JPH01106648A - Network synchronizing system - Google Patents

Network synchronizing system

Info

Publication number
JPH01106648A
JPH01106648A JP62265647A JP26564787A JPH01106648A JP H01106648 A JPH01106648 A JP H01106648A JP 62265647 A JP62265647 A JP 62265647A JP 26564787 A JP26564787 A JP 26564787A JP H01106648 A JPH01106648 A JP H01106648A
Authority
JP
Japan
Prior art keywords
frequency
clock
doppler
antenna
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62265647A
Other languages
Japanese (ja)
Other versions
JPH07121002B2 (en
Inventor
Koichi Mori
森 紘一
Hidenori Moriya
秀則 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62265647A priority Critical patent/JPH07121002B2/en
Publication of JPH01106648A publication Critical patent/JPH01106648A/en
Publication of JPH07121002B2 publication Critical patent/JPH07121002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To attain network synchronization correcting doppler shift of a frequency of a reference clock by calculating a doppler frequency from the directing angle of an antenna and using the frequency so as to cancel the Doppler effect of a received clock. CONSTITUTION:An antenna 1 traces automatically a stationary satellite and receives modulation waves SCL, SD relayed by a space station. An angle detector 2 detects a direction angle theta of the antenna 1 and outputs it. A CPU 3 uses timewise change information of the integrated angle theta in the past to obtain perturbation information of the stationary satellite, to calculate the doppler frequency of the reference clock and to output a pulse signal PDF having a frequency equal to the frequency. A demodulator 4 demodulates the modulation waves SCL, SD to output a clock CL1 and a data signal D1. A frequency conversion circuit 5 processes the clock CL1 and the signal PDF to output a signal having a frequency being the result of cancelling the doppler frequency from the frequency of the CL1. PLLs 6-8 lock the clock CL2 to the output signal of the circuit 5. A buffer memory 9 reads the data by using the clock CL2 to obtain the data synchronized with the reference clock.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は網同期方式に関し、特に衛星通信回線で相互接
続された複数のディジタル通信網の網同期方式に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a network synchronization system, and more particularly to a network synchronization system for a plurality of digital communication networks interconnected by satellite communication lines.

〔従来の技術〕[Conventional technology]

ディジタル通信網は、網内の基準となるクロックを発生
する網同期用発振器をもっている。複数のディジタル通
信網が衛星通信回線で相互接続される場合、衛星通信回
線を介して供給される基準クロックに各網同期用発振器
を同期させることによって、各ディジタル通信網の相亙
間の同期をとっている。
A digital communication network has a network synchronization oscillator that generates a reference clock within the network. When multiple digital communication networks are interconnected via satellite communication lines, synchronization between the digital communication networks can be achieved by synchronizing each network synchronization oscillator with the reference clock supplied via the satellite communication line. I'm taking it.

宇宙局で中継された基準クロックの周波数は、この宇宙
局を搭載している静止衛星の摂動によりドツプラーシフ
トを受けて、常に変動している。
The frequency of the reference clock relayed by the space station is subject to Doppler shift due to perturbations of the geostationary satellite carrying this space station, and is constantly fluctuating.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、従来のかかる網同期方式は、基準クロックの
周波数のドツプラーシフトを補正していないので、同期
特性が劣る欠点がある。
However, the conventional network synchronization method does not correct the Doppler shift of the frequency of the reference clock, and therefore has the disadvantage of poor synchronization characteristics.

