JPH01107499A - Standing wave type accelerating tube - Google Patents

Standing wave type accelerating tube

Info

Publication number
JPH01107499A
JPH01107499A JP26259787A JP26259787A JPH01107499A JP H01107499 A JPH01107499 A JP H01107499A JP 26259787 A JP26259787 A JP 26259787A JP 26259787 A JP26259787 A JP 26259787A JP H01107499 A JPH01107499 A JP H01107499A
Authority
JP
Japan
Prior art keywords
cavity
bore diameter
regular
electron beam
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26259787A
Other languages
Japanese (ja)
Inventor
Hiroshi Kikuchi
宏 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26259787A priority Critical patent/JPH01107499A/en
Priority to US07/196,255 priority patent/US5039910A/en
Publication of JPH01107499A publication Critical patent/JPH01107499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To improve a transmission factor of electron beams through an accelerating tube and restrict production of unnecessary radiations from the accelerating tube by making the bore diameter of a buncher part smaller than the bore diameter of a regular part. CONSTITUTION:The diameter of a bore 9i in a cavity 3i at a buncher part 23 is formed to be smaller than the diameter of a bore 9j at a regular part 22. The divergent component perpendicular to the advance of an electron beam 2 is thus reduced, and the transmission factor of electron beam through an accelerating tube 1 is increased. Through the bore diameter is made small only for the first cavity 3i in this example, if bunchers exist for a second cavity 3j and on, the diameters of the bores at the cavities may also be changed in order, except that the cycle for the second cavity 3j and on need not be so small to the cycle for a regular part 23 as that for the first cavity 3i. The transmission factor of electron beams through the accelerating tube 1 is thus improved, and production of unnecessary radiations caused by collision of divergent electron beams 2 on the wall of the accelerating tube 1 can be restricted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、定在波形加速管に関し、もう少し詳しくい
うと、電子等の荷電粒子を、マイクロ波電力の電界によ
シ、荷電粒子発射時の粒子エネルギから高エネルギに加
速するための定在波形加速管に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a standing waveform accelerator tube, and more specifically, the present invention relates to a standing waveform accelerator tube. This invention relates to a standing waveform acceleration tube for accelerating particles from energy to high energy.

〔従来の技術〕[Conventional technology]

第3図は、例えばアムステルダムのノース・ホーランド
 パブリッシング カンパニー(North−Holl
and Publishing Company)発行
、P、M、ラボストーレ%A、 L、セブタイア(P、
M、 LAPO8TOLLE &A、L、 5EPTI
ER)編集の6線形加速器” (LinearAcce
lerator ) P、 607に示された従来の定
在波形加速管であシ、定在波形加速管(1)内で荷電粒
子ビーム(2)が加速進行する。荷電粒子ビーム(2)
は、この例では電子ビームであシ、破線矢印の方向へ進
行していく。加速空洞(3)は電子ビーム(2)Kマイ
クロ波電力によりエネルギな与えて加速するためのもの
である。結合空洞(4)は互いに隣接する加速空洞(3
)のマイクロ波の位相が電子ビーム(2)Kよって進行
するごとに各加速空洞(3)から加速方向の電界を受け
るよう、マイクロ波の位相を整合させる作用をする。
Figure 3 shows, for example, the North-Holl Publishing Company of Amsterdam.
and Publishing Company), P, M, Labo Store% A, L, Sebutia (P,
M, LAPO8TOLLE &A, L, 5EPTI
ER) Edited 6 Linear Accelerator” (LinearAcce
In the conventional standing waveform accelerator tube shown in Figure 607, a charged particle beam (2) accelerates and advances within the standing waveform accelerator tube (1). Charged particle beam (2)
In this example, the electron beam travels in the direction of the dashed arrow. The acceleration cavity (3) is for accelerating the electron beam (2) by giving it energy with K microwave power. The coupling cavity (4) is connected to the acceleration cavity (3) adjacent to each other.
) acts to match the phase of the microwave so that it receives an electric field in the acceleration direction from each acceleration cavity (3) every time the electron beam (2)K advances.

次に第4図は、第3図の装置を断面図として表わしたも
ので、加速管(1)のハツチングで示した部分は5例え
ば銅のような高導電率の金属からなシ、加速空洞(3)
、結合空洞(4)を形成している。
Next, FIG. 4 shows a cross-sectional view of the device shown in FIG. (3)
, forming a coupling cavity (4).

