JPH01106475A - Sic blue color light emitting diode - Google Patents

Sic blue color light emitting diode

Info

Publication number
JPH01106475A
JPH01106475A JP62264382A JP26438287A JPH01106475A JP H01106475 A JPH01106475 A JP H01106475A JP 62264382 A JP62264382 A JP 62264382A JP 26438287 A JP26438287 A JP 26438287A JP H01106475 A JPH01106475 A JP H01106475A
Authority
JP
Japan
Prior art keywords
type
sic layer
layer
electron
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62264382A
Other languages
Japanese (ja)
Other versions
JPH0797658B2 (en
Inventor
Kazuyuki Koga
古賀 和幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26438287A priority Critical patent/JPH0797658B2/en
Publication of JPH01106475A publication Critical patent/JPH01106475A/en
Publication of JPH0797658B2 publication Critical patent/JPH0797658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To increase the density of carriers at the area where electrons and positive holes are recombined by arranging a 6H-SiC layer showing a reverse conduction type in reference with the 4H-SiC layer on the main surface of 4H-SiC layer of one conduction type. CONSTITUTION:Aluminum doped p-type 4H-SiC layer 22 and aluminum and nitrogen doped n-type 6H-SiC layer 23 are laminated on a p-type 4H-SiC substrate 21 in sequence and the first and second ohmic electrodes 24 and 25 are formed on the rear surface of a substrate 21 and the front surface of n-type 6H-SiC layer 23. It allows an electron 29 which is located at a conductive band 27 or a donor level 33 and a positive hole 32 which is located at an acceptor level 34 in n-type 6H-SiC layer 23 near a junction 26 to be recombined, thus emitting a blue light with a wavelength of 480nm. At this time, since injection of the electron 29 into the p-type 4H-SiC layer is prevented by a barrier 28 of a conductive band 27, the n-type 6H-SiC layer 23 near the junction 26 where the electron 29 and the positive hole 32 are recombined becomes an area where the electron 29 exists in high concentration. Thus, in this kind of area, recombination efficiency of the electron 29 and the positive hole 32 improves and as a result the emission efficiency improves.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はS2O青色発光ダイオードに関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to S2O blue light emitting diodes.

(ロ)従来の技術 6H−810はバンドギャップが大きく、pn両伝導形
が得られることから青色発光ダイオード用材料として注
目を浴びてきた。
(b) Conventional technology 6H-810 has a large band gap and has attracted attention as a material for blue light emitting diodes because both pn and pn conduction types can be obtained.

また、6H−SiCからなる青色発光ダイオードの発光
層はり、Hof+mannらの報告(Journal 
AppliQa Physia5 53(10)、69
62゜(1982))から、カッードル建ネッ七ンスを
用い比測定でn側エピタキシャル成長層で発光している
ことか知られている。更にG11nthOr  216
g161m”  らの報告(I E B I  Tra
ms 、 IC1aCsron Daviaeg、ED
−30,277(1983))では、アルミニウムドー
プp型 6H−810とアンドーグn型 6H−810
1に比較すると、八 アルミニウムドープp型 6H−8acの方がか、・4
VI′ なり透過率が低いことが知られている。    ′これ
らの点から、Sta青色発光ダイオードの構造としては
、一般に第5図に示す如く、p型の6H−810基板(
1)上にアルミニウム(A/)がドープされたp型a6
 HS Co層(2)とアルミニウム及び窒素(ト))
がドープされたn型6H−810層。
In addition, a light-emitting layer of a blue light-emitting diode made of 6H-SiC was reported by Hof+mann et al. (Journal
AppliQa Physia5 53(10), 69
62° (1982)), it is known that light is emitted from the n-side epitaxially grown layer by ratio measurement using a cuddle net. Furthermore, G11nthOr 216
g161m” et al. (I E B I Tra
ms, IC1aCsron Daviaeg, ED.
-30, 277 (1983)), aluminum-doped p-type 6H-810 and undoped n-type 6H-810.
Compared to 1, 8 aluminum-doped p-type 6H-8ac is ・4
VI' is known to have a low transmittance. 'From these points, the structure of the Sta blue light emitting diode is generally based on a p-type 6H-810 substrate (as shown in Figure 5).
1) P-type a6 doped with aluminum (A/) on top
HS Co layer (2) and aluminum and nitrogen (t))
n-type 6H-810 layer doped with .

