JPH01103964A - Production of composite reinforced ceramic member - Google Patents

Production of composite reinforced ceramic member

Info

Publication number
JPH01103964A
JPH01103964A JP25896087A JP25896087A JPH01103964A JP H01103964 A JPH01103964 A JP H01103964A JP 25896087 A JP25896087 A JP 25896087A JP 25896087 A JP25896087 A JP 25896087A JP H01103964 A JPH01103964 A JP H01103964A
Authority
JP
Japan
Prior art keywords
ceramic
molded body
composite
composite reinforced
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25896087A
Other languages
Japanese (ja)
Inventor
Takenobu Sakai
武信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25896087A priority Critical patent/JPH01103964A/en
Publication of JPH01103964A publication Critical patent/JPH01103964A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride

Abstract

PURPOSE:To easily obtain the title ceramic member having partially a composite reinforced ceramic region by previously forming the composite reinforced ceramic region, arranging the region in a forming die, packing a ceramic material in the die, and sintering the material. CONSTITUTION:The formed body 14 of reinforcing fibers separately prepared is arranged in the cavity 12 of an injection molding die 10, a ceramic material 18 is packed from an injection molding hole 16, and a composite reinforced ceramic formed body 20 is produced. The body 20 is arranged in the inductive part 24a of the cavity 24 of an injection molding die 22, and a ceramic material 26 having the same composition as the ceramic material 18 is packed in the cavity 24 from an injection molding hole 28. The obtained formed product 30 is degreased, as required, dried, and sintered to obtain a ceramic member 30 having the partial composite reinforced region 30a. By this method, the packing density of the ceramic material 18 in the formed body 14 of the reinforcing fibers can be easily increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合強化セラミック部材の製造方法に関し、
詳しくは、部分的に複合強化されたセラミック部位を有
するセラミック部材の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a composite reinforced ceramic member,
In particular, the present invention relates to a method of manufacturing a ceramic component having a partially composite reinforced ceramic section.

この複合強化セラミック部材の製造方法は、セラミンク
タービンロータのインデユース部のように靭性を要求さ
れる部位のみを複合強化したセラミック部材の製造方法
に利用される。
This method for manufacturing a composite reinforced ceramic member is used for manufacturing a ceramic member in which only a portion where toughness is required, such as an internally used portion of a ceramic turbine rotor, is compositely reinforced.

〔従来の技術〕[Conventional technology]

近年、耐熱性を要求される構造部材へセラミック材料を
適用することが検討されている。たとえば、ガスタービ
ンやターボチャージ中−においては、作動温度を高めて
熱効率を向上させるために、セラミックタービンロータ
を用いることが研究されている。セラミックタービンロ
ータは、軸部と軸部の外周に連続する翼部からなる。軸
部には、捩じりや、曲げに対する強度が要求され、翼部
には、靭性が要求される。そして、この要求に応えるた
め、靭性が要求される翼部をセラミック繊維等の強化材
で複合化することが検討されている(たとえば、特開昭
60−79102号)。
In recent years, consideration has been given to applying ceramic materials to structural members that require heat resistance. For example, in gas turbines and turbocharging systems, the use of ceramic turbine rotors has been studied in order to increase operating temperature and improve thermal efficiency. A ceramic turbine rotor consists of a shaft portion and a blade portion continuous to the outer periphery of the shaft portion. The shaft portion is required to have strength against torsion and bending, and the wing portion is required to have toughness. In order to meet this demand, it is being considered to composite the wing portion, which requires toughness, with a reinforcing material such as ceramic fiber (for example, Japanese Patent Laid-Open No. 79102/1982).

