JPH01109244A - Automatic gas measuring instrument - Google Patents

Automatic gas measuring instrument

Info

Publication number
JPH01109244A
JPH01109244A JP62263961A JP26396187A JPH01109244A JP H01109244 A JPH01109244 A JP H01109244A JP 62263961 A JP62263961 A JP 62263961A JP 26396187 A JP26396187 A JP 26396187A JP H01109244 A JPH01109244 A JP H01109244A
Authority
JP
Japan
Prior art keywords
gas
measured
line
measurement cell
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263961A
Other languages
Japanese (ja)
Inventor
Hideto Yoshida
秀人 吉田
Shigeru Morikawa
茂 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP62263961A priority Critical patent/JPH01109244A/en
Publication of JPH01109244A publication Critical patent/JPH01109244A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N21/3518Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To take a high-sensitivity gas analysis automatically by reducing the pressure of gas to be measured as exhaust gas, etc., to pressure reduction conditions suitable for the analysis. CONSTITUTION:The gas to be measured from an intake side line 1a flows in a collecting pipe 3 from a line 4 through ports P1 and P2 and is collected properly. Then a measurement cell 6 is evacuated and then a gas analyzing device 11 projects laser light 12 of various wavelengths from a projection part 11a and detects reflected light by a detection part 11b to take a reference measurement. Then a solenoid valve 8 is closed and a switching means 2 is switched to supply the gas to be measured to the measurement cell 6 from the line 4 through ports P2 and P3 and a line 7. Further, the laser light 12 is projected from the projection part 11a of the analyzing device 11, its reflected light is detected 11b and absorbance of each wavelength is found together with data on the reference measurement to detect gas component and concentration. Said operation is controlled by a proper computer to analyzer the gas automatically with high sensitivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ボイラ排ガスなどの被測定ガスの各種成分を
自動的にサンプリングしながら分析測定するための自動
ガス測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic gas measuring device for automatically sampling and analyzing various components of a gas to be measured such as boiler exhaust gas.

[従来の技術] 従来、排ガス中のCOやNOxなど、単体(分子が1種
類の元素からできている)以外の大部分の気体は、その
種類によって特定の波長の光、例えば赤外線レーザー光
を吸収する吸収帯域を有しているので、その測定すべき
ガスに各種波長のレーザー光を照射し、その吸光度を測
定することでガス中の種々の成分や濃度などを測定する
ようにしている。
[Prior Art] Conventionally, most gases other than simple substances (molecules made of one type of element), such as CO and NOx in exhaust gas, have been treated with light of a specific wavelength, such as infrared laser light, depending on the type of gas. Since it has an absorption band, various components and concentrations in the gas can be measured by irradiating the gas to be measured with laser light of various wavelengths and measuring the absorbance.

従来、このガス分析装置を用いる場合、煙道やダクト内
を流れる排ガス中に一方からレーザー光を照射し、他方
でその透過光を検出して、その吸光度から各種成分を分
析するようにしている。
Conventionally, when using this gas analyzer, a laser beam is irradiated from one side into the exhaust gas flowing in a flue or duct, the transmitted light is detected from the other side, and various components are analyzed based on its absorbance. .

[発明が解決しようとする問題点] しかしながら、ダクト内を流れる排ガス中の各種成分は
一様に分布しておらず測定個所で変化しやすい、また排
ガスは略大気圧に近く、このため吸収スペクトルの線幅
は圧力の影響を受けやすく吸収帯域の幅が広がり測定感
度が悪い問題がある。
[Problems to be solved by the invention] However, the various components in the exhaust gas flowing inside the duct are not uniformly distributed and tend to change depending on the measurement location, and the exhaust gas is close to atmospheric pressure, so the absorption spectrum The line width of the line width is easily affected by pressure, and the width of the absorption band widens, resulting in poor measurement sensitivity.