(31とを順次積層すると共に基板(1)裏面及びn型
8′10層(3)上に第1、第2のオーミック電極(4
)(5)が形成されたものが知られてい机 オードでは発光効率が低いという問題があっ念。
(31) are sequentially laminated, and first and second ohmic electrodes (4
)(5) is known, but there is a problem that the luminous efficiency is low in the desk ode.

斯る原因を鋭意探究した結果、上記し九ホモ接合では第
6図にそのエネルギ図を示す如く、順方向バイアス印加
時の接合(6)がなだらかな傾斜接合となるため、実際
の発光領域となるn型e6H−状態が生じにくく、その
結果、n型810層(3)中へ のドナレベル(7)とアクセプタレベル(8)との間、
もしくは伝導帯(9)とアクセプタレベル(8)との間
で生じる電子αυと正孔(1zとの再結合効率が低くな
るためであることが判明した。
As a result of intensive investigation into the cause, we found that in the above-mentioned nine homojunctions, as shown in the energy diagram in Figure 6, the junction (6) when a forward bias is applied becomes a gently sloped junction, which is different from the actual light emitting region. As a result, between the donor level (7) and the acceptor level (8) into the n-type 810 layer (3),
Alternatively, it has been found that this is because the recombination efficiency between electrons αυ and holes (1z) generated between the conduction band (9) and the acceptor level (8) becomes low.

尚、第6図中、(IQは価電子帯を示し、またドナレベ
ル(7)及びアクセプタレベル(8)は夫々窒素及びア
ルミニウムによ多形成される不純物レベルであるO に)問題点を解決する次めの手段 本発明は斯る点に鑑みてなされ念もので、その構成的特
徴は、−導電型の4)(−81層層の一主面に該4 H
−810層とは逆導電型を示す6)!−1310層を配
したことにある。
In addition, in Figure 6, (IQ indicates the valence band, and the donor level (7) and acceptor level (8) are the impurity levels formed by nitrogen and aluminum, respectively). Next Means The present invention was made in view of the above points, and its structural features are as follows: - conductivity type 4) (-81)
It exhibits a conductivity type opposite to that of the -810 layer 6)! -This is because 1310 layers are arranged.

(ホ)作 用 このような構成では、4 H−B i 0層と6 H−
B 10層との禁制帯幅に差があるため、順方向バイア
ス印加時に上記両層の接合部にエネルギ障壁が生じる。
(e) Effect In such a configuration, the 4 H-B i 0 layer and the 6 H-
Since there is a difference in the forbidden band width with the B10 layer, an energy barrier is generated at the junction between the two layers when a forward bias is applied.

(へ)実施例 第1図は本発明の第1の実施例を示し、p全4H−Si
C基板C!υ上にアルミニウムドープのp全4H−Si
C層のと、アルミニウム及び窒素がドープされ九n型6
H−810層(ハ)とを順次積層すると共に基板QD裏
面及びn型6H−s1oH1@表面に第1、第2オーミ
ツク電極G!4)(251を形成してなドのpn接合(
至)近傍のエネルギ状態を示し、具体、。
(f) Example FIG. 1 shows the first example of the present invention, in which p-all 4H-Si
C board C! Aluminum doped p all 4H-Si on υ
The C layer is doped with aluminum and nitrogen and is of N-type 6
H-810 layers (c) are sequentially laminated, and first and second ohmic electrodes G! 4) (251 is formed and the pn junction (
to) indicates the energy state of the neighborhood, concrete.

