JPH01103910A - Method for granulating carbonaceous powder - Google Patents

Method for granulating carbonaceous powder

Info

Publication number
JPH01103910A
JPH01103910A JP62259188A JP25918887A JPH01103910A JP H01103910 A JPH01103910 A JP H01103910A JP 62259188 A JP62259188 A JP 62259188A JP 25918887 A JP25918887 A JP 25918887A JP H01103910 A JPH01103910 A JP H01103910A
Authority
JP
Japan
Prior art keywords
carbon
powder
pitch
based powder
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62259188A
Other languages
Japanese (ja)
Other versions
JP2566595B2 (en
Inventor
Kunimasa Takahashi
高橋 邦昌
Takashi Kameda
隆 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP62259188A priority Critical patent/JP2566595B2/en
Priority to EP88115188A priority patent/EP0308824B1/en
Priority to DE8888115188T priority patent/DE3876913T2/en
Priority to US07/246,272 priority patent/US4985184A/en
Publication of JPH01103910A publication Critical patent/JPH01103910A/en
Application granted granted Critical
Publication of JP2566595B2 publication Critical patent/JP2566595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce granulated carbonaceous powder capable of providing a compact having a specific resistance value comparable to graphite and excellent flexual strength by spray-drying a slurry wherein carbonaceous powder contg. self-sintering carbonaceous powder and a specified binder and a specified wetting agent are dispersed into water. CONSTITUTION:A slurry is obtained by dispersing 100pts.wt. carbonaceous powder contg. self-sintering carbonaceous powder (e.g., coal tar pitch) and at least one kind of powder (e.g., SiC) selected from graphitic carbon, carbonaceous carbon, metals, and inorg. compds., 0.01-5pts.wt. binder (e.g., methylcellulose whose 2% aq. soln. has 25-2,000cps at 25 deg.C) consisting of an org. compd. not forming a foamed body when carbonized at 1,000 deg.C and having >=10pts.wt. residual carbon yield, and 0.01-3pts.wt. nonionic surfactant (e.g., alkylphenol- ethylene oxide adduct) having >=25 deg.C clouding point as a wetting agent into water. The slurry is spray-dried while controlling the inlet temp. to about 180 deg.C and the outlet temp. to about 100 deg.C, and carbonaceous powder having 50-500mum mean particle diameter is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素系粉体の造粒方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for granulating carbon-based powder.

詳しくは、自己焼結性炭素系粉体及び所望により黒鉛質
炭素、炭素質炭素、金属及び無機化合物からなる群から
選ばれた少なくとも1種類の粉体を含む炭素系粉体を結
合剤及び湿潤剤の存在下に水に分散せしめたスラリーを
過熱水蒸気を含むこともある加熱空気中に噴霧乾燥して
造粒する方法に関するものである。
Specifically, a carbon-based powder containing a self-sintering carbon-based powder and optionally at least one type of powder selected from the group consisting of graphitic carbon, carbonaceous carbon, metals, and inorganic compounds is mixed with a binder and moistened with a binder. The present invention relates to a method of granulating a slurry dispersed in water in the presence of an agent by spray drying it in heated air that may contain superheated steam.

更に詳しくは、本発明は、゛コールタールピッチ、石油
ピッチ、ナフサ分解タールピッチ、メソフェーズ含有ピ
ッチ、及び各種改質ピッチからなる群より選ばれた少な
くとも1種類のピッチ粉体又は/及び該ピッチ群から選
ばれた少なくとも1種類のピッチで実質的にその表面を
被覆せしめた黒鉛質炭素、炭素質炭素、金属、無機化合
物からなる群より選ばれた少なくも1種類の複合粉体と
して定義される自己焼結性炭素系粉体及び、所望により
添加される黒鉛質炭素、炭素質炭素、金属及び無機化合
物からなる群から選ばれた少なくとも1種類の粉体から
なる炭素系粉体を結合剤及び湿潤剤の存在下において水
分散スラリーとしたる後過熱水蒸気を含むこともある加
熱空気中で噴霧乾燥して造粒する方法に関するものであ
る。本発明によれば造粒粉体を金型に注型してプレス成
型して複雑な形状をした生成形体を得、更に炭素化及び
/又は黒鉛化して炭素精密成形体を得る場合、注型間隙
が狭かりたシ、注型経路が複雑であったシする各種金型
へ過不足なく再現性良く自動的に充填が可能でありかつ
抑圧に対しては均一に崩壊して充填密度の偏在をおこさ
々い特性をもつ造粒粉体が得られる。
More specifically, the present invention provides at least one pitch powder selected from the group consisting of coal tar pitch, petroleum pitch, naphtha cracked tar pitch, mesophase-containing pitch, and various modified pitches and/or the pitch group. Defined as a composite powder of at least one type selected from the group consisting of graphitic carbon, carbonaceous carbon, metal, and inorganic compound whose surface is substantially coated with at least one type of pitch selected from A carbon-based powder consisting of a self-sintering carbon-based powder and at least one type of powder selected from the group consisting of graphitic carbon, carbonaceous carbon, metals, and inorganic compounds added as desired is combined with a binder and a carbon-based powder. The present invention relates to a method of forming a water-dispersed slurry in the presence of a wetting agent, followed by spray drying and granulation in heated air that may contain superheated steam. According to the present invention, when a granulated powder is poured into a mold and press-molded to obtain a product having a complicated shape, and then carbonized and/or graphitized to obtain a carbon precision molded product, the cast It is possible to automatically fill various molds with narrow gaps and complicated pouring paths with good reproducibility without excess or deficiency, and it collapses uniformly against oppression, resulting in uneven filling density. A granulated powder with excellent properties can be obtained.

本発明の造粒粉体はプレス機を用いた金型による小型精
密成形体分野で大葉連続成形を可能とするという製法転
換をもたらすばかりでなく、静水圧プレス(CIP )
高温静水圧プレス(HIP )等で作られる各種ブロッ
ク状成形体の生産においても粉体流れ性の良好さが成形
体の緻密度を高めるばかりでなく、造粒助剤(結合剤及
び湿潤剤)が焼成体の強度劣化を引き起さないという本
発明の後述する特徴によって良質な炭素系ブロックを与
えることができる。
The granulated powder of the present invention not only brings about a manufacturing method change in that it enables large-leaf continuous molding in the field of small precision molded products using a mold using a press machine, but also enables hydrostatic press (CIP).
In the production of various block-shaped compacts made using high-temperature isostatic pressing (HIP), etc., good powder flowability not only increases the density of the compact, but also granulation aids (binder and wetting agent). Due to the feature of the present invention, which will be described later, that carbonaceous materials do not cause deterioration in the strength of the fired body, it is possible to provide a high-quality carbon-based block.

本発明の造粒粉は小型且つ精密な寸法精度を持つ炭素系
成形体を従来行われている炭素質及び/又は黒鉛質ブロ
ック成形体からの切削加工によらず、金型を用いた冷間
グ、レス成形及びこれに続く炭素化および/又は黒鉛化
によって製造する方法に適した素材である。
The granulated powder of the present invention can be produced by cold processing using a mold, instead of the conventional cutting process from a carbonaceous and/or graphite block molded body, which is compact and has precise dimensional accuracy. This material is suitable for production by molding, molding, and subsequent carbonization and/or graphitization.

〔従来の技術〕[Conventional technology]

従来からの切削加工による成形体製造及びその問題点に
ついて述べる。
This article describes the production of molded bodies using conventional cutting processes and its problems.

