JPH01106514A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPH01106514A
JPH01106514A JP62264736A JP26473687A JPH01106514A JP H01106514 A JPH01106514 A JP H01106514A JP 62264736 A JP62264736 A JP 62264736A JP 26473687 A JP26473687 A JP 26473687A JP H01106514 A JPH01106514 A JP H01106514A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
angle
coupling coefficient
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62264736A
Other languages
Japanese (ja)
Inventor
Kenichi Shibata
賢一 柴田
Toshiaki Yokoo
横尾 敏昭
Kosuke Takeuchi
孝介 竹内
Toshiharu Tanaka
敏晴 田中
Maruo Jinno
丸男 神野
Seiji Nishikawa
誠司 西川
Shoichi Nakano
中野 昭一
Yukinori Kuwano
桑野 幸徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62264736A priority Critical patent/JPH01106514A/en
Priority to US07/259,557 priority patent/US4868444A/en
Priority to KR1019880013563A priority patent/KR970004619B1/en
Priority to DE3887813T priority patent/DE3887813T2/en
Priority to EP88117412A priority patent/EP0313025B1/en
Publication of JPH01106514A publication Critical patent/JPH01106514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To increase an electromechanical coupling coefficient by specifying muwhen the propagation direction of a surface acoustic wave is expressed in (lambda, mu, 90) in terms of Euler's angle representation. CONSTITUTION:In expressing the propagation direction of a surface acoustic wave as (lambda, mu, 90) in terms of Euler's angle representation, theta is set to 90 deg. conventionally, is an optional angle but mu is set in a range of 30-150 deg.. That is, in changing the angle mu between a crystal azimuth of the AlN film and the normal of the AlN film (substrate normal) in a range of 0 deg.-180 deg., the electromechanical coupling coefficient K<2> is changed largely. Thus, in setting the angle mu in the surface acoustic wave element in a range of 30 deg.-180 deg., the electromechanical coupling coefficient is larger than 0.8 being a conventional maximum value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化アルミニム単結晶膜を用いた弾性表面波素
子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surface acoustic wave device using an aluminum nitride single crystal film.

(従来の技術) 弾性表面波素子は、小形で然も温度及び経年変化に対し
て安定である上、櫛形電極の形状を変えることによって
任意のフィルター特性が得ら−れる為、例えばテレビジ
ョン受像機のIPフィルター、衛星放送用IFフィルタ
ー、VTRのRFコンバータ発信器等に広く応用されて
いる。
(Prior art) Surface acoustic wave elements are small and stable against temperature and aging changes, and can obtain arbitrary filter characteristics by changing the shape of the comb-shaped electrode. It is widely applied to IP filters for machines, IF filters for satellite broadcasting, RF converter transmitters for VTRs, etc.

特に近年は、ポケットベル、自動車電話等に装備される
高周波用の弾性表面波素子の開発に大きな力が注がれて
おり、斯種弾性表面波素子として、高い弾性表面波伝播
速度が得られる素子窒化アルミニム単結晶M(以下、A
IN膜という)を圧電膜として用いた弾性表面波素子が
注目されている(I E E E T ransact
ion on 5onics and U Itras
onics、vol 、5U−32,No5,5ept
e+aber 1985 Z ero−Tempera
Lure−coefficienL SAW Devi
ces onAIN Epitaxial F 1nn
s”)。
Particularly in recent years, great efforts have been focused on the development of high-frequency surface acoustic wave devices used in pagers, car phones, etc., and this type of surface acoustic wave device can achieve a high surface acoustic wave propagation velocity. Element aluminum nitride single crystal M (hereinafter referred to as A
A surface acoustic wave device using an IN film as a piezoelectric film is attracting attention (I E E E T transact
ion on 5onics and U Itras
onics, vol, 5U-32, No5, 5ept
e+aver 1985 Z ero-Tempera
Lure-coefficienL SAW Devi
ces onAIN Epitaxial F 1nn
s”).