どれは、エツジ部が形成され、また、異物の衝突により
脆性破壊の生じ易い翼部の特にインデユース部を、セラ
ミック繊維等の強化材で複合化するものである。複合化
に当たっては、セラミック繊維を予めインデユース部に
相当する成形型に配置しておき、窒化珪素、炭化珪素等
のセラミック材料を成形型内へ射出成形を行う、成形後
、脱脂、焼結が行われる。
In each of these, an edge portion is formed and the wing portion, especially the inner use portion, which is susceptible to brittle fracture due to collision with foreign objects, is composited with a reinforcing material such as ceramic fiber. When creating a composite, ceramic fibers are placed in advance in a mold corresponding to the indwelling part, and a ceramic material such as silicon nitride or silicon carbide is injected into the mold. After molding, degreasing and sintering are performed. be exposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の部分的に強化材で複合化されたセラミック部材は
、次のような問題があった。
Conventional ceramic members partially composited with reinforcing materials have the following problems.

すなわち、上述の製造法によれば、形状の複雑なインデ
ユース部に予め強化材である繊維成形体を配置した状態
でセラミック材料の射出成形を行うので、成形体へのセ
ラミック材料の充填が十分に行われない。すると、イン
デユース部の靭性向上が満足にいかない。
That is, according to the above-mentioned manufacturing method, injection molding of the ceramic material is performed with the fiber molded body as a reinforcing material placed in advance in the intricately shaped interior use part, so that the molded body is sufficiently filled with the ceramic material. Not done. In this case, the improvement in toughness of the internally used portion is not satisfactory.

これに対して、射出成形時の成形圧力を高めて、繊維成
形体へのセラミック材料の充填度を高めることが考えら
れるが、成形型に十分な強度を持たせる必要があり、装
置が大掛かりになる。また、成形型に強度を持たせたと
しても、通常の射出成形装置における充填圧力では、充
填度の向上にも限度があった。
To deal with this, it is possible to increase the molding pressure during injection molding to increase the degree of filling of the ceramic material into the fiber molded body, but this requires the mold to have sufficient strength and requires large-scale equipment. Become. Further, even if the mold is made strong, there is a limit to the improvement in the degree of filling due to the filling pressure in a normal injection molding device.

したがって、本発明の目的は、部分的に複合強化された
セラミック部位を有するセラミック部材の製造に当たり
、成形装置を大型化することなく、複合化部分における
強化材に対するセラミック材料の充填度を高めることに
ある。
Therefore, an object of the present invention is to increase the degree of filling of the ceramic material into the reinforcing material in the composite part without increasing the size of the forming apparatus in manufacturing a ceramic member having a partially composite reinforced ceramic part. be.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明の複合強化セラミック部材の製造方法は
、複合化されたセラミック成形体を予め成形型に配して
おき、成形を行うことを特徴とする。
Therefore, the method for manufacturing a composite reinforced ceramic member of the present invention is characterized in that a composite ceramic molded body is placed in a mold in advance and molded.

具体的には、本発明の構成は次の通りである。Specifically, the configuration of the present invention is as follows.

なお、参考までに第1図における符号を付しである。Note that the reference numbers in FIG. 1 are given for reference.

本発明は、部分的に複合強化されたセラミック部位(3
0a)を有するセラミック部材(30)の製造方法であ
る。
The present invention provides a partially composite reinforced ceramic section (3
0a) is a method for manufacturing a ceramic member (30).

この製造方法は、セラミック部材と同じ母材からなる複
合強化セラミック成形体(20)を成形する工程と、こ
の成形体(20)を、成形型(22)に配置して、母材
となるセラミック材料(26)を成形型(22)内に充
填する工程と、必要に応じて脱脂、乾燥を行った後、焼
結を行う工程とからなる。
This manufacturing method includes the steps of molding a composite reinforced ceramic molded body (20) made of the same base material as the ceramic member, and placing this molded body (20) in a mold (22) to form a composite reinforced ceramic molded body (20) that is made of the same base material as the ceramic member. It consists of a process of filling the material (26) into the mold (22), and a process of degreasing and drying as required, followed by sintering.