なお、空洞で共振するマイクロ波の周波数に従って、加
速管(r)のハツチング部分はすべて同じ材質である必
要はなく、空洞の表面からのマイクロ波による表皮の長
さに対し、十分厚い部分が高い導電率の材料であればよ
い。7ランジ(5a)、 (5b)は加速管(1)と他
の装置を接続するためのもので、電子ビーム(2)が加
速管(1)に入射する側が入射フランジ(6a)で、出
口側は出口フランジ(5b)である。加速管<1)に結
合されている導波管(6)は、加速管(1)の各空洞に
マイクロ波を導入するためのもので、結合孔(7a) 
、 (7b)は、このマイクロ波が各空洞に分布するよ
うに設けられており、加速空洞(3)と結合空洞(4)
の間に結合孔(7a)。
Note that, depending on the frequency of the microwaves resonating in the cavity, the hatching parts of the accelerator tube (r) do not all need to be made of the same material, and the parts that are sufficiently thick should be high enough for the length of the skin caused by the microwaves from the surface of the cavity. Any material with electrical conductivity may be used. 7. Lunges (5a) and (5b) are for connecting the accelerating tube (1) with other equipment.The side where the electron beam (2) enters the accelerating tube (1) is the entrance flange (6a), and the side where the electron beam (2) enters the accelerating tube (1) is the entrance flange (6a), and the exit flange The side is the outlet flange (5b). The waveguide (6) coupled to the acceleration tube <1) is for introducing microwaves into each cavity of the acceleration tube (1), and is connected to the coupling hole (7a).
, (7b) are provided so that this microwave is distributed in each cavity, and the acceleration cavity (3) and the coupling cavity (4)
A binding hole (7a) between.

導波管(6)と加速空洞(3)との間に結合孔(7b)
が設けられている。加速空洞(3)は一種のりエンドラ
ント形空洞の変形で、電界を強く集中させる突き出しの
部分(8)は、定在波形加速管では、ノーズコーンと呼
ばれている。この相対するノーズコーン(8)に生じる
マイクロ波の電界により電子ビーム(2)が加速空洞(
3)によシ次々と加速されるよう、ノーズコーン(8)
に電子ビーム(2)が通過するボア(9)がある。
A coupling hole (7b) between the waveguide (6) and the acceleration cavity (3)
is provided. The acceleration cavity (3) is a modification of a glue-endrant type cavity, and the protruding part (8) that strongly concentrates the electric field is called a nose cone in a standing wave acceleration tube. The electron beam (2) is accelerated by the electric field of the microwave generated in the opposing nose cone (8).
3) Nose cone (8) so that it can be accelerated one after another.
There is a bore (9) through which the electron beam (2) passes.

さて、第4図に示すように、加速管(1)は加速空洞(
g)と結合空洞(4)の繰返し構造となっており、空間
的周期性を有している。この周期(21a)は、空洞内
の右半分と左半分が寸法が異なることはないので1通常
はこの周期を(21b)として示す寸法で表わして周期
と呼び、その寸法はDである。
Now, as shown in Figure 4, the acceleration tube (1) has an acceleration cavity (
g) and the coupling cavity (4), which have a repeating structure and have spatial periodicity. This period (21a) is not different in size between the right half and the left half in the cavity, so this period is usually expressed by the size shown as (21b) and called a period, and the size is D.

この周期D (21b)が電子ビーム(2)の速度がほ
ぼ光速となったとき、各加速空洞(3)で常に加速電界
な受けるように一定寸法になっている部分(22)を加
速管(1)のレギユラ部と称している。これに対し、電
子ビーム(2)が加速管(1)に入射してマイクロ波に
よ多速度を速め、かつ、マイクロ波の位相の速度に効率
の良い部分に電子を集群(パンチング)させる部分(2
81バンチヤ部と呼んでいる。第4図ではバンチヤ部(
23)が2空洞となっているが、これは−例であシ、加
速管の設計によりさらに多くなることもあり、少なくな
ることもある。
When the speed of the electron beam (2) becomes approximately the speed of light, this period D (21b) connects the accelerating tube ( It is called the regular part of 1). On the other hand, the part where the electron beam (2) enters the accelerator tube (1), increases the velocity of the microwave, and collects (punches) the electrons in a part where the phase velocity of the microwave is efficient. (2
It is called the 81 Banchiya Club. In Figure 4, the bunchier part (
23) has two cavities, but this is just an example; there may be more or fewer cavities depending on the design of the accelerator tube.

第す図は、加速空洞の1空洞だけをさらに詳しく示した
もので、ボア(9)の直径の寸法(24)をbとし、ノ
ーズコーン(8)の高さと称される寸法(26)をh、
対向するノーズコーン(8)間のギャップ(26)はg
とする。また、矢印(30)は加速空洞(8)の内部に
マイクロ波により生じる電界を示したものである。同図
は電子ビーム(2)が加速される様子を模式的に示した
ものである。勿論。
Figure 3 shows only one of the acceleration cavities in more detail, where b is the dimension (24) of the diameter of the bore (9) and the dimension (26) referred to as the height of the nose cone (8) is shown in more detail. h,
The gap (26) between opposing nose cones (8) is g
shall be. Further, the arrow (30) indicates the electric field generated by the microwave inside the acceleration cavity (8). The figure schematically shows how the electron beam (2) is accelerated. Of course.

電界(80)はマイクロ波によシ生じる電界であるから
、その残置および向きは時間的に周期的変化をする。
Since the electric field (80) is an electric field generated by microwaves, its residual position and direction change periodically over time.

