JPH01107053A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH01107053A
JPH01107053A JP26440287A JP26440287A JPH01107053A JP H01107053 A JPH01107053 A JP H01107053A JP 26440287 A JP26440287 A JP 26440287A JP 26440287 A JP26440287 A JP 26440287A JP H01107053 A JPH01107053 A JP H01107053A
Authority
JP
Japan
Prior art keywords
separator
gas
fractioning
refrigerant
main circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26440287A
Other languages
Japanese (ja)
Other versions
JPH06103128B2 (en
Inventor
Kazuo Nakatani
和生 中谷
Mitsuhiro Ikoma
生駒 光博
Takeshi Tomizawa
猛 富澤
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26440287A priority Critical patent/JPH06103128B2/en
Publication of JPH01107053A publication Critical patent/JPH01107053A/en
Publication of JPH06103128B2 publication Critical patent/JPH06103128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To shorten the time required for fractioning separation by a method wherein a sub circuit is formed to return to a fractioning separator again through a sub compressor, a cooler and a storage starting from the top part of the fractioning separator into which flow all refrigerants circulating through a main circuit and works to increase the amount of a gas generated within the fractioning separator. CONSTITUTION: A gas flowing out of a condenser 12 is decompressed down to a low pressure of a main circuit by a throttle device 13 and the gas thus generated flows in from the bottom part of a fractioning separator 14 and arises through the interior thereof. At this point, the gas contacts a liquid refrigerant returning through a sub throttle device 19 from a storage 18 in a gas-liquid contact within the fractioning separator 14 and a fraction action occurs to let a low-boiling point enriched refrigerant to be stored into the storage 18. The refrigerant leaving the throttle device 13 is under a low pressure of the main circuit to generate a large amount of gas and moreover, all refrigerants circulating through the main circuit flow into the fractioning separator 14. As a result, the amount of the gas rising through the fractioning separator 14 is enhanced and a further increase in the treating quantity is made combined with a sucking action by the sub compressor 16 thereby allowing the ending of separation in a shorter time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用い、組成分離により、低
沸点冷媒を貯留して循環組成を可変する熱ポンプ装置の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a heat pump device that uses a non-azeotropic mixed refrigerant and stores a low boiling point refrigerant to vary the circulating composition through composition separation.

従来の技術 従来、非共沸混合冷媒を用い、組成分離により低沸点冷
媒を貯留して組成を可変する熱ポンプ装置として、第3
図に示すような装置が提案されている。第3図において
、1は圧縮機、2は凝縮器、3は第1絞り装置、4は蒸
発器であり、これらを配管接続することにより主回路を
構成している。
Conventional technology Conventionally, as a heat pump device that uses a non-azeotropic mixed refrigerant and changes the composition by storing a low boiling point refrigerant through composition separation,
A device as shown in the figure has been proposed. In FIG. 3, 1 is a compressor, 2 is a condenser, 3 is a first expansion device, and 4 is an evaporator, which are connected by piping to form a main circuit.

5は充填材を充填した精留分離器であり、底部は第2絞
り装置6を介して凝縮器2の出口及び第3絞り装置7を
介して蒸発器4の入口と接続している。また精留分離器
5の頂部は、冷却器8、貯留器9を介して再び精留分離
器5に帰還する循環回路(以後副回路と呼ぶ)を構成し
、貯留器9の底部からは開閉弁10を介して第3絞り装
置7に接続する回路を設けている。
Reference numeral 5 denotes a rectification separator filled with a filler, the bottom of which is connected to the outlet of the condenser 2 via a second throttle device 6 and the inlet of the evaporator 4 via a third throttle device 7. The top of the rectifying separator 5 forms a circulation circuit (hereinafter referred to as a subcircuit) that returns to the rectifying separator 5 via a cooler 8 and a reservoir 9. A circuit is provided which connects to the third throttle device 7 via the valve 10.

このような装置において非共沸混合冷媒を封入し、循環
組成を可変する方法について説明する。
A method of enclosing a non-azeotropic mixed refrigerant in such an apparatus and varying the circulating composition will be described.

