JPH01108291A - Refrigerant - Google Patents

Refrigerant

Info

Publication number
JPH01108291A
JPH01108291A JP62264699A JP26469987A JPH01108291A JP H01108291 A JPH01108291 A JP H01108291A JP 62264699 A JP62264699 A JP 62264699A JP 26469987 A JP26469987 A JP 26469987A JP H01108291 A JPH01108291 A JP H01108291A
Authority
JP
Japan
Prior art keywords
freon
refrigerant
weight
performance
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62264699A
Other languages
Japanese (ja)
Other versions
JPH0655941B2 (en
Inventor
Koji Tamura
公司 田村
Hiroshi Kashiwagi
柏木 弘
Masahiro Noguchi
真裕 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP62264699A priority Critical patent/JPH0655941B2/en
Publication of JPH01108291A publication Critical patent/JPH01108291A/en
Publication of JPH0655941B2 publication Critical patent/JPH0655941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare a refrigerant which has no significant effect on an ozonosphere and is excellent in the coefficient of performance, by mixing pentafluoroethane with a particular chlorofluorocarbon compd. CONSTITUTION:95-5wt.% pentafluoroethane (A) is mixed with 5-95wt.% at least one chlorofluorocarbon compd. (B) selected from chlorotetrafluoroethane (e.g., 2-chloro-1,1,1,2-tetrafluoroethane), tetrafluoroethane (e.g., 1,1,1,2- tetrafluoroethane), 1-chloro-1,1-difluoroethane, and 1,1-difluoroethane.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍機の動作流体、いわゆる冷媒に関する。[Detailed description of the invention] Industrial applications The present invention relates to a working fluid for a refrigerator, a so-called refrigerant.

従来技術とその問題点 従来、冷媒としては、クロロフルオロ炭化水素、フルオ
ロ炭化水素、これらの共沸組成物並びにその近辺の組成
の組成物が知られている。これらは、フロン又はフロン
系冷媒と称され、現在ジクロロジフルオロメタン(以下
フロン−12という)、クロロジフルオロメタン(以下
フロン−22という)等が主に使用されている。しかし
ながら、近年、大気中に放出された場合ある種のフロン
が成層圏のオゾン層を破壊し、その結果、人類を含む地
球上の生態系に重大な悪影響を及ぼすことが指摘されて
いる。このような指摘は、未だ科学的に実証されている
とは言い難いが、趨勢としては、オゾン層破壊の可能性
の高いフロンについては、国際的な取り決めにより、使
用及び生産を統制する方向にある。統制の対象となるフ
ロンの一種にフロン−12がある。冷凍・空調設備の普
及に伴い、需要が毎年増大しているフロンの使用及び生
産の統制は、居住環境を始めとして、現在の社会機構全
般に与える影響が大きい。従って、冷凍性能、特に成績
係数に優れた冷媒の開発が緊急の課題となっている。オ
ゾン層を破壊するおそれがないフロンとして、ペンタフ
ルオロエタン(フロン−125)が考えられるが、これ
は、成績係数が低いのが欠点である。
BACKGROUND ART Conventionally, as refrigerants, chlorofluorohydrocarbons, fluorohydrocarbons, azeotropic compositions thereof, and compositions in the vicinity thereof have been known. These are called fluorocarbons or fluorocarbon-based refrigerants, and currently dichlorodifluoromethane (hereinafter referred to as Freon-12), chlorodifluoromethane (hereinafter referred to as Freon-22), etc. are mainly used. However, in recent years, it has been pointed out that certain types of fluorocarbons, when released into the atmosphere, destroy the ozone layer in the stratosphere, and as a result, have a serious negative impact on the earth's ecosystem, including humans. Although it is difficult to say that such points have been scientifically proven, there is a trend towards controlling the use and production of fluorocarbons, which have a high possibility of depleting the ozone layer, through international agreements. be. One type of fluorocarbon that is subject to control is fluorocarbon-12. Control of the use and production of fluorocarbons, whose demand is increasing every year with the spread of refrigeration and air conditioning equipment, has a major impact on the living environment and all of today's social institutions. Therefore, the development of refrigerants with excellent refrigeration performance, particularly with excellent coefficient of performance, has become an urgent issue. Pentafluoroethane (Freon-125) can be considered as a fluorocarbon that has no risk of destroying the ozone layer, but its disadvantage is that it has a low coefficient of performance.

