JPH01107662A - System-connected inverter device - Google Patents

System-connected inverter device

Info

Publication number
JPH01107662A
JPH01107662A JP62264143A JP26414387A JPH01107662A JP H01107662 A JPH01107662 A JP H01107662A JP 62264143 A JP62264143 A JP 62264143A JP 26414387 A JP26414387 A JP 26414387A JP H01107662 A JPH01107662 A JP H01107662A
Authority
JP
Japan
Prior art keywords
voltage
inverter
output
load
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62264143A
Other languages
Japanese (ja)
Inventor
Kunio Tanaka
邦穂 田中
Kazufumi Ushijima
牛嶋 和文
Hitoshi Tamura
仁志 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62264143A priority Critical patent/JPH01107662A/en
Publication of JPH01107662A publication Critical patent/JPH01107662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To save power consumption in case of re-starting, by controlling the voltage of both the ends of an electrolytic capacitor to be made equal to reference voltage. CONSTITUTION:The output current of a solar battery 1 is fed to an inverter 4 via a diode 2 and an electrolytic capacitor 3, and direct current is converted to alternating current and is connected to a commercial power system 7 and is fed to a load 6. The voltage at both ends of the electrolytic capacitor 3 is detected by a DC voltage detector 8, and is compared with a reference power source 11 by a controlling means 15, and output is controlled. Accordingly, both the end voltage of the electrolytic capacitor 3 is retained to be constant to be made equal to said reference voltage 11, and the current of the same phase as that of the voltage of the load 6 (the voltage of the system 7) is fed to the load 6 from the inverter 4. As a result, by setting the reference voltage 11 to be voltage near the optimum working point of the solar battery 1, the generation power of the solar battery 1 can be efficiently fed to the load 6 in the state of the power factor of 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、太陽電池などの直流電源の出力直流をイン
バータによシ交流に変換し、商用電力系統に連系して変
換した交流を負荷に供給する系統連系インバータ装置に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention converts the output DC of a DC power source such as a solar battery into AC using an inverter, and connects it to a commercial power system to transmit the converted AC to a load. This invention relates to a grid-connected inverter device that supplies power to the grid.

〔従来の技術〕[Conventional technology]

従来、太陽電池などの直流電源の出力直流をインバータ
によシ交流に変換し、商用電力系統に連系して変換した
交流を負荷に供給する系統連系インバータ装置として、
たとえば第2図に示すような太陽光発電システムがある
Conventionally, a grid-connected inverter device converts the output DC of a DC power source such as a solar battery into AC using an inverter, connects it to the commercial power grid, and supplies the converted AC to the load.
For example, there is a solar power generation system as shown in FIG.

第2図は太陽光発電システムの基本構成を示し、同図に
おいて、(1)は直流電源としての太陽電池、(2)は
アノードが太陽電池(1)の正出力端子に接続された逆
流防止用ダイオード、(3)は一端がダイオード(2)
のカソードに接続された大容量の電解コンデンサ、(4
)は太陽電池(1)の出力直流を交流に変換するインバ
ータであり、トランジヌタ等のスイッチング素子および
該スイッチング素子に逆方向に並列接続されたダイオー
ドからなり、入力端子が電解コンデンサ(3)に接続さ
れている。
Figure 2 shows the basic configuration of a solar power generation system, in which (1) is a solar cell as a DC power source, and (2) is a backflow prevention device whose anode is connected to the positive output terminal of solar cell (1). Diode (3) has one end as diode (2)
A large electrolytic capacitor connected to the cathode of (4
) is an inverter that converts the output direct current of the solar cell (1) into alternating current, and consists of a switching element such as a transistor and a diode connected in parallel in the opposite direction to the switching element, and the input terminal is connected to the electrolytic capacitor (3). has been done.