まず封入した混合冷媒組成のままで運転する場合には、
開閉弁10を開放しておくと、副回路の構成要素はすべ
て第1絞り装置のバイパス回路となるため、余剰冷媒が
貯留器9に貯留されながら開閉弁10を経由して流出し
、精留分離器5内部では精留作用が起こらないため循環
組成は変化しない。
First, when operating with the sealed mixed refrigerant composition,
When the on-off valve 10 is left open, all the components of the subcircuit become a bypass circuit of the first throttling device, so the excess refrigerant flows out via the on-off valve 10 while being stored in the reservoir 9, and is rectified. Since no rectifying action occurs inside the separator 5, the circulating composition does not change.

低沸点冷媒を貯留して循環組成を高沸点冷媒に富んだも
のとする場合には、開閉弁10を閉止すると、主回路を
循環する一部の冷媒は第2絞り装置6を介して精留分離
器5の底部に流入する。このとき第2絞り装置6により
気体を発生し精留分離器5内部を上昇する。この際上方
から降下する液冷媒と気液接触し、精留作用により上昇
する気体は低沸点冷媒に富み、逆に下降する液体は高沸
点冷媒に富んで、貯留器9には低沸点に富む凝縮液が貯
留されることになる。
When storing low boiling point refrigerant to make the circulating composition rich in high boiling point refrigerants, when the on-off valve 10 is closed, a part of the refrigerant circulating in the main circuit is rectified via the second throttle device 6. It flows into the bottom of separator 5. At this time, gas is generated by the second expansion device 6 and rises inside the rectification separator 5. At this time, the liquid refrigerant descending from above comes into contact with the liquid refrigerant, and the gas that rises due to the rectification action is rich in low-boiling point refrigerants, and conversely, the liquid that descends is rich in high-boiling point refrigerants, and the reservoir 9 is rich in low-boiling point refrigerants. Condensate will be stored.

下降する高沸点冷媒に富んだ液体は第3絞り装W7を経
由して蒸発器4に流出するため、主回路は高沸点冷媒に
富んだ組成で運転できるものである。このような組成可
変型の熱ポンプ装置は、冷暖房装置等に適用され、通常
使用時には高沸点冷媒に富んだ封入組成のままで運転し
、高能力が必要な場合には加熱能力の高い低沸点冷媒に
富んだ組成で運転する様な方法が可能となるものである
Since the descending liquid rich in high boiling point refrigerant flows out to the evaporator 4 via the third restrictor W7, the main circuit can be operated with a composition rich in high boiling point refrigerant. Such composition-variable heat pump devices are applied to air-conditioning and heating equipment, etc. During normal use, they operate with a sealed composition rich in high-boiling point refrigerant, and when high capacity is required, they operate with a high-boiling-point refrigerant-rich filling composition, and when high capacity is required, a low-boiling point with high heating capacity is used. This makes it possible to operate with a refrigerant-rich composition.

発明が解決しようとする問題点 しかしながら、上記のような従来の熱ポンプ装置では、
精留分離に要する時間が多大なものになるという問題点
があった。
Problems to be Solved by the Invention However, in the conventional heat pump device as described above,
There was a problem in that the time required for rectification separation was enormous.

このような精留作用は、精留分離器内で上昇する気体と
下降する液体とが気液接触することによって生じるもの
で、分離の時間を短くするためには、処理ガス量(上昇
する気体の量)を増加させることが有効であり、また、
上昇する気体を冷却器で凝縮させることが必要になる。
This type of rectification is caused by the gas-liquid contact between the rising gas and the descending liquid in the rectification separator.In order to shorten the separation time, it is necessary to It is effective to increase the amount of
It will be necessary to condense the rising gas in a cooler.