第1図はAIN膜を用いた弾性表面波素子の一例を示し
、基板(1)上にAIN膜(2)を形成し、該AIN膜
(2)の表面に櫛形の送信電極(3)及び受信電極(4
)を対向配備している。弾性表面波は送信電極(3)か
ら受信電極(4)へ向かって矢印(5)の方向に伝播す
る。
FIG. 1 shows an example of a surface acoustic wave device using an AIN film, in which an AIN film (2) is formed on a substrate (1), and a comb-shaped transmitting electrode (3) and a comb-shaped transmitting electrode (3) are formed on the surface of the AIN film (2). Receiving electrode (4
) are deployed facing each other. The surface acoustic wave propagates from the transmitting electrode (3) toward the receiving electrode (4) in the direction of the arrow (5).

く、解決しようとする問題点) 弾性表面波素子に於いては、電気エネルギーを弾性表面
波エネルギーに変換する際の効率を表わす電気機械結合
係数に2が出来るだけ大きいことが望ましい。例えば、
硝酸リチウム単結晶基板を用いた弾性表面波素子につい
ては、弾性表面波の伝播方向を適当に選ぶことによって
電気機械結合係数を改善することが提案されている(特
開昭59−4309[HO3H9/25]) 。
(Problems to be Solved) In surface acoustic wave devices, it is desirable that the electromechanical coupling coefficient, which represents the efficiency of converting electrical energy into surface acoustic wave energy, be as large as possible. for example,
Regarding surface acoustic wave devices using lithium nitrate single crystal substrates, it has been proposed to improve the electromechanical coupling coefficient by appropriately selecting the propagation direction of the surface acoustic waves (Japanese Patent Laid-Open No. 59-4309 [HO3H9/ 25]).

しかし、AIN膜を用いた弾性表面波素子については、
これまでに電気機械結合係数を改善するための研究が十
分に為されておらず、例えば前記I E E E Tr
ansactionに開示された弾性表面波素子は、(
0112)[0T11]のAbO3の基板上に(11ヲ
0)[00011のAIN膜を形成したものであるが、
電気機械結合係数に2は高々0,8と低かった。
However, for surface acoustic wave devices using AIN films,
Until now, sufficient research has not been conducted to improve the electromechanical coupling coefficient.
The surface acoustic wave device disclosed in the answer is (
0112) An AIN film of (11wo0)[00011] was formed on a substrate of AbO3 of [0T11],
The electromechanical coupling coefficient of 2 was as low as 0.8 at most.

(問題点を解決する為の手段) 本発明者は、AIN膜を用いた弾性表面波素子の結合係
数を改善する為の研究を重ね、AIN膜の結晶方位(Z
軸)を圧電膜法線に対して傾けることにより、電気機械
結合係数が増大する方向に大きく変化することを理論的
に見出し、本発明の完成に至ったのである。
(Means for Solving the Problems) The present inventor has conducted repeated research to improve the coupling coefficient of a surface acoustic wave device using an AIN film, and has determined the crystal orientation (Z) of the AIN film.
The inventors theoretically discovered that by tilting the piezoelectric film (axis) with respect to the normal line of the piezoelectric film, the electromechanical coupling coefficient changes greatly in the direction of increasing it, and this led to the completion of the present invention.

本発明に係る弾性表面波素子は、弾性表面波の伝播方向
をオイラー角表示で(λ、μ、θ)としたとき、θは従
来通り90度に設定され、λは任意角度であるが、μは
30〜150度の範囲に設定されていることを特徴とす
る。
In the surface acoustic wave element according to the present invention, when the propagation direction of the surface acoustic wave is represented by Euler angles (λ, μ, θ), θ is set to 90 degrees as before, and λ is an arbitrary angle. A feature is that μ is set in a range of 30 to 150 degrees.

(作用及び効果) AINH!AC2>の結晶方位とAIN膜の法線(基板
法線)が為す角度μを0度から180度の範囲で変化さ
せた場合、電気機械結合係数に2は、発明者が行なった
理論的な数値解析により、第3図に示す様に大きく変化
することが明らかとなった。
(Action and effect) AINH! When the angle μ between the crystal orientation of AC2> and the normal to the AIN film (substrate normal) is varied in the range of 0 degrees to 180 degrees, the electromechanical coupling coefficient of 2 is determined by the inventor's theoretical theory. Numerical analysis revealed that there was a large change as shown in Figure 3.

