JPH01107629A - Superconductive power storage apparatus - Google Patents

Superconductive power storage apparatus

Info

Publication number
JPH01107629A
JPH01107629A JP62264590A JP26459087A JPH01107629A JP H01107629 A JPH01107629 A JP H01107629A JP 62264590 A JP62264590 A JP 62264590A JP 26459087 A JP26459087 A JP 26459087A JP H01107629 A JPH01107629 A JP H01107629A
Authority
JP
Japan
Prior art keywords
power
frequency
output
lower limit
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62264590A
Other languages
Japanese (ja)
Inventor
Hisahide Nakayama
中山 尚英
Katsuji Murai
村井 勝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62264590A priority Critical patent/JPH01107629A/en
Publication of JPH01107629A publication Critical patent/JPH01107629A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To obtain an apparatus good in responsiveness to load fluctuation and capable of absorbing it accordingly, by connecting a superconductive coil to a power system through a power conversion device and by giving a storage command when the system frequency is above the upper limit value and a release command when it is below the lower limit value. CONSTITUTION:Through a power conversion device 6 a superconductive coil 7 is connected to a power system 1 to which a generator 3 is connected. On the other hand, the system frequency of the power system 1 is detected by a frequency detector 8 and the detected system frequency is compared with the upper limit frequency and lower limit frequency of a target frequency by a comparator 9. This comparator 9 issues a power storage command when the system frequency becomes above the upper limit frequency and power release command when it becomes below the lower limit frequency to a control device 10. Depending on these commands, the power conversion device 6 is controlled, so that the power is given and received between the power system 1 and the superconductive coil 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力系統に接続された超電導電力貯蔵装置I
(以下、SMESと称す)に係り、特に系統負荷変動゛
による系統の擾乱を安定化するに好適なものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a superconducting power storage device I connected to an electric power system.
The present invention relates to SMES (hereinafter referred to as SMES), and particularly to one suitable for stabilizing system disturbances caused by system load fluctuations.

〔従来の技術〕[Conventional technology]

電力を超電導コイルの磁気エネルギーとして貯えるよう
にしてなるSMESは、揚水発電と同様に電力系統の1
日における負荷変動を吸収するものとして用いることが
提案されている。
SMES, which stores electric power as magnetic energy in superconducting coils, is a part of the power system similar to pumped storage power generation.
It has been proposed to use it to absorb daily load fluctuations.

また、系統事故的における発電機の加速を抑制するため
、その抑制に必要な電力量をSMESに吸収することが
提案されている(例えば、特開昭60−226725号
公報)。
Furthermore, in order to suppress the acceleration of the generator in the event of a system failure, it has been proposed to absorb the amount of electric power necessary for the suppression into the SMES (for example, Japanese Patent Laid-Open No. 60-226725).

〔発明が解決しよ、うとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の技術は、系統において通常発生す
る擾乱の抑制については何ら配慮されていない、特に、
系統の急激な負荷変動に伴う系統擾乱を抑制、安定化す
るに際しての即応性に欠けるという問題がある。
However, the conventional technology does not give any consideration to the suppression of disturbances that normally occur in the power grid.
There is a problem in that there is a lack of quick response when suppressing and stabilizing grid disturbances caused by sudden load fluctuations in the grid.

本発明の目的は、上記従来の問題点を解決すること、言
い換えれば、系統の急激な負荷変動を応容性よく吸収し
て、電力系統の状態を安定に保持できる超電導電力貯蔵
装置を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems, in other words, to provide a superconducting power storage device that can absorb sudden load changes in the power system with good response and maintain a stable state of the power system. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するため、系統の周波数をそ
の目標周波数に保持すべく発電機の出力が制御されてな
る電力系統に、電力変換装置を介して接続された超電導
コイルと、電力系統の目標周波数の上、下に設定された
上、下限周波数と検出された系統周波数とを比較し、系
統周波数が上限周波数以上のときは貯蔵指令を出力し、
下限周波数以下のときは放出指令を出力する比較器と、
該比較器から出力される貯蔵指令と放出指令に対応して
前記電力変換装置を順変換、逆変換駆動して、前記超電
導コイルの電力の貯蔵、放出を制御する制御装置と、を
具備してなる超電導電力貯蔵装置としたことにある。
In order to achieve the above object, the present invention provides a superconducting coil connected via a power converter to a power system in which the output of a generator is controlled to maintain the frequency of the system at its target frequency, and a power system. The upper and lower limit frequencies set above and below the target frequency are compared with the detected grid frequency, and when the grid frequency is higher than the upper limit frequency, a storage command is output,
A comparator that outputs a release command when the frequency is below the lower limit frequency,
A control device that controls storage and release of power of the superconducting coil by driving the power conversion device for forward conversion and reverse conversion in response to a storage command and a release command output from the comparator. The goal is to create a superconducting power storage device.

