JPH01105060A - Cam stepless adjusting device - Google Patents

Cam stepless adjusting device

Info

Publication number
JPH01105060A
JPH01105060A JP26176687A JP26176687A JPH01105060A JP H01105060 A JPH01105060 A JP H01105060A JP 26176687 A JP26176687 A JP 26176687A JP 26176687 A JP26176687 A JP 26176687A JP H01105060 A JPH01105060 A JP H01105060A
Authority
JP
Japan
Prior art keywords
cam
driven joint
sectional shape
driven
follower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26176687A
Other languages
Japanese (ja)
Inventor
Hidemichi Shibamura
柴村 英道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP26176687A priority Critical patent/JPH01105060A/en
Publication of JPH01105060A publication Critical patent/JPH01105060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Transmission Devices (AREA)

Abstract

PURPOSE:To enable a driven cam follower to adjust its motion even when a cam is in operation by constituting a device of a cam supporting mechanism, which moves or fixes a relative position between the cam and the follower in a vertical direction with a motion of the cam, and the cam which changes its sectional shape in accordance with the movement. CONSTITUTION:A cam supporting mechanism, which enables a relative position between a cam 1 and a follower 3 to be moved or fixed in a vertical direction with the direction of cam motion, and the cam 1, which changes its sectional shape in accordance with the movement, are provided. While the rotary cam is formed by the cam 1, having a sectional shape continuously changing in the direction of a rotary shaft 2, and a mechanism which selects an arbitrary sectional shape of the cam 1 by moving continuously or fixing the relative position between this cam 1 and the follower 3 in the direction of the rotary shaft 2. As the result, even during operation of the cam 1, enabling the relative position between the cam 1 and the follower 3 to be freely moved or fixed at any time, the cam 1 changes its substantial sectional shape, and the follower 3 enables its motion to be adjusted.

Description

【発明の詳細な説明】 [発明の目的] 「産業上の利用分野」 本発明はカム装置に係わるものであり、特に自動車用ガ
ソリンエ゛ンジンの弁(バルブ)等の駆動機構への応用
を主要な目的としている。
[Detailed Description of the Invention] [Object of the Invention] "Industrial Application Field" The present invention relates to a cam device, and is particularly applicable to drive mechanisms such as valves of automobile gasoline engines. The purpose is to

「従来の技術」 回転軸を作動中に軸方向に移動し、又固定する技術自体
は、既に自動車の変速機の中等で広く使用されており、
なんら目新しいものではない。ここで、軸方向に連続的
に変化する断面形状をもつカムと従動節との相対位置を
、作動中に移動し、また固定することにより、カムと従
動節との接触する断面の形状を自由に調節することがで
きるが、このことはこれまで行われていない。
``Prior art'' The technology itself for moving and fixing a rotating shaft in the axial direction during operation is already widely used in automobile transmissions, etc.
It's nothing new. Here, by moving and fixing the relative position of the cam and the driven joint, which have a cross-sectional shape that continuously changes in the axial direction, during operation, the shape of the cross-section where the cam and the driven joint contact can be freely changed. can be adjusted, but this has not been done so far.

従来め技術で本発明と類似の目的を持ったものに、 “
王道りに振りを変えるカム”として文献1(書名: メ
カニズムの事典、編者: 伊東茂、出版社: 理工学社
、発行:  1985年11月20日、頁:  147
)に述べられているものを挙げることができる。この技
術は、断面形状を異にする3枚 −の(3枚というのは
一例であり2枚でも4枚でも原理的には可能である)通
常の板カムを共通の軸上に重ねて取り付け、従動節を移
動して任意のカムを選択しこれと接触させるというもの
である。
Conventional technology that has a similar purpose to the present invention includes “
Reference 1 (title: Mechanism Encyclopedia, editor: Shigeru Ito, publisher: Rikogakusha, issue: November 20, 1985, page: 147)
) can be mentioned. This technology attaches three regular plate cams with different cross-sectional shapes (three plates is just an example, two or four plates are possible in principle) on a common shaft. , the driven joint is moved to select an arbitrary cam and bring it into contact.