本発明の目的は、基準クロックの周波数のドツプラーシ
フトを補正した網同期方式を提供することにある。
An object of the present invention is to provide a network synchronization method that corrects the Doppler shift in the frequency of a reference clock.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の網同期方式は、クロック周波数成分を含み宇宙
局で中継された変調波を自動追尾して受信するアンテナ
と、このアンテナの指向角度を検出する角度検出手段と
、この角度検出手段が検出した前記指向角度から前記変
調波の搬送波周波数成分または前記クロック周波数成分
のドツプラー周波数を算出する演算手段と、この演算手
段が算出した前記ドツプラー周波数を用いて前記変調波
が含む前記クロック周波数成分のドツプラー効果を打消
し出力する周波数補正手段と、この周波数補正手段の出
力に同期する網同期用発振器とを備えて構成される。
The network synchronization method of the present invention includes an antenna that automatically tracks and receives a modulated wave that includes a clock frequency component and is relayed by a space station, an angle detection means that detects the directivity angle of this antenna, and an angle detection means that detects the directivity angle of this antenna. computing means for calculating the Doppler frequency of the carrier frequency component or the clock frequency component of the modulated wave from the pointing angle; and the Doppler of the clock frequency component included in the modulated wave using the Doppler frequency calculated by the computing means. It is configured to include a frequency correction means for canceling the output and a network synchronization oscillator synchronized with the output of the frequency correction means.

〔実施例〕〔Example〕

以下実施例を示す図面を参照して本発明について詳細に
説明する。
The present invention will be described in detail below with reference to drawings showing embodiments.

第1図は、本発明の網同期方式の第1の実施例を示すブ
ロック図である。
FIG. 1 is a block diagram showing a first embodiment of the network synchronization system of the present invention.

ScLは基準クロックで変調された変調波であり、SD
は基準クロックに同期したデータ信号で変調された変調
波である。1はアンテナであり、宇宙局を搭載した静止
衛星(図示せず)を自動追尾して、この宇宙局で中継さ
れた変調波S。L+SI)を受信する。
ScL is a modulated wave modulated by the reference clock, and SD
is a modulated wave modulated with a data signal synchronized with a reference clock. 1 is an antenna that automatically tracks a geostationary satellite (not shown) carrying a space station and transmits a modulated wave S that is relayed by this space station. L+SI) is received.

2は角度検出器であり、アンテナ1の指向角度θを検出
して出力する。3はCPUであり、後に詳述するように
、過去から集積した角度θの時間的な変化情報を用いて
静止衛星の摂動情報を得、この摂動情報を用いて基準ク
ロックのドツプラー周波数を算出し、算出したドツプラ
ー周波数に等しい周波数でパルス信号PDFを出力する
An angle detector 2 detects and outputs the directivity angle θ of the antenna 1. 3 is a CPU, which obtains perturbation information of the geostationary satellite using information on temporal changes in the angle θ accumulated from the past, and calculates the Doppler frequency of the reference clock using this perturbation information, as will be explained in detail later. , outputs a pulse signal PDF at a frequency equal to the calculated Doppler frequency.

4は復調器であり、アンテナ1で受信した変調波S。L
+SDを復調してクロックCLIおよびデータ信号D1
を出力する。クロックCLIは基準クロックがドツプラ
ー効果により周波数シフトを受けたものである。データ
信号D1のクロック周波数も同様にドツプラーシフトを
受けている。
4 is a demodulator, which receives the modulated wave S by the antenna 1; L
+SD is demodulated to generate clock CLI and data signal D1.
Output. The clock CLI is a reference clock subjected to a frequency shift due to the Doppler effect. The clock frequency of data signal D1 has also undergone a Doppler shift.

5は周波数変換回路であり、クロックCLIとパルス信
号PDFとをディジタル的に処理して、クロックCLI
の周波数からドツプラー周波数を相殺した周波数の信号
を出力する。
5 is a frequency conversion circuit which digitally processes the clock CLI and the pulse signal PDF to convert the clock CLI
Outputs a signal whose frequency is obtained by canceling the Doppler frequency from the frequency of .

6は位相比較器、7は低域フィルタ、8はクロックCL
2を発生する電圧制御発振器(以下VCOという)であ
る。位相比較器6.低域フィルタ7、VCO8からなる
位相同期ループは、クロックCL2を周波数変換回路5
の出力信号に位相同期させるので、クロックCL2はド
ツプラーシフトを受けていない基準クロックを復元した
ものになっている。
6 is a phase comparator, 7 is a low-pass filter, 8 is a clock CL
This is a voltage controlled oscillator (hereinafter referred to as VCO) that generates 2. Phase comparator6. A phase-locked loop consisting of a low-pass filter 7 and a VCO 8 converts the clock CL2 into a frequency conversion circuit 5.
Since the clock CL2 is phase-synchronized with the output signal of the clock CL2, the clock CL2 is a restored reference clock that has not undergone Doppler shift.