本発明に係る弾性表面波素子に於いては、角度μが30
度〜180度の範囲内に設定されているから、電気機械
結合係数は、従来の最大値である0、8よりも大きくな
る。
In the surface acoustic wave element according to the present invention, the angle μ is 30
Since it is set within the range of 180 degrees to 180 degrees, the electromechanical coupling coefficient is larger than the conventional maximum values of 0 and 8.

(実施例) 第4図はオイラー角表示を用いた基板表示法を説明する
ものである。ここで、(X、Y、Z)は結晶軸を規定す
る座標系であり、X、は表面波伝播方向、X、は圧電膜
法線方向、X2はこれらに垂直な方向を表わしている。
(Example) FIG. 4 explains a substrate display method using Euler angle display. Here, (X, Y, Z) is a coordinate system that defines the crystal axis, where X represents the surface wave propagation direction, X represents the normal direction of the piezoelectric film, and X2 represents the direction perpendicular to these.

基準方位を(0,0,0)としてx、=x、x、=y、
X、=Zに設定する。先ずZ軸を中心にして、表面波伝
播方向X、及びX、をXからY方向に向かって角度λだ
け回転させ、次に回転したX、軸を中心にして、回転し
たX、軸及びX5軸を角度μだけ反時計方向に回転させ
る。更に、回転したX3軸を中心にして、xI軸、X2
軸を反時計方向に角度θだけ回転させて得られる基板面
方位を含む弾性表面波伝播方向を(λ、μ、θ)で表わ
し、これをオイラー角表示というのである。
When the reference direction is (0, 0, 0), x, = x, x, = y,
Set X,=Z. First, the surface wave propagation directions X, X, and Rotate the shaft counterclockwise by an angle μ. Furthermore, around the rotated X3 axis, the xI axis,
The surface acoustic wave propagation direction including the substrate surface orientation obtained by rotating the axis counterclockwise by an angle θ is expressed as (λ, μ, θ), and this is called the Euler angle representation.

尚、角度^、μ、θは、夫々O〜180度の範囲で表示
され、180度だけ位相が異なる角度(λ+180)、
(μ+180)、(θ+180)を包含する概念である
Note that the angles ^, μ, and θ are each displayed in the range of O to 180 degrees, and the angles (λ+180) whose phases differ by 180 degrees,
This is a concept that includes (μ+180) and (θ+180).

第1図は本発明に係る弾性表面波素子の一実施例を示し
ており、サファイア、シリコン単結晶板、ガラス、或は
石英等で作製した基板(1)の上面にAffiN膜(2
)が形成されている。iN膜(2)の弾性表面波の伝播
方向(7)は結晶軸のX軸と直交する方向に設定され、
オイラー角表示ではλ=0、θ=90に設定されている
FIG. 1 shows an embodiment of the surface acoustic wave device according to the present invention, in which an AffiN film (2
) is formed. The propagation direction (7) of the surface acoustic wave of the iN film (2) is set in a direction perpendicular to the X axis of the crystal axis,
In the Euler angle representation, λ=0 and θ=90 are set.

本発明を完成する過程で、発明者は、第1図に示す圧電
膜法11(6)と結晶軸のZ軸と為す角度μを0度から
180度の範囲で変化させ、電気機械結合係数の変化を
調べた。
In the process of completing the present invention, the inventor changed the angle μ between the piezoelectric film method 11 (6) shown in FIG. 1 and the Z axis of the crystal axis in the range of 0 degrees to 180 degrees, and thereby We investigated changes in

電気機械結合係数の算出に際しては、例えば、I E 
E E Transaction on 5onics
 and U Itrasonics、vol、5IJ
−15,No4,0ctober  1968.  p
209−217“A  Method  for  E
stimating  Optimal  Cryst
aI Cuts and Propagation D
irection for Excitation o
fPiezoelecLric 5urface Wa
ves”に開示された計算手法を用いることが出来る。
When calculating the electromechanical coupling coefficient, for example, IE
E E Transaction on 5onics
and U Itrasonics, vol, 5IJ
-15, No4, 0ctober 1968. p
209-217 “A Method for E
stimulating Optimal Crystal
aI Cuts and Propagation D
irection for excitation o
fPiezoelecLric 5urface Wa
ves” can be used.

