動回路、
11・・・コイル抵抗データ、12・・・ゼロクロス位
相信号、13・・・ゼロクロス制御信号、14・・・負
荷制御信号、15・・・コイル駆動信号、20・・・駆
動回路、DI。 D2 、D3・・・ツェナダイオード、Qr 、Q2・
・・トランジスタ、R1・・・抵抗、R2、Ft、・・
・基準抵抗。
Fig. 1 is a circuit diagram of a relay drive circuit used in an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the operating time change rate with respect to ambient temperature change of the magnetic relay of Fig.
FIG. 4 is a waveform diagram of each signal for explaining the operation of the relay drive circuit shown in the figure, and FIG. 4 is a circuit diagram of a relay drive circuit used in an example of a conventional magnet relay drive system. DESCRIPTION OF SYMBOLS 1... Magnetic relay, 2... Contact, 3... Coil, 4... AC power supply, 5... Load, 6... Comparator, 7... Zero cross control circuit, 8...・Drive circuit,
11... Coil resistance data, 12... Zero cross phase signal, 13... Zero cross control signal, 14... Load control signal, 15... Coil drive signal, 20... Drive circuit, DI. D2, D3... Zener diode, Qr, Q2.
...Transistor, R1...Resistor, R2, Ft,...
・Reference resistance.

Claims (1)

【特許請求の範囲】[Claims] 交流電源負荷を開閉するマグネットリレーのコイルの温
度変化に対応する前記コイルの抵抗値変化による前記マ
グネットリレーの動作時間の変化量を予め格納し、前記
マグネットリレーの駆動用電源に対して前記コイルに直
列に接続した抵抗と並列に接続した前記コイルの温度変
化に対応する抵抗値の変化分を加算した異なる抵抗値の
少くとも2個の基準抵抗とからの電位を比較し、該比較
結果に基づき前記コイルの温度を検出して前記動作時間
の変化量から前記マグネットリレーの動作時間を設定し
、該設定された動作時間に合せて前記コイルの駆動電源
を制御して前記マグネットリレーの接点を開閉すること
を特徴とするマグネットリレー駆動方式。
The amount of change in the operating time of the magnetic relay due to the change in resistance value of the coil corresponding to the temperature change of the coil of the magnetic relay that opens and closes the AC power supply load is stored in advance, and Compare the potentials from at least two reference resistors with different resistance values, which are obtained by adding the change in resistance value corresponding to the temperature change of the resistor connected in series and the coil connected in parallel, and based on the comparison result. Detecting the temperature of the coil, setting the operating time of the magnetic relay based on the amount of change in the operating time, and controlling the driving power source of the coil in accordance with the set operating time to open and close contacts of the magnetic relay. A magnetic relay drive system that is characterized by:
JP26846487A 1987-10-23 1987-10-23 Magnet relay driving method Pending JPH01109627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26846487A JPH01109627A (en) 1987-10-23 1987-10-23 Magnet relay driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26846487A JPH01109627A (en) 1987-10-23 1987-10-23 Magnet relay driving method

Publications (1)

Publication Number Publication Date
JPH01109627A true JPH01109627A (en) 1989-04-26

Family

ID=17458866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26846487A Pending JPH01109627A (en) 1987-10-23 1987-10-23 Magnet relay driving method

Country Status (1)

Country Link
JP (1) JPH01109627A (en)

Similar Documents

Publication Publication Date Title
US6768615B2 (en) Spark elimination circuit for controlling relay contacts
US6233132B1 (en) Zero cross relay actuation method and system implementing same
KR20010014983A (en) Power suply apparatus, method and electronic apparatus
US8487570B2 (en) Method and device for operating an electric drive with the aid of a phase angle control
JPH01109627A (en) Magnet relay driving method
JP2793909B2 (en) Input / output module with combination input / output points
US20160149533A1 (en) Detection Of A Wire-Break Fault During The Operation Of A Brushless D.C. Motor
JP2003189598A (en) Switching power unit
US20180123471A1 (en) Filter Circuit for Eliminating Inrush Current, DC Coil Control Circuit, and Electromagnetic Contactor
JPH09325058A (en) Electromagnetic flowmeter
JPH05174964A (en) Microwave oven
JP3792314B2 (en) Power supply circuit for electromagnet excitation coil
JPH033325B2 (en)
JPS6226729A (en) Relay driver
US10924050B2 (en) Motor control circuit and motor controller
JPH0716208U (en) Electronic load device
JPH0345846B2 (en)
US20200075212A1 (en) Coil actuator for low and medium voltage applications
JPS617521A (en) Relay drive device
JPH073334Y2 (en) Motor rotation stop judgment circuit
JP3078080B2 (en) Arc welding machine
JP2022090846A (en) Inrush current limiting circuit for motor driving power source circuit and inrush current limiting method
CN114930484A (en) Deposition detection device and deposition detection method
JPS6027916A (en) Power supply device
JPS6394520A (en) Relay driver