通常の板カム下あるから、−aには、カムとカムとの間
に段差が存在するので、従動節はカムとカムとの間を自
由に移動することは出来ない。そこでカムを切り替える
には、例えば、 (a)−旦従動節を持ち上げて、カムとの接触を絶った
状態で隣のカムに移動する。
Since it is below the normal plate cam, there is a step between the cams in -a, so the driven joint cannot freely move between the cams. To switch cams, for example, (a) - Lift up the driven joint and move it to the next cam while breaking contact with the cam.

(b)部分的にカムとカムとの間に段差のない場所があ
るならば、従動節がこの段差のない場所でカムと接触し
ている瞬間をとらえて素早く従動節を隣のカムに移動さ
せる。
(b) If there is a place where there is no difference in level between the cams, seize the moment when the driven joint is in contact with the cam at this place where there is no difference in level and quickly move the driven joint to the next cam. let

等の手段をとる必要があり、いずれにしても、制約が大
きく、また複雑な装置を必要とすることになる。 (a
)の方法を採れば、任意の時に従動節を移動することが
可能であるが、移動の途中ではカムと従動節の接触がな
いわけであるから従動節の動きは休止してしまう。また
、従動節を持ち上げて移動するために、複雑な機構が必
要である。
It is necessary to take measures such as the following, and in any case, there are severe restrictions and a complicated device is required. (a
), it is possible to move the driven joint at any time, but since there is no contact between the cam and the driven joint during the movement, the movement of the driven joint stops. Furthermore, a complicated mechanism is required to lift and move the driven joint.

(b)の方法を採れば、移動中もカムの作動は休止しな
いですむが、移動させることの出来る時間が限られてお
り、カムの回転が高速の場合は特にこの移動が困難にな
る。実際、この゛王道りに振りを変えるカム”の技術は
これまで自動車のエンジンに実用されていない。本発明
は、まさにこの自動車用のエンジンの吸排気弁の駆、動
機構の改良を10要な適用例としている。
If method (b) is adopted, the operation of the cam does not have to stop during movement, but the time during which the cam can be moved is limited, and this movement is particularly difficult when the cam rotates at high speed. In fact, this technology of ``a cam that changes its swing in a classic way'' has not been put to practical use in automobile engines to date.The present invention is exactly about this ten point improvement of the drive and movement mechanism of the intake and exhaust valves of automobile engines. This is an application example.

一般に自動車等のガソリンエンジンの吸気弁や排S(弁
は、直接に或は間接にカムにより駆動されている。これ
らの弁の最適な開閉のタイミングは、エンジンの負荷や
回転数によって異なっている。
In general, the intake valves and exhaust valves of gasoline engines such as automobiles are driven directly or indirectly by cams.The optimal opening and closing timing of these valves differs depending on the engine load and rotation speed. .