〔作用〕[Effect]

本発明は、発電機の出力制御の応答速度は、−般に数分
単位(特に原子力発電プリントの場合は長い)であるの
対し、SMESは数秒単位であるから、擾乱抑制にSM
ESが極めて応答性に優れるという点に鑑み、なされた
ものである。
The present invention uses SM for disturbance suppression because the response speed of generator output control is generally on the order of several minutes (particularly long in the case of nuclear power generation printing), whereas the response speed of SMES is on the order of seconds.
This was done in view of the fact that ES has extremely excellent responsiveness.

しかして、上記構成によれば、系統の負荷が変動すると
、その変動に応じて発電機の出力、が漸増または漸減さ
れる。しかし、その応答速度が遅いために、系統の周波
数が変動する。
According to the above configuration, when the load on the system fluctuates, the output of the generator is gradually increased or decreased in accordance with the fluctuation. However, because the response speed is slow, the frequency of the grid fluctuates.

このときの周波数変動が、例えば比較器に設定された上
限周波数以上に達すると、その比較器から電力の貯蔵指
令が出力される。この貯蔵指令により制御装置が作動し
て、電力変換装置を順変換駆動する。これにより、系統
の余剰電力は直流に変換されて速やかに超電導コイルに
蓄えられ、系統の周波数は上限値に保持される。この間
に発電機の出力が漸減され、系統の負荷に見合った出力
に低下されるにつれ、系統周波数は上限周波数以下とな
り、貯蔵指令の出力が停止し、超電導コイルへの電力貯
蔵動作が停止され、通常状態に移行する。
When the frequency fluctuation at this time reaches, for example, an upper limit frequency set in the comparator or more, the comparator outputs a power storage command. This storage command activates the control device to drive the power converter for forward conversion. As a result, the surplus power of the grid is converted to direct current and promptly stored in the superconducting coil, and the frequency of the grid is maintained at the upper limit value. During this time, the output of the generator is gradually reduced to an output commensurate with the load on the grid, the grid frequency falls below the upper limit frequency, the storage command output is stopped, and the power storage operation to the superconducting coil is stopped. Transition to normal state.

一方、系統周波数が下限周波数以下になった場合は、上
記とは逆に、電力変換装置が逆変換駆動され、超電導コ
イルに蓄えられていた直流電力に電力系統に放出され、
発電機の出力制御が追従するまでの間系統の周波数は下
限値に安定して保持される。
On the other hand, when the grid frequency falls below the lower limit frequency, contrary to the above, the power converter is driven for reverse conversion, and the DC power stored in the superconducting coil is released to the power grid.
The system frequency is stably maintained at the lower limit value until the output control of the generator follows suit.

このように、系統の急激な負荷変動に対し、速やかに超
電導電力貯蔵装置が作動してその変動を吸収し、系統の
擾乱を抑制して安定な系統状態が保持されるのである。
In this way, in response to sudden load fluctuations in the grid, the superconducting power storage device quickly operates to absorb the fluctuations, suppress disturbances in the grid, and maintain a stable grid state.

℃実施例〕 以下1本発明を実施例に基づいて説明する。℃ Example] The present invention will be explained below based on examples.

第1図に一実施例の全体構成図を示す。電力系統1には
変圧器2を介して発電機3が接続され。
FIG. 1 shows an overall configuration diagram of an embodiment. A generator 3 is connected to the power system 1 via a transformer 2.

発電機3で発生した電力は、電力系統1を介して負荷に
供給されている。発電機3の出力は、周知のように、与
えられる出力目標値とその検出値に基づいて発電機制御
装置4により制御され、また出力周波数についても、系
統の目標値周波数fa’に保持制御されている。
Electric power generated by the generator 3 is supplied to a load via the power system 1. As is well known, the output of the generator 3 is controlled by the generator control device 4 based on the given output target value and its detected value, and the output frequency is also controlled to be maintained at the grid target value frequency fa'. ing.