〔作用〕[Effect]

上述の本発明の複合強化セラミック部材(30)の製造
方法によれば、複合化部分のみを予め成形しておくもの
である。複合化部分のみの成形は、強化材成形体(20
)でキャビティが充填された成形型に射出成形、スリッ
プキャスティング等によりセラミック材料(26)を充
填することにより行うことができる。また、予め、強化
材成形体(20)を低密度で、かつ、大きめに成形して
おき、セラミック材料を充填した後、複合強化成形体に
高圧力を加えることにより、セラミック材料の充填密度
を高めるようにしてもよい。
According to the method for manufacturing the composite reinforced ceramic member (30) of the present invention described above, only the composite portion is formed in advance. For molding only the composite part, a reinforcing material molded body (20
) can be carried out by filling a mold with a cavity filled with the ceramic material (26) by injection molding, slip casting, etc. In addition, the reinforcing material molded body (20) is formed in advance to have a low density and a large size, and after being filled with the ceramic material, high pressure is applied to the composite reinforced molded body to increase the filling density of the ceramic material. It may be increased.

このように、高密度で充填された成形体を成形型に配し
た状態で複合化部分以外のセラミック材料の成形が行わ
れる。
In this way, the ceramic material other than the composite portion is molded with the molded body filled with high density placed in the mold.

〔実施例〕     − (第1実施例) 次に、第1図に基づき、本発明にかかる繊維強化セラミ
ック部材の製造方法の第1実施例を説明する。
[Example] - (First Example) Next, a first example of the method for manufacturing a fiber-reinforced ceramic member according to the present invention will be described based on FIG.

本第1実施例は、インデユース部を複合強化したセラミ
ックタービンロータへの適用例である。
The first embodiment is an example of application to a ceramic turbine rotor in which the internally used portion is reinforced in a composite manner.

第1図(a)は、タービンのインデユース部に相当する
繊維成形体を配置した射出成形型の模式断面図、第1図
(b)・は、繊維強化されたセラミック成形体の断面図
、第1図(C)は、タービンのインデユース部に相当す
る繊維強化成形体を配置したタービンの射出成形型の模
式断面図、そして、第1図(d)は、成形された繊維強
化部位を含むタービンの断面図である。
Figure 1(a) is a schematic cross-sectional view of an injection mold in which a fiber molded body corresponding to the internal use part of a turbine is arranged, and Figure 1(b) is a cross-sectional view of a fiber-reinforced ceramic molded body. Figure 1 (C) is a schematic cross-sectional view of a turbine injection mold in which a fiber-reinforced molded body corresponding to the internal use part of the turbine is arranged, and Figure 1 (d) is a schematic cross-sectional view of the turbine injection mold including the molded fiber-reinforced part. FIG.

まず、第1図に示すように、射出成形型lO内のキャビ
ティ12へ、別に成形したタービンのインデユース部に
相当する強化繊維の成形体14を配置する。この状態に
おいて、型lOのキャビティ12へ通じる射出成形孔1
6からセラミック材料18を充填する。
First, as shown in FIG. 1, a separately molded reinforcing fiber molded body 14 corresponding to the internal use part of the turbine is placed in the cavity 12 in the injection mold lO. In this state, the injection molding hole 1 leading to the cavity 12 of the mold lO
6 to fill with ceramic material 18.

成形体14は、カーボン繊維で編んだ綱目状のシートを
切断したものを積層して用いた。カーボン繊維の径は、
7μmで、平織りの3層とした。
The molded body 14 was used by laminating cut mesh-like sheets knitted with carbon fibers. The diameter of carbon fiber is
It was made into three layers of plain weave with a thickness of 7 μm.

成形体14の体積率は、30%であった。The volume fraction of the molded body 14 was 30%.

セラミック材料18は、窒化珪素(92れ%)、スピネ
ル(4wt%) 、イツトリア(4wt%)、オよびこ
れらセラミックスの重量に対して樹脂バインダ(20れ
%)の混合物を用いた。
As the ceramic material 18, a mixture of silicon nitride (92%), spinel (4wt%), yttoria (4wt%), and a resin binder (20%) based on the weight of these ceramics was used.

樹脂バインダは、ポリエチレン樹脂70wt%、パラフ
ィン・ワックス25れ%、ステアリン酸5wt%からな
るものを用いた。
The resin binder used was composed of 70 wt% polyethylene resin, 25% paraffin wax, and 5 wt% stearic acid.