炭素精密成形体の中でも黒鉛ヒーターや黒鉛坩堝など大
型製品は、大型ブロックをくシぬくことで、非利用部分
を小型ブロックとしてより小さな成形体材料として利用
できるメリットがある。ま゛た、その製品自体が半導体
結晶成長装置の心臓部を占める為に製品価格よりも機能
が優先する為に他の材料をして代替できない材料に位置
付けられている。一方、産業用回転機器の摺動部材(例
えハオイルフリーコンプレッサーシリンダ一部品)や原
子炉材の如く損傷が安全上、経済上の重大な損失に直結
する分野では長年に亘る経験で確立された信頼性におい
て高密度黒鉛ブロックが主材料として使われている。
Among carbon precision molded products, large products such as graphite heaters and graphite crucibles have the advantage that by cutting out large blocks, the unused parts can be used as small blocks and used as material for smaller molded products. Furthermore, since the product itself occupies the heart of a semiconductor crystal growth device, functionality is given priority over product price, and therefore it is positioned as a material that cannot be replaced by other materials. On the other hand, in fields such as sliding parts of industrial rotating equipment (for example, parts of oil-free compressor cylinders) and nuclear reactor materials, where damage can directly lead to serious safety and economic losses, we have established a system based on many years of experience. For reliability, high-density graphite block is used as the main material.

炭素質および黒鉛質炭素材は耐熱性、熱伝導性、電気伝
導性、耐薬品性、摺動性、強度等の特性をバランスよく
具備した材料であることはよく知られている。にもかか
わらず、例えばプラスチックス製品の如く各種産業分野
で各種形態で大量に利用されるに到らない理由の一つと
して、成形体価格が本質的に高いものであるという炭素
製品供給側の事情がある。
It is well known that carbonaceous and graphitic carbon materials are materials with well-balanced properties such as heat resistance, thermal conductivity, electrical conductivity, chemical resistance, sliding properties, and strength. Despite this, one of the reasons why carbon products, such as plastic products, are not used in large quantities in various forms in various industrial fields is that the price of molded products is inherently high. There are circumstances.

例えば黒鉛質炭素ブロックを考えてみると、原料コーク
スの粉砕から始まって、ピッチ混練、粉砕、静水圧プレ
ス、炭素化(再含浸、炭素化)黒鉛化(脱金属)という
長い工程を経て作り上げる為に大量生産工程においても
2000−5000円/に9という高価な材料とならざ
るを得ない。()は高級品用工程。
For example, if we consider a graphitic carbon block, it is created through a long process that begins with pulverization of raw material coke, pitch kneading, pulverization, isostatic pressing, carbonization (re-impregnation, carbonization) and graphitization (demetallization). Even in a mass production process, the material must be expensive at 2,000 to 5,000 yen/9. () is a process for luxury goods.

更に炭素ブロックから第1図に例示したような底と縦、
横の十字型の間仕切りを有する中空箱型の薄内品箱を切
り出そうとすると、高価な材料の半分は切#)扮となっ
て価値を失い、かつザクリ加工の如き高級な加工技術と
各種特殊工具を必要とする為に自動旋盤による大量無人
生産もできないなどの加工上の制約が加わる為に1個当
りの価格は数百円という水準にならざるを得ない。従っ
て、高熱かつ劣悪な環境下で作動するコンピュータ部品
の電波シールド箱や小型ホットプレス品の1プレス多数
個生産用の使い捨て治具、スパッター用小型ルツ?など
大量消費材であるが機能のみでなく製品価格も厳しく要
求される分野では評価の対象にならなかったのである。
Furthermore, from the carbon block, the bottom and length as illustrated in Figure 1,
If you try to cut out a hollow box-shaped thin inner box with horizontal cross-shaped partitions, half of the expensive materials will be cut out and lose value, and you will not be able to use high-class processing techniques such as corrugation. Since various special tools are required, there are processing constraints such as mass unmanned production using an automatic lathe being impossible, so the price per piece has to be at the level of several hundred yen. Therefore, there are radio wave shielding boxes for computer parts that operate under high heat and harsh environments, disposable jigs for producing large numbers of small hot-pressed products in one press, and small rutz for sputtering. Although these products are mass-consumed products, they were not evaluated in fields where not only functionality but also product price is strictly required.

また、マンガン乾電池の正極には炭素棒が用いられてい
るが、通常は土状黒鉛や鱗片状黒鉛及びコークスなどを
タール、ピッチと均一混合した後加熱押出し成型後90
0−1000℃で炭化し、焼成中に生じた気孔部にパラ
フィンなどを含浸して防水処理を施して使用に供されて
いる。この方法は大量生産性で優れているが、プロセス
管理の繁雑さ、防水処理工程の必要性などの問題点が指
摘されていた。更には近年乾電池に要求される高負荷出
力に耐える為には、合剤の改良はもとよシ炭素電極の合
剤との接触面積の拡大や電気抵抗値の低減なども改良目
標となっていた。特開昭52−24210号公報では鱗
片状黒鉛にフェノールやエポキシ樹脂を結合材として混
合した上で、黒鉛の基底面が長手方向に配向するように
予備成型し更に長さ方向に加圧圧縮して再成型した後加
熱などの方法で結合剤を固化溶着させることを特徴とす
る乾電池用炭素棒の成形方法を提案している。しかしな
がら、この方法によって気孔の閉塞は可能となるが、長
年にわたる合剤との接触による樹脂部分の劣化問題や複
雑な成形手法による生産効率−の低下などの問題は解決
できないものと思われる。
In addition, carbon rods are used as the positive electrode of manganese dry batteries, but usually earthy graphite, scaly graphite, coke, etc. are uniformly mixed with tar and pitch, then heated and extruded for 90 minutes.
It is carbonized at 0 to 1000°C, and the pores created during firing are impregnated with paraffin or the like to make it waterproof before use. Although this method is excellent in terms of mass productivity, problems such as complicated process management and the necessity of a waterproofing process have been pointed out. Furthermore, in order to withstand the high load output required of dry batteries in recent years, improvements have been made not only to improve the mixture, but also to expand the contact area of the carbon electrode with the mixture and reduce the electrical resistance value. Ta. In JP-A No. 52-24210, flaky graphite is mixed with phenol or epoxy resin as a binder, then preformed so that the basal plane of graphite is oriented in the longitudinal direction, and then compressed under pressure in the longitudinal direction. We have proposed a method for forming carbon rods for dry batteries, which is characterized by solidifying and welding a binder by heating or other methods after re-molding. However, although this method makes it possible to close the pores, it does not seem to solve problems such as deterioration of the resin part due to contact with the mixture over many years and a decrease in production efficiency due to complicated molding techniques.

現実には現在も従来手法での炭素棒が何億本も消費され
ている。
In reality, hundreds of millions of carbon rods are still being consumed using conventional methods.

即ち、従来のブロック加工や炭素化省略方法においては
、廉価かつ大量の複雑形状品は作り出し得ていないこと
がわかる。
That is, it can be seen that conventional block processing and carbonization omitting methods cannot produce products with complex shapes at low cost and in large quantities.

近年これらの問題を解決しようとする試みが開示されて
いる。
Attempts to solve these problems have been disclosed in recent years.

バネやがルト、ナツトなどの成形体製造技術として特開
昭60−112609号公報を例示することができる。
JP-A-60-112609 can be cited as an example of a technology for manufacturing molded objects such as springs, bolts, and nuts.

該公報では炭素化もしくは黒鉛化したメソフェーズを必
須成分とした炭素微粉末に熱硬化性樹脂のモノマー、ブ
レポリマー又は低重合体を粘結剤として加え、分散、混
合、賦形後粘結剤を重合硬化させ、不活性雰囲気中で焼
成し、硬質炭素成形品を製造する方法が開示されている
。該公報の方法で得られる成形品は表面が滑らかで強度
、硬度ともに優れたものであるが、開示された製造工程
をみると、メソフェーズピッチの熱処理→マトリックス
からの分離→1000から2700℃での焼成→樹脂と
の複合(分散、混合、加熱ロールでの熱縮合)→ペレッ
ト化→賦形→不融化→炭素化という2度にわたる炭素化
工程を経る必要性が示されている。
In this publication, a thermosetting resin monomer, bleed polymer, or low polymer is added as a binder to fine carbon powder containing carbonized or graphitized mesophase as an essential component, and the binder is applied after dispersion, mixing, and shaping. A method for producing a hard carbon molded article by polymerization hardening and firing in an inert atmosphere is disclosed. The molded product obtained by the method disclosed in the publication has a smooth surface and excellent strength and hardness, but the disclosed manufacturing process shows that the mesophase pitch is heat treated → separated from the matrix → heated at 1000 to 2700°C. It has been shown that it is necessary to go through two carbonization steps: firing → composite with resin (dispersion, mixing, thermal condensation with heated rolls) → pelletization → shaping → infusibility → carbonization.