9はバッファメモリである。バッファメモリ9は、クロ
ックCLIを書込みクロックとしてデータ信号D1を書
込み、クロックCL2を読出しクロックとして書込んだ
内容を読出すので、読出されたデータ信号D2は(復元
した基準クロックである)クロックCL2に同期したデ
ータ信号になっている。
9 is a buffer memory. The buffer memory 9 writes the data signal D1 using the clock CLI as a write clock, and reads out the written contents using the clock CL2 as a read clock. Therefore, the read data signal D2 is transferred to the clock CL2 (which is the restored reference clock). The data signals are synchronized.

CPU3は、以下述べるようにしてドツプラー周波数を
算出する。
The CPU 3 calculates the Doppler frequency as described below.

周知のように、静止衛星は、重力場の非対称性等により
軌道面を正しい軌道面である赤道面から傾ける力を受け
ており、軌道面の赤道面からの傾きが所定の範囲内に入
るように南北制御されている。軌道面のこの傾きのため
に、静止衛星は南北方向に1日周期で摂動している。こ
の摂動による静止衛星の赤道面からの距離Psは、時間
tの原点を適当に定めることにより Z 4 × 60 × 60 と書ける。ただし、pは赤道面からの最大偏差距離であ
る。地球局位置および静止衛星の東西方向位置を固定す
れば、アンテナ10指向角度θと距離Psとは1対1に
対応するので、時間をおいて角度θをいくつか得れば、
1式におけるtの原点とlとが求められ、これら原点お
よびlを用いて、距離Psが時間tの関数として、1式
で与えられる。静止衛星の南北方向の速度Vsはt として得られ、このVsを用いて、ドツプラー周f数△
fは次式で求められる。
As is well known, geostationary satellites are subject to forces that tilt their orbital plane from the equatorial plane, which is the correct orbital plane, due to the asymmetry of the gravitational field. It is controlled north and south. Because of this inclination of the orbital plane, the geostationary satellite is perturbed in the north-south direction on a daily basis. The distance Ps of the geostationary satellite from the equatorial plane due to this perturbation can be written as Z 4 × 60 × 60 by appropriately determining the origin of time t. However, p is the maximum deviation distance from the equatorial plane. If the earth station position and the east-west position of the geostationary satellite are fixed, there is a one-to-one correspondence between the directivity angle θ of the antenna 10 and the distance Ps, so if several angles θ are obtained over time,
The origin of t and l in Equation 1 are determined, and using these origin and l, the distance Ps is given by Equation 1 as a function of time t. The speed Vs of the geostationary satellite in the north-south direction is obtained as t, and using this Vs, the Doppler circumference f number △
f is determined by the following formula.

ただし、fはドツプラーシフトを受ける信号の周波数、
Cは光速、Lは地球中心から静止衛星までの距離(42
3001an)、Rは地球の半径(6300km)であ
る。
However, f is the frequency of the signal subjected to Doppler shift,
C is the speed of light, L is the distance from the center of the earth to the geostationary satellite (42
3001an), R is the radius of the earth (6300 km).

CPU3は、角度θから上記のようにして基準クロック
のドツプラー周波数を算出する。この場合、ドツプラー
周波数は基準クロックの周波数より十分低く、3式で用
いる(基準クロックの周波数)fの精度はあまり高くな
くてよいので、fとして基準クロックのノミナル周波数
を用いればよい。
The CPU 3 calculates the Doppler frequency of the reference clock from the angle θ as described above. In this case, the Doppler frequency is sufficiently lower than the frequency of the reference clock, and the precision of (frequency of the reference clock) f used in equation 3 does not need to be very high, so the nominal frequency of the reference clock may be used as f.