射出時の成形圧力は、500kg/−であった。The molding pressure during injection was 500 kg/-.

このようにして得た成形体20を、第1図(b)に示す
。この成形体20を、第1図(C)に示す射出成形型2
2においてキャビティ24のインデユース部24aに配
置した。そして、セラミック材料18と同一組成のセラ
ミック材料26を射出成形孔28から成形型22のキャ
ビティ24内へ充填した。射出時の成形圧力は、800
kg/dであった。
The molded body 20 thus obtained is shown in FIG. 1(b). This molded body 20 is placed in an injection mold 2 shown in FIG. 1(C).
2, it was placed in the internal use part 24a of the cavity 24. Then, a ceramic material 26 having the same composition as the ceramic material 18 was filled into the cavity 24 of the mold 22 through the injection molding hole 28 . The molding pressure during injection was 800
kg/d.

この結果、セラミックタービン成形体が得られた。この
成形体は、脱脂後に窒素雰囲気中で1750℃にて焼結
され、セラミックタービンロータ30が得られた。
As a result, a ceramic turbine molded body was obtained. This molded body was degreased and then sintered at 1750° C. in a nitrogen atmosphere to obtain a ceramic turbine rotor 30.

このセラミックタービンロータ30は、インデユース部
30aがカーボン繊維シートと窒化珪素を主体とするセ
ラミック材料との複合化部分である。軸部分32は、窒
化珪素を主体とするセラミック材料だけが存在する0本
実施例によるセラミックタービンロータ30は、優れた
靭性を有するインデユース部が得られた。
In this ceramic turbine rotor 30, the internal use part 30a is a composite part of a carbon fiber sheet and a ceramic material mainly composed of silicon nitride. The shaft portion 32 is made of only a ceramic material mainly composed of silicon nitride.The ceramic turbine rotor 30 according to this embodiment has an internally used portion having excellent toughness.

(第2実施例) この実施例は、第1実施例と同じくセラミックタービン
ロータへの適用例である。第1実施例における強化繊維
成形体14のカーボンシートに代えて、5i−Cウィス
カを用いた点が異なる。また、複合化部分を配置してセ
ラミック材料を充填するに当たって、射出成形ではなく
、スリップキャスティングを用いた点が異なる。以下、
異なる点のみ説明する。
(Second Example) This example is an example of application to a ceramic turbine rotor, like the first example. The difference is that 5i-C whiskers are used instead of the carbon sheet of the reinforcing fiber molded body 14 in the first embodiment. Another difference is that slip casting was used instead of injection molding to arrange the composite part and fill it with the ceramic material. below,
Only the different points will be explained.

強化繊維成形体14を構成するStCウィスカは、平均
径が0.5μm、平均長さが10μmのものを用いた。
The StC whiskers constituting the reinforcing fiber molded body 14 had an average diameter of 0.5 μm and an average length of 10 μm.

成形体の体積率は、20%であうた。The volume fraction of the molded body was 20%.

スリップキャスティングは、次の条件で行った。Slip casting was performed under the following conditions.

窒化珪素粉末と、所定の膠着剤とをエタノール溶媒に分
散し混合してスリップ(泥漿)を作製した。
A slip (sludge) was prepared by dispersing silicon nitride powder and a predetermined adhesive in an ethanol solvent and mixing them.

このスリップを、石膏型内に強化繊維成形体14を配置
した状態で充填した。充填後、スリップ中の溶媒骨が石
膏型に吸収され、セラミック材が石膏型のキャビティ内
に成形された。
This slip was filled in a plaster mold with the reinforcing fiber molded body 14 placed therein. After filling, the solvent bone in the slip was absorbed into the plaster mold, and the ceramic material was molded into the cavity of the plaster mold.

本実施例によるセラミックタービンロータ30も、優れ
た靭性を有するインデユース部が得られた。
The ceramic turbine rotor 30 according to this example also had an internally used portion with excellent toughness.