ここに、成績係数とは、冷凍能力/圧縮仕事の比で示さ
れるものである。冷凍能力は、被冷却体が奪われる単位
時間当たりの熱量であり、圧縮仕事は、単位時間当たり
の冷凍機運転のための動力の仕事量であるから、成績係
数は、冷媒の効率に相当するものである。
Here, the coefficient of performance is expressed as the ratio of refrigeration capacity/compression work. Refrigeration capacity is the amount of heat taken by the object to be cooled per unit time, and compression work is the amount of power work required to operate the refrigerator per unit time, so the coefficient of performance corresponds to the efficiency of the refrigerant. It is something.

問題点を解決するための手段 本発明者は、成績係数に優れ、且つ大気中に放出された
場合にもオゾン層に及ぼす影響が小さい新たな冷媒を得
るべく、種々研究を重ねてきた。
Means for Solving the Problems The present inventor has conducted various studies in order to obtain a new refrigerant that has an excellent coefficient of performance and has a small effect on the ozone layer even when released into the atmosphere.

その結果、フロン−125に特定のフロン化合物を配合
する場合には、フロン−125よりも優れた成績係数を
発揮することを見出した。
As a result, it has been found that when a specific fluorocarbon compound is blended with Freon-125, a coefficient of performance superior to that of Freon-125 is exhibited.

すなわち、本発明は、(1)ペンタフルオロエタンと(
2)クロロテトラフルオロエタン、テトラフルオロエタ
ン、1−クロロ−1,1−ジフルオロエタン及び1,1
−ジフルオロエタンからなる群から選ばれた少くとも1
種のフロン化合物とからなる冷媒に係る。
That is, the present invention provides (1) pentafluoroethane and (
2) Chlorotetrafluoroethane, tetrafluoroethane, 1-chloro-1,1-difluoroethane and 1,1
- at least one selected from the group consisting of difluoroethane;
It pertains to a refrigerant consisting of various fluorocarbon compounds.

本発明冷媒組成物は、(1)ペンタフルオロエタン95
〜5重量%と(2)クロロテトラフルオロエタン、テト
ラフルオロエタン、1−クロロ−1,1−ジフルオロエ
タン(フロン−142b)及び1,1−ジフルオロエタ
ン(フロン−152a)からなる群から選ばれた少くと
も1種のフロン化合物5〜95重量%とからなることが
好ましい。(1)のフロン−125と(2)のフロン化
合物との配合割合が、このような範囲内にある場合には
、フロン−125単独の場合に比して、成績係数の大幅
な向上が認められる。特に好ましい混合範囲は、フロン
−125とクロロテトラフルオロエタンとからなる冷媒
では、前者80〜5重量%に対し後者20〜95重量%
であり、フロン−125とテトラフルオロエタンとから
なる冷媒では、前者60〜5重量%に対し後者40〜9
5重量%であり、フロン−125と1−クロロ−1,1
−ジフルオロエタンとからなる冷媒では、前者85〜5
重世%に対し後者15〜95重世%であり、フロン−1
25と1,1−ジフルオロエタンとからなる冷媒では、
前者70〜5重全%に対し後者30〜95重量%でタフ
The refrigerant composition of the present invention includes (1) pentafluoroethane 95
~5% by weight and (2) a small amount selected from the group consisting of chlorotetrafluoroethane, tetrafluoroethane, 1-chloro-1,1-difluoroethane (Freon-142b) and 1,1-difluoroethane (Freon-152a). It is preferable that both of them consist of 5 to 95% by weight of one type of fluorocarbon compound. When the blending ratio of (1) Freon-125 and (2) Freon compound is within this range, a significant improvement in the coefficient of performance is observed compared to when Freon-125 is used alone. It will be done. In the case of a refrigerant consisting of Freon-125 and chlorotetrafluoroethane, a particularly preferable mixing range is 80 to 5% by weight of the former and 20 to 95% by weight of the latter.
In a refrigerant consisting of Freon-125 and tetrafluoroethane, the former is 60-5% by weight, while the latter is 40-9% by weight.
5% by weight, Freon-125 and 1-chloro-1,1
- For refrigerants consisting of difluoroethane, the former is 85 to 5
The latter is 15 to 95%, and Freon-1
In the refrigerant consisting of 25 and 1,1-difluoroethane,
The former is 70-5% by weight, while the latter is 30-95% by weight, making it tough.