(5)は一端がインバータ(4)の出力端子に接続され
た交流開閉器、(6)は開閉器(5)の他端に接続され
た負荷、(7)は商用電力系統であシ、負荷(6)に接
続され、商用電力系統(7)に連系してインバータ(4
)の出力交流が開閉器(5)を介し負荷(6)に供給さ
れる。
(5) is an AC switch whose one end is connected to the output terminal of the inverter (4), (6) is a load connected to the other end of the switch (5), and (7) is a commercial power system. It is connected to the load (6), connected to the commercial power grid (7) and connected to the inverter (4).
) is supplied to the load (6) via the switch (5).

ところで、このようなシステムの場合、システムの系統
(7)への並入および系統(7)からの解列のために、
交流開閉器(5)を閉および開することによシ、系統(
7)に瞬時電圧変動や開閉サージによるノイズなどの悪
影響を及ぼすという問題がある。
By the way, in the case of such a system, in order to parallel the system to system (7) and disassociate it from system (7),
By closing and opening the AC switch (5), the system (
7) has the problem of adverse effects such as noise caused by instantaneous voltage fluctuations and switching surges.

しかも、前記したシステムの系統並入および解列は、朝
、夕のシステムの起動、停止や前記システムおよび系統
(7)の異常時に行なわれ、とくに朝。
Moreover, the system paralleling and disconnection described above are carried out in the morning and evening when the system is started or stopped, or when there is an abnormality in the system or the system (7), especially in the morning.

夕あるいは曇天時には、日射量が不安定であるため、太
陽電池(1)の電流または電圧または日射量がインバー
タ(4)を安定駆動するためのしきい値付近で変動し、
開閉器(5)が開、閉を繰り返して前記システムの系統
前人、解列が頻繁に繰り返され、系統(7)に前記した
瞬時電圧変動やノイズの発生が頻繁に生じることになる
In the evening or on cloudy days, the amount of solar radiation is unstable, so the current or voltage of the solar cell (1) or the amount of solar radiation fluctuates around the threshold for stably driving the inverter (4).
As the switch (5) repeats opening and closing, the system is frequently connected and disconnected, and the instantaneous voltage fluctuations and noise described above frequently occur in the system (7).

そこで、従来、このような不都合を解消するために、た
とえば特開昭59−76122号公報(HO2J110
0 )に記載のように、インバータ(4)を安定駆動す
るための太陽電池(1)の出力のしきい値にヒステリシ
スを設け、あるいは前記システムの解列から並入までに
長い遅延時間を設定し、解列、並入の繰り返し回数を低
減することが考えられている。
Therefore, conventionally, in order to solve such inconvenience, for example, Japanese Patent Application Laid-Open No. 59-76122 (HO2J110
As described in 0), hysteresis is provided in the threshold of the output of the solar cell (1) to stably drive the inverter (4), or a long delay time is set from when the system is disconnected to when it is connected in parallel. However, it is being considered to reduce the number of repetitions of unparalleling and parallel insertion.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記したように、インバータ(4)を駆動する
際の太陽電池(1)の出力や日射量のしきい値にヒステ
リシスヲ設ケ、あるいは前記システムの解列から並入ま
でに長い遅延時間を設けても、解列。
However, as mentioned above, hysteresis is installed in the output of the solar cell (1) and the solar radiation threshold when driving the inverter (4), or there is a long delay time between disconnection and connection of the system. Even if you set it, it will be disarranged.

並入の繰り返し数は多少低減できるが、系統(7)に及
ぶ悪影響を完全になくすことができず、いずれも根本的
な解決管とは言えず、しかも前記ヒステリシスの不感帯
の間や前記遅延時間内における太陽電池(1)の発電電
力を有効に利用することができないという問題点がある
Although the number of repetitions of parallel entries can be reduced to some extent, it is not possible to completely eliminate the negative effect on system (7), and neither can be said to be a fundamental solution. There is a problem in that the power generated by the solar cell (1) within the solar cell cannot be effectively utilized.

そこで、この発明では、系統並入および解列の回数を大
幅に低減し、太陽電池等の直流電源の電力の有効利用を
図ることを技術的課題とする。
Therefore, the technical object of the present invention is to significantly reduce the number of grid connections and disconnections, and to effectively utilize the power of a DC power source such as a solar battery.