(第3実施例) 次に、第2図に基づき、本発明にかかる複合強化セラミ
ック部材の製造方法の第3実施例を説明する。
(Third Example) Next, a third example of the method for manufacturing a composite reinforced ceramic member according to the present invention will be described based on FIG.

本第3実施例は、円筒部に強化材を配したディーゼルチ
ャンバへの適用例である。
The third embodiment is an example of application to a diesel chamber in which a reinforcing material is arranged in the cylindrical portion.

第2図(a)は、薄肉円筒形状の繊維成形体の斜視図、
第2図(b)は、繊維強化成形体の斜視図、そして、第
2図(c)は、第2図(b)におけるnc線矢視断面図
である。
FIG. 2(a) is a perspective view of a thin cylindrical fiber molded body;
FIG. 2(b) is a perspective view of the fiber-reinforced molded body, and FIG. 2(c) is a sectional view taken along the line NC in FIG. 2(b).

強化材は、円筒形状の二次元配向をしたカーボン繊維か
らなる成形体を用いた。この強化繊維成形体に射出成形
によってセラミック材料を充填して第2図(a)に示す
ような成形体40を作製した。カーボン繊維の平均径は
、0.5μmであった。
As the reinforcing material, a cylindrical molded body made of two-dimensionally oriented carbon fibers was used. This reinforcing fiber molded body was filled with a ceramic material by injection molding to produce a molded body 40 as shown in FIG. 2(a). The average diameter of the carbon fibers was 0.5 μm.

母材としては、窒化珪素粉末をし射出成形した。Silicon nitride powder was used as the base material and injection molded.

この成形体40を、射出成形型において、キャビティ側
に配して、窒化珪素粉末を主体としたセラミックと樹脂
との混線物を用い、射出成形して、第2図(b)に示す
外観の繊維強化成形体42が得られた。この成形体42
は、第2図(C)に示すように、外周部付近が複合強化
されている。
This molded body 40 is placed on the cavity side of an injection mold and injection molded using a mixture of ceramic and resin mainly composed of silicon nitride powder, resulting in the appearance shown in FIG. 2(b). A fiber-reinforced molded body 42 was obtained. This molded body 42
As shown in FIG. 2(C), the vicinity of the outer periphery is compositely reinforced.

本実施例によるディーゼルチャンバは、外周が複合強化
部分で拘束され、熱膨張時の引張応力の緩和に効果があ
う、た。
In the diesel chamber according to this embodiment, the outer periphery is restrained by a composite reinforced portion, which is effective in alleviating tensile stress during thermal expansion.

(第4実施例) 次に、第3図および第4図に基づき、本発明にかかる複
合強化セラミック部材の製造方法の第4実施例を説明す
る。
(Fourth Example) Next, a fourth example of the method for manufacturing a composite reinforced ceramic member according to the present invention will be described based on FIGS. 3 and 4.

本第4実施例は、パッド摺動面部分に強化材を配したロ
ッカーアームへの適用例である。
The fourth embodiment is an example of application to a rocker arm in which a reinforcing material is provided on the pad sliding surface portion.

第3図は、強化材を成形する金型の断面図、そして、第
4図は、ノ々ツド部を複合強化したロッカーアームの正
面図である。
FIG. 3 is a cross-sectional view of a mold for molding the reinforcing material, and FIG. 4 is a front view of a rocker arm whose notch portions are compositely reinforced.

第3図に示すように、強化材としてのSiC粉末とアル
ミナ粉末を等量混合した粉末50を金型52の底部に充
填し、その上にアルミナ粉末を充填して、ポンチ54で
押圧して金型成形することにより、パッド部に相当する
成形体を得た。第3図において、黒丸で示すのがSiC
粉末であり、白丸で示すのがアルミナ粉末である。
As shown in FIG. 3, a powder 50 made by mixing equal amounts of SiC powder and alumina powder as a reinforcing material is filled into the bottom of a mold 52, and alumina powder is filled on top of the powder 50 and pressed with a punch 54. A molded body corresponding to the pad portion was obtained by molding. In Figure 3, the black circle indicates SiC.
It is a powder, and the white circle indicates alumina powder.