しかし、従来の熱ポンプ装置で、処理ガス量を増加させ
るために、高圧の液冷媒を絞り装置によって低圧まで減
圧して気体を多く発生させると、気体の温度が下がり精
留分離器の頂部に接続している冷却器の冷却源との温度
差がとれなくなりJ気体が凝縮できず、精留分離が行な
われないという問題が発生していた。また、気体を凝縮
させるために高圧の液冷媒をわずかに減圧する程度にお
さえて冷却源との温度差をとるようにすると、気体の発
生量が少なく、処理ガス量が減少して、分離に長時間を
要していた。また、別の手段として、気体の発生量を増
加させるために精留分離器に入る冷媒をヒーターによっ
て加熱する方法や圧縮機の吐出ガスで加熱する方法もあ
ったが、これらはいずれも成績係数を低下させるもので
あり、あまり好ましくなかった。
However, in conventional heat pump equipment, in order to increase the amount of processed gas, the high-pressure liquid refrigerant is reduced to a low pressure using a throttling device to generate a large amount of gas. A problem occurred in that the temperature difference between the connected cooler and the cooling source could not be maintained, and the J gas could not be condensed, resulting in a failure to perform rectification separation. In addition, if the pressure of the high-pressure liquid refrigerant is slightly reduced in order to condense the gas, and the temperature difference with the cooling source is maintained, the amount of gas generated will be small, the amount of gas to be processed will be reduced, and separation will be easier. It took a long time. In addition, there were other methods to increase the amount of gas generated, such as heating the refrigerant entering the rectification separator with a heater or heating it with the discharge gas of the compressor, but both of these methods have a coefficient of performance. This was not very desirable.

本発明は、前記問題点を解決し、処理ガス量の増加と冷
却器での凝縮を同時に満足し、精留分離の時間を大幅に
短縮できる熱ポンプ装置を提供するものである。
The present invention solves the above-mentioned problems, and provides a heat pump device that can simultaneously increase the amount of gas to be processed and condense it in a cooler, and significantly shorten the time for rectification separation.

問題点を解決するための手段 本発明の熱ポンプ装置は、非共沸混合冷媒を封入し、圧
縮機、凝縮器を順に配管接続し、絞り装置を介して精留
分離器の底部に接続し、さら仲精留分離器の底部より蒸
発器を介して圧縮機に帰還する主回路と前記精留分離器
の頂部より副圧縮機、冷却器、貯留器を介して再び前記
精留分離器に帰還する副回路よりなる構成としたことを
特徴とするものである。
Means for Solving the Problems The heat pump device of the present invention encloses a non-azeotropic mixed refrigerant, connects a compressor and a condenser with piping in order, and connects it to the bottom of a rectification separator via a throttle device. The main circuit returns to the compressor from the bottom of the middle rectification separator via the evaporator, and the top of the rectification separator returns to the rectification separator via the auxiliary compressor, cooler, and storage device. It is characterized by a configuration consisting of a feedback sub-circuit.

作用 本発明は前記した構成により、高圧の液冷媒を低圧にま
で減圧し、多量の気体を発生させることができるので、
精留分離器内での処理ガス量を増加させることができ、
分離時間を短縮することが可能となるものである。また
副圧縮機により冷却器内の冷媒圧力が上昇し、冷媒の凝
縮温度を上げることができるので比較的高温の熱源で冷
媒を凝縮することが可能となるものである。
Function The present invention can reduce the pressure of a high-pressure liquid refrigerant to a low pressure and generate a large amount of gas with the above-described configuration.
The amount of gas processed in the rectification separator can be increased,
This makes it possible to shorten the separation time. Furthermore, the sub-compressor increases the refrigerant pressure within the cooler and raises the condensation temperature of the refrigerant, making it possible to condense the refrigerant using a relatively high-temperature heat source.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図は本発明の熱ポンプ装置の一実施例であり、11
は圧縮機、12は凝縮器、13は絞り装置であり、これ
らを順に配管接続し、充填材を充填した精留分離器14
の底部に接続している。また同じく精留分離器14の底
部から蒸発器15を接続し圧縮機11に再び帰還するよ
うな主回路を構成している。また、精留分離器14の頂
部より副圧縮機16、冷却器17、貯留器18、副絞り
装置19を介して再び精留分離器14に帰還する副回路
を構成している。また、貯留器18の底部からは開閉弁
20を介して蒸発器15に接続する回路を設けている。
FIG. 1 shows an embodiment of the heat pump device of the present invention.
12 is a compressor, 12 is a condenser, and 13 is a throttle device, which are connected in order through piping to form a rectification separator 14 filled with filler.
is connected to the bottom of the Similarly, a main circuit is configured in which an evaporator 15 is connected from the bottom of the rectification separator 14 and returns to the compressor 11 again. Further, a subcircuit is formed in which the water returns from the top of the rectification separator 14 to the rectification separator 14 via a subcompressor 16, a cooler 17, a reservoir 18, and a subthrottling device 19. Further, a circuit is provided from the bottom of the reservoir 18 to the evaporator 15 via an on-off valve 20.