例えば、吸気弁が開いてから排気弁が閉じるまでの時間
をバルブオーバーラツプというが、エンジンを高速回転
させるときは、バルブオーバーラツプが長い方が混合気
や排気ガスの吸排気効率がよくなる。エンジンを低速で
回転させるときはバルブオーバーラツプは短いほうが吸
排気効率がよくなる。エンジンの回転中に弁開閉のタイ
ミングを変更することは容易ではないので、これまでは
、高速回転用のエンジンには長めのバルブオーバーラツ
プに、低速回転用のエンジンには短めのバルブオーバー
ラツプになるような形状のカムをそれぞれ取り付けるの
が一般的であった。すなわち高速回転用のエンジンは低
速回転時の性能を犠牲にし、また、低速回転用のエンジ
ンは高速での性能が劣っているのを常としている。この
点について特に工夫を凝らしたものの例として、文献2
(書名: メカニズム研究図鑑・エンジン編、著者: 
出射忠明、出版社: グランプリ出版、発行: 198
5年4月25日第2刷、頁: 82)に述べられている
、三菱自動車のシリウス・ダッシュ・エンジンにおける
3×2バルブ・システムをあげることができる。一般の
エンジンでは1気筒あたり、吸気弁1本排気弁1本とい
う構成が普通であるのに対して、この3X2バルブ・シ
ステムでは吸気弁2本排気弁1本で構成されている。こ
れは、高速回転時には2本の吸気弁を開閉して充分長い
バルブオーバーラツプを確保し、低速回転時には吸5気
弁の1つを閉め切りとすることによりバルブオーバーラ
ツプを短くすることを可能とするためである。そのため
に、カムと吸気弁との間に油圧機構を介在させておき、
これを掃作することにより低速回転時には吸気弁の1つ
とカムとの連動を断ち切るようになっている。これ以外
にも類似の例として、燃費を向上させるために、可変気
筒エンジンと称する、運転の条件によって動作中の気筒
の1部の動作を停止することのできるエンジンを実現す
るために、上に述べたような油圧機構やそれに代わる電
磁ソレノイドなどを使用したものが前出の文献2(頁9
2.93)に記されて−いる。
For example, the time from when the intake valve opens to when the exhaust valve closes is called the valve overlap, and when the engine is running at high speed, the longer the valve overlap, the better the air-fuel mixture and exhaust gas intake and exhaust efficiency. . When the engine rotates at low speeds, the shorter the valve overlap, the better the intake and exhaust efficiency. Since it is not easy to change the timing of valve opening and closing while the engine is running, conventional methods have been to use longer valve overlaps for high-speed engines and short valve overlaps for low-speed engines. It was common to install cams each shaped like a cam. That is, engines designed for high-speed rotation sacrifice performance at low-speed rotation, and engines designed for low-speed rotation usually have poor performance at high speed. As an example of something that has been particularly devised in this regard, Document 2
(Book title: Mechanism research encyclopedia, engine edition, author:
Tadaaki Deshi, Publisher: Grand Prix Publishing, Issue: 198
One example is the 3×2 valve system in Mitsubishi Motors' Sirius Dash engine, which is described in 2nd edition, April 25, 2005, page: 82). While a typical engine usually has one intake valve and one exhaust valve per cylinder, this 3X2 valve system has two intake valves and one exhaust valve. This ensures a sufficiently long valve overlap by opening and closing the two intake valves at high speeds, and shortens the valve overlap by closing one of the five intake valves at low speeds. This is to make it possible. For this purpose, a hydraulic mechanism is interposed between the cam and the intake valve,
By sweeping this, the interlock between one of the intake valves and the cam is cut off during low speed rotation. In addition to this, as a similar example, in order to improve fuel efficiency, in order to realize an engine called a variable cylinder engine, which can stop the operation of some of the cylinders that are currently in operation depending on the operating conditions. A system using the hydraulic mechanism as described above and an electromagnetic solenoid instead is described in the above-mentioned document 2 (p. 9).
2.93).

しかしこのような方法では、高速運動をするカムと弁と
の間に複雑な油圧機構を必要とし、コストの点で問題と
なるだけでなく、本質的には、2つの弁タイミングの内
の1つが選択できるというものでしかないから、完全な
解決とはいえない。
However, this method requires a complex hydraulic mechanism between the cam and the valve, which moves at high speed, which not only poses a problem in terms of cost, but also essentially requires one of the two valve timings. It is not a complete solution as it is only a matter of choice.

「発明が解決しようとする問題点」 カムの作動中にカム形状を変更することが困難であると
いう問題を解決しようとするものである。
"Problems to be Solved by the Invention" This invention attempts to solve the problem that it is difficult to change the shape of the cam while the cam is in operation.

特に、自動車用ガソリンエンジンにおいては、弁開閉の
タイミングがエンジン毎に固定されているために高速回
転エンジンは低速性能が、また、低速回転用エンジンは
高速性能が劣るという問題を解決しようとするものであ
る。本発明のカム装置をこのようなエンジンの弁駆動機
構に応用すれば、エンジンの作動中つねに、無限の弁タ
イミングの内から最適な弁タイミングにy4節すること
ができる。上に述べた可変気筒エンジンもこのカム装置
によればより簡単に実現できる。
In particular, in gasoline engines for automobiles, the timing of valve opening and closing is fixed for each engine, so high-speed rotation engines have poor low-speed performance, and low-speed rotation engines have poor high-speed performance. It is. If the cam device of the present invention is applied to the valve drive mechanism of such an engine, it is possible to always select the optimum valve timing from an infinite number of valve timings while the engine is operating. The above-mentioned variable cylinder engine can also be more easily realized using this cam device.