以上、第1図に示す実施例について説明した。The embodiment shown in FIG. 1 has been described above.

第2図は、本発明の網同期方式の第2の実施例を示すブ
ロック図である。
FIG. 2 is a block diagram showing a second embodiment of the network synchronization system of the present invention.

変調波S CL r S D、、アンテナ1および角度
検出器2は第1図におけるそれぞれと同じである。
The modulated waves S CL r SD , the antenna 1 and the angle detector 2 are the same as in FIG.

13はCPUであり、角度θから変調波S。L。13 is a CPU, which generates a modulated wave S from the angle θ. L.

SDの搬送波周波数成分のドツプラー周波数を算出し、
算出したドツプラー周波数を表すデータI)Dyを出力
する。CPU13によるドツプラーシフトの算出もCP
U3による算出と同様であり、この場合、3式のfとし
て変調波SCL# SDの搬送波周波数(のノミナル値
)を用いる。
Calculate the Doppler frequency of the carrier frequency component of SD,
Data I)Dy representing the calculated Doppler frequency is output. The calculation of the Doppler shift by the CPU 13 is also performed by the CP.
This is similar to the calculation by U3, and in this case, the carrier frequency (the nominal value) of the modulated wave SCL#SD is used as f in equation 3.

16は周波数シソセサイザであり、データDt+yが表
す周波数の信号S、)アを発生する。15は周波数変換
器であり、アンテナ1で受信した変調波 ”5CLI 
SDを信号SDFの周波数だけ周波数シフトして出力す
る。この周波数シフトにより、変調波S CL r S
 Dが受けているドツプラー効果が打消される。
Reference numeral 16 denotes a frequency selector, which generates a signal S,)a having a frequency represented by data Dt+y. 15 is a frequency converter, which converts the modulated wave received by antenna 1 "5CLI
The SD is frequency-shifted by the frequency of the signal SDF and output. Due to this frequency shift, the modulated wave S CL r S
The Doppler effect on D is canceled.

14は復調器であり、周波数変換器15の出力信号を復
調する。位相比較器6.低域フィルタ7、VCO8から
なる位相同期ループがVCO8を復調器14の復調出力
であるクロックに位相同期させるので、VCO8の出力
はドツプラーシフトを受けていない基準クロックを復元
したクロックCL2になっている。また、復調器14の
復調出力であるデータ信号D2はクロックCL2に同期
したデータ信号になっている。
A demodulator 14 demodulates the output signal of the frequency converter 15. Phase comparator6. Since the phase-locked loop consisting of the low-pass filter 7 and the VCO 8 synchronizes the phase of the VCO 8 with the clock that is the demodulated output of the demodulator 14, the output of the VCO 8 becomes the clock CL2, which is a restored reference clock that has not undergone Doppler shift. There is. Further, the data signal D2, which is the demodulated output of the demodulator 14, is a data signal synchronized with the clock CL2.

第1図に示す実施例は、ドツプラー効果をベースバンド
帯で打消しているので、データ信号のドツプラー効果を
打消すのにバッファメモリ9を必要とする。゛これに対
し、第2図に示す実施例は、搬送波帯でドツプラー効果
を打消しているので、このようなバッファメモリは不要
である。
In the embodiment shown in FIG. 1, the Doppler effect is canceled in the baseband band, so the buffer memory 9 is required to cancel the Doppler effect of the data signal. In contrast, in the embodiment shown in FIG. 2, the Doppler effect is canceled in the carrier band, so such a buffer memory is not required.