〔問題点を解決するための手段〕[Means for solving problems]

そして、前記した従来技術の問題点を解決するための手
段を、実施例に対応する第1図を用いて説明する。
Means for solving the problems of the prior art described above will be explained using FIG. 1 corresponding to an embodiment.

すなわち、この発明では、直流電源としての太陽電池(
1)と、スイッチング素子および該スイッチング素子に
逆方向に並列に接続されたダイオードからなり、前記太
陽電池(1)の出力直流を交流に変換し、変換した交流
を商用電力系統(7)に連系して負荷(6)に供給する
インバータ(4)と、前記太陽電池(1)に並列に設け
られた電解コンデンサ(3)と、前記コンデンサ(3)
の両端の電圧を検出する直流電圧検出器(8)と、前記
検出器(8)による検出電圧と基準電圧とを比較し、前
記検出電圧が前記基準電圧に等しくなるように前記イン
バータ(4)の出力制御を行なう制゛御手段αυとを備
えている。
That is, in this invention, a solar cell (
1), a switching element, and a diode connected in parallel in the opposite direction to the switching element, which converts the output DC of the solar cell (1) into AC, and connects the converted AC to the commercial power system (7). an inverter (4) that supplies the system to the load (6), an electrolytic capacitor (3) provided in parallel with the solar cell (1), and the capacitor (3).
A DC voltage detector (8) that detects the voltage across the inverter (4) compares the voltage detected by the detector (8) with a reference voltage, and adjusts the voltage across the inverter (4) so that the detected voltage is equal to the reference voltage. and control means αυ for controlling the output of.

〔作 用〕[For production]

したがって、この発明によると、太陽電池(1)の出力
直流は、ダイオード(2)を介して電解コンデンサ(3
)に供給され、電解コンデンサ(3)によシリツプルが
除去されてインバータ(4)に供給され、インバータ(
4)により太陽電池(1)の出力直流が交流に変換され
、閉状態の交流開閉器(5)を介し、商用電力系統(7
)に連系してインバータ(4)によシ変換された交流が
負荷(6)に供給される。
Therefore, according to the present invention, the output DC of the solar cell (1) is transmitted through the electrolytic capacitor (3) via the diode (2).
), the electrolytic capacitor (3) removes the spillage, and the inverter (4) is supplied to the inverter (4).
4) converts the output DC of the solar cell (1) into AC, and connects it to the commercial power system (7) via the closed AC switch (5).
), and the alternating current converted by the inverter (4) is supplied to the load (6).

一方、電解コンデンサ(3)の両端電圧が直流電圧検出
器(8)により検出され、検出器(8)による検出電圧
と基準電源aυによる基準電圧とが制御手段α均によシ
比較され、制御手段u!19によシ、前記検出電圧が前
記基準電圧に等しくなるようインバータ(4)の出力が
制御され、インバータ(4)の入力側の電圧を一定に保
持してインバータ(4)を常に運転状態に保持すること
が可能となり、従来のように系統並入および解列を頻繁
に繰り返すことが防止される。
On the other hand, the voltage across the electrolytic capacitor (3) is detected by the DC voltage detector (8), and the voltage detected by the detector (8) and the reference voltage from the reference power supply aυ are compared by the control means α, and the control Means u! According to 19, the output of the inverter (4) is controlled so that the detected voltage is equal to the reference voltage, and the voltage on the input side of the inverter (4) is held constant to keep the inverter (4) in a constant operating state. This prevents frequent repetition of system parallelization and disarray as in the past.

このとき、系統並入および解列を、系統(7)やインバ
ータ装置の異常時だけ行なえばよく、従来に比べ、系統
並入および解列の回数が大幅に低減されて瞬時電圧変動
やサージノイズ等の系統(7)への悪影響が防止され、
しかもインバータ(4)の運転の継続により、従来のよ
うなインバータ(4)の再起動時の電力消費が削減され
、従来に比べて電力の有効利用が図れることになる。
At this time, grid paralleling and disconnection need only be performed when there is an abnormality in the grid (7) or the inverter device, and compared to the past, the number of grid paralleling and disconnection is greatly reduced, resulting in instantaneous voltage fluctuations and surge noise. The negative impact on the system (7) is prevented,
Moreover, by continuing the operation of the inverter (4), the power consumption when restarting the inverter (4) as in the conventional case is reduced, and electric power can be used more effectively than in the conventional case.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した第1図とと
もに詳細に説明する。
Next, this invention will be explained in detail with reference to FIG. 1 showing one embodiment thereof.