[発明の構成] r問題点を解決するための手段」 本発明は、通常のカム運動の方向に垂直な方向に、カム
と従動節との相対位置を移動し又固定することの可能な
カムの支持機構と、移動につれ断面形状の変化するカム
とから構成されている。
[Structure of the Invention] Means for Solving Problems The present invention provides a cam capable of moving and fixing the relative position of the cam and the driven joint in a direction perpendicular to the direction of normal cam movement. It consists of a support mechanism, and a cam whose cross-sectional shape changes as it moves.

回転カムにおいては、回転軸方向に連続的に変化する断
面形状をもったカムと、このカムと従動節との相対位置
を回転軸方向に連続的に移動し、また固定することによ
りカムの任意の断面形状を選択する機構とから成り立つ
In a rotary cam, the cam has a cross-sectional shape that continuously changes in the direction of the rotation axis, and the relative position of this cam and a driven joint is continuously moved in the direction of the rotation axis and fixed, so that the cam can be freely adjusted. It consists of a mechanism for selecting the cross-sectional shape of the

往復カムにおいては、往復の方向(X)とそのカムに駆
動される従節の運動の方向(Y)との二つの方向に垂直
な方向(Z)に連続的に変化する断面形状をもったカム
と、このカムと従動節との相対位置をZ方向に連続的に
移動しまた固定することにより、その任意の断面形状を
選択する機構とから成り立つ。
A reciprocating cam has a cross-sectional shape that continuously changes in the direction (Z) perpendicular to the two directions: the direction of reciprocation (X) and the direction of movement of the follower driven by the cam (Y). It consists of a cam and a mechanism that selects an arbitrary cross-sectional shape by continuously moving and fixing the relative position of the cam and the driven joint in the Z direction.

「作用」 本発明は、 ゛段差の無いカムを無数に並べたもの°°
ということができ、またその本質は、 “王道りに振り
を変えるカム”に対して、そのカムとカムとの間を滑ら
かに(連続的に)移行する曲面でつなぐという改良を施
したものと解することもできる。従って、本発明におい
てはカムまたは従動節を軸方向にずらすことがいつでも
容易にできるので、任意の時点で振りを変えることが簡
単にでき る。
``Function'' The present invention is characterized by ``a system in which a countless number of cams with no steps are arranged.
It can be said that, and its essence is that it is an improved version of the ``cam that swings in the classic way'' by connecting the cams with a curved surface that transitions smoothly (continuously). You can also understand it. Therefore, in the present invention, the cam or the driven joint can be easily shifted in the axial direction at any time, so the swing can be easily changed at any time.

「実施例」 まず、本発明の単純な二つの実施例について図面を参照
して説明する。
"Embodiments" First, two simple embodiments of the present invention will be described with reference to the drawings.

第1図−第5図は、従動節の振幅だけを変化させるため
のカム形状無段階調節装置の例を示すものである。
1 to 5 show an example of a cam shape stepless adjustment device for changing only the amplitude of the driven node.

第1図−第3図に示されるように、右にいくと突起の小
さくなるカムをとりあげる。従動節がカムに第3図のA
−A’線において接触しているとき、第4図の実線で示
される形状のカムで従動節3は駆動される。このときの
カム軸の回転に伴う従動節の上昇りは第5図の実線で示
されるものとなる。第4図において矢印の向きにカムが
回転するとき、従動節の上昇の高さDは、カムの回転角
θが45度になったときから増加しはじめ、 90度で
最大となり135度で元の高さに戻る。第3図でカムを
左に移動して(あるいは従動節を右に移動して)C−C
’線で従動節がカムに接するようにすれば、従動節から
見たカムの形状は第4図の点線で示されるものに変化し
たことになる。このとき従動節は第5図の点線のように
動く。ここでも従動節の上昇りはカムの回転角θが90
度のとき最大であるが、振幅は実線の場合の半分になっ
ている。もちろん、この中間のB−B’などで接触させ
ることも可能であり、この場合には従動節の運動は実線
と破線の中間的なものになる。第1図−第5図の例にお
いては、カムと従動節との接触の位置をA−A“からc
−c’まで連続的にずらせていくことで従動節の振幅を
無段階制御でき る。
As shown in Figures 1 to 3, take a cam whose protrusions become smaller as you go to the right. The driven joint is attached to the cam at A in Figure 3.
When in contact at line -A', the driven joint 3 is driven by a cam shaped as shown by the solid line in FIG. At this time, the rise of the driven joint as the camshaft rotates is as shown by the solid line in FIG. When the cam rotates in the direction of the arrow in Figure 4, the rising height D of the driven joint begins to increase when the rotation angle θ of the cam reaches 45 degrees, reaches its maximum at 90 degrees, and reaches its original value at 135 degrees. Return to height. In Figure 3, move the cam to the left (or move the driven joint to the right) and C-C
If the driven joint is brought into contact with the cam along the line ', the shape of the cam as seen from the driven joint will change to that shown by the dotted line in FIG. At this time, the driven node moves as shown by the dotted line in FIG. Here again, the rise of the driven node is due to the rotation angle θ of the cam being 90
The amplitude is at its maximum when the angle is 100 degrees, but the amplitude is half that of the solid line. Of course, it is also possible to make contact at an intermediate point such as BB', and in this case, the movement of the driven joint will be intermediate between the solid line and the broken line. In the examples shown in Figures 1 to 5, the position of contact between the cam and the driven joint is changed from A-A'' to c.
By continuously shifting it up to -c', the amplitude of the driven node can be controlled steplessly.