本発明は上記事情を考慮してなされたもので、排ガスな
どの被測定ガスを分析に適した減圧条件で高感度にガス
分析が行える自動ガス測定装置を提供することを目的と
する。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an automatic gas measuring device that can perform gas analysis with high sensitivity under reduced pressure conditions suitable for analysis of a gas to be measured such as exhaust gas.

[問題点を解決するための手段及び作用]本発明は、上
記目的を達成するために、サンプルガスラインからの被
測定ガスを捕集するための捕集管と、その捕集管内の被
測定ガスを分析すべく導入する測定セルと、該測定セル
内を真空にするための真空ポンプと、測定セル内の被測
定ガスにレーザー光を照射すると共に吸光度を検出して
ガス分析を行う分析装置と、上記サンプルガスラインか
らの被測定ガスを捕集管側に連通させると共に捕集管と
測定セル間を閉じ、またサンプルガスラインと捕集管と
の間を閉じると共に捕集管と測定セルを連通ずる切換手
段とを備えたもので、切換手段で、サンプルガスライン
からの被測定ガスを捕集管に導入して捕集し、その間は
、測定セル内を真空ポンプで真空にすると共に、その測
定セル内にレーザー光を照射してリファレンスの測定を
行い、その後切換手段にて捕集管内の被測定ガスを測定
セル内に導入し、その被測定ガス中の各ガス成分及びそ
の濃度を測定するようにしたものである。
[Means and effects for solving the problems] In order to achieve the above objects, the present invention provides a collection tube for collecting the gas to be measured from the sample gas line, and a gas to be measured in the collection tube. A measurement cell into which gas is introduced for analysis, a vacuum pump to create a vacuum inside the measurement cell, and an analyzer that irradiates the gas to be measured in the measurement cell with laser light and detects absorbance to perform gas analysis. Then, the gas to be measured from the sample gas line is communicated to the collection tube side, and the space between the collection pipe and the measurement cell is closed, and the space between the sample gas line and the collection pipe is closed, and the collection pipe and the measurement cell are closed. The switching means introduces and collects the gas to be measured from the sample gas line into the collection tube, during which time the inside of the measurement cell is evacuated with a vacuum pump and , a reference measurement is performed by irradiating the inside of the measurement cell with a laser beam, and then the gas to be measured in the collection tube is introduced into the measurement cell using the switching means, and each gas component and its concentration in the gas to be measured is measured. It was designed to measure.

[実施例] 以下本発明の好適一実施例を添付図面に基づいて説明す
る。
[Embodiment] A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図、第2図において、1はサンプルガスラインで、
導入側ライン1aと排出側ライン1bからなり、6方向
切換弁などの切換手段2を介して捕集管3に接続される
。このサンプルガスライン1は、排ガスなど被測定ガス
が流れるダクト(図示せず)に接続され、切換手段2を
介して捕集管3内に被測定ガスが導入されるようになっ
ている。
In Figures 1 and 2, 1 is the sample gas line,
It consists of an inlet line 1a and an outlet line 1b, and is connected to a collection pipe 3 via a switching means 2 such as a six-way switching valve. This sample gas line 1 is connected to a duct (not shown) through which a gas to be measured such as exhaust gas flows, and the gas to be measured is introduced into a collection tube 3 via a switching means 2 .

切換手段2は、6ボートP1〜6を有し、第1゜6ポー
トP+ 、Paがサンプルガスライン1の導入側ライン
1aと排出側ライン1bに接続され、第2,5ボー)P
2 、PSが夫々ライン4.5を介して捕集管3の両端
に接続され、第3ポートP3が後述する測定セル6にラ
イン7を介して接続され、また、第4ポー)P4は閉と
なっている。
The switching means 2 has 6 boats P1 to 6, the 1st (6th) port P+ and Pa are connected to the inlet line 1a and the outlet line 1b of the sample gas line 1, and the 2nd and 5th ports (P)
2, PS are connected to both ends of the collection tube 3 via lines 4.5, the third port P3 is connected to the measuring cell 6 (described later) via line 7, and the fourth port P4 is closed. It becomes.