本発明において使用するクロロテトラフルオロエタンと
しては、2−クロロ−1,1,1,2−テトラフルオロ
エタン(フロン−124)及び1−クロロ−1,1,2
,2−テトラフルオロエタン(フロン−124a)が挙
げられ、テトラフルオロエタンとしては、1.1.1.
2−テトラフルオロエタン(フロン−134a)及び1
,1゜2.2−テトラフルオロエタン(フロン−134
)が挙げられる。フロン−124とフロン−124aと
は、本発明組成物中で同等の効果を発揮するので、相互
に転換又は混用可能であり、またフロン−134aとフ
ロン−134についても同様である。
Chlorotetrafluoroethane used in the present invention includes 2-chloro-1,1,1,2-tetrafluoroethane (Freon-124) and 1-chloro-1,1,2
, 2-tetrafluoroethane (Freon-124a), and examples of the tetrafluoroethane include 1.1.1.
2-tetrafluoroethane (Freon-134a) and 1
,1゜2.2-tetrafluoroethane (Freon-134
). Since Freon-124 and Freon-124a exhibit equivalent effects in the composition of the present invention, they can be exchanged or mixed with each other, and the same applies to Freon-134a and Freon-134.

発明の作用及び効果 本発明の冷媒は、比熱比がフロン−22よりも小さく、
圧縮機の吐出ガス温度がフロン−22よりも低いので、
例えば、ヒートポンプ式冷暖房機のような比較的温度の
高い冷凍サイクル用の媒体としても、好適である。
Functions and Effects of the Invention The refrigerant of the present invention has a specific heat ratio smaller than that of Freon-22,
Since the discharge gas temperature of the compressor is lower than that of Freon-22,
For example, it is suitable as a medium for relatively high temperature refrigeration cycles such as heat pump type air conditioners.

本発明組成物は、非共沸組成物としての特徴を利用する
ことができる。一般に、単一化合物及び共沸組成物では
、蒸発器における蒸発温度は、蒸発が定圧下に行われる
ために、一定であるが、非共沸組成物では、蒸発器入口
で低温となり、蒸発器出口で高温となる。一方、被冷却
流体は、蒸発器での冷媒の流れと向流方向に熱交換する
ように流されるので、冷媒の蒸発温度が一定であっても
、流れに沿って温度勾配を有する。すなわち、蒸発器内
では、冷媒と被冷却流体との温変差は、被冷却流体が進
むにしたがって、小さくなる。本発明による組成物を使
用する場合には、蒸発器内での被冷却流体の温度勾配に
近付けることが可能となり、冷凍の効率、即ち成績係数
を高めることができる。
The composition of the present invention can utilize its characteristics as a non-azeotropic composition. Generally, for single compounds and azeotropic compositions, the evaporation temperature in the evaporator is constant because the evaporation is carried out under constant pressure, but for non-azeotropic compositions, the temperature is low at the evaporator inlet, and the evaporation temperature is constant at the evaporator inlet. It becomes hot at the exit. On the other hand, since the fluid to be cooled is flowed so as to exchange heat in a countercurrent direction to the flow of the refrigerant in the evaporator, there is a temperature gradient along the flow even if the evaporation temperature of the refrigerant is constant. That is, within the evaporator, the temperature difference between the refrigerant and the fluid to be cooled becomes smaller as the fluid to be cooled advances. When using the composition according to the invention, it is possible to approach the temperature gradient of the fluid to be cooled in the evaporator, thereby increasing the efficiency of refrigeration, ie the coefficient of performance.

実施例 以下に実施例及び比較例を示し、本発明の特徴とすると
ころをより一層明らかにする。
EXAMPLES Examples and comparative examples are shown below to further clarify the characteristics of the present invention.

実施例1〜6及び比較例1 フロン−125とフロン−124とを第1表に示す種々
の割合(重量比)で混合し、冷媒とした。
Examples 1 to 6 and Comparative Example 1 Freon-125 and Freon-124 were mixed at various ratios (weight ratios) shown in Table 1 to prepare refrigerants.

