JPH01107058A - Method of controlling cryogenic device - Google Patents

Method of controlling cryogenic device

Info

Publication number
JPH01107058A
JPH01107058A JP26387387A JP26387387A JPH01107058A JP H01107058 A JPH01107058 A JP H01107058A JP 26387387 A JP26387387 A JP 26387387A JP 26387387 A JP26387387 A JP 26387387A JP H01107058 A JPH01107058 A JP H01107058A
Authority
JP
Japan
Prior art keywords
temperature
cold box
heat
shield
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26387387A
Other languages
Japanese (ja)
Inventor
Hirotake Kajiwara
梶原 博毅
Kozo Matsumoto
松本 孝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26387387A priority Critical patent/JPH01107058A/en
Publication of JPH01107058A publication Critical patent/JPH01107058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE: To enable stable operation of a cryogenic apparatus without relying on changes in heat load under a heat shielding by adjusting the temperature of a return working gas from an object to be cooled to the optimum control allowable temperature of a cold box. CONSTITUTION: The temperature of a return gas from a 40 K shield line 10 is regulated to a fixed value (the optimum control allowable temperature of a cold box) by a flow control valve 6, a heater 13 and a TIC controller 15 with respect to a change in the heat load of a 40 K shield as heat shield of an object 8 to be cooled. This temperature regulation enables obtaining of a stable refrigerating capacity without disturbing the temperature balance in the cold box 9. In short, this enables stable operation of a helium liquefied refrigerating unit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、極低温装置の制御方法に係り、特にヘリウム
液化冷凍装置等の極低温装置の制御方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of controlling a cryogenic device, and particularly to a method of controlling a cryogenic device such as a helium liquefaction refrigeration device.

〔従来の技術〕[Conventional technology]

ヘリウム液化冷凍装置等の極低温装置において、極低温
での冷凍能力を得るために必要な理論動力は、実用上、
冷凍能力の500〜1000倍の動力を必要とする。そ
こで、冷凍能力を軽減するために、被冷却体においては
熱シールドを実施することが多く、通常、熱シールドと
しては、液体窒素(LN2 )シールドが多用されてい
る。
In cryogenic equipment such as helium liquefaction refrigeration equipment, the theoretical power required to obtain cryogenic cooling capacity is practically
It requires 500 to 1000 times more power than the refrigeration capacity. Therefore, in order to reduce the refrigeration capacity, a heat shield is often implemented on the object to be cooled, and usually, a liquid nitrogen (LN2) shield is often used as the heat shield.

なお、この種の技術として関連するものには、例えば、
特開昭60−130100号、実開昭59−6699号
等が挙げられる。
In addition, related technologies of this type include, for example,
Examples include JP-A No. 60-130100 and Utility Model Application No. 59-6699.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、被冷却体の熱シールドの熱負荷変動
が及ぼすコールドボックスの制御性について配慮がされ
ておらず、このため、被冷却体の熱シールドの熱負荷が
変動した場合、極低温装置を安定運転できないといった
問題がある。
In the above conventional technology, no consideration is given to the controllability of the cold box affected by changes in the heat load of the heat shield of the object to be cooled, and therefore, when the heat load of the heat shield of the object to be cooled changes, There are problems such as not being able to operate stably.

本発明の目的は、被冷却体の熱シールドの熱負荷変動に
よらず極低温装置を安定運転できる極低温装置の制御方
法を提供することにある。
An object of the present invention is to provide a method for controlling a cryogenic device that allows stable operation of the cryogenic device regardless of changes in heat load on a heat shield of an object to be cooled.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、極低温装置の制御方法を、被冷却体の熱シ
ールドを冷却後の作動ガスが合流されてコールドボック
スを介して圧縮機に戻され前記コールドボックスで前記
圧縮機から吐出された作動ガスを冷却する作動ガスの温
度を前記コールドボックスの適正制御許容温度に調節す
る方法とすることにより、達成される。
The above object is to provide a control method for a cryogenic device, in which the working gas after cooling the heat shield of the object to be cooled is combined and returned to the compressor via the cold box. This is achieved by adjusting the temperature of the working gas that cools the gas to a temperature that allows proper control of the cold box.

〔作   用〕[For production]

コールドボックスの冷凍能力は、例えば、ヘリウム液化
冷凍装置の場合、膨張タービン流量、膨張弁流量及び温
度のパラメータにより決定されるので、被冷却体よりの
戻り作動ガスの温度をコールドボックスの適正制御許容
温度に調節することで、コールドボックス内の温度バラ
ンスを乱すことなく、安定した冷凍能力を得ることがで
きる。
For example, in the case of a helium liquefaction refrigerator, the refrigerating capacity of the cold box is determined by the parameters of the expansion turbine flow rate, expansion valve flow rate, and temperature. By adjusting the temperature, stable refrigeration capacity can be obtained without disturbing the temperature balance inside the cold box.