この切換手段2は、第1図に示すように、第1ポートP
1と第2ボートP2、第3ポートP3と第4ポートP4
及び第5ボートP5と第6ポートP6とを結び、また切
換により、第2図に示すように、第1ボートP1と第6
ボートP6、第2ボートP2と第3ポートP3及び第4
ボートP4と第5ボートP5とを結ぶようになっている
This switching means 2, as shown in FIG.
1 and 2nd boat P2, 3rd port P3 and 4th port P4
and connects the fifth boat P5 and the sixth port P6, and by switching, the first boat P1 and the sixth port P6 are connected as shown in FIG.
Boat P6, second boat P2, third port P3 and fourth port
It connects boat P4 and fifth boat P5.

測定セル6は、電磁弁8を介して真空ポンプ9に接続さ
れ、その真空ポンプ9にて、セル6内が真空にされるよ
うになっている。また、測定セル6には真空度を測定す
る圧力計10が接続される。
The measurement cell 6 is connected to a vacuum pump 9 via a solenoid valve 8, and the inside of the cell 6 is evacuated by the vacuum pump 9. Further, a pressure gauge 10 for measuring the degree of vacuum is connected to the measurement cell 6.

この測定セル6には、導入された被測定ガスの成分や濃
度を測定するための分析装置11が設けられる。この分
析装置11は、半導体レーザーなど、検出するガス成分
に応じた波長のレーザー光12を測定セル6を通して照
射する投光部11aと検出部11bとを有し、投光部1
1aからのレーザー光12が測定セル6を透過し、ミラ
ー13で反転されて再度測定セル6を通って検出部11
bで検出されるようになっている。
This measurement cell 6 is provided with an analyzer 11 for measuring the components and concentration of the introduced gas to be measured. This analyzer 11 includes a light projecting section 11a and a detecting section 11b that irradiate laser light 12, such as a semiconductor laser, with a wavelength corresponding to the gas component to be detected through the measurement cell 6.
The laser beam 12 from 1a passes through the measurement cell 6, is reversed by the mirror 13, passes through the measurement cell 6 again, and reaches the detection unit 11.
b.

また、14は測定セル6に接続したリファレンスガス導
入用電磁弁で、適宜測定すべきリファレンスガスを測定
セル6内に導入して、その吸収スペクトルを測定する。
Reference numeral 14 denotes a reference gas introduction electromagnetic valve connected to the measurement cell 6, which appropriately introduces a reference gas to be measured into the measurement cell 6 and measures its absorption spectrum.

次に、被測定ガスを測定する場合を説明する。Next, a case of measuring a gas to be measured will be explained.

先ず、切換手段2は、第1図に示すような、各ポート2
1〜6を結ぶ位置にされ、この状態で、サンプルガスラ
イン1.の導入側ライン1aからの被測定ガスは、ボー
トP 1+ P 2を通り、ライン4から捕集管3に流
れ、さらにライン5からボー)PS 、Paを介して排
出側ライン1bに流れる。
First, the switching means 2 switches each port 2 as shown in FIG.
1 to 6, and in this state, connect the sample gas lines 1 to 6. The gas to be measured from the inlet line 1a passes through the boat P1+P2, flows from the line 4 to the collection tube 3, and further flows from the line 5 to the discharge side line 1b via the boats PS and Pa.

この状態で、捕集管3内には、適宜被測定ガスが捕集さ
れた状態にある。
In this state, the gas to be measured is appropriately collected in the collection tube 3.