斯種計算手法は、AeNlliの異方性及び圧電性を考
慮した圧電基本式、ニュートンの運動方程式、マックス
ウェルの電磁方程式等を、数値解析により解くものであ
り、これによってAJN膜の表面を電気的に短絡したと
きの表面波伝播速度Vnと、自由表面での伝播速度vf
とが算出される。
This type of calculation method uses numerical analysis to solve the basic piezoelectric equation, Newton's equation of motion, Maxwell's electromagnetic equation, etc. that takes into account the anisotropy and piezoelectricity of AeNlli, and thereby the surface of the AJN film can be electrically The surface wave propagation velocity Vn when short-circuited and the propagation velocity vf on the free surface
is calculated.

第1図に示す弾性表面波素子に於いて、角度μをパラメ
ータとして両伝播速度Vm及びVfを計算した結果を第
2図に示す0図から明らかな様に、両伝播速度■ee及
びVfは角度μによって大きく変化している。
In the surface acoustic wave element shown in FIG. 1, the results of calculating both propagation velocities Vm and Vf using the angle μ as a parameter are shown in FIG. It changes greatly depending on the angle μ.

電気機械結合係数は、“表面波デバイスとその応用”電
子材料工業会績、16頁にも開示されている様に、次式
によって計算される。
The electromechanical coupling coefficient is calculated by the following formula, as disclosed in "Surface Wave Devices and Their Applications", Electronic Materials Industry Report, p. 16.

K”=2(Vf−V輪)/Vf 第2図のデータに対する電気機械結合係数に2の計算結
果を第3図に示す、同図から明らかな様に、角度μの変
化に対して結合係数には二つのピークが現われ、μが略
30度から略150度の範囲で0.8を越える結合係数
が得られる。又、角度μの最適値は略56度及び略12
4度であって、そのときの結合係数に2は1.122と
なる。
K"=2 (Vf - V-wheel)/Vf Figure 3 shows the calculation results of the electromechanical coupling coefficient of 2 for the data in Figure 2. As is clear from the figure, the coupling with respect to changes in the angle μ is shown in Figure 3. Two peaks appear in the coefficient, and a coupling coefficient exceeding 0.8 is obtained when μ ranges from approximately 30 degrees to approximately 150 degrees.The optimum value of the angle μ is approximately 56 degrees and approximately 12 degrees.
4 degrees, and the coupling coefficient at that time is 2, which is 1.122.

尚、AINmは大方晶系の結晶構造を有しており、X軸
とY軸とは弾性的に等価であるから、オイラー角表示の
角度λが0〜180度の範囲で変化しても、結合係数は
変わらない、又、角度θは従来通り90度に設定されて
いるが、発明者は、角度θをパラメータとして、上記同
様に電気機械結合係数を計算し、θ=90が最適値であ
ることを確認している。
Note that AINm has a macrogonal crystal structure, and the X-axis and Y-axis are elastically equivalent, so even if the angle λ in Euler angle changes within the range of 0 to 180 degrees, Although the coupling coefficient remains unchanged and the angle θ is set to 90 degrees as before, the inventor calculated the electromechanical coupling coefficient using the angle θ as a parameter in the same manner as above, and found that θ = 90 is the optimal value. We have confirmed that there is.

従って、AlN114を用いた弾性表面波素子に於いて
は、弾性表面波の伝播方向をオイラー角表示で(^、μ
、90)としたとき、λを0〜180度、μを30〜1
50度の範囲に設定することにより、更に望ましくはμ
を56度或は124度に近い値に設定することにより、
従来よりも性能の良い弾性表面波素子が得られる。
Therefore, in a surface acoustic wave device using AlN114, the propagation direction of the surface acoustic wave is expressed in Euler angles (^, μ
, 90), λ is 0 to 180 degrees, μ is 30 to 1
More preferably, μ
By setting the angle to a value close to 56 degrees or 124 degrees,
A surface acoustic wave element with better performance than conventional ones can be obtained.

この様なAIN膜(2)の形成には、周知のCVD法や
スパッタ法を用いることが出来る。
The well-known CVD method or sputtering method can be used to form such an AIN film (2).