次に動作について説明する。第3図および第4図に示す
ように、加速管(1)には導波管(6)により、例えば
パルスの尖頭電力で5MWのような大電力マイクロ波が
供給される。なお、このマイクロ波は、図示していない
が、クライストロンやマグネトロンのような大電力マイ
クロ波管より供給される。マイクロ波は、結合孔(7b
)、さらに結合孔(7a)を経て加速管(1)全体に伝
播し、各空洞内で定在波を発生する。この加速管が定在
波形加速管と言われる所以である。設計上、加速空洞(
3)のQ値を高く、結合空洞(4)のQ値を低くするこ
とにより、マイクロ波のエネルギは加速空洞(3)に多
く貯えられ、電子ビーム(2)を効率よく加速させる。
Next, the operation will be explained. As shown in FIGS. 3 and 4, the accelerator tube (1) is supplied with high power microwaves, such as 5 MW pulse peak power, through a waveguide (6). Although not shown, this microwave is supplied from a high-power microwave tube such as a klystron or magnetron. The microwave is applied to the coupling hole (7b
), further propagates throughout the accelerator tube (1) via the coupling hole (7a), and generates standing waves within each cavity. This is why this acceleration tube is called a standing waveform acceleration tube. By design, the acceleration cavity (
By increasing the Q value of 3) and lowering the Q value of the coupling cavity (4), a large amount of microwave energy is stored in the acceleration cavity (3), and the electron beam (2) is efficiently accelerated.

電子ビーム(2)は入射フランジ(5a)に接続されて
いる1例えば電子銃から加速管(1)に入射し、バンチ
ヤ部(2B)で加速(速度が増し。
The electron beam (2) enters the accelerating tube (1) from one, for example, an electron gun, connected to the entrance flange (5a), and is accelerated (speed is increased) at the bunchier part (2B).

エネルギが増す)され、かつ、マイクロ波のある位相に
集群し、ほぼ光速に近くなってレギユラ部(22)に進
み、相対論に従って速度はほぼ光速(勿論厳密には、光
速未満)のまま、エネルギが高くなっていき、出口フラ
ンジ(5b)に接続される次の装置1例えばビームダク
トに進んでいく。
The microwaves converge at a certain phase, reach almost the speed of light, and proceed to the regular part (22), and according to the theory of relativity, the speed remains almost the speed of light (of course, strictly speaking, less than the speed of light). The energy increases and advances to the next device 1, for example a beam duct, which is connected to the outlet flange (5b).

上記の電子ビーム(2)の加速について、第6図により
説明すると、電子ビーム(2)はボア(9)を経由して
加速空洞(3)に入射して(るが、このとき、空洞内の
対向するノーズコーン(8)に電界(30)が生じてい
る。電界(30)の矢印の方向が電子を加速する方向と
する。周期D (21b)の加速空洞(3)を電子ビー
ムが走る間に、マ・イクロ波が加速方向の半波長分だけ
変化すれば、電子ビーム(2)は周期D (21b)を
通過する間ギャップg(26)で生じる加速電界のみ経
験し、さらにこれに続く次の加速空洞でも同様にマイク
ロ波の加速電界を受け、電子ビーム(2)は次々と加速
される。すなわち、隣り合う加速空洞は、互いにマイク
ロ波の位相がπ(半波長分)だけ異なるように設計され
るのである。
To explain the acceleration of the electron beam (2) above with reference to FIG. 6, the electron beam (2) enters the acceleration cavity (3) via the bore (9). An electric field (30) is generated in the nose cone (8) facing each other.The direction of the arrow of the electric field (30) is the direction in which the electrons are accelerated.The electron beam passes through the acceleration cavity (3) with period D (21b). If the micro-wave changes by half a wavelength in the acceleration direction while running, the electron beam (2) experiences only the accelerating electric field generated in the gap g (26) while passing through the period D (21b), and furthermore, this The next accelerating cavity following 2 receives the accelerating electric field of the microwave in the same way, and the electron beam (2) is accelerated one after another.In other words, the phase of the microwaves in adjacent accelerating cavities is π (half a wavelength) from each other. They are designed differently.

さて、電界(80)の様子は、第5図に示すように、電
子ビーム(2)の軌道付近では円弧を描いたような形状
となり、ボア(9)が空間であるためボア(9)の部位
に集まる。この電界(30)中な電子ビーム(2)が進
むとき、有限の広がりを持つ電子ビーム(2)は、この
円弧状の電界(30) Kより、収束、発散を繰返しな
がら、加速管(1)中を進んでいくことになる。第5図
に示した形状からは。
Now, as shown in Fig. 5, the electric field (80) has an arc-like shape near the orbit of the electron beam (2), and since the bore (9) is a space, the shape of the electric field (80) is circular. gather at the site. When the electron beam (2) in this electric field (30) advances, the electron beam (2) with a finite spread repeats convergence and divergence due to the arc-shaped electric field (30) K. ) You will proceed inside. From the shape shown in Figure 5.