1馬力の冷凍機において、凝縮器における冷媒の凝縮開
始温度を50℃、蒸発器入口における冷媒の温度温度を
0℃、蒸発器過熱度を5℃とし、第1表に示す組成の冷
媒を使用して、運転を行った。第1表に最高蒸発温度(
℃)、冷凍能力(kcal/rrf) 、成績係数及び
圧縮機吐出温度(’C)を併記する。
In a 1-horsepower refrigerator, the condensation start temperature of the refrigerant in the condenser is 50°C, the temperature of the refrigerant at the evaporator inlet is 0°C, the degree of superheating of the evaporator is 5°C, and a refrigerant with the composition shown in Table 1 is used. Then I drove. Table 1 shows the maximum evaporation temperature (
℃), refrigerating capacity (kcal/rrf), coefficient of performance, and compressor discharge temperature ('C).

尚、第1表には、フロン−125のみを使用する場合(
比較例1)の結果を合わせて示す。
In addition, Table 1 shows the case where only Freon-125 is used (
The results of Comparative Example 1) are also shown.

また、第1図には、フロン−125とフロン−124と
の組成比と成績係数(曲線A)との関係を表すグラフを
示す。
Further, FIG. 1 shows a graph showing the relationship between the composition ratio of Freon-125 and Freon-124 and the coefficient of performance (curve A).

第1表及び第1図に示す結果から、本発明冷媒の優れた
特性が明らかである。
From the results shown in Table 1 and FIG. 1, the excellent characteristics of the refrigerant of the present invention are clear.

実施例7〜12 フロン−125とフロン−134aとを第2表に示す種
々の割合(重量比)で混合して得た冷媒を使用する以外
は、実施例1〜6と同様にして、夫々の特性を調べた。
Examples 7 to 12 The same procedures as Examples 1 to 6 were carried out, except that refrigerants obtained by mixing Freon-125 and Freon-134a at various ratios (weight ratios) shown in Table 2 were used, respectively. We investigated the characteristics of

第2表に各冷媒の最高蒸発温度(℃)、冷凍能力(kc
al/rrf’) 、成績係数及び圧縮機吐出温度(℃
)を併記する。
Table 2 shows the maximum evaporation temperature (℃) and refrigeration capacity (kc) of each refrigerant.
al/rrf'), coefficient of performance and compressor discharge temperature (℃
) is also written.

また、第2図には、フロン−125とフロン−134a
との組成比と成績係数(曲線B)との関係を表すグラフ
を示す。
In addition, Fig. 2 shows Freon-125 and Freon-134a.
A graph showing the relationship between the composition ratio and the coefficient of performance (curve B) is shown.

実施例13〜18 フロン−125とフロン−142bとを第3表に示す種
々の割合(重量比)で混合して得た冷媒を使用する以外
は、実施例1〜6と同様にして、夫々の特性を調べた。
Examples 13 to 18 The same procedures as Examples 1 to 6 were carried out, except that refrigerants obtained by mixing Freon-125 and Freon-142b at various ratios (weight ratios) shown in Table 3 were used. We investigated the characteristics of

第3表に各冷媒の最高蒸発温度(℃)、冷凍能力(kc
al/m’) 、成績係数及び圧縮機吐出温度(℃)を
併記する。
Table 3 shows the maximum evaporation temperature (℃) and refrigeration capacity (kc) of each refrigerant.
al/m'), coefficient of performance, and compressor discharge temperature (°C).

また、第3図には、フロン−125とフロン−142b
との組成比と成績係数(曲線C)との関係を表すグラフ
を示す。
In addition, Fig. 3 shows Freon-125 and Freon-142b.
A graph showing the relationship between the composition ratio and the coefficient of performance (curve C) is shown.

実施例19〜24 フロン−125とフロン−152aとを第4表に示す種
々の割合(重量比)で混合して得た冷媒を使用する以外
は、実施例1〜6と同様にして、夫々の特性を調べた。
Examples 19-24 The same procedures as Examples 1-6 were carried out, except that refrigerants obtained by mixing Freon-125 and Freon-152a at various ratios (weight ratios) shown in Table 4 were used, respectively. We investigated the characteristics of

第4表に各冷媒の最高蒸発温度(℃)、冷凍能力(kc
al/rf) 、成績係数及び圧縮機吐出温度(°C)
を併記する。
Table 4 shows the maximum evaporation temperature (℃) and refrigeration capacity (kc) of each refrigerant.
al/rf), coefficient of performance and compressor discharge temperature (°C)
Also listed.