的には第2図Cりは熱平衡時のエネルギ状態を、又第2
図c′b)は頭方向バイアス印加時のエネルギ状態を夫
々示す0 第2図e)に示す如く、p全4H−810層Ωの禁シ」
帯幅は約127eVであシ、又n型6H−31層(ハ)
の禁II帯幅は約5.02evである。このため、順方
向バイアスを印加すると第2図(1))に示す如く、伝
導帯(5)側に高さ約0.28’/の障壁(至)が発生
する。従って、n型6H−SiC層[有]からp全4H
−810層四への電子−の注入はその大部分が斯る障壁
(2)により阻止される。尚、このとき価電子帯(至)
側にも障壁Gυが生じるが、斯る障壁C11lは非常に
低いため、正孔国はp全4H−810層@からn型6H
−84LO層(至)へ効率良く注入される。
Specifically, Figure 2C shows the energy state at thermal equilibrium, and the second
Figure c'b) shows the energy state when applying a bias in the head direction.
The band width is about 127 eV, and the n-type 6H-31 layer (c)
The forbidden II band width of is about 5.02ev. Therefore, when a forward bias is applied, a barrier with a height of about 0.28'/cm is generated on the conduction band (5) side, as shown in FIG. 2 (1). Therefore, from the n-type 6H-SiC layer [present] to the p-all 4H
The injection of electrons into the -810 layer 4 is mostly blocked by such a barrier (2). In addition, at this time, the valence band (to)
A barrier Gυ also occurs on the side, but since the barrier C11l is very low, the hole country is changed from the p-all 4H-810 layer @ to the n-type 6H
-84 Efficiently injected into the LO layer (to).

この結果、本実施例装置では接合(ハ)近傍のn型6n
−si04r23中で伝導帯Qηもしくはドナレベル(
至)に位置する電子のとアクセプタレベル(財)に位置
する正孔r34とが再結合し、エネルギhv+2.6e
vの光、即ち波長480nmの青色光を発することとな
る。また、このとき伝導帯Qηの障壁−によりp全4H
−SiC層のへの電子のの注入が阻止される友め、電子
囚と正孔c14とが再結合する接合(ハ)近傍のn型6
H−810層Qは電子のが高密度に存在する領域となる
。従って、斯る領域では従来に較べて電子のと正孔■と
の再結合効率が向上し、その結果発光効率も向上する。
As a result, in the device of this embodiment, the n-type 6n near the junction (c)
-conduction band Qη or donor level (
The electron located at
It emits light of 480 nm, that is, blue light with a wavelength of 480 nm. Also, at this time, due to the barrier of the conduction band Qη, p total 4H
- n-type 6 near the junction (c) where electrons are prevented from being injected into the SiC layer, and where electron prisoners and holes recombine
The H-810 layer Q is a region where electrons exist at a high density. Therefore, in such a region, the recombination efficiency of electrons and holes is improved compared to the conventional case, and as a result, the luminous efficiency is also improved.

尚、第2図中、ドナレベル儲及びアクセプタレベル(ロ
)は夫々不純物としてドープされた窒素もしくはアルミ
ニウムが形成するレベルであるOn型4H−81cJH
t21とアルミニウム及び窒素が区 ドープされたp型6)!−810層(43とを順次積層
すると共に基板α0表面及びp全6H−SiC層(43
表面に第1、第2オーミツク電極Ω4)QSt−形成し
てドのpn接合(ハ)近傍のエネルギ状態を示し、具体
的には第4図(IL)は熱平衡時のエネルギ状態を、又
第4図(ロ)は頭方向バイアス印加時のエネルギ状態を
夫々示す。
In Fig. 2, the donor level and acceptor level (b) are levels formed by nitrogen or aluminum doped as an impurity, respectively.On type 4H-81cJH
p-type doped with t21 and aluminum and nitrogen 6)! -810 layers (43) are laminated in sequence, and the substrate
First and second ohmic electrodes Ω4)QSt- are formed on the surface to show the energy state near the pn junction (c) of the do. Specifically, FIG. 4 (IL) shows the energy state at thermal equilibrium, and Figure 4 (b) shows the energy states when applying a bias in the head direction.