低エネルギで入射してきた電子ビーム(2)は、収束方
向の電界成分によシ収束力を持ち、電界の作用で高エネ
ルギとなシ、発散力を受けて次の加速空洞に進むため、
電子ビーム(2)の径は、大きな発散がなく定性的であ
るように思われがちであるが、電子ビーム(2)の空洞
内進行方向上の位置とマイクロ波の位相との関係によシ
、電子ビーム(2)は強い収束と大きな発散を受ける部
分に分かれてくることになる。
The electron beam (2) that has entered with low energy has a convergence force due to the electric field component in the convergence direction, becomes high energy due to the action of the electric field, and advances to the next accelerating cavity due to the divergence force.
The diameter of the electron beam (2) tends to be thought to be qualitative without large divergence, but the diameter of the electron beam (2) is determined by the relationship between the position of the electron beam (2) in the direction of travel within the cavity and the phase of the microwave. , the electron beam (2) will be divided into parts that undergo strong convergence and large divergence.

すべての加速空洞(3)は、許容誤差範囲内でマか゛ イクロ波共振周波数〆互いに一致していなければならな
い。バンチヤ部(23)は、レギユラ部(22)よりも
電子の速度が十分速くなっていないため周期D (21
b)が短かく設計されるが、このとき、共振周波数は対
向するノーズコーン部分のキャパシタンス成分Cとその
周囲のインダクタンス成分りにより支配的に決められ、
l/ζに近い値となる。このため、バンチヤ部(2B)
 、レギユラ部(22)にかかわらず、ノーズコーンの
高さh (25)を変化せずに、従ってギャップg (
26)を小さくする設計となる。すなわち、ギャップ部
のCが大きくなるが、第5図のような空洞断面が小さく
なるためLが小さくなシ、t/ハ江は結果的に大きな変
化がなくなるためである。
All acceleration cavities (3) must match each other in microwave resonant frequency within tolerance limits. The bunchier part (23) has a period D (21
b) is designed to be short, but in this case, the resonant frequency is determined predominantly by the capacitance component C of the opposing nose cone portion and the inductance component around it,
The value is close to l/ζ. For this reason, the bunchier part (2B)
, regardless of the regular part (22), the height h (25) of the nose cone remains unchanged, thus the gap g (
26) is designed to be small. That is, although C of the gap portion becomes large, since the cross section of the cavity as shown in FIG. 5 becomes small, L is small, and as a result, there is no large change in t/ha.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の定在波形加速管は以上のように構成されているた
め、電界の形状により電子ビームのうち発散していく部
分があるが、バンチヤ部にお(・ではノーズコーン間ギ
ャップが小さくなり、電界の電子ビーム通過線上での円
弧形状はさらに顕著になり(第6図)、電子ビームに対
する収束力1発散力が大きくなって、電子ビームの加速
管の透過率の悪化や、電子が加速管壁に衝突して不要な
X線等の放射線発生の原因となり、電子ビームの加速特
性の改善の妨げになるなどの問題点があった。
Since the conventional standing waveform accelerator tube is configured as described above, there is a part of the electron beam that diverges depending on the shape of the electric field, but in the bunchier part (), the gap between the nose cones becomes smaller, The arc shape of the electric field on the electron beam passage line becomes even more pronounced (Figure 6), and the convergence and divergence forces for the electron beam increase, causing deterioration in the transmittance of the electron beam through the accelerator tube and the possibility that the electrons will not pass through the accelerator tube. There have been problems in that colliding with walls causes the generation of unnecessary radiation such as X-rays, which hinders improvement of the acceleration characteristics of the electron beam.

この発明は、上記のような問題点を解消するためになさ
れたもので、電子ビームの加速管透過率を向上させ、加
速管からの不要な放射線発生を押えることのできる定在
波形加速管を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it provides a standing waveform accelerating tube that can improve the electron beam transmittance of the accelerating tube and suppress unnecessary radiation generation from the accelerating tube. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る定在波形加速管は、加速のための電界の
形状を改善するのに、バンチヤ部空洞のボアの径がレギ
ユラ部のボア径よプも小さく形成されている。
In the standing wave accelerating tube according to the present invention, the diameter of the bore of the buncher section cavity is smaller than the bore diameter of the regular section in order to improve the shape of the electric field for acceleration.

〔作用〕[Effect]

この発明においては、バンチヤ部空洞のボア径を小さく
したことによシ、電子ビームの進行方向に対して直角方
向の発散成分が小さくなシ、加速管の電子ビーム透過率
を高める。
In this invention, by reducing the bore diameter of the bunchier section cavity, the divergence component in the direction perpendicular to the traveling direction of the electron beam is small, and the electron beam transmittance of the accelerator tube is increased.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図、第2図について説
明する。図において、電子ビーム(2)の加速管(1)
への入射して最初の空洞を第1空洞とし、この第1空洞
の特有な形状等にサフィックス(A>を、第2空洞以後
の形状等にサフィックス(ハを付して表わす。すなわち
、加速空洞(8L)、(3ハ。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, the acceleration tube (1) of the electron beam (2)
The first cavity after incidence on the first cavity is designated as the first cavity, and the unique shape of the first cavity is denoted by the suffix (A>, and the shapes of the second and subsequent cavities are denoted by the suffix (C). In other words, the acceleration Hollow (8L), (3H.