この状態で、真空ポンプ9により、測定セル6及びライ
ン7が真空にされる。この測定セル6内が真空にされた
のち、ガス分析装!11はその投光部11aから各種波
長のレーザー光12を順次 □照射し検出部11bで、
その反射光を検出してすファレンス測定を行う。
In this state, the measurement cell 6 and line 7 are evacuated by the vacuum pump 9. After the inside of this measurement cell 6 is evacuated, the gas analyzer! 11 sequentially irradiates laser beams 12 of various wavelengths from the light projecting part 11a and detecting part 11b,
The reflected light is detected and a reference measurement is performed.

このリファレンス測定を終えたのち、電磁弁8を閉じる
と共に、切換手段2を第2図に示すように切換える。切
換により、測定セル6内は真空なため、捕集管3内に捕
集された被測定ガスが、ライン4からポートP 2 !
 P 3及びライン7を介して測定セル6内に導入され
る。この後、分析装置11の投光部11aから上述のよ
うにレーザー光12を照射し、検出部11bで、その反
射光を検出し、上述のリファレンス測定のデータと共に
各波長における吸光度を求め、ガス成分及びその濃度を
検出する。
After completing this reference measurement, the solenoid valve 8 is closed and the switching means 2 is switched as shown in FIG. Due to the switching, since the inside of the measurement cell 6 is a vacuum, the gas to be measured collected in the collection tube 3 is transferred from the line 4 to the port P 2 !
P 3 and into the measuring cell 6 via line 7 . After this, the laser beam 12 is irradiated as described above from the light projecting part 11a of the analyzer 11, and the reflected light is detected by the detecting part 11b.The absorbance at each wavelength is determined together with the data of the reference measurement described above. Detect components and their concentrations.

このガス分析は20TOrr以下の減圧条件で行えるた
め高感度の偏調ガス分析が行なえる。
Since this gas analysis can be performed under reduced pressure conditions of 20 TOrr or less, highly sensitive biased gas analysis can be performed.

また、上述した操作を適宜コンピュータにより切換手段
2の切換、測定セル6内への被測定ガス導入、排出、リ
ファレンス測定及び測定ガスの測定を自動的にかつ連続
して行うことが可能となる。
Moreover, the above-mentioned operations can be performed automatically and continuously by a computer, such as switching the switching means 2, introducing and discharging the gas to be measured into the measurement cell 6, and measuring the reference measurement and the measurement gas.

[発明の効果] 以上説明してきたことから明らかなように、本発明によ
れば次のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

(1)  測定セル内を真空にし、捕集管内の被測定ガ
スを減圧状態で導入すると共にガス分析を行うので、精
度のよいガス分析が行える。
(1) Since the inside of the measurement cell is evacuated and the gas to be measured in the collection tube is introduced under reduced pressure while gas analysis is performed, highly accurate gas analysis can be performed.

Q) サンプルガスラインから捕集管及び捕集管から測
定セルへ被測定ガスを流す切換手段を設けたので、ガス
のサンプリングとその測定を交互にかつ能率よく行なう
ことができる。
Q) Since a switching means is provided to flow the gas to be measured from the sample gas line to the collection tube and from the collection tube to the measurement cell, gas sampling and measurement can be performed alternately and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例を示す図で、第1図
は被測定ガスを捕集している状態を示し、第2図に被測
定ガスをガス分析している状態を示す。 図中、1はサンプルガスライン、2は切換手段、3は捕
集管、6は測定セル、9は真空ボン1.11はガス分析
装置である。
Figures 1 and 2 are diagrams showing an embodiment of the present invention. Figure 1 shows a state in which a gas to be measured is being collected, and Figure 2 shows a state in which a gas to be measured is being analyzed. shows. In the figure, 1 is a sample gas line, 2 is a switching means, 3 is a collection tube, 6 is a measurement cell, 9 is a vacuum bomb 1, and 11 is a gas analyzer.