同図において、(8)は電解コンデンサ(3)の両端の
直流電圧を検出する直流電圧検出器、(9)は負荷(6
)に供給された負荷電圧を検出する交流電圧検出器、0
0はインバータ(4)と交流開閉器(5)との間の通電
路に設けられた変流器等からなる交流電流検出器。
In the figure, (8) is a DC voltage detector that detects the DC voltage across the electrolytic capacitor (3), and (9) is a load (6).
), an AC voltage detector that detects the load voltage supplied to the
0 is an alternating current detector consisting of a current transformer or the like provided in the energizing path between the inverter (4) and the alternating current switch (5).

aηは基準電圧を与える基準電源、(2)は直流電圧−
定制御回路であり、直流電圧検出器(8)による検出電
圧と前記基準電圧とを比較し、前者の検出電圧が後者の
基準電圧よりも高いときにのみ、正の偏差信号を出力す
る。
aη is the reference power supply that provides the reference voltage, (2) is the DC voltage -
It is a constant control circuit that compares the voltage detected by the DC voltage detector (8) with the reference voltage, and outputs a positive deviation signal only when the former detected voltage is higher than the latter reference voltage.

α]は直流電圧一定制御回路(6)の出力と交流電圧゛
 検出器(9)の出力とを乗算する乗算器、a4はイン
バータ制御回路であり、乗算器(至)の出力と交流電流
検出器αQの出力とが入力されて両入方の誤差を増幅し
、増幅した誤差を電流指令値として、該電流指令値にも
とづくスイッチング制御信号1インバータ(4)を構成
するスイッチング素子の制御端子に出力し、インバータ
(4)の出力制御を行なうようになっておシ、交流電圧
検出器(9)、基準電源0υ、直流電圧一定制御回路(
2)1乗算器(13、インバータ制御回路α勺により、
制御手段(至)が構成されている。
α] is a multiplier that multiplies the output of the DC voltage constant control circuit (6) and the output of the AC voltage detector (9), a4 is an inverter control circuit, and the output of the multiplier (to) and the AC current detection The output of the inverter αQ is input, the error of both inputs is amplified, the amplified error is used as a current command value, and a switching control signal based on the current command value is sent to the control terminal of the switching element 1 constituting the inverter (4). The AC voltage detector (9), the reference power source 0υ, and the DC voltage constant control circuit (
2) With 1 multiplier (13, inverter control circuit α),
A control means (to) is configured.

なお、交流開閉器(5)は、従来と異なり、インバータ
装置および商用電力系統(7)の故障、事故などの異常
時にのみ開成され、それ以外では常時閉状態に保持され
るようになっている。
Note that, unlike in the past, the AC switch (5) is opened only in the event of an abnormality such as a failure or accident in the inverter device or the commercial power system (7), and is kept closed at all other times. .

そして、太陽電池(1)の出力直流は、逆′流防止用ダ
イオード(2)を介して電解コンデンサ(3)に供給さ
れ、電解コンデンサ(3)によシリップルが除去されテ
インハータ(4)に供給され、イ□ンパータ(4)ニよ
り太陽電池(1)の出力直流が交流に変換され、閉状態
の交流開閉器(5)を介し、商用電力系統(7)に連系
してインバータ(4)によシ変換された交流が負荷(6
)に供給される。
Then, the output DC of the solar cell (1) is supplied to the electrolytic capacitor (3) via the reverse current prevention diode (2), the ripple is removed by the electrolytic capacitor (3), and the output DC is supplied to the Teinharter (4). Then, the output DC of the solar cell (1) is converted into AC by the inverter (4), and connected to the commercial power system (7) via the AC switch (5) in the closed state and connected to the inverter (4). ) is converted into a load (6
).