このような冷凍サイクル装置において非共沸混合冷媒を
封入し、循環組成を可変する方法について説明する。ま
ず、封入した混合冷媒の組成に対し主回路を高沸点冷媒
に富んだ組成で運転する場合には、開閉弁20を閉止、
副圧縮機16を運転すると貯留器18内の液冷媒は副絞
り装置19を通って精留分離器14に戻る。一方、凝縮
器12から流出し絞り装置13により主回路の低圧まで
減圧されて発生した気体は精留分離器14の底部から流
入し内部を上昇する。この時、貯留器18より副絞り装
置19を通って戻ってくる液冷媒と精留分離器14内部
で気液接触し、精留作用が起こって、低沸点に富んだ冷
媒が貯留器18に貯留され、主回路は高沸点冷媒に富ん
だ組成となる。
A method of enclosing a non-azeotropic mixed refrigerant in such a refrigeration cycle apparatus and varying the circulating composition will be described. First, when operating the main circuit with a composition rich in high boiling point refrigerant compared to the composition of the enclosed mixed refrigerant, the on-off valve 20 is closed;
When the sub-compressor 16 is operated, the liquid refrigerant in the reservoir 18 passes through the sub-throttle device 19 and returns to the rectification separator 14 . On the other hand, gas generated by flowing out from the condenser 12 and being reduced in pressure to the low pressure of the main circuit by the throttle device 13 flows into the rectification separator 14 from the bottom and rises inside. At this time, the liquid refrigerant returning from the reservoir 18 through the sub-throttle device 19 comes into gas-liquid contact inside the rectification separator 14, a rectification action takes place, and the refrigerant rich in low boiling points enters the reservoir 18. The main circuit has a composition rich in high boiling point refrigerants.

ここにおいて、絞り装置13を出た冷媒は主回路の低圧
の状態となるため気体の発生量が多く、しかも主回路を
循環している全冷媒が精留分離器14に流入するため、
精留分離器14内を上昇する気体の量が増加し、副圧縮
機16による効果もあいまって処理量が増え、分離を短
時間で終了させることが可能となるものである。
Here, the refrigerant that exits the expansion device 13 is in a low pressure state in the main circuit, so a large amount of gas is generated, and all the refrigerant circulating in the main circuit flows into the rectification separator 14.
The amount of gas rising in the rectification separator 14 increases, and the throughput increases, combined with the effect of the sub-compressor 16, making it possible to complete the separation in a short time.

一方、封入した混合冷媒の組成のままで運転する場合に
は、副圧縮機16を停止し、開閉弁20を開放すると、
貯留器18内に液冷媒は貯留されないので、精留作用が
起こらず冷媒は分離されない。
On the other hand, when operating with the same composition of the enclosed mixed refrigerant, if the sub compressor 16 is stopped and the on-off valve 20 is opened,
Since no liquid refrigerant is stored in the reservoir 18, no rectifying action occurs and the refrigerant is not separated.

次に、本発明の別の実施例を第2図を用いて説明する。Next, another embodiment of the present invention will be described using FIG. 2.

第2図において構成要素11〜19は第1図と同一のも
のであり、同一番号を記しである。
Components 11 to 19 in FIG. 2 are the same as in FIG. 1 and are designated by the same numbers.