ボア(9Q)、(9ハ、空洞の周期(21j)、(21
ハ、ボア径(24シ)、(24ハ、ノーズコーンのギャ
ップ(26k)。
Bore (9Q), (9H, period of cavity (21j), (21
C, Bore diameter (24C), (24C, Nose cone gap (26K).

(26ハ、加速空洞内の対向するノーズコーン(8)に
生じる電界(30す、(30ハとして示している。ボア
(9す、(9ハがそれぞれ直径J!!’ (2+り、(
24ハに変化する部位は、第1空洞と第2空洞の中心、
すなわち、空洞周期(2LL)、(21ハの境界である
(26H, the electric field generated in the opposing nose cone (8) in the acceleration cavity (30S, (shown as 30H), the bore (9S, (9H) each has a diameter J!!' (2 +
The part that changes to 24cm is the center of the first cavity and the second cavity,
That is, it is the boundary of the cavity period (2LL) and (21H).

加速管(r)に入射してくる電子ビーム(2)の速度は
、光速に対して非常に遅い。例えば、入射電子エネルギ
が20keVでは速度は0.272 C(Cは光速)、
入射電子エネルギが60 keVでは速度は0.446
 C程度である。なお、入射電子エネルギl MaVお
よび8 MeVでは速度はそれぞれtj、94 LCお
よびU、989 Cであるので、レギユラ部(22)で
は電子の速度はほぼ一定とみてよい。第1空洞(3シ)
では、電子の速度は光速近くにはならないので1周期(
21り(これをDAとする)は、周期(21ハ(これを
Di とする)に比して小さく設計するのが普通である
7すでに述ぺたように、DLな短縮する設計は、ギャッ
プ(2flA) (これをgLとし、ギャップ(26ハ
をgj とする)を短縮するととKよシ達成するのが通
常である。また、レギユラ部(22)における、周期お
よびギャップをDr、gr (周期(21ハ、ギャップ
(26ハがレギユラ部であれば、 Di、giであるが
、第2空洞(3j)がバンチヤ部である場合もあシ、一
般論としてDr。
The speed of the electron beam (2) entering the accelerator tube (r) is very slow compared to the speed of light. For example, when the incident electron energy is 20 keV, the velocity is 0.272 C (C is the speed of light),
When the incident electron energy is 60 keV, the velocity is 0.446
It is about C. It should be noted that since the velocities are tj, 94 LC and U, 989 C for incident electron energies l MaV and 8 MeV, respectively, the electron velocities can be considered to be approximately constant in the regular part (22). 1st cavity (3shi)
Then, the speed of the electron is not close to the speed of light, so one period (
21 (this is referred to as DA) is usually designed to be smaller than the period (21) (this is referred to as Di).7 As already mentioned, the design for shortening DL is the gap ( 2flA) (This is gL, and if the gap (26H is gj) is shortened, it is normal to achieve K. (21C, Gap (If 26C is a regular part, Di, gi, but if the second cavity (3j) is a bunchier part, also Dr.

grとする)とする。DA / Dr S 13 、6
程度の設計を行う場合、ノーズコーンの高さh (!5
)は通常変化させないので、 g” / gr s o
、sのよ5な値になることとなυ、電界(30↓)の形
状はレギユラ部(22)に比較してビーム軌道との交差
角が大きくなる。そこで、ボア径(24A)をbシ、レ
ギエラ部(22)のボア径br(この場合(24ハもb
rになっている)として、 b=をbrに対して、第1
図のように小さな寸法とすることKよシ、レギユラ部(
22)と同様のビーム軌道と電界の交差角とするように
設計する。
gr). DA/Dr S 13, 6
When designing the nose cone height h (!5
) is usually not changed, so g” / grs o
, s becomes a value of 5, and the shape of the electric field (30↓) has a larger angle of intersection with the beam trajectory compared to the regular part (22). Therefore, the bore diameter (24A) is set to b, and the bore diameter of the regiela part (22) is set to b
r), let b = be the first
Please make the dimensions small as shown in the figure.
22) is designed to have the same intersection angle between the beam trajectory and the electric field.

ボア(9)は電子ビーム(2)が通過する孔であるから
第1空洞(3b)のボア径bi−が電子ビーム(2)の
直径より小さくなっては意味がない。入射電子ビームの
直径はよく設計された電子銃の場合、1露程度であるが
、尖頭電流で0.6〜LAの電流を要する場合もあり、
入射電子ビームの直径を2〜3fiと想定しておくのが
通常の設計となる。レギエラ部(22)のボア径brは
、加速管(1) Kおける電子ビーム(2)のエネルギ
ゲイン効率とビーム透過率に関わるパラメータであり、
先に述べた電子ビーム(2)の発散も考慮して、加速管
(1)の周囲に収束コイルを持つ場合で、br=5〜7
n程度。
Since the bore (9) is a hole through which the electron beam (2) passes, it is meaningless if the bore diameter bi- of the first cavity (3b) is smaller than the diameter of the electron beam (2). The diameter of the incident electron beam is about 1 dew in the case of a well-designed electron gun, but it may require a peak current of 0.6 to LA;
A typical design assumes that the diameter of the incident electron beam is 2 to 3 fi. The bore diameter br of the regiera section (22) is a parameter related to the energy gain efficiency and beam transmittance of the electron beam (2) in the accelerator tube (1) K.
Taking into account the divergence of the electron beam (2) mentioned earlier, in the case where there is a converging coil around the accelerating tube (1), br = 5 to 7.
About n.