ところで、電解コンデンサ(3)の両端電圧が直流電圧
検出器(8)によシ検出され、検出器(8)による検出
電圧と基準電源aυによる基準電圧とが直流電圧一定制
御回路α功により比較され、前者の検出電圧が後者の基
準電圧よりも高いときにのみ制御回路αのから正の偏差
信号が出力され、乗算器a3に入力される。
By the way, the voltage across the electrolytic capacitor (3) is detected by the DC voltage detector (8), and the voltage detected by the detector (8) and the reference voltage from the reference power supply aυ are compared by the DC voltage constant control circuit α. Only when the former detection voltage is higher than the latter reference voltage, a positive deviation signal is output from the control circuit α and input to the multiplier a3.

さらに、乗算器α葎によシ、制御回路(2)の出力と交
流電圧検出器(9)の出力とが乗算され、インバータ制
御回路Q41によシ、乗算器側の出力と交流電流検出器
OQの出力との誤差が増幅され、増幅された誤差を電流
指令値として、インバータ制御回路α→ ゛によシイン
パータ(4)の出力制御が行なわれる。
Furthermore, the output of the control circuit (2) and the output of the AC voltage detector (9) are multiplied by the multiplier α, and the output of the multiplier and the AC current detector are multiplied by the inverter control circuit Q41. The error with the output of the OQ is amplified, and the output of the inverter (4) is controlled by the inverter control circuit α→゛ using the amplified error as a current command value.

従って、電解コンデンサ(3)の両端電圧は前記基準電
圧に等しく一定に保持され、しかも負荷(6)の負荷電
圧、すなわち商用電力系統(7)の電圧と同相の電流が
インバータ(4)によシ負荷(6)に供給されることに
なり、基準電源αυの基準電圧を太陽電池(1)の最適
動作点付近の電圧に設定することにより、太陽電池(1
)の発電電力を力率1の状態で効率、よく負荷(6)に
供給できる。
Therefore, the voltage across the electrolytic capacitor (3) is kept constant and equal to the reference voltage, and the current in phase with the load voltage of the load (6), that is, the voltage of the commercial power system (7), is supplied to the inverter (4). By setting the reference voltage of the reference power supply αυ to a voltage near the optimal operating point of the solar cell (1),
) can be efficiently and efficiently supplied to the load (6) with a power factor of 1.

そして1日射量が十分で、太陽電池(1)の発電電力が
十分大きい場合には、太陽電池(1)の出力に応じた交
流電力がインバータ(4)から負荷(6)に供給゛され
る。
When the amount of solar radiation per day is sufficient and the power generated by the solar cell (1) is large enough, AC power corresponding to the output of the solar cell (1) is supplied from the inverter (4) to the load (6). .

一方、朝、夕あるいは曇天時のように日射量が不十分で
、太陽電池(1)の発電電力が小さい場合には、太陽電
油(1)の出力電圧が低下してダイオード(2)が逆バ
イアス状態となるが、インバータ(4)カ運に要する電
力が供給され、電解コンデンサ(3)の両端電圧が一定
に保持される。
On the other hand, when the amount of solar radiation is insufficient and the power generated by the solar cell (1) is small, such as in the morning, evening, or on cloudy days, the output voltage of the solar cell (1) decreases and the diode (2) Although it is in a reverse bias state, the power required to operate the inverter (4) is supplied, and the voltage across the electrolytic capacitor (3) is held constant.