次の、第6図−第1O図は、従動節の振幅は一定のまま
で位相(従動節の動くタイミング)を変化させるための
例を示している。
The following FIGS. 6-10 show an example of changing the phase (timing of movement of the driven node) while keeping the amplitude of the driven node constant.

第6図−第8図に示される、ねじれた形状のカムを考え
る。従動節がカムに第8図のA−A’ 線において接す
る場合、従動節から見たカムの形状は第9図の実線で示
されるものである。第9図において矢印の向きにカムが
回転するとき、回転に伴う従動節の上昇の高さDは第1
0図の実線のようになる。上昇りは、カムの回転角θが
90度のときに最大となる。第8図でカムを左に゛移動
して(あるいは従動節を右に移動して> c−c’線で
従動節とカムとが接するようにすれば、従動節から見た
カムの形状は第9図の点線で示されるものに変わり、従
動節は第10図の点線のように動く。
Consider the twisted-shaped cam shown in FIGS. 6-8. When the driven joint contacts the cam at line AA' in FIG. 8, the shape of the cam seen from the driven joint is shown by the solid line in FIG. 9. When the cam rotates in the direction of the arrow in FIG. 9, the height D of the rise of the driven joint due to the rotation is the first
It will look like the solid line in Figure 0. The rise is maximum when the rotation angle θ of the cam is 90 degrees. In Figure 8, if we move the cam to the left (or move the driven joint to the right so that the driven joint and cam are in contact with line c-c'), the shape of the cam as seen from the driven joint is Instead of moving as shown by the dotted line in FIG. 9, the driven joint moves as shown by the dotted line in FIG.

この場合、従動節の上昇の高さDが最大になるのは、カ
ムの回転角θが180度のときであるから、実線の場合
に比べて従動節の運動の位相が90度遅れたことになる
。この中間のB−B’などにおいては従動節の運動は実
線と点線の中間的なものになる。このように、第6図−
第10図の例においては、カムの位相を連続的に制御す
ることができ る。
In this case, the height D of the rise of the driven joint reaches its maximum when the rotation angle θ of the cam is 180 degrees, so the phase of the movement of the driven joint is delayed by 90 degrees compared to the case of the solid line. become. In this intermediate position, such as B-B', the motion of the driven joint is intermediate between the solid line and the dotted line. In this way, Figure 6-
In the example of FIG. 10, the phase of the cam can be controlled continuously.

実際上は、ここで述べた振幅の制御と位相の制御とを組
み合わせて同時に行うことができる。さらにカムの突起
の幅を変化させることも可能である。したがって、本発
明により従動節の動きを自由に制御できることになる。
In practice, the amplitude control and phase control described here can be combined and performed simultaneously. Furthermore, it is also possible to vary the width of the protrusion of the cam. Therefore, according to the present invention, the movement of the driven joint can be freely controlled.