一方、電力系統1にはン変圧器5と電力変換装置6を介
して超電導コイル7が接続されている。
On the other hand, a superconducting coil 7 is connected to the power system 1 via a transformer 5 and a power converter 6.

電力変換装置6は、例えばサイリスタを用いて順。The power conversion device 6 uses, for example, a thyristor.

逆変換駆動可能に形成され、順変換時に系統1の電力を
直流に変換して超電導コイル7に磁気エネルギーとして
貯蔵し、逆変換時は超電導コイル7に菩えられていた直
流電力を系統1に放出するようになっている。この電力
変換装置6の制御は、周波数検出器8と比較器9から与
えられる指令により動作されるSMES制御装置10に
より、前記サイリスタを位相制御してなされる。
It is formed so that it can be driven in reverse conversion, and during forward conversion, the power of system 1 is converted to DC and stored as magnetic energy in superconducting coil 7, and during reverse conversion, the DC power that was passed through superconducting coil 7 is transferred to system 1. It is designed to be released. The power conversion device 6 is controlled by an SMES control device 10 operated by commands given from a frequency detector 8 and a comparator 9 by controlling the phase of the thyristor.

周波数検出器8は、電力系統1に関連して設けられた検
出端11と協働して系統周波数fを検出し、これを比較
器9に出力する。
Frequency detector 8 cooperates with detection end 11 provided in connection with power system 1 to detect system frequency f, and outputs this to comparator 9 .

比較器9は、入力される系統周波数fに基づいて、電力
系統1の電力を貯蔵すべきか、あるいは電力系統1に電
力を放出すべきかを判断するものであり、予め設定され
た上限周波数数fu以上のときは貯蔵指令を出力し、逆
に下限周波数fし以下のときは放出指令を出力するよう
になっている。
The comparator 9 determines whether the power of the power grid 1 should be stored or the power should be released to the power grid 1 based on the input grid frequency f. When the frequency is higher than or equal to the lower limit frequency f, a storage command is output, and conversely, when the frequency is lower than the lower limit frequency f, a release command is output.

なお、上、下限周波数fH,fLには、それぞれ一定幅
の不感帯が設けられており、ハンチング防止がなされて
いる。
Note that the upper and lower limit frequencies fH and fL are each provided with a dead zone of a certain width to prevent hunting.

SMES制御装置10は、貯蔵指令が入力されたときは
電力変換袋[6を順変換駆動する位相制御信号を出力し
、放出指令が入力されたときは逆変換駆動する位相制御
信号を出力する。なお、電力変換装置6の作動周波数は
、系統周波数fに同期されることはいうまでもない。
The SMES control device 10 outputs a phase control signal for forward conversion driving of the power conversion bag [6 when a storage command is input, and outputs a phase control signal for reverse conversion driving when a discharge command is input. It goes without saying that the operating frequency of the power converter 6 is synchronized with the grid frequency f.

このように構成される実施例の動作について、第2図を
参照しながら次に説明する。第2図の(a)は、系統の
負荷電力(仕事率)Pの変化を、(b)は系統周波数f
の変化を、(c)は超電導コイル7の貯蔵電力(仕事率
)Esの変化を。
The operation of the embodiment configured as described above will be explained next with reference to FIG. Figure 2 (a) shows the change in the grid load power (power) P, and (b) shows the grid frequency f.
(c) shows the change in the stored power (power) Es of the superconducting coil 7.

(d)は発電機出力(仕事率)Paの変化を、それぞれ
示している。
(d) shows changes in the generator output (power) Pa.

ここで、電力系統1が負荷電力Poで運用されているt
I時において、その負荷電力がPlに減少した場合の動
作について説明する。
Here, the power system 1 is operated with load power Po t
The operation when the load power decreases to Pl at time I will be described.

時刻t1において、負荷電力がPaからPlに減少する
と、系統周波数fが上昇する。系統周波数fが許容範囲
を逸脱し、f≧fHとなると比較器9が作動し、SME
S制御装置1oに対して貯蔵指令を出力する。これによ
り電力変換装置6が順変換駆動され、超電導コイル7に
余剰電力Pδ=Po  Plの貯蔵が開始される。これ
と同時に発電機制御袋W14が作動し1発電機系統に許
容される下降速度で出力Paが漸減される。
At time t1, when the load power decreases from Pa to Pl, the system frequency f increases. When the system frequency f deviates from the allowable range and f≧fH, the comparator 9 is activated and the SME
A storage command is output to the S control device 1o. As a result, the power conversion device 6 is driven for forward conversion, and storage of surplus power Pδ=Po Pl in the superconducting coil 7 is started. At the same time, the generator control bag W14 is activated, and the output Pa is gradually reduced at a descending speed allowed for one generator system.