第4図(a) K示す如く、n型4a−sioffil
Q3の禁制帯幅は約347eVで1)、又p型6H−8
10層(43の禁制帯幅は約4〇28Vである。このた
め、順方向バイアスを印加すると、第4図ゆ)に示す如
く価電子帯0η側に高さ約0.28Vの障壁にか発生す
る。従って、p全6H−1310層Gt3からn型4H
−810層(43への正孔四の注入はその大部分が斯る
障壁囮によシ阻止される0尚、このとき伝導帯ω側にも
障壁(51)が生じるが、斯る障壁(51)は非常に低
いため、電子(52)はn型4H−810層(4渇から
p型6u−stc層(43へ効率良く注入される。
Figure 4(a) As shown in K, n-type 4a-sioffil
The forbidden band width of Q3 is approximately 347eV1), and p-type 6H-8
The forbidden band width of the 10 layer (43) is about 4028 V. Therefore, when a forward bias is applied, a barrier with a height of about 0.28 V is formed on the valence band 0η side as shown in Figure 4. Occur. Therefore, from p-all 6H-1310 layer Gt3 to n-type 4H
Most of the injection of holes into the −810 layer (43) is blocked by such a barrier decoy.0 At this time, a barrier (51) is also generated on the conduction band ω side; 51) is very low, electrons (52) are efficiently injected from the n-type 4H-810 layer (43) to the p-type 6U-stc layer (43).

この結果、本実施例装置では接合(ト)近傍のp型6H
−310層(43中で伝導帯ωもしくはドナレベル(5
3)に位置する電子(52)とアクセプタレベル(54
)に位置する正孔(41とが再結合し、エネルギ状態中
2,6θVの光、即ち波長480nmの青色光を発する
こととなる。ま九、このとき価電子帯(4ηの障壁■に
よりn型4H−SiC層(42中への正孔(49の注入
が阻止されるため、電子(52)と正孔四とが再結合す
る接合(161近傍のp型6H−8LOJl(43は正
孔晴が高密度に存在する領域となる。従って、斯る領域
では従来に較べて1子(52)と正孔四との再結合効率
が向上し、その結果発光効率も向上する。
As a result, in the device of this embodiment, the p-type 6H near the junction (G)
-310 layers (conduction band ω or donor level (5
3) and the electron (52) located at the acceptor level (54)
) is recombined with the hole (41), and light of 2,6θV in the energy state, that is, blue light with a wavelength of 480nm, is emitted. Type 4H-SiC layer (p-type 6H-8LOJl near 161 (p-type 6H-8LOJl (43 is hole This is a region where holes exist at a high density.Therefore, in such a region, the recombination efficiency between the 1st hole (52) and the 4th hole is improved compared to the conventional case, and as a result, the luminous efficiency is also improved.

尚、ドナレベル(53)及びアクセプタレベル(4′r
Iは不純物としてドープされた窒素とアルニウムとによ
り形成されるレベルである。
In addition, the donor level (53) and acceptor level (4'r
I is the level formed by nitrogen and aluminum doped as impurities.

(ト)発明の効果 本発明によれば、電子と正孔とが再結合を生じる領域に
おけるキャリアの高密度化がはかれるので従来に比して
高効率で青色光を発生することができる。
(G) Effects of the Invention According to the present invention, the density of carriers in the region where electrons and holes recombine can be increased, so that blue light can be generated with higher efficiency than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