この成形体を、ロッカーアーム成形用金型内のキャビテ
ィに配して、本体部分に同じアルミナ粉末を充填してパ
ッドと一体成形をすることにより、第4図に示すような
ロッカーアーム56を得た。
This molded body is placed in a cavity in a mold for forming a rocker arm, and the body portion is filled with the same alumina powder and integrally molded with the pad, thereby obtaining a rocker arm 56 as shown in FIG. Ta.

符号58がパッドの部分である。第4図において、黒丸
で示すのがSiC粒子であり、破線で示すのが、アルミ
ナ焼結体である。
Reference numeral 58 indicates a pad portion. In FIG. 4, SiC particles are shown by black circles, and alumina sintered bodies are shown by broken lines.

本実施例によるパッドを用いたロッカーアームは、極め
て高い耐摩耗性が得られた。
The rocker arm using the pad according to this example had extremely high wear resistance.

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではなく、特許請求
の範囲に記載の範囲内で種々の実施態様が包含されるも
のである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

〔発明の効果〕〔Effect of the invention〕

以上より、本発明の複合強化セラミック部材の製造方法
によれば、複合化された成形体を予め成形型に配してお
き成形を行うので、成形時に高圧を付加する必要がなく
、成形装置を大型化することも不要である。また、複合
化部分のみを予め作製しておくので、セラミック材料の
充填度を高めるのが容易である。
As described above, according to the method for manufacturing a composite reinforced ceramic member of the present invention, since the composite molded body is placed in the mold in advance and molded, there is no need to apply high pressure during molding, and the molding equipment is not required. It is also unnecessary to increase the size. Furthermore, since only the composite portion is prepared in advance, it is easy to increase the degree of filling of the ceramic material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる複合強化セラミック部材の製
造方法の第1実施例を説明するための図面であり、 第1図(a)は、タービンのインデユース部に相当する
繊維成形体を配置した射出成形型の模式第1図(b)は
、繊維強化されたセラミック成形体の断面図、 第1図(C)は、タービンのインデユース部に相当する
繊維強化成形体を配置したタービンの射出成形型の模式
断面図、 そして、第1図(d)は、成形された繊維強化部位を含
むタービンの断面図である。 第2図は、本発明にかかる複合強化セラミック部材の製
造方法の第3実施例を説明するための図面であり、 第2図(a)は、薄肉円筒形状の繊維成形体の斜視図、 第2図(b)は、繊維強化成形体の斜視図、そして、第
2図(C)は、第2図(b)におけるnc線矢視断面図
である。 第3図および第4図は、本発明にかかる複合強化セラミ
ック部材の製造方法の第4実施例を説明するための図面
であり、 第3図は、強化材を成形する金型の断面図、そして、第
4図は、パッド部を複合強化したロッカーアームの正面
図である。 20・−−−−−・・・セラミック成形体22・−・−
・成形型 26・・−・・−・セラミック材料 30・−一−−−−−・セラミック部材30a・−・−
・複合強化セラミック部位出願人  トヨタ自動車株式
会社 第1因 (b) 第1E (C) (d)
FIG. 1 is a diagram for explaining a first embodiment of the method for manufacturing a composite reinforced ceramic member according to the present invention, and FIG. Figure 1(b) is a cross-sectional view of the injection molding mold made of fiber-reinforced ceramic molded body, and Figure 1(C) is a schematic diagram of the injection molding die of the turbine in which the fiber-reinforced molded body corresponding to the internal use part of the turbine is arranged. FIG. 1(d) is a schematic cross-sectional view of the mold and a cross-sectional view of the turbine including the molded fiber-reinforced portion. FIG. 2 is a diagram for explaining a third embodiment of the method for manufacturing a composite reinforced ceramic member according to the present invention, and FIG. FIG. 2(b) is a perspective view of the fiber-reinforced molded body, and FIG. 2(C) is a sectional view taken along the line NC in FIG. 2(b). 3 and 4 are drawings for explaining a fourth embodiment of the method for manufacturing a composite reinforced ceramic member according to the present invention, and FIG. 3 is a cross-sectional view of a mold for molding a reinforcing material; FIG. 4 is a front view of a rocker arm in which the pad portion is compositely reinforced. 20・------ Ceramic molded body 22・−・−
-Molding mold 26...Ceramic material 30--1-Ceramic member 30a--
・Composite reinforced ceramic part Applicant Toyota Motor Corporation Cause 1 (b) 1E (C) (d)