CVD法の主流であるM O−CV D (metal
organic chemical vapor de
positon)を用いる場合は、例えばサファイア単
結晶の基板上に、オイラー角表示で(0,0,θ)(所
謂2カツト)、或は(45,90゜90)のAIN膜を
形成した後、該AlNp/:4の表面をダイヤモンド砥
粒により所定の角度に研磨するのである。又、スパッタ
法を用いる場合は、スパッタ蒸着装置に於いて、カソー
ド電極からアノード電極へ向かうスパッタリング方向に
対し、AIN膜を形成すべき基板を適切な角度だけ傾け
て配置することにより、Z軸が傾いた本発明のAIN膜
を形成出来る。
MO-CVD (metal
organic chemical vapor
When using a sapphire single crystal substrate, for example, after forming an AIN film with Euler angles of (0, 0, θ) (so-called 2 cuts) or (45, 90° 90), The surface of the AlNp/:4 is polished to a predetermined angle using diamond abrasive grains. In addition, when using the sputtering method, the Z-axis can be adjusted by tilting the substrate on which the AIN film is to be formed by an appropriate angle with respect to the sputtering direction from the cathode electrode to the anode electrode in the sputter deposition apparatus. A tilted AIN film of the present invention can be formed.

尚、本発明の各部構成は上記実施例に限らず、特許請求
の範囲に記載の技術的範囲内で種々の変形が可能である
ことは勿論である。
It should be noted that the configuration of each part of the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made within the technical scope of the claims.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る弾性表面波素子の斜面図、第2図
は弾性表面波伝播速度の変化を示すグラフ、第3図は電
気機械結合係数の変化を示すグラフ、第4図はオイラー
角表示の説明図である。 (1)・・・基板      (2)・・・AINII
IX、Y、Z・・・結晶軸   (6)・・・圧電膜法
線0 20 40 60 80 100120 140
 160 180  (度)手続補正書〔自発〕 昭和62年12月17日 1、事件の表示  特願昭62−2647362、発明
の名称 弾性表面波素子 3、補正をする者  出願人 (118)三洋電機株式会社 5、補正の対象 (2)  明細書第3頁14行目、15行目「0.8と
低かった。」を 「0.8%と低かった。1に補正。 (3)  明II書第4頁16行目、17行目「0,8
よりも」を 「0.8%よりも1に補正。 (4)明細書第7頁14行目 「0.8を越える」を− ro、8%を越えるjに補正。 (5)明細書第7頁16行目 rl、122となる。」を rl、122%となる。1に補正。 以上
FIG. 1 is a slope view of the surface acoustic wave device according to the present invention, FIG. 2 is a graph showing changes in surface acoustic wave propagation velocity, FIG. 3 is a graph showing changes in electromechanical coupling coefficient, and FIG. 4 is an Eulerian graph showing changes in electromechanical coupling coefficient. FIG. 3 is an explanatory diagram of corner display. (1)...Substrate (2)...AINII
IX, Y, Z...Crystal axis (6)...Piezoelectric film normal line 0 20 40 60 80 100120 140
160 180 (degree) Procedural amendment [voluntary] December 17, 1988 1, Indication of case: Japanese Patent Application No. 62-2647362, Title of invention: Surface acoustic wave device 3, Person making the amendment: Applicant (118) Sanyo Electric Co., Ltd. Co., Ltd. 5, subject of amendment (2) Page 3 of the specification, lines 14 and 15, “It was as low as 0.8.” Amended to “It was as low as 0.8%. 1.” (3) Mei II Page 4, lines 16 and 17 “0,8
``More than 0.8%'' is corrected to ``1 than 0.8%.'' (4) Page 7, line 14 of the specification, ``More than 0.8'' is corrected to -ro, j that exceeds 8%. (5) Page 7, line 16 of the specification rl, 122. ” is rl, which is 122%. Corrected to 1. that's all

Claims (1)