収束コイルを持たない場合で8〜LLm程度とSバンド
での設計例となっている。そこでボア径カビーム径よプ
も小さくならない範囲で、第1空洞(3シ)のボア径と
空洞の周期を概ね同地に選定する。すなわち、bシ/ 
br ”= DL/ Drとする。
This is an example of a design in the S band, which is about 8 to LLm without a convergence coil. Therefore, the bore diameter of the first cavity (3) and the period of the cavity are selected to be approximately the same, within a range where the bore diameter and the beam diameter do not become smaller. In other words, b/
br”=DL/Dr.

以上の構成により、近似的に第1空洞(3シ)の電界(
30りがレギユラ部(22)の電界に同等になり、第1
空洞(1)Kおける電子ビームの発散を押えることがで
きる。通常、第1空洞(3L)のボア径bLは極端に小
さ(なることはなく、電子ビーム(2)の通過を妨げず
に電子ビーム(2)と電界(80りの交差角がレギエラ
部(22)と同等になるため、大きな発散力を受けるこ
となく、加速管(1)の電子ビーム透過率が改善される
With the above configuration, the electric field (
30 is equivalent to the electric field of the regular part (22), and the first
Divergence of the electron beam in the cavity (1) K can be suppressed. Normally, the bore diameter bL of the first cavity (3L) is extremely small (it is never extremely small), and the intersection angle between the electron beam (2) and the electric field (80 degrees) does not obstruct the passage of the electron beam (2). 22), the electron beam transmittance of the accelerator tube (1) is improved without being subjected to a large divergence force.

なお、上記実施例では第1空洞のみボア径を小さくする
例を示した。第2空洞以後にもバンチヤがある場合、第
2空洞以後は周期りはレギユラ部の周期Drに比べて第
1空洞程小さくなることは通常はないが、 bL/ b
r # DA / Drと同様に、 bi/br ’−
= Di/Dr (bi、Diを各々バンチヤ部各空洞
のボア径および周期とする)として各空洞のボア径を順
次変化させる構成であってもよい。
Incidentally, in the above embodiment, an example is shown in which the bore diameter of only the first cavity is reduced. If there is a bunchier after the second cavity, the period after the second cavity is usually not as small as the period Dr of the regular part compared to the first cavity, but bL/b
r# Similar to DA/Dr, bi/br'-
= Di/Dr (where bi and Di are the bore diameter and period of each cavity in the buncher section, respectively), and the configuration may be such that the bore diameter of each cavity is sequentially changed.

次K、他の実施例として、ボア径がビーム径よりも小さ
くならない範囲で、第【空洞(3↓)のボア径と空洞の
対向するノーズコーンギャップを概ね同比に選定する。
As another example, the bore diameter of the cavity (3↓) and the opposing nose cone gap of the cavity are selected to be approximately in the same ratio, within a range where the bore diameter does not become smaller than the beam diameter.

すなわち、” / br !=q gL/grまた、順
次バンチヤ部空洞についてb?/br ’= g//g
r・・・・とすることによシ近似的にバンチヤ部(23
)空洞の電界(30L)、(30ハ・・・がレギユラ部
(22)の電界と同等になシ、バンチヤ部(23)Kお
ける電子ビーム(2)の発散を押えることができる。
That is, "/br !=q gL/gr, and sequentially for the bunchier cavity b?/br'= g//g
By setting r..., the bunchier part (23
) If the electric fields (30L), (30H) of the cavity are equal to the electric field of the regular part (22), it is possible to suppress the divergence of the electron beam (2) in the bunchier part (23)K.

もし、第1空洞(3L)のボア径bLが極端に小さくな
シ、電子ビーム(2)の通過を妨げるような場合には、
上記に述べたような電子ビーム(2)の径よシやや大き
めにボア径bLを設定する必要はあるが、ボア径とノー
ズコーンのギャップの比をバンチヤ部(23)とレギユ
ラ部(22)でほぼ同比にすることによシ、電界の形状
は相似的な形となシ、バンチヤ部(23)において電子
ビーム(2)は大きな発散力を受けることなく、加速管
(r)の電子ビーム透過率が改善される。
If the bore diameter bL of the first cavity (3L) is extremely small and prevents the passage of the electron beam (2),
Although it is necessary to set the bore diameter bL slightly larger than the diameter of the electron beam (2) as described above, the ratio of the bore diameter to the gap between the nose cone and the buncher part (23) and the regular part (22) By making the ratios almost the same, the shape of the electric field becomes similar, and the electron beam (2) in the bunchier part (23) is not subjected to a large divergent force, and the electron beam of the accelerating tube (r) Transmittance is improved.