したがって、前記実施例によると、電解コンデンサ(3
)の電圧を一定にしてインバータ(4)の入力側の電圧
を一定に保持することによシ、太陽電池(1)の発電電
力が低下したときでも、インバータ(4)を停止させる
必要がなく、インバータ(4)の再起動の際の電力消費
をなくすことができ、従来に比べ電力の有効利用を図る
ことができ、しかも交流開閉器(5)の開、閉を、系統
(7)やシステムの異常時だけ行なえばよく、開閉器(
5)の動作によるシステムの系統並入および解列の回数
を大幅に低減することができ、開閉器(5)の開閉に伴
う瞬時電圧変動やサージノイズなどの系統(7)への悪
影響を防止することができる。
Therefore, according to the embodiment, the electrolytic capacitor (3
) by keeping the voltage on the input side of the inverter (4) constant, there is no need to stop the inverter (4) even when the power generated by the solar cell (1) decreases. , the power consumption when restarting the inverter (4) can be eliminated, and power can be used more effectively than before, and the opening and closing of the AC switch (5) can be controlled by the system (7) or It only needs to be done when the system is abnormal, and the switch (
It is possible to significantly reduce the number of times the system is connected to and disconnected from the grid due to the operation of 5), and prevents adverse effects on the system (7) such as instantaneous voltage fluctuations and surge noise due to the opening and closing of the switch (5). can do.

ところで、インバータ(4)のスイッチング素子として
、消費電力の少ないMOSFETを用いることにより、
電力消費をいっそう抑えることができる。
By the way, by using MOSFET with low power consumption as the switching element of the inverter (4),
Power consumption can be further reduced.

なお、直流電源は前記した太陽電池(1)に限るもので
はない。
Note that the DC power source is not limited to the solar cell (1) described above.

また、制御手段α0は、前記した構成に限らないのは言
うまでもない。
Further, it goes without saying that the control means α0 is not limited to the configuration described above.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の系統連系インバータ装置によ
ると、電解コンデンサの両端の電圧を基準電圧に等しく
なるように制御したため、直流電源の出力変動に関係な
く、インバータの入力側の電圧に一定に保持でき、イン
バータの運転を停止させる必要がなくなり、インバータ
を常時運転状態に保持することが可能となり、従来のよ
うに直流電源の出力変動に応じて頻繁に系統並入および
解列を繰シ返す必要がなくなシ、系統並入および解列を
、系統やインバータ装置の異常時だけ行なえばよく、系
統並入、解列の繰り返しによる瞬時電圧変動やサージノ
イズなどの系統への悪影響を防止することができ、しか
もインバータの運転の継続により、従来のようなインバ
ータの再起動の際の電力消費を削減することができ、従
来の如く系統並入、解列時にヒステリシスや遅延時間を
設ける場合に比べて、並入、解列の回数を低減でき。
As described above, according to the grid-connected inverter device of the present invention, since the voltage across the electrolytic capacitor is controlled to be equal to the reference voltage, the voltage at the input side of the inverter remains constant regardless of output fluctuations of the DC power supply. This eliminates the need to stop the inverter and allows the inverter to be kept in constant operation, eliminating the need for frequent connection and disconnection of the power supply in response to fluctuations in the output of the DC power supply. There is no need to return to the grid, and it is only necessary to connect and disconnect from the grid when there is an abnormality in the grid or inverter equipment, preventing negative effects on the grid such as instantaneous voltage fluctuations and surge noise due to repeated connections and disconnections from the grid. Moreover, by continuing the operation of the inverter, it is possible to reduce the power consumption when restarting the inverter as in the conventional case, and it is possible to reduce the power consumption when restarting the inverter as in the conventional case. Compared to , the number of parallel entries and unparallel operations can be reduced.

電力の有効利用を図ることが可能となる。It becomes possible to aim at effective use of electric power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の系統連系インバータ装置の1実施例
のブロック図、第2図は従来例の結線図である。 (1)・・・太陽電池、(3)・・・電解コンデンサ、
(4)・・・インバータ、(6)・・・負荷、(7)・
・・商用電力系統、(8)・・・直流電圧検出器、aυ
・・・基準電源、α0・・・制御手段。
FIG. 1 is a block diagram of one embodiment of the grid-connected inverter device of the present invention, and FIG. 2 is a connection diagram of a conventional example. (1)... Solar cell, (3)... Electrolytic capacitor,
(4)...Inverter, (6)...Load, (7)...
... Commercial power system, (8) ... DC voltage detector, aυ
... Reference power supply, α0 ... Control means.