また、本発明による制御は、コールドボックス内での液
体作動ガスの発生量が減少させられないように制御する
もので、余剰の液体作動ガスは、デユワ−内にてヒータ
負荷により負荷バランスの調整を行うことになるので、
常に安定した制御となる。
Furthermore, the control according to the present invention is to control so that the amount of liquid working gas generated in the cold box is not reduced, and excess liquid working gas is handled by adjusting the load balance by adjusting the heater load in the dewar. Since we will be doing
Control is always stable.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図で、He圧縮機lにより高圧に圧縮したHeガスをコ
ールドボックス9に送り、熱交換器2a、2bにてLN
2と熱交換し、温度低下したHeガスは、一部、タービ
ン人口弁4を通り、膨張タービン3a、3bにて断熱膨
張し温度低下し、戻りガスとなる。一方、JTラインの
高圧のHeガスは、熱交換器20〜2eにより戻りガス
と熱交換し、温度低下し、JTT弁で大気圧まで膨張し
、一部が、液化し、液体ヘリウムデユワ−7に貯えられ
る。液化しなかったガスは、膨張タービン3b出口のガ
スと共に、戻りガスとなり、熱交換器2e〜2aにより
高圧ラインのHeガスと熱交換し、温度回復したあと、
ヘリウム圧縮機lの吸入側に戻る。液体ヘリウムデユワ
−7に貯えられたLHeは被冷却体8に供給され、ここ
で4.5にでの熱負荷を設ける。この熱負荷によりガス
化したGHeは、極低温配管11を通り、コールドボッ
クス9に回収される。又、被冷却体8の熱シールドであ
る40にシールド用に使用され熱負荷を受け、温度上昇
したGHeは極低温配管10を通り、コールドボックス
9の中に戻され、回収配管14を通り寒冷回収される。
An embodiment of the present invention will be described below with reference to FIG. 1st
In the figure, He gas compressed to high pressure by He compressor 1 is sent to cold box 9, and LN is transferred to heat exchangers 2a and 2b.
A portion of the He gas, whose temperature has been lowered by exchanging heat with the He gas, passes through the turbine valve 4, expands adiabatically in the expansion turbines 3a and 3b, and whose temperature is lowered, becoming return gas. On the other hand, the high-pressure He gas in the JT line exchanges heat with the return gas in the heat exchangers 20 to 2e, lowers its temperature, expands to atmospheric pressure in the JTT valve, and partially liquefies and becomes liquid helium dewar-7. Can be stored. The gas that has not been liquefied becomes return gas together with the gas at the outlet of the expansion turbine 3b, and after the heat exchangers 2e to 2a exchange heat with the He gas in the high pressure line and recover the temperature,
Return to the suction side of the helium compressor l. LHe stored in the liquid helium dewar 7 is supplied to the object to be cooled 8, where a heat load of 4.5 mm is applied. GHe gasified by this heat load passes through the cryogenic pipe 11 and is collected in the cold box 9. In addition, the GHe whose temperature has increased due to the heat load applied to the heat shield 40 of the object to be cooled 8 passes through the cryogenic pipe 10 and is returned to the cold box 9, and then passes through the recovery pipe 14 and is cooled. It will be collected.

ここで、この40にシールドの熱負荷が、変動した場合
、戻りガスの温度が急変し、熱交換器2b、2cのバラ
ンスが乱れ、正常な運転が出来ず、コールドボックス9
の制御が、タービン入口弁4、JTT弁の制御のみでバ
ランスを調整するのが、難しくなる。そこで、このよう
な場合、40に戻りガスの負荷変動に対して、流量調節
弁6、ヒータ13、TICコントローラー15により4
0にシールドライン10よりの戻りガス温度は一定温度
に調節される。40にシールド流量は、極低温配管lO
のフンダクタンス等により流量調節も容易でない。しか
し、TICコントローラー15により、戻りガスの温度
変動に対して、安定した制御になる様に流量調整弁6を
所定の流量に調整しておき、ヒータ13により寒冷量の
バランスを保って制御される。
Here, if the heat load on the shield 40 changes, the temperature of the return gas will change suddenly, the balance of the heat exchangers 2b and 2c will be disturbed, normal operation will not be possible, and the cold box 9
It becomes difficult to adjust the balance only by controlling the turbine inlet valve 4 and the JTT valve. Therefore, in such a case, the flow rate control valve 6, heater 13, and TIC controller 15 will return to 40 to respond to the gas load fluctuation.
At zero, the temperature of the return gas from the shield line 10 is adjusted to a constant temperature. Shield flow rate to 40, cryogenic piping lO
It is not easy to adjust the flow rate due to the fundductance, etc. However, the flow rate adjustment valve 6 is adjusted to a predetermined flow rate by the TIC controller 15 to ensure stable control against temperature fluctuations of the return gas, and the heater 13 is controlled to maintain the balance of the cooling amount. .