また、第4図には、フロン−125とフロン−152a
との組成比と成績係数(曲線D)との関係を表すグラフ
を示す。
In addition, Fig. 4 shows Freon-125 and Freon-152a.
A graph showing the relationship between the composition ratio and the coefficient of performance (curve D) is shown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、本発明冷媒の性能を示すグラフで
ある。 (以 上)
1 to 4 are graphs showing the performance of the refrigerant of the present invention. (that's all)

Claims (1)

【特許請求の範囲】 [1](1)ペンタフルオロエタンと(2)クロロテト
ラフルオロエタン、テトラフルオロエタン、1−クロロ
−1,1−ジフルオロエタン及び1,1−ジフルオロエ
タンからなる群から選ばれた少くとも1種のフロン化合
物とからなる冷媒。 [2](1)ペンタフルオロエタン95〜5重量%と(
2)クロロテトラフルオロエタン、テトラフルオロエタ
ン、1−クロロ−1,1−ジフルオロエタン及び1,1
−ジフルオロエタンからなる群から選ばれた少くとも1
種のフロン化合物5〜95重量%とからなる特許請求の
範囲第1項に記載の冷媒。 [3]ペンタフルオロエタン80〜5重量%とクロロテ
トラフルオロエタン20〜95重量%とからなる特許請
求の範囲第2項に記載の冷媒。 [4]ペンタフルオロエタン60〜5重量%とテトラフ
ルオロエタン40〜95重量%とからなる特許請求の範
囲第2項に記載の冷媒。 [5]ペンタフルオロエタン85〜5重量%と1−クロ
ロ−1,1−ジフルオロエタン15〜95重量%とから
なる特許請求の範囲第2項に記載の冷媒。 [6]ペンタフルオロエタン70〜5重量%と1,1−
ジフルオロエタン30〜95重量%とからなる特許請求
の範囲第2項に記載の冷媒。
[Scope of Claims] [1] (1) pentafluoroethane and (2) chlorotetrafluoroethane, tetrafluoroethane, 1-chloro-1,1-difluoroethane, and 1,1-difluoroethane selected from the group consisting of A refrigerant consisting of at least one type of fluorocarbon compound. [2] (1) 95 to 5% by weight of pentafluoroethane and (
2) Chlorotetrafluoroethane, tetrafluoroethane, 1-chloro-1,1-difluoroethane and 1,1
- at least one selected from the group consisting of difluoroethane;
The refrigerant according to claim 1, comprising 5 to 95% by weight of a fluorocarbon compound. [3] The refrigerant according to claim 2, comprising 80 to 5% by weight of pentafluoroethane and 20 to 95% by weight of chlorotetrafluoroethane. [4] The refrigerant according to claim 2, comprising 60 to 5% by weight of pentafluoroethane and 40 to 95% by weight of tetrafluoroethane. [5] The refrigerant according to claim 2, comprising 85 to 5% by weight of pentafluoroethane and 15 to 95% by weight of 1-chloro-1,1-difluoroethane. [6] 70-5% by weight of pentafluoroethane and 1,1-
The refrigerant according to claim 2, comprising 30 to 95% by weight of difluoroethane.
JP62264699A 1987-10-19 1987-10-19 Coolant Expired - Lifetime JPH0655941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62264699A JPH0655941B2 (en) 1987-10-19 1987-10-19 Coolant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264699A JPH0655941B2 (en) 1987-10-19 1987-10-19 Coolant

Publications (2)

Publication Number Publication Date
JPH01108291A true JPH01108291A (en) 1989-04-25
JPH0655941B2 JPH0655941B2 (en) 1994-07-27

Family

ID=17406957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264699A Expired - Lifetime JPH0655941B2 (en) 1987-10-19 1987-10-19 Coolant

Country Status (1)