プレス機を用いた炭素成形体製造方法として特開昭62
−113509号公報がある。該公報によれば、黒鉛、
カーピンブラック、コークスなど適量に配合した原料を
ピッチタールで結合して、のち超微粉状(5ミクロン)
に形成した組材をフェノールまたはポリビニールアルコ
ール等で造粒し機械カム駆動圧縮運動によるパンチ式プ
レスにて冷間連続成形を行うものである。従来は機械用
カーピンの成形は困難とされていたが、粉体の造粒時の
揮発分(7−11%)の調整とカム運動の変芯機構によ
り粉体の充填も可能となり、しかも冷間にて面圧1.5
 t/cIn” −5t/c!IL” 、  2〜3秒
の瞬間カム圧縮にて製品寸法に成形を可能とした。
Japanese Unexamined Patent Application Publication No. 1983 (1983) as a method for manufacturing carbon molded bodies using a press machine
There is a publication No.-113509. According to the publication, graphite,
A suitable amount of raw materials such as carpin black and coke are combined with pitch tar and then turned into ultra-fine powder (5 microns).
The assembled material is granulated with phenol or polyvinyl alcohol, etc., and cold continuous molding is performed using a punch press using a mechanical cam-driven compression movement. Conventionally, it was considered difficult to form car pins for machines, but by adjusting the volatile content (7-11%) during powder granulation and the eccentric mechanism of the cam movement, it has become possible to fill the powder with cold. Surface pressure between 1.5
t/cIn"-5t/c!IL", it was possible to mold to the product size with instantaneous cam compression for 2 to 3 seconds.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

冷間プレス機を用いて粉末成形体を得、これを焼結して
複雑形状の製品を大量に得ることは、例えばフェライト
関連の産業で大規模に実施されている。トランス鉄心や
テレビチューナ一部品などで一体成形品がロータリープ
レス機の如き連続成形に適した機械によって製造されて
いる。この方式で成形体を寸法精度よく作るには金型キ
ャビティ部への粉体の充填性が支配因子であり、粉体の
流れ性を確保する為に粉体の造粒が必須項目となってい
ることも公知である。
BACKGROUND ART Obtaining a powder compact using a cold press and sintering it to obtain a large amount of products with complex shapes is carried out on a large scale, for example, in ferrite-related industries. Integrally molded products such as transformer cores and parts of television tuners are manufactured using machines suitable for continuous molding, such as rotary presses. In order to produce compacts with high dimensional accuracy using this method, the ability to fill the mold cavity with powder is the governing factor, and granulation of the powder is essential to ensure the flowability of the powder. It is also known that there are

従って、炭素系粉体を粉末成形に供するにはこれを造粒
することが必要となることは当該技術に知識をもつ者に
とって容易に類推できることである。
Therefore, those skilled in the art can easily infer that it is necessary to granulate carbon-based powder in order to subject it to powder compaction.

しかしながら、炭素系材料特に本発明者らが成形に供し
ようとしている炭素系粉体に関して造粒粉体を得ようと
すると以下の問題の生じることが判明した。
However, it has been found that the following problems occur when attempting to obtain granulated powder from a carbonaceous material, particularly the carbonaceous powder that the present inventors intend to subject to molding.

(1)特開昭62−113509号公報に開示されてい
るフェノール又はポリビニールアルコールヲ結合剤に用
いると、成形体強度が著しく低下すると共に、焼成時に
成形体が発泡する現象が生じることが見出された。
(1) When the phenol or polyvinyl alcohol disclosed in JP-A-62-113509 is used as a binder, it has been found that the strength of the molded product is significantly reduced and the molded product foams during firing. Served.

結合剤単独の粉若しくは成形体を100OCまで4時間
で焼成した実験において炭素化収率が】O重i′係未満
のもの、又は100重量%以上でも発泡した炭素化品を
与える水溶性結合剤は本発明の造粒結合剤として用いる
と全て強度の低下や成形体の発泡の何れか又は両方をも
たらすことを見出した。即ち、本発明者らは造粒粉体を
製造する為に必須な水溶性結合剤の選択に当って残炭収
率が10重41%以上であシ且つそのものの焼成体が発
泡しないことが不可欠であるということを見出した。
A water-soluble binder that gives a carbonized product with a carbonization yield of less than 100% by weight or a foamed carbonized product even if the carbonization yield is less than 100% by weight in an experiment in which a powder or molded product containing the binder alone was fired in 4 hours to 100OC. found that when used as the granulation binder of the present invention, all of them result in either or both of a decrease in strength and foaming of the molded product. That is, in selecting a water-soluble binder essential for producing granulated powder, the present inventors made sure that the residual carbon yield was 10% by weight or more and that the fired product itself did not foam. I have found that it is essential.

これは、従来フェライトやセラミックスの造粒結合剤で
の常識であった500℃程度で炭素が飛散する化合物を
最良とする概念から離れたものであシ、当業者にとって
は予想外のことであった。
This is a departure from the conventional concept of a compound that scatters carbon at around 500°C, which was common knowledge for granulated binders for ferrite and ceramics, and was unexpected for those skilled in the art. Ta.

(2)一方、本発明で用いる炭素系粉体の必須成分であ
る自己焼結性炭素系粉体はもとより、特開昭62−11
3509号公報で開示されたビじチタール結合素材など
ピッチを含む炭素系材料は表面酸化等の化学処理を施さ
ない限り親油性である。従って、造粒に当っては有機溶
媒に粉体を結合剤とともにスラリー化し、これを不活性
ガス流中に噴霧乾燥造粒する方法が一般に用いられる。
(2) On the other hand, in addition to the self-sintering carbon-based powder which is an essential component of the carbon-based powder used in the present invention, JP-A-62-11
Carbon-based materials containing pitch, such as the biticital binding material disclosed in Publication No. 3509, are lipophilic unless chemically treated such as surface oxidation. Therefore, for granulation, a method is generally used in which the powder is slurried together with a binder in an organic solvent, and the slurry is spray-dried and granulated in an inert gas stream.

しかしながら、この方法では不活性ガスからの有機溶媒
の回収及び有機溶媒の循環利用等造粒工程の繁雑化と造
粒費用の増加をもたらし本願発明が目的とする廉価な成
形体の製造を著しく阻害する因子となることが判明した
However, this method complicates the granulation process due to the recovery of the organic solvent from the inert gas and the recycling of the organic solvent, and increases the granulation cost, which significantly impedes the production of inexpensive molded bodies, which is the objective of the present invention. It was found that this is a contributing factor.

本願発明者らは本願発明に用いる炭素系粉体の主成分で
ある自己焼結性炭素粉体は空気中200℃以下では不融
化が実質上進行しない事実に着目して過熱水蒸気を含む
こともある加熱空気と水スラリーによる噴霧乾燥造粒の
実施による大巾な造粒コスト低減を計るべく鋭意検討を
重ねた。その結果親油性炭素系粉体を水に安定に分散せ
しめる為には湿潤剤として例えば、アルキルフェノール
エチレンオキサイド付加物又はエチレンオキサイドプロ
ピレンオキサイド付加物、オキシエチレンオキシプロピ
レンブロックポリマ−(平均分子量2000〜5ooo
)、アルコールエトキシレート、多価アルコールエステ
ル、ポリエチレングリコールエステル等の非イオン系界
面活性剤が有効であることを見出し本発明を完成するに
至った。
The present inventors focused on the fact that the self-sintering carbon powder, which is the main component of the carbon-based powder used in the present invention, does not substantially become infusible in air below 200°C, and may contain superheated steam. We have conducted extensive studies to significantly reduce granulation costs by implementing spray drying granulation using heated air and water slurry. As a result, in order to stably disperse the lipophilic carbon-based powder in water, wetting agents such as alkylphenol ethylene oxide adducts, ethylene oxide propylene oxide adducts, oxyethylene oxypropylene block polymers (average molecular weight 2000-5000
), alcohol ethoxylates, polyhydric alcohol esters, polyethylene glycol esters, and other nonionic surfactants were found to be effective, leading to the completion of the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