【特許請求の範囲】 1 窒化アルミニム単結晶膜を圧電膜として用いた弾性
表面波素子に於いて、弾性表面波の伝播方向をオイラー
角表示で(λ,μ,90)としたとき、μを30〜15
0度の範囲に設定したことを特徴とする弾性表面波素子
。 2 μは略56度又は略124度に設定されている特許
請求の範囲第1項に記載の弾性表面波素子。
[Claims] 1. In a surface acoustic wave device using an aluminum nitride single crystal film as a piezoelectric film, when the propagation direction of the surface acoustic wave is expressed in Euler angles (λ, μ, 90), μ is 30-15
A surface acoustic wave element characterized in that the surface acoustic wave element is set in a range of 0 degrees. 2. The surface acoustic wave element according to claim 1, wherein .mu. is set to approximately 56 degrees or approximately 124 degrees.
JP62264736A 1987-10-19 1987-10-19 Surface acoustic wave element Pending JPH01106514A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62264736A JPH01106514A (en) 1987-10-19 1987-10-19 Surface acoustic wave element
US07/259,557 US4868444A (en) 1987-10-19 1988-10-18 Surface acoustic wave device
KR1019880013563A KR970004619B1 (en) 1987-10-19 1988-10-18 Surface acoustic wave device
DE3887813T DE3887813T2 (en) 1987-10-19 1988-10-19 Surface acoustic wave arrangement.
EP88117412A EP0313025B1 (en) 1987-10-19 1988-10-19 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264736A JPH01106514A (en) 1987-10-19 1987-10-19 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH01106514A true JPH01106514A (en) 1989-04-24

Family

ID=17407455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264736A Pending JPH01106514A (en) 1987-10-19 1987-10-19 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH01106514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388406A (en) * 1989-04-11 1991-04-12 Sanyo Electric Co Ltd Surface acoustic wave element
JPH0998058A (en) * 1995-09-29 1997-04-08 Sanyo Electric Co Ltd Surface acoustic wave device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859616A (en) * 1981-10-05 1983-04-08 Nobuo Mikoshiba Surface acoustic wave element
JPS5864815A (en) * 1981-10-14 1983-04-18 Nobuo Mikoshiba Surface acoustic wave element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859616A (en) * 1981-10-05 1983-04-08 Nobuo Mikoshiba Surface acoustic wave element
JPS5864815A (en) * 1981-10-14 1983-04-18 Nobuo Mikoshiba Surface acoustic wave element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388406A (en) * 1989-04-11 1991-04-12 Sanyo Electric Co Ltd Surface acoustic wave element
JPH0998058A (en) * 1995-09-29 1997-04-08 Sanyo Electric Co Ltd Surface acoustic wave device

Similar Documents

Publication Publication Date Title
Benetti et al. Growth of AlN piezoelectric film on diamond for high-frequency surface acoustic wave devices
WO2018151147A1 (en) Elastic wave element
WO2020130128A1 (en) Elastic wave device, splitter, and communication device
JPS5856515A (en) Surface acoustic wave element
CN102057570B (en) HBAR resonator stable at high temperatures
CN110915136A (en) Junction substrate, surface acoustic wave element device, and method for manufacturing junction substrate
JPH0388406A (en) Surface acoustic wave element
KR20000029388A (en) Low-loss surface acoustic wave filter on quartz substrate with optimized cut
CN1901368A (en) Surface acoustic wave device
KR970004619B1 (en) Surface acoustic wave device
JP2004135267A (en) Surface acoustic wave device
JP3485832B2 (en) Surface acoustic wave device
JP2006246050A (en) Composite piezoelectric wafer and surface acoustic wave device
CN102084590A (en) HBAR resonator with a high level of integration
JPH04109709A (en) Surface acoustic wave element
JPH01106514A (en) Surface acoustic wave element
CN116233709A (en) High-performance acoustic device based on longitudinal acoustic surface wave
US4707631A (en) Isotropic acoustic wave substrate
JPS5941602B2 (en) surface acoustic wave device
US6400061B1 (en) Surface acoustic wave device and substrate thereof
JP2012169760A (en) Surface acoustic wave device
JP3177946B2 (en) Surface acoustic wave device
Takano et al. Enhancement of coupling factor in 0th to 4th mode Rayleigh surface acoustic waves on polarity inverted multilayered ScAlN film/AlN and BN substrates
JP3276826B2 (en) Surface acoustic wave device
EP0153093B1 (en) Isotropic acoustic wave substrate