また、第2空洞(3j)以後がバンチヤ部(23)であ
っても、第2空洞以後の周期りはレギユラ部(22)の
周期Drに比べて、第1空洞(3シ)程小さくしない。
In addition, even if the second cavity (3j) and subsequent parts are bunchier parts (23), the period after the second cavity is not as small as the first cavity (3j) compared to the period Dr of the regular part (22). .

すなわち、第2空洞以後のギャップgはレギユラ部(2
2)のギャップgrに比べて第1空洞程小さくないこと
が通常であるので、第1空洞(3b)のボア径のみbL
 / br !=i gL / grとし、第2空洞以
後のボア径がbrで統一する構成であってもよい。
That is, the gap g after the second cavity is the regular part (2
Since the first cavity is usually not as small as the gap gr in 2), only the bore diameter bL of the first cavity (3b) is
/br! = i gL / gr, and the bore diameter after the second cavity may be unified to br.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、バンチヤ部のボア径
をレギユラ部のボア径に比して小さくシ。
As described above, according to the present invention, the bore diameter of the bunchier portion is made smaller than the bore diameter of the regular portion.

電子ビームとマイクロ波の電界の交差角が小さくなるよ
うにしたので、電子ビームの発散を小さくすることがで
き、加速管の電子ビーム透過率を改善し、かつ、加速管
壁に発散した電子ビームが衝突することによる不要な放
射線の発生を押えることができる。かくして、加速器と
してのパルス変調器の電力容量の低下、コスト低減、加
速管周囲の放射線遮蔽材の低減によるコスト低減と軽量
化等な達成することができる効果がある。
Since the intersection angle between the electric field of the electron beam and the microwave is made small, the divergence of the electron beam can be reduced, improving the electron beam transmittance of the accelerating tube, and reducing the amount of electron beam diverged on the accelerating tube wall. The generation of unnecessary radiation due to collisions can be suppressed. In this way, there are effects that can be achieved, such as a reduction in the power capacity of the pulse modulator as an accelerator, a reduction in cost, and a reduction in cost and weight by reducing the amount of radiation shielding material around the acceleration tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の要部縦断面図。 第2図は当該実施例の縦断面図、第3図〜第6図は従来
の定在波形加速管を示し、第3図は一部断面斜視図、第
4図は縦断面図、第5図および第6図はそれぞれ作用説
明のための一部縦断面図である。 (1)・・加速管、(2)・・電子(荷電粒子)ビーム
、(3)、(3A)、(3/)・・ 加速空洞、(8)
・・ノーズコーン、(9)、(9シ)、(9ハ・・ポア
、(21b)。 (2LL)、(xtハ・拳空洞の周期、(22)・・V
ギュラ部、(23)拳・バンチヤ部、(26) 、 (
26k)、(26ハ5o)−ズコーンのギャップ、(a
o)、(so=)、(3o;)・・電界。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a longitudinal sectional view of a main part of an embodiment of the present invention. Fig. 2 is a longitudinal sectional view of the embodiment, Figs. 3 to 6 show a conventional standing wave accelerator tube, Fig. 3 is a partially sectional perspective view, Fig. 4 is a longitudinal sectional view, and Fig. 5 is a longitudinal sectional view of the embodiment. This figure and FIG. 6 are partial longitudinal cross-sectional views for explaining the operation. (1)... Accelerating tube, (2)... Electron (charged particle) beam, (3), (3A), (3/)... Accelerating cavity, (8)
・・Nose cone, (9), (9shi), (9ha・・pore, (21b). (2LL), (xt・fist cavity period, (22)・・V
Gyura Club, (23) Fist/Banchiya Club, (26) , (
26k), (26h5o)-zucone gap, (a
o), (so=), (3o;)... electric field. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] (1)荷電粒子をマイクロ波の電界を用いて高エネルギ
に加速する加速管が、荷電粒子の集群を主眼とする少な
くとも1つの空洞からなるバンチヤ部と少なくとも1つ
の空洞からなるレギユラ部とからなり、前記加速管の各
空洞間に設けられた前記荷電粒子が通過するためのボア
が、前記レギユラ部のボア径に対し前記バンチヤ部のボ
ア径を小としてなる定在波形加速管。
(1) An acceleration tube that accelerates charged particles to high energy using a microwave electric field is composed of a buncher section consisting of at least one cavity and a regular section consisting of at least one cavity whose main purpose is to collect charged particles. . A standing wave accelerator tube in which a bore through which the charged particles pass, which is provided between each cavity of the accelerator tube, has a bore diameter of the bunchier part smaller than a bore diameter of the regular part.
(2)バンチヤ部の空洞のうち荷電粒子が加速管に入射
して最初に集群を受ける第1空洞のボア径のみ小さな寸
法とし、第2空洞以後を互いに同一寸法のボア径として
なる特許請求の範囲第1項記載の定在波形加速管。
(2) Among the cavities of the bunchier part, only the bore diameter of the first cavity, where charged particles enter the accelerator tube and are first collected, has a smaller bore diameter, and the bore diameters of the second and subsequent cavities are the same. A standing waveform accelerator tube according to scope 1.
(3)第1空洞のボア径は、レギユラ部空洞のボア径に
対し、ほぼ加速管軸方向の前記第1空洞の空洞周期寸法
の前記レギユラ部空洞周期寸法に対する比の寸法でなる
特許請求の範囲第2項記載の定在波形加速管。
(3) The bore diameter of the first cavity is a ratio of the regular part cavity periodic dimension to the regular part cavity periodic dimension of the first cavity substantially in the axial direction of the acceleration tube with respect to the bore diameter of the regular part cavity. A standing waveform accelerator tube as described in range 2.
(4)バンチヤ部の各空洞のボア径は、レギユラ部空洞
のボア径に対し、ほぼ前記チャンバ部空洞の空洞周期寸
法の前記レギユラ部空洞周期寸法に対する比の寸法でな
る特許請求の範囲第1項記載の定在波形加速管。
(4) The bore diameter of each cavity of the bunchier portion is approximately equal to the ratio of the cavity periodic dimension of the chamber portion cavity to the regular portion cavity periodic dimension with respect to the bore diameter of the regular portion cavity. Standing waveform accelerator tube as described in section.
(5)バンチヤ部各空洞のボア径は、レギユラ部各空洞
のボア径に対し、ほぼ前記各バンチヤ部空洞のノーズコ
ーン間ギャップ寸法の、前記レギユラ部空洞のノーズコ
ーン間ギャップ寸法に対する比の寸法でなる特許請求の
範囲第1項記載の定在波形加速管。
(5) The bore diameter of each cavity in the bunchier section is approximately the ratio of the gap dimension between the nose cones of each buncher section cavity to the gap dimension between nose cones of the regular section cavity, relative to the bore diameter of each cavity in the regular section. A standing waveform accelerator tube according to claim 1.
JP26259787A 1987-05-22 1987-10-20 Standing wave type accelerating tube Pending JPH01107499A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26259787A JPH01107499A (en) 1987-10-20 1987-10-20 Standing wave type accelerating tube
US07/196,255 US5039910A (en) 1987-05-22 1988-05-20 Standing-wave accelerating structure with different diameter bores in bunching and regular cavity sections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26259787A JPH01107499A (en) 1987-10-20 1987-10-20 Standing wave type accelerating tube