(発明の構成) 即ち、本発明は、 1、 自己焼結性炭素系粉体及び所望により黒鉛質炭素
、炭素質炭素、金属及び無機化合物からなる群から選ば
れた少なくとも1種類の粉体を含む炭素系粉体を結合剤
及び湿潤剤の存在下に水に分散せしめたスラリーを過熱
水蒸気を含むこともある加熱空気中で噴霧乾燥して造粒
する方法において、(1)該結合剤が1000℃炭化時
に発泡体を作らす且つ残炭収率が100重量%以上の有
機化合物であり、その使用量が炭素系粉体100重量部
に対して0.01から5重量部であること、(2)該湿
潤剤が線点が25℃以上1寄看1番11Mの鎖点範囲を
有する非イオン系界面活性剤であシ、その使用量が炭素
系粉体100重量部に対して0.01から3重量部であ
ること、を特徴とする炭素系粉体の造粒方法、 2、 自己焼結性炭素系粉体がコールタールピッチ、石
油ピッチ、ナフサ分解タールピッチ、メソフェーズ含有
ピッチ及び各種改質ピッチから成る群より選ばれた少な
くとも1m!類のピッチ粉体又は/及び該ピッチ群から
選ばれた少なくともls類のピッチで実質的にその表面
を被覆せしめた黒鉛質炭素、炭素質炭素、金属及び無機
化合物から成る群より選ばれた少なくともla類の機台
粉体であり且つ室温プレス成形品を少なくも500℃ま
での不活性ガス雰囲気での炭化処理によって焼結体を与
えるものである特許請求の範囲第1項記載の炭素系粉体
の造粒方法、である。
(Structure of the Invention) That is, the present invention comprises: 1. A self-sintering carbon-based powder and, if desired, at least one type of powder selected from the group consisting of graphitic carbon, carbonaceous carbon, metals, and inorganic compounds. In a method of granulating a slurry in which a carbon-based powder containing carbonaceous powder is dispersed in water in the presence of a binder and a wetting agent, the slurry is spray-dried in heated air that may contain superheated steam, (1) the binder is It is an organic compound that forms a foam when carbonized at 1000°C and has a residual carbon yield of 100% by weight or more, and the amount used is 0.01 to 5 parts by weight per 100 parts by weight of carbon-based powder; (2) The wetting agent is a nonionic surfactant having a line point range of 25°C or higher and 11M, and the amount used is 0 per 100 parts by weight of carbon-based powder. .01 to 3 parts by weight, 2. The self-sintering carbon-based powder is coal tar pitch, petroleum pitch, naphtha cracked tar pitch, mesophase-containing pitch, and At least 1m selected from the group consisting of various modified pitches! at least one selected from the group consisting of graphitic carbon, carbonaceous carbon, metals and inorganic compounds whose surfaces are substantially coated with pitch powder of the class Is or/and pitch of the class Is selected from the pitch group. The carbon-based powder according to claim 1, which is a machine powder of Class IA, and is obtained by carbonizing a room-temperature press molded product in an inert gas atmosphere at a temperature of at least 500°C to obtain a sintered body. This is a method of granulating the body.

(発明の詳細な説明) 自己焼結性炭素系粉体 本発明に用いられる自己焼結性炭素系粉体は、「常温プ
レスで成形体を与えることができ、500−600℃迄
の炭素化反応によって焼結体を与えることができる炭素
系粉体」と定義することができる。
(Detailed Description of the Invention) Self-sintering carbon-based powder The self-sintering carbon-based powder used in the present invention is characterized by the fact that it can be formed into a compact by pressing at room temperature, and can be carbonized up to 500-600°C. It can be defined as ``carbon-based powder that can give a sintered body by reaction.''

このような炭素系粉体としては例えば、ピッチが挙げら
れるが、本発明に用いることのできるピッチとしては石
炭タールピッチ、石油残渣タールピッチ、エチレンヘビ
ーエンドタールピッチ等タールより蒸留して得だ塊状固
体を粉砕して得たピッチ粉体を挙げることができる。ま
た、上記ピッチ類を水素や水素供与性有機化合物(例え
ばテトラヒドロキノリンやデカリン)で処理した改質ピ
ッチ粉体も用いることができる。
Examples of such carbon-based powders include pitch, and pitches that can be used in the present invention include coal tar pitch, petroleum residue tar pitch, ethylene heavy end tar pitch, etc. Pitch powder obtained by pulverizing a solid can be mentioned. Furthermore, modified pitch powder obtained by treating the above-mentioned pitches with hydrogen or a hydrogen-donating organic compound (eg, tetrahydroquinoline or decalin) can also be used.

任意添加粉体 また、所望により添加される粉体の中、黒鉛質炭素とし
て生状黒鉛、1@片状黒鉛、人造黒鉛の粉末及び黒鉛繊
維等を挙げることができる。炭素質炭素として、石油コ
ークス、石炭コークス、カーボンブラック、炭素繊維、
メソフェーズピッチマイクロピーズ等の粉末を挙げるこ
とができる。無機化合物としてシリカ−アルミナ、r−
アルミナ炭化硅素、窒化硅素、炭化チタン、識化硅素、
酸化チタンを、金属としては、−鉄、銅、アルミニウム
、亜鉛、錫、ニッケル、コバルト、金、銀、白金、チタ
ン、鉛を、金属酸化物として酸化鋼、酸化鉛、酸化鉄、
などを例示することができる。
Optional Addition Powders Also, among the powders that may be added as desired, examples of graphitic carbon include raw graphite, flaky graphite, artificial graphite powder, and graphite fibers. Carbonaceous carbon includes petroleum coke, coal coke, carbon black, carbon fiber,
Examples include powders such as mesophase pitch micropeas. Silica-alumina, r- as an inorganic compound
Alumina silicon carbide, silicon nitride, titanium carbide, silicon carbide,
Titanium oxide is used as a metal, - iron, copper, aluminum, zinc, tin, nickel, cobalt, gold, silver, platinum, titanium, lead, and as a metal oxide, oxidized steel, lead oxide, iron oxide,
For example,

メソフェーズ含有ピッチ原料としてはコールタール、ナ
フサ分解タール、減圧蒸留残渣油、石炭ピッチ、ナフサ
分解タール蒸留ピッチ及び水素処理ピッチ又は溶媒析出
ピッチ等を挙げることができる。
Examples of mesophase-containing pitch raw materials include coal tar, naphtha cracked tar, vacuum distillation residue oil, coal pitch, naphtha cracked tar distilled pitch, and hydrogen-treated pitch or solvent-precipitated pitch.

メソフェーズ含有ピッチ粉末は例えばナフサ分解タール
を減圧もしくは不活性ガス雰囲気で熱処理し、軽沸留分
を除いて、メソ化を進行せしめだる後、粉砕して本発明
の方法で造粒することができる。
The mesophase-containing pitch powder can be produced by, for example, heat-treating naphtha cracked tar under reduced pressure or in an inert gas atmosphere to remove the light-boiling fraction, promote meso-ization, and then crush and granulate it by the method of the present invention. can.

メソフェーズ含有ピッチで表面被覆した複合粉法を用い
ることができる。また、該スラリーをアセトンやヘキサ
ンの如き溶媒に投じてメソフェーズ含有ピッチ前駆体を
含む多環芳香族ポリマーを素材表面に析出せしめた粉体
をスラリーより分離したる後、熱処理に供し、更に粉砕
することで得ることもできる。
A composite powder method in which the surface is coated with mesophase-containing pitch can be used. Further, the slurry is poured into a solvent such as acetone or hexane to precipitate a polycyclic aromatic polymer containing a mesophase-containing pitch precursor on the surface of the material, and the powder is separated from the slurry, and then subjected to heat treatment and further pulverized. You can also get it by doing this.