また、凝縮器12と副圧縮機16の出口とを開閉弁21
を介して接続している。このような冷凍サイクル装置に
おいて非共沸混合冷媒を封入し、循環組成を可変する方
法は次の通りである。まず、封入した混合冷媒の組成に
対し主回路を高沸点冷媒に富んだ組成で運転する場合に
は、開閉弁21を閉止、副圧縮機16を運転すると第1
図の実施例と同様の作用が起こり主回路は高沸点冷媒に
富んだ組成となる。一方、封入した混合冷媒の組成のま
まで運転する場合には、副圧縮機16を停止し、開閉弁
21を開放すると、凝縮器12を出た液冷媒が分岐され
、一方は絞り装置13を通って精留分離器14へ流入し
、もう一方は開閉弁21、冷却器17、貯留=器18、
さらに副絞り装置19を通って精留分離器14に流入す
る。ここで絞り装置13を通って精留分離器14へ流入
した冷媒と合流して蒸発器15に流入する。こうするこ
とにより、貯留器18内に貯留されている冷媒は確実に
主回路へ流れ、封入した混合冷媒組成で運転することが
できるものである。
Additionally, an on-off valve 21 is provided between the condenser 12 and the outlet of the sub-compressor 16.
are connected via. The method of enclosing a non-azeotropic mixed refrigerant in such a refrigeration cycle apparatus and varying the circulating composition is as follows. First, when operating the main circuit with a composition rich in high boiling point refrigerant with respect to the composition of the enclosed mixed refrigerant, the on-off valve 21 is closed, and when the auxiliary compressor 16 is operated, the first
The same effect as in the illustrated embodiment occurs, and the main circuit has a composition rich in high-boiling refrigerant. On the other hand, when operating with the same composition of the sealed mixed refrigerant, when the auxiliary compressor 16 is stopped and the on-off valve 21 is opened, the liquid refrigerant that has exited the condenser 12 is divided, and one side is connected to the throttle device 13. The other side flows into the rectification separator 14 through the on-off valve 21, the cooler 17, the storage vessel 18,
Further, it passes through the sub-throttle device 19 and flows into the rectification separator 14 . Here, it joins with the refrigerant that has flowed into the rectification separator 14 through the expansion device 13 and flows into the evaporator 15 . By doing so, the refrigerant stored in the reservoir 18 reliably flows to the main circuit, allowing operation with the enclosed mixed refrigerant composition.

なお、第1図および第2図の実施例において、副絞り装
置は冷却器から精留分離器へ帰還する回路のどこにあっ
てもよく、また第2図の実施例において開閉弁21と副
回路とを冷却器の出口側で接続してもその効果は同様で
あり、これらは本発明に含まれるものである。
In the embodiments shown in FIGS. 1 and 2, the sub-throttle device may be located anywhere in the circuit returning from the cooler to the rectification separator, and in the embodiment shown in FIG. Even if they are connected at the outlet side of the cooler, the effect is the same, and these are included in the present invention.

発明の効果 以上のように、本発明の熱ポンプ装置においては、絞り
装置を出た冷媒を低圧の状態にすることができ、気体の
発生量を多くできる。しかも主回路を循環している全冷
媒を精留分離器に流入させるため、精留分離器内を上昇
する気体の量が増加し、副圧縮機による吸引効果もあい
まって、処理量が増え、分離を短時間で終了させること
が可能となるもの。また、副圧縮機によって冷却器内の
冷媒圧力を上昇させることができ、その凝縮温度を高く
することができるので、比較的高温の熱源を使用しても
発生する気体を凝縮させることができる。
Effects of the Invention As described above, in the heat pump device of the present invention, the refrigerant exiting the expansion device can be brought into a low pressure state, and the amount of gas generated can be increased. Moreover, since all the refrigerant circulating in the main circuit flows into the rectification separator, the amount of gas rising inside the rectification separator increases, and combined with the suction effect of the auxiliary compressor, the throughput increases. It is possible to complete the separation in a short time. Further, since the sub-compressor can increase the refrigerant pressure in the cooler and its condensation temperature, it is possible to condense the generated gas even if a relatively high-temperature heat source is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱ポンプ装置の構成図、第
2図は本発明の別の実施例の熱ポンプ装置の構成図、第
3図は従来例の熱ポンプ装置の構成図である。 11・・・・圧縮機、12・・・・凝縮器、13・・・
・絞り装置、15・・・・蒸発器、14・・・・精留分
離器、16・・・・副圧縮機、17・・・・冷却器、1
8・・・・貯留器、19・・・・副絞り装置、20・・
・・開閉弁。 代理人の氏名 弁理士 中尾敏男 ほか1名1l− rt−一一斥縮撮 /2−゛−凝jl@機 13−款り表置 16−−一 番り圧J嗜6益 I7− 躊却器 tS−*協益 tq−kl絞り表1 m−一一関閉弁 第1図
FIG. 1 is a configuration diagram of a heat pump device according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a heat pump device according to another embodiment of the present invention, and FIG. 3 is a configuration diagram of a conventional heat pump device. It is. 11... Compressor, 12... Condenser, 13...
- Squeezing device, 15... Evaporator, 14... Rectification separator, 16... Sub-compressor, 17... Cooler, 1
8... Reservoir, 19... Sub-throttling device, 20...
・Opening/closing valve. Name of agent: Patent attorney Toshio Nakao and 1 other person Equipment tS-*Kyoei tq-kl aperture table 1 m-11 valve closing diagram 1