なお、基準クロックを伝送するための独立の変調波fC
Lを用いず、データ伝送用の変調波fnからクロックを
再生する場合にも、本発明は適用できる。
Note that an independent modulated wave fC for transmitting the reference clock
The present invention can also be applied to a case where a clock is recovered from a modulated wave fn for data transmission without using L.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明の網同期方式は、アン
テナの指向角度からドツプラー周波数を算出し、算出し
たドツプラー周波数を用いて、受信したクロックのドツ
プラー効果を打消しているので、同期特性がよく、しか
も、宇宙局を搭載している静止衛星の位置情報を衛星通
信回線等を用いて伝送する必要がない効果がある。
As explained in detail above, the network synchronization method of the present invention calculates the Doppler frequency from the directivity angle of the antenna, and uses the calculated Doppler frequency to cancel the Doppler effect of the received clock, so the synchronization characteristics are improved. Moreover, there is an advantage that there is no need to transmit position information of a geostationary satellite carrying a space station using a satellite communication line or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の網同期方式の第1の実施例を示すブ
ロック図、 第2図は、同じく第2の実施例を示すブロック図である
。 1・・・・・・アンテナ、2・・・・・・角度検出器、
3゜13・・・・・・CPU、4.14・・・・・・復
調器、5・・・・・・周波数変換回路、6・・・・・・
位相比較器、7・・・・・・低域フィルタ、8・・・・
・・vCO115・・・・・・周波数変換器、16・・
・・・・周波数シソセサイザ。 代理人 弁理士  内 原   晋 CLI、CLZ :クロツク   δCL、SO:  
変調シ皮D7 、 D2 ;デゝり信号   θ:ハ麿
PDF  ; ノ\ごルスイ客ミテ 缶呵  l  Cコ
FIG. 1 is a block diagram showing a first embodiment of the network synchronization system of the present invention, and FIG. 2 is a block diagram showing the second embodiment. 1...Antenna, 2...Angle detector,
3゜13...CPU, 4.14...Demodulator, 5...Frequency conversion circuit, 6...
Phase comparator, 7...Low pass filter, 8...
...vCO115...Frequency converter, 16...
...Frequency synthesizer. Agent: Susumu Uchihara CLI, CLZ: Kurotsuku δCL, SO:
Modulation skin D7, D2; Decrease signal θ: Hamaro PDF;

Claims (3)

【特許請求の範囲】[Claims] (1)クロック周波数成分を含み宇宙局で中継された変
調波を自動追尾して受信するアンテナと、このアンテナ
の指向角度を検出する角度検出手段と、この角度検出手
段が検出した前記指向角度から前記変調波の搬送波周波
数成分または前記クロック周波数成分のドップラー周波
数を算出する演算手段と、この演算手段が算出した前記
ドップラー周波数を用いて前記変調波が含む前記クロッ
ク周波数成分のドップラー効果を打消し出力する周波数
補正手段と、この周波数補正手段の出力に同期する網同
期用発振器とを備えたことを特徴とする網同期方式。
(1) An antenna that automatically tracks and receives a modulated wave that includes a clock frequency component and is relayed by a space station, an angle detection means that detects the directivity angle of this antenna, and an antenna that detects the directivity angle detected by the angle detection means. a calculation means for calculating a Doppler frequency of the carrier frequency component of the modulated wave or the clock frequency component, and a Doppler effect of the clock frequency component included in the modulation wave using the Doppler frequency calculated by the calculation means and output. 1. A network synchronization method comprising: a frequency correction means for adjusting the frequency; and a network synchronization oscillator synchronized with the output of the frequency correction means.
(2)周波数補正手段が、受信した変調波を復調して得
たクロック周波数成分を演算手段で算出した前記クロッ
ク周波数成分のドップラー周波数で補正して出力するよ
うにした特許請求の範囲第1項記載の網同期方式。
(2) The frequency correction means corrects the clock frequency component obtained by demodulating the received modulated wave using the Doppler frequency of the clock frequency component calculated by the calculation means and outputs the corrected clock frequency component. Network synchronization method described.
(3)周波数補正手段が、受信した変調波の周波数を演
算手段で算出した前記変調波の搬送波周波数成分のドッ
プラー周波数で補正し復調して補正したクロック周波数
成分を出力するようにした特許請求の範囲第1項記載の
網同期方式。
(3) The frequency correction means corrects the frequency of the received modulated wave using the Doppler frequency of the carrier frequency component of the modulated wave calculated by the calculation means, demodulates it, and outputs the corrected clock frequency component. Network synchronization method described in scope 1.
JP62265647A 1987-10-20 1987-10-20 Network synchronization method Expired - Lifetime JPH07121002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265647A JPH07121002B2 (en) 1987-10-20 1987-10-20 Network synchronization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265647A JPH07121002B2 (en) 1987-10-20 1987-10-20 Network synchronization method