本発明に用いるメソフェーズ含有ピッチ粉末及該年9月
18日付で出願した発明の名称「炭素系複合成形体原料
の製造方法」なる特許出願明細書)を用いて製造するこ
とができる。
It can be produced using the mesophase-containing pitch powder used in the present invention and the patent application specification entitled "Method for producing raw material for carbon-based composite molded body" filed on September 18, 2013.

メソフェーズ含有ピッチも長期間高温熱処理によって粘
結成分を全く失ったものは本発明の利用できる素材には
入らない。
Mesophase-containing pitches that have completely lost their cohesive components due to long-term high-temperature heat treatment are not included in the materials that can be used in the present invention.

本発明の方法ではメンカーゲンマイクロビーズやメンフ
ェーズピッチ粉末、を自己焼結性炭素粉末として遊び、
鱗片状黒鉛、人造黒鉛などの粉末と水スラリーを形成せ
しめ、これを造粒することで成型時の滑り性と焼成成形
体の1000℃焼成付近での高い熱伝導及び電気伝導性
を同時に確保することができる。必要に応じて、銅、銀
、鉄などの金属粉体の共存をはかることができる。また
、黒鉛質炭素、金属、無機化合物の表面をピッチやメン
フェーズ含有ピッチで被覆した自己焼結性炭素粉末とメ
ンフェーズ含有ピッチ粉末をスラリー化して造粒するこ
とで、高硬度強度を兼備しかつ金型からの離型性に優れ
た高い電気伝導性と熱伝導性ももった優れた炭素系成形
体を与えることができる。
In the method of the present invention, Menkagen microbeads and Menphase pitch powder are used as self-sintering carbon powder,
By forming a water slurry with powder such as flaky graphite or artificial graphite, and granulating this, it simultaneously ensures slipperiness during molding and high thermal conductivity and electrical conductivity of the fired compact at around 1000℃ firing. be able to. If necessary, metal powders such as copper, silver, and iron can coexist. In addition, by slurrying and granulating self-sintering carbon powder, in which the surface of graphitic carbon, metal, or inorganic compound is coated with pitch or menphase-containing pitch, and menphase-containing pitch powder, it has both high hardness and strength. Moreover, it is possible to provide an excellent carbon-based molded body having excellent releasability from a mold and high electrical conductivity and thermal conductivity.

本発明の方法では造粒粉体中に構成成分としてsicや
TIC、BN等の微粉化合物及びその前駆体等を選択す
ることができ、耐酸化性を向上させることもできる。
In the method of the present invention, fine powder compounds such as SIC, TIC, and BN and their precursors can be selected as constituent components in the granulated powder, and the oxidation resistance can also be improved.

本発明にて用いる水スラリーは湿潤剤によって炭λ系粉
末を水中に安定に分散せしめ、これに造粒粉体の粒子形
状を保持する為の結合剤を添加して製造することができ
る。
The water slurry used in the present invention can be produced by stably dispersing carbon λ-based powder in water using a wetting agent, and adding a binder to maintain the particle shape of the granulated powder.

スラリー中の炭素系粉体の濃度は高い程、コスト削減を
はかることができるが、噴霧乾燥器の胴径や加熱空気量
、共存を許容される過熱水蒸気量及び温度及び造粒粉体
の中心粒径及び粒径分布の設計によって任意の遠足を行
なうことができる。水100TL量部に丸して5から3
00重量部、好ましくは10から200ii部の範囲で
選ぶことができる。
The higher the concentration of carbon-based powder in the slurry, the more cost reduction can be achieved. Arbitrary excursions can be achieved by designing the particle size and particle size distribution. 5 to 3 parts of 100 TL of water
00 parts by weight, preferably in the range of 10 to 200 parts.

結合剤 本発明に用いられる結合剤として以下の水溶性i様化合
物を挙げることができる。メチルセルロース、ヒドロキ
シセルロースの各撞重合品が好マしい。火に、上記化合
物の2%水溶液での20℃での粘度が25から2000
センチポイズの重合品がより好ましい。
Binder The following water-soluble i-like compounds can be mentioned as the binder used in the present invention. String polymerized products of methylcellulose and hydroxycellulose are preferred. On fire, the viscosity of a 2% aqueous solution of the above compound at 20°C is 25 to 2000.
Centipoise polymer products are more preferred.

結合剤としての選択は不活性ガス雰囲気で1000℃で
炭素化した時の残炭収率が10チ以上好ましくは15チ
以上であり、例えば粉体を圧縮成形後炭素化した時に蜂
の巣状の発泡体を形成せず、できれば焼き固まる特性を
有するものが一層望ましい。このような特性をもち且つ
水溶性であれば上記以外の化合物も本発明の結合剤とし
て用いることができる。
The binder should be selected so that the residual carbon yield when carbonized at 1000°C in an inert gas atmosphere is 10 or more, preferably 15 or more. It is more preferable to use a material that does not form a body and preferably has the property of being baked and hardened. Compounds other than those mentioned above can also be used as the binder of the present invention, as long as they have such properties and are water-soluble.

このような結合剤は、炭素系粉末xooBz部に対して
0.01から5重量部好ましくは0.02から4重量部
更に好ましくは0.05から3重量部用いることができ
る。
Such a binder can be used in an amount of 0.01 to 5 parts by weight, preferably 0.02 to 4 parts by weight, and more preferably 0.05 to 3 parts by weight, based on xooBz parts of the carbon-based powder.

なお、結合剤の使用量が5重を部よシ多い場合には、炭
素化品の強度の低下又は成形体の発泡を生ずる。一方、
その使用量が0.01i量部よシ少ない場合には、炭素
化粉末の造粒が困難にな右。
If the amount of binder used is more than 5 parts, the strength of the carbonized product may decrease or the molded product may foam. on the other hand,
If the amount used is less than 0.01 part, it will be difficult to granulate the carbonized powder.

湿潤剤 本発明に用いられる湿潤剤としては4点が25℃以上好
ましくは30−90℃の曇点範囲を有する非イオン系活
性剤を選ぶことができる。
Wetting agent As the wetting agent used in the present invention, a nonionic activator having a cloud point range of 4 points above 25°C, preferably 30-90°C can be selected.

湿潤剤としては例えは、アルキルフェノールエチレンオ
キサイド付加物又はエチレンオキサイドプロピレンオキ
サイド付加物、オキシエチレンプロビレ/ブロック−リ
マー(平均分子量2000−sooo)、アルコールエ
トキシレー)、多(i[[iアルコールエステル、4 
’)エチレングリコールエステル等を選ぶことができる
。このような湿潤剤は。
Examples of wetting agents include alkylphenol ethylene oxide adducts or ethylene oxide propylene oxide adducts, oxyethylenepropylene/block-limer (average molecular weight 2000-sooo), alcohol ethoxylate), poly(i[[i alcohol ester, 4
') Ethylene glycol ester etc. can be selected. Such wetting agents.

炭素系粉末100重量部に対して0.01から3重量部
好ましくは0.05から2重量部さらに好ましくは0.
1〜lit部用いることができる。
0.01 to 3 parts by weight, preferably 0.05 to 2 parts by weight, more preferably 0.05 to 2 parts by weight, per 100 parts by weight of carbon-based powder.
1 to liter can be used.

なお、湿潤剤を3重量部より多く用いると成形体強度が
著しく低下する。一方、湿潤剤が0.011重部よシ少
ない場合には炭素系粉末の分散性が著しく悪くなる。
Note that if more than 3 parts by weight of the wetting agent is used, the strength of the molded article will be significantly reduced. On the other hand, if the amount of the wetting agent is less than 0.011 parts by weight, the dispersibility of the carbon-based powder becomes significantly poor.

本願発明にいう湿潤剤を用いると、本願発明の炭素系粉
体を水100重量部に対して、300重量部の高濃度で
も気泡を含まずに分散し得る。また、前述した結合剤の
共存下でも気泡を生じない。
When the wetting agent of the present invention is used, the carbon-based powder of the present invention can be dispersed without bubbles even at a high concentration of 300 parts by weight per 100 parts by weight of water. In addition, bubbles are not generated even in the presence of the above-mentioned binder.