なお、超電導コイル7の貯蔵電力Esは、次式のように
表わすことができる。
Note that the stored power Es of the superconducting coil 7 can be expressed as in the following equation.

Es=/(Pδ−Pat’ )d t’ここで、t’=
t−tI Pa=発電機出力paの変化率 このようにして、余剰電力は超電導コイル7に急速に貯
蔵され、系統周波数fの上昇はfHに抑制される。そし
て、この間にPaはPに向って漸減され、時刻t3にて
PO:Plに達すると、系統周波数fはfoに戻り、貯
蔵指令の出力停止に従って電力変換装置6が停止し、E
sの増加が止まって通常の系統状態に復帰される。
Es=/(Pδ-Pat')d t'where, t'=
t-tI Pa=rate of change in generator output pa In this way, surplus power is rapidly stored in the superconducting coil 7, and the increase in system frequency f is suppressed to fH. During this period, Pa gradually decreases toward P, and when it reaches PO:Pl at time t3, the system frequency f returns to fo, the power converter 6 stops in accordance with the output stop of the storage command, and E
The increase in s stops and the normal system state is restored.

以上、系統負荷が減少した場合を説明したが、逆に増加
した場合には系統周波数fが低下し、これが下限周波数
fL以下に低下すると比較器9から放出指令が出力され
る。これにより、電力変換装置6が逆変換駆動され、超
電導コイル7に蓄えられていた電力が電力系統1に放出
され、系統周波数fがfLに安定に保持される。この間
に発電機出力Paが漸増され、系統周波数Jがfoに達
すると、放出指令の出力が停止して、通常の系統状態に
復帰する。
The case where the system load decreases has been described above, but conversely, when it increases, the system frequency f decreases, and when this decreases below the lower limit frequency fL, the comparator 9 outputs a discharge command. As a result, the power conversion device 6 is driven for reverse conversion, the power stored in the superconducting coil 7 is released to the power system 1, and the system frequency f is stably maintained at fL. During this time, the generator output Pa is gradually increased, and when the system frequency J reaches fo, the output of the discharge command is stopped and the normal system state is restored.

なお、上記の説明で、発電機出力Paは常に変動後の負
荷電力に一致するように、式(1)に示した変化を行わ
せているが、第2図(d)に破線で示したように、−見
目標値に達したのち、貯蔵電力Esと通常レベルEso
の偏差に応じてしばらく行き過ぎるように出力変化させ
ることも可能である。これによれば、超電導コイル7の
貯蔵電力は第2図(c)に破線で示したように低下され
1通常運転レベルのEsoに保持することができ、貯蔵
電力が異常に増えてクエンチ状態に至ることを防止する
ことができ、また超電導コイル7の容量を低減できる。
In addition, in the above explanation, the generator output Pa is changed as shown in equation (1) so that it always matches the load power after fluctuation, but the change shown by the broken line in Fig. 2 (d) So, after reaching the target value, the stored power Es and the normal level Eso
It is also possible to change the output so that it goes too far depending on the deviation. According to this, the stored power of the superconducting coil 7 decreases as shown by the broken line in FIG. 2(c) and can be maintained at the normal operation level Eso, and the stored power increases abnormally and enters the quench state. This can be prevented, and the capacity of the superconducting coil 7 can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、電力系統の急激
な負荷変動を応答性よく吸収することができ、電力系統
の擾乱を抑制して安定な運用を可能にするという効果が
ある。
As described above, according to the present invention, rapid load fluctuations in the power system can be absorbed with good responsiveness, and disturbances in the power system can be suppressed to enable stable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体構成図、第2図は第1
図実施例の動作を説明するための線図である。 1・・・電力系統、3・・・発電機、6・・・電力変換
装置、7・・・超電導コイル、8・・・周波数検出器、
9・・・比較器、10・・・SMES制御装置。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, and FIG.
FIG. 3 is a diagram for explaining the operation of the illustrated embodiment. DESCRIPTION OF SYMBOLS 1... Power system, 3... Generator, 6... Power converter, 7... Superconducting coil, 8... Frequency detector,
9... Comparator, 10... SMES control device.