Publications (2)

Publication Number Publication Date
JPH01106648A true JPH01106648A (en) 1989-04-24
JPH07121002B2 JPH07121002B2 (en) 1995-12-20

Family

ID=17420042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265647A Expired - Lifetime JPH07121002B2 (en) 1987-10-20 1987-10-20 Network synchronization method

Country Status (1)

Country Link
JP (1) JPH07121002B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109719A (en) * 2008-10-30 2010-05-13 Yamaha Corp Demodulation device, and modulation and demodulation system
WO2016170932A1 (en) * 2015-04-24 2016-10-27 三菱電機株式会社 Frequency synchronization device and frequency synchronization system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197316A (en) * 1975-02-24 1976-08-26 Eiseitsushinniokeru shuhasudokihoshiki
JPS5299012A (en) * 1976-02-16 1977-08-19 Nippon Telegr & Teleph Corp <Ntt> Communication system
JPS6113172A (en) * 1984-06-29 1986-01-21 Sony Corp Apparatus for receiving time information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197316A (en) * 1975-02-24 1976-08-26 Eiseitsushinniokeru shuhasudokihoshiki
JPS5299012A (en) * 1976-02-16 1977-08-19 Nippon Telegr & Teleph Corp <Ntt> Communication system
JPS6113172A (en) * 1984-06-29 1986-01-21 Sony Corp Apparatus for receiving time information

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109719A (en) * 2008-10-30 2010-05-13 Yamaha Corp Demodulation device, and modulation and demodulation system
WO2016170932A1 (en) * 2015-04-24 2016-10-27 三菱電機株式会社 Frequency synchronization device and frequency synchronization system

Also Published As

Publication number Publication date
JPH07121002B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US5063387A (en) Doppler frequency compensation circuit
US4789993A (en) One frequency repeater for a digital radio system
US5428647A (en) Method and apparatus for synchronizing a received signal in a digital radio communication system
US4301537A (en) Means and method for maintaining synchronization of a spread spectrum or other receiver clock
US4019138A (en) Frequency synchronizing system for satellite communication
GB1424012A (en) Phase jitter compensator
JPH06502977A (en) Digital transmission equipment and direct conversion receivers
JPH0951296A (en) Method and device for inter-cross polarization compensation
GB2232852A (en) Offset correction
CA1041235A (en) Method and circuit arrangement for synchronizing the pulse frames in data transmission by the time multiplex process via telecommunication satellites
US4538111A (en) Circuit recovering the carrier of a signal amplitude and phase modulated by digital signals
CA2048933C (en) Carrier aquisition apparatus for digital satellite communication system
JPH02294123A (en) Elastic buffer circuit
US6738414B2 (en) Radio and communication method using a transmitted intermediate frequency
JPH01106648A (en) Network synchronizing system
US6204726B1 (en) Digital demodulator
JPH0787476B2 (en) Demodulator
US4457003A (en) Time reference tracking loop for frequency hopping systems
US4803438A (en) 8-phase phase-shift keying demodulator
KR950022202A (en) Automatic Frequency Control and Automatic Gain Control of Satellite Communication Earth Station System
WO2002021706A2 (en) Open loop timing control for synchronous cdma systems
JPH057176A (en) Mobile station radio equipment
JP2627270B2 (en) Circuit for reducing demodulation phase error
JP2904207B1 (en) Tracking receiver
Nomura et al. FPGA-based transceiver circuit for labeling signal transmission system