なお、スラリー中に気泡を含むと、造粒粒子の粒径分布
の不揃いおよび造粒粒子の中空化によって圧縮成形時の
空隙の発生など成形体の寸法安定性や強度等に悪影響を
与えることとなる。
In addition, if air bubbles are included in the slurry, the dimensional stability and strength of the molded product may be adversely affected, such as the generation of voids during compression molding due to uneven particle size distribution of the granulated particles and hollowing of the granulated particles. Become.

炭素系粉末の表面積の大小によって結合剤及び湿潤剤の
量の適正値を上記範囲内で設定することができる。
Appropriate amounts of the binder and wetting agent can be set within the above range depending on the surface area of the carbon-based powder.

噴霧乾燥 炭素系粉末のスラリーは通常の噴霧乾燥造粒機を用いて
瞬間乾燥し、炭素系造粒粉を回収することができる。本
発明の造粒熱媒として加熱空気をhb* 用いることができる。また、過熱水蒸気含i気も用いる
ことができる。熱空気温度はその上限値が200℃を越
えないことが必侠である。熱空気は、スラリー液滴と接
触すると急激に温度が下がり、例えば入ロ温度り80℃
出ロ温度100℃となる。200℃以上の温度で乾燥状
態の炭素粉末が空気と接触すると不融化反応が進み、本
発明のピッチによる成形体への粘結性の付与という本来
の目的が達成できなくなる。造粒粒径はスラリー濃度及
び供給量、熱空気温度及び量、水蒸気共存量液滴粒径、
乾燥機胴径などの化学工学的諸因子によって決定される
。造粒粒径の平均値は50から500μm、好ましくは
75から400μmを選ぶことができる。粒子が細かす
ぎると流れ性が阻害され、−万、大きすぎると狭い金型
キャビティへの充填の均一性が阻害される。成形品の肉
厚や形状によって粒径の平均値とそれからのズレ(粒径
分布)を設定することができる。
The slurry of spray-dried carbon-based powder can be flash-dried using a conventional spray-drying granulator, and the carbon-based granulated powder can be recovered. Heated air can be used as the granulation heating medium in the present invention. In addition, superheated steam vapor can also be used. It is essential that the upper limit of the hot air temperature does not exceed 200°C. When the hot air comes into contact with the slurry droplets, the temperature drops rapidly, for example, the temperature at which it enters the chamber is 80°C.
The exit temperature will be 100°C. When dry carbon powder comes into contact with air at a temperature of 200° C. or higher, the infusibility reaction progresses, making it impossible to achieve the original purpose of imparting caking properties to a molded article using the pitch of the present invention. The granulation particle size is determined by slurry concentration and supply amount, hot air temperature and amount, water vapor coexistence amount, droplet particle size,
It is determined by various chemical engineering factors such as the dryer body diameter. The average value of the granule diameter can be selected from 50 to 500 μm, preferably from 75 to 400 μm. If the particles are too fine, flowability will be inhibited; if the particles are too large, uniformity in filling a narrow mold cavity will be inhibited. The average particle size and deviation from it (particle size distribution) can be set depending on the wall thickness and shape of the molded product.

次罠実施例によって本発明を更に具体的に説明する。The present invention will be explained in more detail with reference to the following examples.

〔実施例〕〔Example〕

実施例1 エチレンヘビーエンドタール(EHEタール)2640
、Pに日本黒鉛工業■製鱗片状黒鉛(CPB )400
.9を投入攪拌してスラリー液を作った。該スラリー液
を攪拌されている7910.91 (101)のアセト
ン液中に投入し、投入終了後5分間攪拌を継続し、15
分間静置後デカンテーシ、ンで上澄液を除去後、アセト
ン51を加え5分間攪拌し。
Example 1 Ethylene heavy end tar (EHE tar) 2640
, P is scaly graphite (CPB) 400 manufactured by Nippon Graphite Industries.
.. 9 was added and stirred to prepare a slurry liquid. The slurry liquid was poured into the acetone solution of 7910.91 (101) which was being stirred, and stirring was continued for 5 minutes after the addition was completed.
After allowing the mixture to stand still for a minute, the supernatant liquid was removed using a decantation cylinder, and then acetone 51 was added and stirred for 5 minutes.

15分以上靜装してからデカンテーションで上澄液を除
去後4AのPMを付けたヌッチェを使い。
Let it cool for at least 15 minutes, then remove the supernatant liquid by decantation, then use a Nutsche with 4A PM attached.

アスピレータ−で減圧濾過し、得られた茶褐色粉体16
00gをステンレスパッドにとD60℃に保持されたホ
ットプレート上で5時間乾燥し乾燥ノ臂りダー777I
を得た。
Filtered under reduced pressure with an aspirator, resulting in brown powder 16
00g was dried on a stainless steel pad for 5 hours on a hot plate maintained at 60°C.
I got it.

乾燥パウダー190.9を広口ガラス円筒(内径80■
、高さ230 tm )に充填し、これをガス吹き込み
管を備えたSUS製反応器に納めた。予熱N2(流′J
k7 l −STP/分)流通下、479℃に保持した
ナイター浴に反応器を浸漬し、465℃で15分間熱処
理を行ない、室温まで冷却して、1261の炭素系複合
成形体原料を得た。JIS−に2425遠心法で求めた
キノリンネ溶分量はピッチペースで97 wt俤であり
た。
Pour dry powder 190.9 mm into a wide-mouthed glass cylinder (inner diameter 80 mm
, height 230 tm), and this was placed in a SUS reactor equipped with a gas blowing pipe. Preheating N2 (flow'J
The reactor was immersed in a night bath maintained at 479°C under flow (k7 l -STP/min), heat treated at 465°C for 15 minutes, and cooled to room temperature to obtain 1261 carbon-based composite molded material. . The amount of quinolinine dissolved in pitch pace determined by JIS-2425 centrifugation was 97 wt.

該炭素系複合成形体原料をアルミナ製ボールミルにて5
分粉砕して炭素系粉体を得た。
The raw material for the carbon-based composite molded body was milled in an alumina ball mill for 5 minutes.
A carbon-based powder was obtained by fractional pulverization.

炭素系粉体120Iiをメチルセルa−ス80−120
センチポアズ(牛丼化学薬品製)1.22#、鎖点44
℃のSNウェット366(サンノプコ社製、固型分70
チ)0.85Nを水244Iに溶かした溶液に投入攪拌
しスラリー液を得た。該スラリー液を大川原化工機■の
噴霧乾燥機FOC−16を用いアトマイデー径651m
φ、回転数11000Orp、熱風温度180℃、供給
量5 m /rtin 、スラリー噴霧−jio、13
kl?/値で造粒し、平均粒径114μmの造粒粉を得
た。
Carbon-based powder 120Ii was mixed with methyl cellulose 80-120
Centipoise (manufactured by Gyudon Chemicals) 1.22#, chain point 44
°C SN Wet 366 (manufactured by Sannopco, solid content 70
h) A slurry liquid was obtained by adding 0.85N to a solution of 244I of water and stirring. The slurry liquid was atomized using Okawara Kakoki's spray dryer FOC-16 with a diameter of 651 m.
φ, rotation speed 11000 Orp, hot air temperature 180°C, supply amount 5 m/rtin, slurry spray-jio, 13
kl? / value to obtain granulated powder with an average particle size of 114 μm.

該造粒粉をロータリープレス機(管厚精機■)400−
 IP型に設定された第1図の如き形状の、肉厚1.2
 mの底と縦、横十文字型の間仕切シを有する中空箱型
の薄肉品を製出できる金型キャビティーに充填し、生成
形体密度を1.6217CCに設定して1分間に6回転
の速度で連続生産を行なった。
The granulated powder was processed using a rotary press machine (Kanatsu Seiki ■) 400-
A wall thickness of 1.2 mm with a shape as shown in Figure 1 set as an IP type.
A mold cavity capable of producing a hollow box-shaped thin-walled product with a bottom of m and vertical and horizontal cross-shaped partitions was filled, and the density of the formed body was set to 1.6217 CC at a speed of 6 revolutions per minute. Continuous production was carried out.