の 第1図は本発明の第1A実施例を示す断面図、第2図(
SL)Cb)は第1実施例のエネルギ状態を示す模式図
、第3図は本発明の第2の実施例を示す断面図、第4図
(1k)(b)は第2実施例のエネルギ状態を示す模式
図、第5図及び第6図は夫々従来例を示す断面図及びそ
のエネルギ状態を示す模式図である。 @ ・ p型4H−SiC層、Q!3・n型6H−Si
C層、(43・n型41’l−B i 0層、(43−
P型6H−810層。
1 is a sectional view showing the 1A embodiment of the present invention, and FIG. 2 (
SL)Cb) is a schematic diagram showing the energy state of the first embodiment, FIG. 3 is a sectional view showing the second embodiment of the present invention, and FIGS. 4(1k) and (b) are schematic diagrams showing the energy state of the second embodiment. 5 and 6 are a cross-sectional view showing a conventional example and a schematic diagram showing its energy state, respectively. @ ・ p-type 4H-SiC layer, Q! 3.n-type 6H-Si
C layer, (43・n type 41'l-B i 0 layer, (43-
P type 6H-810 layer.

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型の4H−SiC層の一主面に該4HSi
C層とは逆導電型を示す6H−SiC層を配したことを
特徴とするSiC青色発光ダイオード。
(1) The 4HSi on one main surface of the 4H-SiC layer of one conductivity type.
An SiC blue light emitting diode characterized by having a 6H-SiC layer having a conductivity type opposite to that of the C layer.
JP26438287A 1987-10-20 1987-10-20 SiC blue light emitting diode Expired - Lifetime JPH0797658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26438287A JPH0797658B2 (en) 1987-10-20 1987-10-20 SiC blue light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26438287A JPH0797658B2 (en) 1987-10-20 1987-10-20 SiC blue light emitting diode

Publications (2)

Publication Number Publication Date
JPH01106475A true JPH01106475A (en) 1989-04-24
JPH0797658B2 JPH0797658B2 (en) 1995-10-18

Family

ID=17402376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26438287A Expired - Lifetime JPH0797658B2 (en) 1987-10-20 1987-10-20 SiC blue light emitting diode

Country Status (1)

Country Link
JP (1) JPH0797658B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185978A (en) * 1988-01-20 1989-07-25 Sharp Corp Silicon carbide semiconductor element
US5027168A (en) * 1988-12-14 1991-06-25 Cree Research, Inc. Blue light emitting diode formed in silicon carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185978A (en) * 1988-01-20 1989-07-25 Sharp Corp Silicon carbide semiconductor element
US5027168A (en) * 1988-12-14 1991-06-25 Cree Research, Inc. Blue light emitting diode formed in silicon carbide

Also Published As

Publication number Publication date
JPH0797658B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US4918497A (en) Blue light emitting diode formed in silicon carbide
EP0448607B1 (en) Blue light emitting diode formed in silicon carbide
JP5912217B2 (en) Semiconductor light emitting device
US4864369A (en) P-side up double heterojunction AlGaAs light-emitting diode
JP3631157B2 (en) Ultraviolet light emitting diode
KR20130106690A (en) White light emitting diode
JPH04321280A (en) Blue color light-emitting diode
JPH0621511A (en) Semiconductor light emitting element
JPH01106476A (en) Sic blue color light emitting diode
JPH0738150A (en) Semiconductor light emitting device
US5077588A (en) Multiple wavelength light emitting device
JPH1041543A (en) Semiconductor light emitting element
JPS63220591A (en) Semiconductor device
JPH01106475A (en) Sic blue color light emitting diode
JPH0750795B2 (en) Light emitting element
JP2755940B2 (en) Light emitting element
US6066862A (en) High brightness light emitting diode
JP2001291900A (en) Semiconductor light-emitting device and manufacturing method thereof
JP2508649B2 (en) Semiconductor light emitting device
JPH05267715A (en) Semiconductor light-emitting device
JP5440525B2 (en) Semiconductor light emitting device
JP3057547B2 (en) Green light emitting diode
CN116111012B (en) Light-emitting diode capable of regulating polarized light emitting mode
JPH06103759B2 (en) Semiconductor light emitting device
JP3119513B2 (en) Avalanche light emitting device