Country Link
JP (1) JPH0655941B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014751A1 (en) * 1990-03-23 1991-10-03 California Institute Of Technology Near azeotropic mixture substitute for dichlorodifluoromethane
EP0451692A2 (en) * 1990-04-04 1991-10-16 Daikin Industries, Limited Refrigerant
WO1992001762A1 (en) * 1990-07-26 1992-02-06 E.I. Du Pont De Nemours And Company Near-azeotropic blends for use as refrigerants
US5262077A (en) * 1990-04-25 1993-11-16 E. I. Du Pont De Nemours And Company Halocarbon blends
US5277834A (en) * 1990-07-26 1994-01-11 E. I. Du Pont De Nemours And Company Near-azeotropic blends for use as refrigerants
US5294359A (en) * 1992-02-03 1994-03-15 Alliedsignal Inc. Refrigerant compositions
US5304319A (en) * 1989-11-30 1994-04-19 Matsushita Electric Industrial Co., Ltd. Working fluid
US5403504A (en) * 1990-12-17 1995-04-04 E. I. Du Pont De Nemours And Company Process for heating and cooling using substantially constant boiling compositions of fluorinated hydrocarbons
US5458798A (en) * 1993-02-05 1995-10-17 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of a hydrofluorocarbon and a hydrocarbon
JPH0848971A (en) * 1995-07-20 1996-02-20 Daikin Ind Ltd Refrigerant
US5643492A (en) * 1990-12-17 1997-07-01 E. I. Du Pont De Nemours And Company Constant boiling compositions of HFC-32, HFC-125 and HFC-134 A
US5722256A (en) * 1990-12-17 1998-03-03 E. I. Du Pont De Nemours And Company Air conditioner and heat pump with tetrafluoroethane-containing working fluid
US5725791A (en) * 1991-03-28 1998-03-10 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of 1,1,2,2-tetrafluoroethane
US7229567B2 (en) 1997-07-15 2007-06-12 E.I. Dupont De Nemours And Company Refrigerant compositions
US7258813B2 (en) 1999-07-12 2007-08-21 E.I. Du Pont De Nemours And Company Refrigerant composition
US7276176B2 (en) 2002-10-11 2007-10-02 E. I. Du Pont De Nemours And Company Refrigerant compositions
US7641810B2 (en) 2002-11-29 2010-01-05 Neil Andre Roberts Refrigerant compositions
US8444873B2 (en) 2009-06-12 2013-05-21 Solvay Fluor Gmbh Refrigerant composition