Claims (1)

【特許請求の範囲】[Claims] (1)直流電源と、 スイッチング素子および該スイッチング素子に逆方向に
並列に接続されたダイオードからなり、前記スイッチン
グ素子のスイッチングにより前記直流電源の出力直流を
交流に変換し、変換した交流を商用電力系統に連系して
負荷に供給するインバータと、 前記直流電源に並列に設けられた電解コンデンサと、 前記コンデンサの両端の電圧を検出する直流電圧検出器
と、 前記検出器による検出電圧と基準電圧とを比較し、前記
検出電圧が前記基準電圧に等しくなるように前記インバ
ータの出力制御を行なう制御手段と を備えたことを特徴とする系統連系インバータ装置。
(1) Consisting of a DC power supply, a switching element, and a diode connected in parallel in the opposite direction to the switching element, the output DC of the DC power supply is converted into AC by switching of the switching element, and the converted AC is used as commercial power. an inverter connected to the grid and supplied to the load; an electrolytic capacitor installed in parallel with the DC power supply; a DC voltage detector that detects the voltage across the capacitor; and a voltage detected by the detector and a reference voltage. and control means for controlling the output of the inverter so that the detected voltage becomes equal to the reference voltage.
JP62264143A 1987-10-20 1987-10-20 System-connected inverter device Pending JPH01107662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62264143A JPH01107662A (en) 1987-10-20 1987-10-20 System-connected inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264143A JPH01107662A (en) 1987-10-20 1987-10-20 System-connected inverter device

Publications (1)

Publication Number Publication Date
JPH01107662A true JPH01107662A (en) 1989-04-25

Family

ID=17399057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264143A Pending JPH01107662A (en) 1987-10-20 1987-10-20 System-connected inverter device

Country Status (1)

Country Link
JP (1) JPH01107662A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285260A (en) * 1998-03-27 1999-10-15 Ebara Densan Ltd Method and device for controlling inverter device
US7728537B2 (en) 2006-09-11 2010-06-01 Sanyo Electric Co., Ltd. Motor control device and current detecting unit
JP2015050783A (en) * 2013-08-30 2015-03-16 ニチコン株式会社 Power feeding system and power feeding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285260A (en) * 1998-03-27 1999-10-15 Ebara Densan Ltd Method and device for controlling inverter device
US7728537B2 (en) 2006-09-11 2010-06-01 Sanyo Electric Co., Ltd. Motor control device and current detecting unit
JP2015050783A (en) * 2013-08-30 2015-03-16 ニチコン株式会社 Power feeding system and power feeding method

Similar Documents

Publication Publication Date Title
US11043802B2 (en) Shutdown apparatus for photovoltaic module
US7602626B2 (en) Power conversion apparatus
JPH1031525A (en) Photovoltaic power generation system
EP3258580B1 (en) Device and method for protecting direct current source
US20050269882A1 (en) Uninterruptible power supply
JP2011182519A (en) Power converting apparatus
US11637431B2 (en) Inverter
JPH01107662A (en) System-connected inverter device
TWI655827B (en) Uninterruptible power supply
JPH09215205A (en) Power conversion apparatus
JPH07322529A (en) Solar cell power supply
CN111884255A (en) Photovoltaic inverter and photovoltaic system
JPH01107661A (en) System-connected inverter device
JP6944884B2 (en) Power supply
JP4177710B2 (en) Inverter device
JP4569552B2 (en) Instantaneous voltage drop compensation device
JP2021027749A (en) Charge/discharge control device, battery including the same, and dc power supply system
JPH09130995A (en) Uninterruptive power supply
JPH02164236A (en) Uninterruptible power supply
JP3840236B2 (en) Converter device and control method thereof
JPH01243826A (en) Starting of system interconnected solar photovoltaic generation system
JPH0667202B2 (en) Power supply by parallel operation
NL8701846A (en) ELECTRICAL POWER SUPPLY DEVICE WITH REGULATED AC OUTLET.
CN116979569A (en) Photovoltaic system
CN115347638A (en) Battery power supply starting circuit and welding machine