Claims (1)

【特許請求の範囲】[Claims] サンプルガスラインからの被測定ガスを捕集するための
捕集管と、その捕集管内の被測定ガスを分析すべく導入
する測定セルと、該測定セル内を真空にするための真空
ポンプと、測定セル内の被測定ガスにレーザー光を照射
すると共に吸光度を検出してガス分析を行う分析装置と
、上記サンプルガスラインからの被測定ガスを捕集管側
に連通させると共に捕集管と測定セル間を閉じ、またサ
ンプルガスラインと捕集管との間を閉じると共に捕集管
と測定セルを連通する切換手段とを備えたことを特徴と
する自動ガス測定装置。
A collection tube for collecting the gas to be measured from the sample gas line, a measurement cell into which the gas to be measured in the collection tube is introduced for analysis, and a vacuum pump for creating a vacuum inside the measurement cell. , an analyzer that irradiates the gas to be measured in the measurement cell with a laser beam and detects the absorbance to perform gas analysis; and an analyzer that communicates the gas to be measured from the sample gas line to the collection tube side, and An automatic gas measuring device characterized by comprising a switching means that closes between the measurement cells, closes between the sample gas line and the collection tube, and communicates the collection tube and the measurement cell.
JP62263961A 1987-10-21 1987-10-21 Automatic gas measuring instrument Pending JPH01109244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263961A JPH01109244A (en) 1987-10-21 1987-10-21 Automatic gas measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263961A JPH01109244A (en) 1987-10-21 1987-10-21 Automatic gas measuring instrument

Publications (1)

Publication Number Publication Date
JPH01109244A true JPH01109244A (en) 1989-04-26

Family

ID=17396641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263961A Pending JPH01109244A (en) 1987-10-21 1987-10-21 Automatic gas measuring instrument

Country Status (1)

Country Link
JP (1) JPH01109244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703365A (en) * 1994-03-25 1997-12-30 Nippon Sanso Corporation Infrared spectroscopic analysis method for gases and device employing the method therein
JP2011149718A (en) * 2010-01-19 2011-08-04 Shimadzu Corp Gas analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703365A (en) * 1994-03-25 1997-12-30 Nippon Sanso Corporation Infrared spectroscopic analysis method for gases and device employing the method therein
JP2011149718A (en) * 2010-01-19 2011-08-04 Shimadzu Corp Gas analyzer

Similar Documents

Publication Publication Date Title
US5279146A (en) Method and apparatus for real time measurement of particulate matter in combustion gases
US5693945A (en) Gas analyzer
JP2006275801A (en) Component analyzer of exhaust gas
CN112697747A (en) Device and method for detecting decomposer, moisture and purity in sulfur hexafluoride gas
US5894128A (en) Infrared type gas analyzer
CA1140772A (en) Absorption cell gas monitor
EP0414446A2 (en) Gas analysis
JP4158314B2 (en) Isotope gas measuring device
JP2006284508A (en) On-vehicle exhaust gas analyzer
JPH01109244A (en) Automatic gas measuring instrument
EP1710569A1 (en) Gas analyzer and method for controlling hydrogen flame ionization detector
JP3299089B2 (en) Gas analyzer
JPH01109243A (en) Gas analyzing and measuring instrument
CN113865647B (en) Carbon emission monitoring system based on CEMS
JPH09178655A (en) Infrared gas analyzer
CN209606313U (en) The device of sulfur dioxide and nitrogen dioxide in surrounding air is detected simultaneously
JP6168172B2 (en) Infrared gas analyzer
CN219552237U (en) Gas absorption tank and carbon dioxide gas analyzer with same
JPH10281975A (en) Coal dust concentration measuring device
JPH0933429A (en) Ozone densitometer
CN109781639A (en) The apparatus and method of sulfur dioxide and nitrogen dioxide in surrounding air are detected simultaneously
EP0064980B1 (en) System and process for measuring the concentration of a gas in a flowing stream of gases
JP3086508B2 (en) Analyzer for unburned hydrocarbons in flue gas
CN221038815U (en) Portable non-methane total hydrocarbon monitor
CN213022857U (en) Gas path structure for gas detection