得られた生成形体を1000℃迄の昇温時間を9時間に
設定して焼成をおこない焼成体密度1.611/儒3の
焼成体を金型と同じ寸法精度で得ることができた。
The obtained green body was fired by setting the heating time to 1000° C. for 9 hours, and a fired body with a fired body density of 1.611/F3 was able to be obtained with the same dimensional accuracy as the mold.

実施例2 実施例1と同じ方法において湿潤剤としてノニルフェノ
ールl0KO(鎖点61℃、化工■製エマルグン910
)をII用いた他は実施例1と同様の方法でスラリーを
調製することができた。成形体特性にも差はなかった。
Example 2 In the same manner as in Example 1, nonylphenol 10KO (chain point 61°C, Emulgun 910 manufactured by Kako ■) was used as a wetting agent.
) was used, but the slurry could be prepared in the same manner as in Example 1. There was also no difference in the properties of the molded products.

実施例3 実施例1と同じ方法において湿潤剤としてグルロニツク
ス系活性剤(鎖点40℃、第1工業製二)47420)
をI11用いた他は実施例1と同様の方法でスラリーを
調製し、造粒粉体を得ることができた。成形体特性にも
差はなかった。
Example 3 Guluronics activator (chain point 40°C, Daiichi Kogyo 2) 47420) was used as a wetting agent in the same method as in Example 1.
A slurry was prepared in the same manner as in Example 1, except that I11 was used, and a granulated powder could be obtained. There was also no difference in the properties of the molded products.

比較例1 湿潤剤としてノニルフェノール6、0 K O付加物(
曇点20℃未満)を1g用いて、実施例1と同様の手法
でスラリーの調製を試みたが完全分散系〔本発明の効果
〕 本発明の方法で作られる造粒された炭素系粉体を用いる
ことで炭素成形体の多様な展開を計ることができる。例
えば鱗片状黒鉛をメソフェーズ含有ピッチで被覆した複
合粉は本発明者らの先行技術(特開昭61−13690
6号公報、同61−251504号公報、同61−25
1505号公報、同62−123007号公報)によっ
て製造され、本願発明の方法で造粒することができる。
Comparative Example 1 Nonylphenol 6,0 K O adduct (
An attempt was made to prepare a slurry in the same manner as in Example 1 using 1 g of carbonaceous powder (with a clouding point of less than 20°C), but the slurry was completely dispersed. By using this, it is possible to measure various developments of carbon molded bodies. For example, a composite powder in which scaly graphite is coated with mesophase-containing pitch is disclosed in the prior art of the present inventors (Japanese Unexamined Patent Publication No. 61-13690).
Publication No. 6, Publication No. 61-251504, Publication No. 61-25
No. 1505, No. 62-123007), and can be granulated by the method of the present invention.

未造粒品は第1図に示す箱の金型のキャピテイに充填し
ようとしても全く流れ込まなかった。しかし、造粒品は
容易に流れ込み、第1図の如き内厚1.2龍の底を有す
る複雑な形状の薄肉品を連続無人運転で製造することが
できる。生産性に関しては、例えば管厚精機■のロータ
リーグレス400−IP型機を用いると少なくとも毎分
80個成形することができる。即ち、8時間稼動で38
400個という膨大な数量を作ることが可能であり、夜
間無人運転も可能なことよ#)1台のプレス機の生産能
力の大きさが明らかである。更には同一種類だけでなく
最大8個の異なりた形の成形体を同時に生産することが
できる。
Even when an attempt was made to fill the ungranulated product into the cavity of the box mold shown in FIG. 1, it did not flow at all. However, the granulated product flows easily, and a thin-walled product with a complicated shape having an inner thickness of 1.2 mm as shown in FIG. 1 can be produced in continuous unmanned operation. Regarding productivity, for example, if a rotary Gress 400-IP type machine manufactured by Kanatsu Seiki ■ is used, at least 80 pieces can be molded per minute. In other words, after 8 hours of operation, 38
It is possible to make a huge quantity of 400 pieces, and unmanned operation at night is also possible (#) The large production capacity of one press machine is clear. Furthermore, it is possible to simultaneously produce not only molded products of the same type but also up to eight different shapes.

この場合各成形体の生産量は178になるが、8時間で
4800個ずつは可能である。
In this case, the production amount of each molded body is 178, but it is possible to produce 4800 molded bodies in 8 hours.

本発明の造粒粉体による成形体製造の利点は焼成工程に
おいても発揮される。即ち第1図の如き薄丙成形体では
焼成時間の大巾短縮をはかることができる。これはメン
フェーズ含有ピッチが残炭収率が80重量係を越すため
に焼成時にでるガス量が他のタール、ピッチに比べて著
しく少ないことと、ガス拡散距離が大型ブロックに比べ
て著しく短いこと等に由来するものと想定される。10
00℃迄の昇温時間を1時間から10蒔間の任意の範囲
に設定しても焼成品の膨れやひび割れなどの問題は生じ
なかった。
The advantages of producing a molded body using the granulated powder of the present invention are also exhibited in the firing process. That is, in the case of a thin C-shaped compact as shown in FIG. 1, the firing time can be significantly shortened. This is because pitch containing menphase has a residual carbon yield exceeding 80% by weight, so the amount of gas released during firing is significantly smaller than that of other tars and pitches, and the gas diffusion distance is significantly shorter than that of large blocks. It is assumed that it originates from etc. 10
Even if the heating time to 00° C. was set within an arbitrary range of 1 hour to 10 minutes, problems such as blistering and cracking of the fired product did not occur.

従って、大量生産品のトンネル型焼成炉等での連続焼成
も容易に設計することができる。
Therefore, continuous firing in a tunnel type kiln or the like for mass-produced products can be easily designed.

上記特性を利用して乾電池用炭素棒も種々の形状を賦与
した上で大量生産することができる。即ち、従来は丸棒
のみが実用に供されてきた。一方、電池の用途が拡大す
るにつれ、大容量負荷に対処できる電池が要求され合剤
構成要素の高性能化がとシ進められてきている。ここで
合剤との接触部面積が従来品より大きく、合剤接触抵抗
値が低く、種棒内部抵抗も小さい炭素棒の大量生産が可
能となれば、マンガン乾電池の付加価値向上を計ること
ができる。この観点からすると、本発明者らの造粒粉体
は目的を達成できる特性を備えている。
Utilizing the above characteristics, carbon rods for dry batteries can also be mass-produced after being given various shapes. That is, conventionally only round bars have been put to practical use. On the other hand, as the uses of batteries expand, batteries that can handle large capacity loads are required, and improvements in the performance of mixture components are being made. If it becomes possible to mass-produce carbon rods that have a larger contact area with the mixture than conventional products, a lower mixture contact resistance value, and a lower seed rod internal resistance, it will be possible to improve the added value of manganese dry batteries. can. From this point of view, the present inventors' granulated powder has characteristics that can achieve the purpose.

鱗片状黒鉛とメンフェーズ含有ピッチ複合粉を第2図の
如き形状の、−尺長さに亘って長さ方向に半円状に切り
欠かれた円柱に成形することで目的を達成することがで
きる。また高t′FL性カーー/ンブラック(例えばケ
ッチエンEC)との複合粉体の第2図の如き成形体への
適用でも目的が達成できる。前者は1000℃焼成で黒
鉛なみの固有抵抗値(1mΩ・CI!L)を発揮できる
し、後者は1700−2000℃まで焼成すると黒鉛並
みの固有抵抗値と500 kg/cm”を超す曲げ強度
を持つ成形体を与えることができる。
The purpose can be achieved by forming a composite powder of flaky graphite and menphase-containing pitch into a cylinder with a semicircular notch in the length direction, as shown in Figure 2. can. The object can also be achieved by applying a composite powder with a high t'FL carbon black (for example, Ketchien EC) to a molded body as shown in FIG. The former can exhibit a specific resistance value (1mΩ・CI!L) comparable to that of graphite when fired at 1000℃, while the latter has a specific resistance value comparable to that of graphite and a bending strength exceeding 500 kg/cm" when fired at 1700-2000℃. It is possible to give a molded body with