Claims (1)

【特許請求の範囲】 部分的に複合強化されたセラミック部位を有するセラミ
ック部材の製造方法であって、 該セラミック部材と同じ母材からなる複合強化セラミッ
ク成形体を成形する工程と、 該成形体を、成形型に配置して、母材となるセラミック
材料を成形型内に充填する工程と、必要に応じて脱脂、
乾燥を行った後、焼結を行う工程とからなる複合強化セ
ラミック部材の製造方法。
[Claims] A method for producing a ceramic member having a partially composite-reinforced ceramic portion, comprising the steps of: molding a composite-reinforced ceramic molded body made of the same base material as the ceramic member; , placing it in a mold and filling the mold with the ceramic material that will serve as the base material, and degreasing and degreasing as necessary.
A method for manufacturing a composite reinforced ceramic member comprising the steps of drying and then sintering.
JP25896087A 1987-10-14 1987-10-14 Production of composite reinforced ceramic member Pending JPH01103964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25896087A JPH01103964A (en) 1987-10-14 1987-10-14 Production of composite reinforced ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25896087A JPH01103964A (en) 1987-10-14 1987-10-14 Production of composite reinforced ceramic member

Publications (1)

Publication Number Publication Date
JPH01103964A true JPH01103964A (en) 1989-04-21

Family

ID=17327414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25896087A Pending JPH01103964A (en) 1987-10-14 1987-10-14 Production of composite reinforced ceramic member

Country Status (1)

Country Link
JP (1) JPH01103964A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077091B2 (en) 2004-09-24 2006-07-18 3M Innovative Properties Company Polymer matrix composite pushrod
JP2010241128A (en) * 2009-03-19 2010-10-28 Ngk Insulators Ltd Method of producing powder compact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077091B2 (en) 2004-09-24 2006-07-18 3M Innovative Properties Company Polymer matrix composite pushrod
JP2010241128A (en) * 2009-03-19 2010-10-28 Ngk Insulators Ltd Method of producing powder compact

Similar Documents

Publication Publication Date Title
CA2009595C (en) Consolidated member and method and preform for making
US6280550B1 (en) Fabrication of composite articles having an infiltrated matrix
US7550107B2 (en) Method of forming CMC component
EP0052913B1 (en) Ceramic rotor
JP4106086B2 (en) Ceramic matrix fiber composite material
US20220032498A1 (en) Method for producing a counter-form and method for manufacturing a part having a complex shape using such a counter-form
EP3733404B1 (en) Method of manufacturing internal cooling circuits for cmc's
EP0545685B1 (en) Method of manufacturing ceramics having fine holes
KR900003319B1 (en) Method for preparing ceramic-rotator
JPS6240522B2 (en)
JPH0446205B2 (en)
US3876742A (en) Method for manufacturing bladed members from powder material
JPH01103964A (en) Production of composite reinforced ceramic member
EP0504441A1 (en) High strength composite ceramic structure and process for producing the same
US4071372A (en) Silicon nitride NGV's and turbine blades
JPH0822782B2 (en) Method for producing fiber-reinforced ceramics
RU2112762C1 (en) Method of manufacturing layered ceramic products from composite material
JP4666791B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JPS6143163B2 (en)
JP3871071B2 (en) Fabrication method of fiber reinforced metal products
JP2614061B2 (en) Nitride composite ceramics
JPS58145667A (en) Composite structure for mechanical parts
JPH0229632B2 (en)
JP2997900B2 (en) Ceramic exhaust manifold and method of manufacturing the same