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304319A (en) * 1989-11-30 1994-04-19 Matsushita Electric Industrial Co., Ltd. Working fluid
US5728314A (en) * 1990-03-23 1998-03-17 California Inst. Of Technology Near azeotropic mixture substitute for dichlorodifluoromethane
US5523011A (en) * 1990-03-23 1996-06-04 California Institute Of Technology Near azeotropic mixture substitute
US5512197A (en) * 1990-03-23 1996-04-30 The California Institute Of Technology Near azeotropic mixture substitute for dichlorodifluoromethane
WO1991014751A1 (en) * 1990-03-23 1991-10-03 California Institute Of Technology Near azeotropic mixture substitute for dichlorodifluoromethane
EP0626434A3 (en) * 1990-04-04 1995-02-22 Daikin Ind Ltd Refrigerant.
JPH03287688A (en) * 1990-04-04 1991-12-18 Daikin Ind Ltd Refrigerant
EP0626434A2 (en) * 1990-04-04 1994-11-30 Daikin Industries, Limited Refrigerant
EP0626435A2 (en) * 1990-04-04 1994-11-30 Daikin Industries, Limited Refrigerant
EP0451692A2 (en) * 1990-04-04 1991-10-16 Daikin Industries, Limited Refrigerant
EP0626435A3 (en) * 1990-04-04 1997-07-30 Daikin Ind Ltd Refrigerant.
AU641740B2 (en) * 1990-04-04 1993-09-30 Daikin Industries, Ltd. Ternary blended refrigerant
US5262077A (en) * 1990-04-25 1993-11-16 E. I. Du Pont De Nemours And Company Halocarbon blends
US5277834A (en) * 1990-07-26 1994-01-11 E. I. Du Pont De Nemours And Company Near-azeotropic blends for use as refrigerants
US5800730A (en) * 1990-07-26 1998-09-01 E. I. Du Pont De Nemours And Compnay Near-azeotropic blends for use as refrigerants
WO1992001762A1 (en) * 1990-07-26 1992-02-06 E.I. Du Pont De Nemours And Company Near-azeotropic blends for use as refrigerants
US5643492A (en) * 1990-12-17 1997-07-01 E. I. Du Pont De Nemours And Company Constant boiling compositions of HFC-32, HFC-125 and HFC-134 A
US5722256A (en) * 1990-12-17 1998-03-03 E. I. Du Pont De Nemours And Company Air conditioner and heat pump with tetrafluoroethane-containing working fluid
US5403504A (en) * 1990-12-17 1995-04-04 E. I. Du Pont De Nemours And Company Process for heating and cooling using substantially constant boiling compositions of fluorinated hydrocarbons
US5725791A (en) * 1991-03-28 1998-03-10 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of 1,1,2,2-tetrafluoroethane
US5294359A (en) * 1992-02-03 1994-03-15 Alliedsignal Inc. Refrigerant compositions
US5624596A (en) * 1993-02-05 1997-04-29 E. I. Dupont De Nemours And Company Composition with pentafluoroethane, difuoromethane, and a C4-C9 hydrocarbon
US5458798A (en) * 1993-02-05 1995-10-17 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of a hydrofluorocarbon and a hydrocarbon
US5670079A (en) * 1993-02-05 1997-09-23 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of a hydrofluorocarbon and a hydrocarbon
JPH0848971A (en) * 1995-07-20 1996-02-20 Daikin Ind Ltd Refrigerant
US7229567B2 (en) 1997-07-15 2007-06-12 E.I. Dupont De Nemours And Company Refrigerant compositions
US7258813B2 (en) 1999-07-12 2007-08-21 E.I. Du Pont De Nemours And Company Refrigerant composition
US7276176B2 (en) 2002-10-11 2007-10-02 E. I. Du Pont De Nemours And Company Refrigerant compositions
US7410595B2 (en) 2002-10-11 2008-08-12 E.I. Du Pont De Nemours And Company Refrigerant compositions
US7648642B2 (en) 2002-10-11 2010-01-19 E.I. Du Pont De Nemours And Company Refrigerant compositions
US7799240B1 (en) 2002-10-11 2010-09-21 E.I. Du Pont De Nemours And Company Refrigerant compositions
US7837894B2 (en) 2002-10-11 2010-11-23 E. I. Du Pont De Nemours And Company Refrigerant compositions
US7641810B2 (en) 2002-11-29 2010-01-05 Neil Andre Roberts Refrigerant compositions
US7713434B2 (en) 2002-11-29 2010-05-11 E.I. Du Pont De Nemours And Company Refrigerant compositions
US7771610B2 (en) 2002-11-29 2010-08-10 E.I. Du Pont De Nemours And Company Refrigerant compositions
US8246851B2 (en) 2002-11-29 2012-08-21 Roberts Neil Andre Chiller refrigerants
US8444873B2 (en) 2009-06-12 2013-05-21 Solvay Fluor Gmbh Refrigerant composition

Also Published As

Publication number Publication date
JPH0655941B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
JPH01108292A (en) Refrigerant
EP0331760B1 (en) Refrigerant
EP0509673B2 (en) Refrigerant compositions
JPH01108291A (en) Refrigerant
JP2869038B2 (en) Heat pump device using ternary mixed refrigerant
JP2545879B2 (en) Coolant
JPH075880B2 (en) Coolant
JPS63308084A (en) Operation medium mixture
JPH08291283A (en) Pseudoazeotrope based on difluoromethane and pentafluoroethane and its use as refrigerant
JP2867932B2 (en) Coolant
JPH01103689A (en) Refrigerant
JPH01121392A (en) Refrigeration medium
JPH0192286A (en) Working medium mixture
JPH11228945A (en) Refrigerant composition
JPH09221664A (en) Working fluid
JPH08127767A (en) Working fluid
JPH08151569A (en) Working fluid
JPH08176537A (en) Hydraulic fluid
JPS5959779A (en) Refrigerant
JPS59117580A (en) Refrigerant composition
JPH08100170A (en) Working fluid mixture
JPH08199158A (en) Working fluid
JPH08151571A (en) Working fluid
JPS5959781A (en) Refrigerant
JPH08120260A (en) Working fluid