本実施例によれば、40にシールドの負荷変動に対して
安定した戻りガスの温度が得られるため、コールドボッ
クス内の温度バランスを乱すことがなくヘリウム液化冷
凍装置を安定運転できる。
According to this embodiment, since the return gas temperature can be stabilized against the load fluctuation of the shield at 40, the helium liquefaction refrigeration system can be stably operated without disturbing the temperature balance in the cold box.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被冷却体の熱シールドの熱負荷変動に
対して戻り作動ガスの温度を一定に調節することで、熱
シールドの熱負荷変動によらず極低温装置を安定運転で
きるという効果がある。
According to the present invention, by adjusting the temperature of the return working gas to a constant level in response to fluctuations in the heat load of the heat shield of the object to be cooled, the cryogenic equipment can be operated stably regardless of the fluctuations in the heat load of the heat shield. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のヘリウム液化冷凍装置の
系統図である。
FIG. 1 is a system diagram of a helium liquefaction refrigeration system according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、被冷却体の熱シールドを冷却後の作動ガスが合流さ
れてコールドボックスを介して圧縮機に戻され前記コー
ルドボックスで前記圧縮機から吐出された作動ガスを冷
却する作動ガスの温度を前記コールドボックスの適正制
御許容温度に調節することを特徴とする極低温装置の制
御方法。
1. After cooling the heat shield of the object to be cooled, the working gas is combined and returned to the compressor via the cold box, and the working gas discharged from the compressor is cooled in the cold box. A method of controlling a cryogenic device, characterized by adjusting the temperature of a cold box to an appropriate control allowable temperature.
JP26387387A 1987-10-21 1987-10-21 Method of controlling cryogenic device Pending JPH01107058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26387387A JPH01107058A (en) 1987-10-21 1987-10-21 Method of controlling cryogenic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26387387A JPH01107058A (en) 1987-10-21 1987-10-21 Method of controlling cryogenic device

Publications (1)

Publication Number Publication Date
JPH01107058A true JPH01107058A (en) 1989-04-24

Family

ID=17395427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26387387A Pending JPH01107058A (en) 1987-10-21 1987-10-21 Method of controlling cryogenic device

Country Status (1)

Country Link
JP (1) JPH01107058A (en)

Similar Documents

Publication Publication Date Title
US10753659B2 (en) Method for adjusting a Cryogenic refrigeration apparatus and corresponding apparatus
US4582519A (en) Gas-liquefying system including control means responsive to the temperature at the low-pressure expansion turbine
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
JPH01107058A (en) Method of controlling cryogenic device
JPS63194163A (en) Cryogenic refrigerator
JP3856538B2 (en) Refrigeration equipment
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
JP2873388B2 (en) Refrigerator and method for adjusting refrigeration capacity
JP3465117B2 (en) Helium refrigeration and liquefaction machine and its operation method
JPH02622Y2 (en)
JP2512041B2 (en) Operation control method for cryogenic refrigerator
JPS636354A (en) Method of controlling cryogenic refrigerator
JPH01269875A (en) Liquefaction control method and device for liquefying and refrigerating equipment
JPH01150756A (en) Cryogenic cooling device
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
JPS6179953A (en) Method of controlling cryogenic liquefying refrigerator
JPH01127860A (en) Method of controlling auxiliary cold source of cryogenic liquefying refrigerator
JPH01244254A (en) Method of controlling auxiliary cold source for cryogenic refrigerating plant
JP2574823B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JPH0446350B2 (en)
JPH05196314A (en) Helium liquefaction refrigerating plant
JPH0379623B2 (en)
JPH01150759A (en) Method of controlling cryogenic liquefying refrigerator
JPH0579716A (en) Very-low temperature refrigerator using auxiliary cold source
JPH03217765A (en) Cryogenic refrigerator using expansion turbine