Claims (1)

【特許請求の範囲】 1、系統の周波数をその目標周波数に保持すべく発電機
の出力が制御されてなる電力系統に、電力変換装置を介
して接続された超電導コイルと、電力系統の目標周波数
の上、下に設定された上、下限周波数と検出された系統
周波数とを比較し、系統周波数が上限周波数以上のとき
は貯蔵指令を出力し、下限周波数以下のときは放出指令
を出力する比較器と、 該比較器から出力される貯蔵指令と放出指令に対応して
前記電力変換装置を順変換、逆変換駆動して、前記超電
動コイルの電力の貯蔵、放出を制御する制御装置と、 を具備してなる超電導電力貯蔵装置。
[Claims] 1. A superconducting coil connected via a power converter to a power system in which the output of a generator is controlled to maintain the frequency of the power system at its target frequency, and a target frequency of the power system. A comparison that compares the upper and lower limit frequencies set at the upper and lower limits with the detected grid frequency, and outputs a storage command when the grid frequency is above the upper limit frequency, and outputs a release command when it is below the lower limit frequency. a control device that controls storage and release of electric power of the superelectric coil by driving the power conversion device for forward conversion and reverse conversion in accordance with the storage command and the release command output from the comparator; A superconducting power storage device comprising:
JP62264590A 1987-10-20 1987-10-20 Superconductive power storage apparatus Pending JPH01107629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62264590A JPH01107629A (en) 1987-10-20 1987-10-20 Superconductive power storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264590A JPH01107629A (en) 1987-10-20 1987-10-20 Superconductive power storage apparatus

Publications (1)

Publication Number Publication Date
JPH01107629A true JPH01107629A (en) 1989-04-25

Family

ID=17405412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264590A Pending JPH01107629A (en) 1987-10-20 1987-10-20 Superconductive power storage apparatus

Country Status (1)

Country Link
JP (1) JPH01107629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289733A (en) * 1991-03-18 1992-10-14 Shikoku Sogo Kenkyusho:Kk Step-out preventing device for ac generator
WO2012039055A1 (en) * 2010-09-24 2012-03-29 株式会社東芝 Evaluation apparatus, evaluation method, and evaluation program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289733A (en) * 1991-03-18 1992-10-14 Shikoku Sogo Kenkyusho:Kk Step-out preventing device for ac generator
WO2012039055A1 (en) * 2010-09-24 2012-03-29 株式会社東芝 Evaluation apparatus, evaluation method, and evaluation program

Similar Documents

Publication Publication Date Title
US6313600B1 (en) Control method and apparatus for insufficient input voltage in an AC drive
US4727469A (en) Control for a series resonant power converter
CA2018055C (en) Superconductive voltage stabilizer
US4648018A (en) Method and apparatus to operate a high-voltage DC transmission system (HVDC) with automatic control of the converters
US4692632A (en) Procedure and apparatus for uninterruptible power supply
JP2003052134A (en) Control method for uninterruptible power supply apparatus, and the uninterruptible power supply apparatus employing the method
US4638416A (en) Method and apparatus for high-voltage D.C. transmission with a bypass circuit for malfunctions
JPH01107629A (en) Superconductive power storage apparatus
US4638415A (en) Method and apparatus for resumption of normal operation of a high-voltage D. C. transmission line
US5363289A (en) Control apparatus for limiting voltage on a core reset capacitor
JPS6334699B2 (en)
US3947746A (en) Single-ended dc-to-dc converter for the pulse control of the voltage at an inductive load as well as method for its operation
JPH04350442A (en) Control method of air conditioner
JPH0417029B2 (en)
JP2513277B2 (en) Operating method of AC excitation synchronous machine
JPS6237241A (en) Controller for dc substation
JPH0359660B2 (en)
JPS6040270B2 (en) Synchronous switching method from inverter to commercial power supply
JPH0795730A (en) Inverter for linking power system
JPS6176100A (en) Self-excited automatic voltage regulator
JPH08163781A (en) Self-exciting reactive voltage compensator
JPS6087695A (en) Excitation controller
SU1534439A1 (en) Method of controlling pulsed dc voltage stabilizer
JPH057929B2 (en)
JPH04261368A (en) Inverter device