Claims (2)

【特許請求の範囲】[Claims] (1)非共沸混合冷媒を封入し、圧縮機、凝縮器を順に
配管接続し、絞り装置を介して精留分離器の底部に接続
し、さらに前記精留分離器の底部より蒸発器を介して前
記圧縮機に帰還する主回路と、前記精留分離器の頂部よ
り副圧縮機、冷却器、貯留器を介して再び前記精留分離
器に帰還する副回路よりなる熱ポンプ装置。
(1) A non-azeotropic mixed refrigerant is sealed, a compressor and a condenser are connected to the piping in order, and then connected to the bottom of a rectification separator via a throttle device, and an evaporator is connected from the bottom of the rectification separator. A heat pump device comprising a main circuit that returns to the compressor via the top of the rectification separator, and a subcircuit that returns to the rectification separator again from the top of the rectification separator via an auxiliary compressor, a cooler, and a storage device.
(2)凝縮器の出口と、副圧縮機の出口から貯留器の入
口までの配管の一部とを開閉弁を介して接続したことを
特徴とする特許請求の範囲第1項記載の熱ポンプ装置。
(2) The heat pump according to claim 1, characterized in that the outlet of the condenser is connected to a part of piping from the outlet of the sub-compressor to the inlet of the reservoir via an on-off valve. Device.
JP26440287A 1987-10-20 1987-10-20 Heat pump device Expired - Lifetime JPH06103128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26440287A JPH06103128B2 (en) 1987-10-20 1987-10-20 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26440287A JPH06103128B2 (en) 1987-10-20 1987-10-20 Heat pump device

Publications (2)

Publication Number Publication Date
JPH01107053A true JPH01107053A (en) 1989-04-24
JPH06103128B2 JPH06103128B2 (en) 1994-12-14

Family

ID=17402663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26440287A Expired - Lifetime JPH06103128B2 (en) 1987-10-20 1987-10-20 Heat pump device

Country Status (1)

Country Link
JP (1) JPH06103128B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177581A (en) * 2004-12-21 2006-07-06 Mitsubishi Electric Corp Refrigeration cycle device using non-azeotropic refrigerant
JP2011089766A (en) * 2010-12-27 2011-05-06 Mitsubishi Electric Corp Refrigerating cycle device using non-azeotropic refrigerant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177581A (en) * 2004-12-21 2006-07-06 Mitsubishi Electric Corp Refrigeration cycle device using non-azeotropic refrigerant
JP2011089766A (en) * 2010-12-27 2011-05-06 Mitsubishi Electric Corp Refrigerating cycle device using non-azeotropic refrigerant

Also Published As

Publication number Publication date
JPH06103128B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
JPH0333985B2 (en)
EP0518394B1 (en) Heat pump apparatus
JPH01107053A (en) Heat pump device
JPH0745982B2 (en) Heat pump device
JPH02195156A (en) Low temperature refrigerator
JPH01200156A (en) Freezing cycle device
JPH0247668B2 (en) NETSUHONPUSOCHI
JPH0440622B2 (en)
JP2861296B2 (en) Heat pump equipment
JPH06103127B2 (en) Heat pump device
JPH0226148B2 (en)
JPH0264368A (en) Heat pump device
JPS63156975A (en) Refrigeration cycle device
JPH01111172A (en) Heat pump device
JPS62142966A (en) Heat pump device
JPS6166054A (en) Heat pump device
JPH0678849B2 (en) Refrigeration equipment
JPH01155148A (en) Refrigeration cycle device
JPH02238261A (en) Heat pump apparatus
JPH0460350A (en) Heat pump device
JPS63156977A (en) Refrigeration cycle device
JPH0737856B2 (en) Heat pump device
JPH0769084B2 (en) Heat pump device
JPS59153075A (en) Refrigeration cycle device
JPS59197761A (en) Refrigeration cycle