また、往復カムについても、カムの往復の方向と従動節
の運動の方向との両方にに垂直な方向にカムの断面形状
が連続的に変化するものを用いて、この方向にカムを移
動させることにより、従動節の運動について振幅と位相
とを制御することができ る。
In addition, for reciprocating cams, we use a cam whose cross-sectional shape changes continuously in a direction perpendicular to both the direction of reciprocation of the cam and the direction of movement of the driven joint, and the cam is moved in this direction. By doing so, it is possible to control the amplitude and phase of the movement of the driven node.

これまではカムの形状が滑らかに変化する例をあげてき
たが、従!ll1i7i+のカムとの接点の大きさに比
べて(あるいは従動節の接点部分の曲率半径とくらべて
)カムとカムとの間のnMが十分小さければ実質的にカ
ムは連続的に変化するのと同じことになる。ただしこの
場合は、カムの角で従動節を駆動することにもなるから
、耐久性などの面からみて、用途に制限が生じる。
So far, we have given examples in which the shape of the cam changes smoothly, but now! If nM between the cams is sufficiently small compared to the size of the point of contact with the cam of ll1i7i+ (or compared to the radius of curvature of the contact part of the driven node), the cam will substantially change continuously. It will be the same thing. However, in this case, the driven joint is driven by the corner of the cam, which limits the application in terms of durability.

[発明の効果] この装置では、カムと従動節との接触断面は連続的に変
化するので、カムの作動中においてもカムと従°動節と
の相対位置はいつでも自由に移動しまた固定することが
でき、このことによりカムの実質的な断面形状を変化さ
せて従節の運動を調節することができる。従来の技術と
して述べた゛王道りに振りを変えるカム”と対比してい
うならば、本発明は“単純な機構で実現できる無限に振
りを変えるカム°“である。つまり、カムをその回転軸
の方向に移動し固定するだけで実質的に無限にあるカム
断面の任意の一つを選ぶことができる。もちろん、任意
の時期に、また、カムと従動節との接触を常に保ったま
まで、カム断面石状を選択することができるので、従来
技術の項の(a)、 (b)のような制約はない。
[Effect of the invention] In this device, since the contact cross section between the cam and the driven joint changes continuously, the relative position between the cam and the driven joint can be freely moved and fixed at any time even during the operation of the cam. This allows the substantial cross-sectional shape of the cam to be changed to adjust the movement of the follower. In contrast to the ``cam that changes its swing in a regular manner'' described as the conventional technology, the present invention is a ``cam that can change its swing infinitely and can be realized with a simple mechanism''. Any one of the virtually infinite cam cross sections can be selected simply by moving in the direction and fixing the cam.Of course, the cam can be moved at any time and while always maintaining contact between the cam and the driven joint. Since a stone-like cross section can be selected, there are no restrictions like (a) and (b) in the prior art section.

特に、本発明をガソリンエンジンの弁駆動機構に応用す
れば、エンジンの作動中にそのカム形状を、そのときの
エンジンの作動状態に最適の弁タイミングが得られるよ
うに1!1節することが容易にできるようになる。この
ことにより低速域から高速域まで高い吸排気効率を持ち
、したがって、熱効率の高いエンジンを実現することが
できるので、エンジン出力の向上や燃料資源の節約、排
気ガス公害の軽減に有効である。
In particular, if the present invention is applied to the valve drive mechanism of a gasoline engine, the cam shape can be adjusted 1! It becomes easy to do. This makes it possible to realize an engine that has high intake and exhaust efficiency from low speed ranges to high speed ranges, and therefore has high thermal efficiency, which is effective in improving engine output, saving fuel resources, and reducing exhaust gas pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図−第5図は、従動節の運動の振幅を制御するため
の実施例を示すものである。第1図はカムの平面図、第
2図はカムの左側面図、第3図はカムの正面図である。 第4図はカムの回転角θと従動節の上昇の高さDのとり
方を示す。第5図はカムIIA図であり、カムの回転角
がθ度のときの従動節の上昇りを示す。 第6図−第10図は、従動節の運動の位相を制御するた
めの実施例を示すものである。第6図はカムの平面図、
第1図はカムの左側面図、第8図はカムの正面図である
。第9図はカムの回転角θと従動節の上昇の高さDのと
り方を示す。第10図はカム線図であり、カムの回転角
がθのときの従動節の上昇りを示す。 1・・・カム 2・・・カムの回転軸 3・・・従動節
1-5 show embodiments for controlling the amplitude of the movement of the driven joint. FIG. 1 is a plan view of the cam, FIG. 2 is a left side view of the cam, and FIG. 3 is a front view of the cam. FIG. 4 shows how to determine the rotation angle θ of the cam and the rising height D of the driven joint. FIG. 5 is a cam IIA diagram showing the rise of the driven joint when the rotation angle of the cam is θ degrees. 6 to 10 show embodiments for controlling the phase of movement of the driven joint. Figure 6 is a plan view of the cam.
FIG. 1 is a left side view of the cam, and FIG. 8 is a front view of the cam. FIG. 9 shows how to determine the rotation angle θ of the cam and the rising height D of the driven joint. FIG. 10 is a cam diagram showing the rise of the driven node when the rotation angle of the cam is θ. 1...Cam 2...Cam's rotating shaft 3...Followed node