Publications (1)

Publication Number Publication Date
JPH01107499A true JPH01107499A (en) 1989-04-25

Family

ID=17378009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26259787A Pending JPH01107499A (en) 1987-05-22 1987-10-20 Standing wave type accelerating tube

Country Status (1)

Country Link
JP (1) JPH01107499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295799A (en) * 1993-04-05 1994-10-21 Denki Kogyo Co Ltd High-frequency particle accelerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295799A (en) * 1993-04-05 1994-10-21 Denki Kogyo Co Ltd High-frequency particle accelerator

Similar Documents

Publication Publication Date Title
US5578909A (en) Coupled-cavity drift-tube linac
US7400093B2 (en) Standing wave particle beam accelerator
US9380695B2 (en) Traveling wave linear accelerator with RF power flow outside of accelerating cavities
JP3261634B2 (en) Linear accelerator with improved entrance cavity structure
Le Duff Dynamics and acceleration in linear structures
RU192845U1 (en) MULTI-APERTURE HIGH FREQUENCY SYSTEM FOR ACCELERATING CLUSTER IONS
US5412283A (en) Proton accelerator using a travelling wave with magnetic coupling
US5039910A (en) Standing-wave accelerating structure with different diameter bores in bunching and regular cavity sections
Min et al. Design study of GW-THz wave transmission without mode competition in an oversized relativistic backward wave oscillator
US4571524A (en) Electron accelerator and a millimeter-wave and submillimeter-wave generator equipped with said accelerator
JPH01107499A (en) Standing wave type accelerating tube
CN107211523B (en) Radio frequency cavity
Sandalov et al. Theoretical and Experimental Studies on Compression and Transport of an Intense Electron Beam in the Channel of sub-mm FEL
US5280490A (en) Reverse guide field free electron laser
JP2809155B2 (en) Helix type traveling wave tube
Lawson et al. Reflections on the university of Maryland’s program investigating gyro-amplifiers as potential sources for linear colliders
US6137811A (en) System for conditioning an electron beam for improved free-electron laser operation
US4491765A (en) Quasioptical gyroklystron
CA1085054A (en) Accelerating structure for a linear charged particle accelerator
JP3131350B2 (en) Standing wave accelerator
US5304942A (en) Extended interaction output circuit for a broad band relativistic klystron
RU208650U1 (en) MULTI-APERTURE CLUSTER ION ACCELERATOR
JP3243683B2 (en) Accelerator tube and accelerator for charged particle acceleration, charged particle gun and standing wave accelerating cavity
CN114360842B (en) Light periodic magnetic field coil applied to high-power microwave source
JPH02265146A (en) Super high frequency oscillation tube