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によシ得られた造粒粉を用いて製
造された中窒箱型の薄内品の斜視図であシ、第2図は該
造粒粉を用いて夷造された半円状に切り欠かれた円柱の
斜視図である。 特許出願人  三菱油化株式会社 代理人弁理士  長 谷 正 久 代理人弁理士  山 本 隆 也 第1図 第2図 手続主甫正書印発) 昭和62年12月1’f  日
FIG. 1 is a perspective view of a thin box-shaped inner product manufactured using the granulated powder obtained by the method of the present invention, and FIG. FIG. Patent Applicant: Mitsubishi Yuka Co., Ltd. Representative Patent Attorney Masahisa Hasetani Representative Patent Attorney Takaya Yamamoto Figure 1 Figure 2 Procedural Principal's official seal) December 1'f, 1986

Claims (1)

【特許請求の範囲】 1、自己焼結性炭素系粉体及び所望により黒鉛質炭素、
炭素質炭素、金属及び無機化合物からなる群から選ばれ
た少なくとも1種類の粉体を含む炭素系粉体を結合剤及
び湿潤剤の存在下に水に分散せしめたスラリーを過熱水
蒸気を含むこともある加熱空気中で噴霧乾燥して造粒す
る方法において、(1)該結合剤が1000℃炭化時に
発泡体を作らず且つ残炭収率が10重量%以上の有機化
合物であり、その使用量が炭素系粉体100重量部に対
して0.01から5重量部であること、(2)該湿潤剤
が曇点が25℃以上の曇点範囲を有する非イオン系界面
活性剤であり、その使用量が炭素系粉体100重量部に
対して0.01から3重量部であること、を特徴とする
炭素系粉体の造粒方法。 2、自己焼結性炭素系粉体がコールタールピッチ、石油
ピッチ、ナフサ分解タールピッチ、メソフェーズ含有ピ
ッチ及び各種改質ピッチからなる群より選ばれた少なく
とも1種類のピッチ粉体又は/及び該ピッチ群から選ば
れた少なくとも1種類のピッチで実質的にその表面を被
覆せしめた黒鉛質炭素、炭素質炭素、金属及び無機化合
物からなる群より選ばれた少なくとも1種類の複合粉体
であり且つ室温プレス成形品を少なくとも500℃まで
の不活性ガス雰囲気での炭化処理によって焼結体を与え
るものである特許請求の範囲第1項記載の炭素系粉体の
造粒方法。
[Claims] 1. Self-sintering carbon-based powder and optionally graphitic carbon,
A slurry prepared by dispersing carbon-based powder containing at least one kind of powder selected from the group consisting of carbonaceous carbon, metals, and inorganic compounds in water in the presence of a binder and a wetting agent may also contain superheated steam. In a certain method of granulation by spray drying in heated air, (1) the binder is an organic compound that does not form a foam upon carbonization at 1000°C and has a residual carbon yield of 10% by weight or more, and the amount used is 0.01 to 5 parts by weight per 100 parts by weight of carbon-based powder; (2) the wetting agent is a nonionic surfactant having a cloud point of 25° C. or higher; A method for granulating carbon-based powder, characterized in that the amount used is 0.01 to 3 parts by weight per 100 parts by weight of carbon-based powder. 2. The self-sintering carbon-based powder is at least one type of pitch powder selected from the group consisting of coal tar pitch, petroleum pitch, naphtha decomposition tar pitch, mesophase-containing pitch, and various modified pitches, and/or said pitch. at least one type of composite powder selected from the group consisting of graphitic carbon, carbonaceous carbon, metal, and inorganic compound whose surface is substantially coated with at least one type of pitch selected from the group, and at room temperature. The method for granulating carbon-based powder according to claim 1, wherein a sintered body is obtained by carbonizing a press-formed product in an inert gas atmosphere at a temperature of at least 500°C.
JP62259188A 1987-09-18 1987-10-14 Granulation method for carbon powder Expired - Lifetime JP2566595B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62259188A JP2566595B2 (en) 1987-10-14 1987-10-14 Granulation method for carbon powder
EP88115188A EP0308824B1 (en) 1987-09-18 1988-09-16 Production of carbonaceous powders and their granulation
DE8888115188T DE3876913T2 (en) 1987-09-18 1988-09-16 PRODUCTION OF CARBONATED POWDERS AND THEIR GRANULATION.
US07/246,272 US4985184A (en) 1987-09-18 1988-09-19 Production of carbonaceous powders and their granulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259188A JP2566595B2 (en) 1987-10-14 1987-10-14 Granulation method for carbon powder

Publications (2)

Publication Number Publication Date
JPH01103910A true JPH01103910A (en) 1989-04-21
JP2566595B2 JP2566595B2 (en) 1996-12-25

Family

ID=17330594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259188A Expired - Lifetime JP2566595B2 (en) 1987-09-18 1987-10-14 Granulation method for carbon powder

Country Status (1)

Country Link
JP (1) JP2566595B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010060865A1 (en) 2008-11-28 2010-06-03 Rütgers Chemicals GmbH Sinterable semi-coke powder with high bulk density
JP2012101950A (en) * 2010-11-05 2012-05-31 Noritake Co Ltd Method for producing porous carbon particle, and porous carbon material including the particle
KR102019006B1 (en) * 2019-01-28 2019-09-05 극동씰테크 주식회사 Fluidized Haibigrain Carbon Material for Mold Forming and Manufacturing Method Thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010060865A1 (en) 2008-11-28 2010-06-03 Rütgers Chemicals GmbH Sinterable semi-coke powder with high bulk density
JP2012510417A (en) * 2008-11-28 2012-05-10 リュツゲルス ジャーマニー ゲー エム ベー ハー Sinterable semi-coke powder with high bulk density
US8613801B2 (en) 2008-11-28 2013-12-24 Rheinkalk Gmbh Sinterable semi-coke powder with high bulk density
JP2012101950A (en) * 2010-11-05 2012-05-31 Noritake Co Ltd Method for producing porous carbon particle, and porous carbon material including the particle
KR102019006B1 (en) * 2019-01-28 2019-09-05 극동씰테크 주식회사 Fluidized Haibigrain Carbon Material for Mold Forming and Manufacturing Method Thereof

Also Published As

Publication number Publication date
JP2566595B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
CA1157242A (en) Method of making thermal-shock resistant molded articles on the basis of silicon carbide
CN100503434C (en) Method of preparing isotropic carbon material and prepared carbon material
CN108290353B (en) Forming tool for molten metal or glass
CN101070395B (en) Method for making braking shoe and piece of charcoal/charcoal-silicon carbonate composite material
KR101439177B1 (en) Preparing method of isotropic bulk graphite using graphite scrap and the isotropic bulk graphite thereby
CN109111238A (en) A kind of carbon fiber isostatic pressing formed graphite mold materials and preparation method thereof
US5348694A (en) Method for electroconsolidation of a preformed particulate workpiece
CN108384981B (en) A kind of preparation method of copper-based carbon draw runner and its copper-based carbon draw runner material
US4985184A (en) Production of carbonaceous powders and their granulation
CN109128185A (en) A kind of novel electric locomotive powder metallurgy carbon draw runner and preparation method thereof
JPH01103910A (en) Method for granulating carbonaceous powder
JP2001019547A (en) Production of carbon/graphite compound molding product of complex shape
JPH089504B2 (en) Method for producing high-density silicon carbide sintered body
CN1245481C (en) Die stamping semi-carbonized formation method for preparing coal materials
JP4004180B2 (en) Method for producing carbon / graphite composite molded body
JP3342882B2 (en) Method for compacting preformed workpieces
JP3038489B2 (en) Method for producing metal composite carbon material
JP3404498B2 (en) Method for producing short fiber reinforced C / C composite
CN105254303A (en) Multi-gradient-density boron carbide ceramic preparation method
JP3297977B2 (en) Manufacturing method of carbon material
JPH0662348B2 (en) Porous ceramic composite material and method for producing the same
JPS61251504A (en) Production of formed graphite
CN104016329A (en) Preparation method of high-density high-strength graphite
KR970008693B1 (en) Process for the preparation of carbon composite material
KR960008619B1 (en) Process for the preparation of high density carbon material