Claims (1)

【特許請求の範囲】[Claims] カムの動く方向と従動節の動く方向とに垂直な方向に、
カムと従動節との相対位置を移動し、また固定すること
の可能なカム−従動節系の支持機構と、その移動につれ
従動節と接触するカム断面の形状が滑らかに変化するカ
ムとから成るカム装置。
In the direction perpendicular to the direction of movement of the cam and the direction of movement of the driven joint,
It consists of a cam-driven joint system support mechanism that can move and fix the relative position of the cam and the driven joint, and a cam whose cross-sectional shape that contacts the driven joint smoothly changes as it moves. cam device.
JP26176687A 1987-10-19 1987-10-19 Cam stepless adjusting device Pending JPH01105060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26176687A JPH01105060A (en) 1987-10-19 1987-10-19 Cam stepless adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26176687A JPH01105060A (en) 1987-10-19 1987-10-19 Cam stepless adjusting device

Publications (1)

Publication Number Publication Date
JPH01105060A true JPH01105060A (en) 1989-04-21

Family

ID=17366395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26176687A Pending JPH01105060A (en) 1987-10-19 1987-10-19 Cam stepless adjusting device

Country Status (1)

Country Link
JP (1) JPH01105060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256344A (en) * 1992-03-10 1993-10-05 Mitsui Eng & Shipbuild Co Ltd Multimode driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256344A (en) * 1992-03-10 1993-10-05 Mitsui Eng & Shipbuild Co Ltd Multimode driving device

Similar Documents

Publication Publication Date Title
US5572962A (en) Variable valve lift mechanism for internal combustion engine
Hosaka et al. Development of the variable valve timing and lift (VTEC) engine for the Honda NSX
EP1873362B1 (en) Variable valve mechanism
US20120210964A1 (en) Variable valve actuation system and method using variable oscillating cam
US5074260A (en) Valve driving device and valve driving method for internal combustion engine
US6679207B1 (en) Engine valve actuation system
JPH09506402A (en) Variable valve lift mechanism for internal combustion engine
US5107802A (en) Valve driving mechanism for internal combustion engines
US20030121484A1 (en) Continuously variable valve timing, lift and duration for internal combustion engine
JP2007146733A (en) Variable valve gear for internal combustion engine
US6684832B1 (en) Oscillating camshaft controlled valve operating device
JP3977374B2 (en) Valve mechanism for internal combustion engine
JPH01105060A (en) Cam stepless adjusting device
US6832586B2 (en) Variable duration camshaft
JP3914631B2 (en) Variable valve operating device for internal combustion engine
JPH07332045A (en) Valve timing controller of engine
EP1227223A2 (en) Multi cylinder internal combustion engine and control method therefor
CN101333949B (en) Continuous variable valve lift apparatus
JPS6185516A (en) Variable valve timing mechanism
JPS6213708A (en) Multicylinder internal-combustion engine
JPS61129411A (en) Variable change mechanism of valve action in engine
JP2007113400A (en) Variable valve train
JP2630698B2 (en) 4-cycle internal combustion engine
JP3324438B2 (en) Valve characteristic control device for internal combustion engine
JPH04179809A (en) Valve cam shape selectable mechanism for internal combustion engine