JPH01103806A - Rare-earth magnet - Google Patents

Rare-earth magnet

Info

Publication number
JPH01103806A
JPH01103806A JP62261208A JP26120887A JPH01103806A JP H01103806 A JPH01103806 A JP H01103806A JP 62261208 A JP62261208 A JP 62261208A JP 26120887 A JP26120887 A JP 26120887A JP H01103806 A JPH01103806 A JP H01103806A
Authority
JP
Japan
Prior art keywords
magnet
powder
rare
iron
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62261208A
Other languages
Japanese (ja)
Other versions
JP2619653B2 (en
Inventor
Itaru Okonogi
格 小此木
Mitsuru Sakurai
充 桜井
Yukihiko Shiobara
幸彦 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62261208A priority Critical patent/JP2619653B2/en
Publication of JPH01103806A publication Critical patent/JPH01103806A/en
Application granted granted Critical
Publication of JP2619653B2 publication Critical patent/JP2619653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the isotropic magnet having a high magnetic efficiency by a method wherein the fundamental composition of the magnet is composed of a rare-earth metal, iron and boron, and the magnet is formed by conducting a super-quenching method. CONSTITUTION:The title rare-earth magnet is manufactured by molding the magnet powder, consisting of a rare-earth metal (R), iron (Fe) and boron (B) and formed using a super-quenching method, of 85% or more in weight ratio and the remainder composed of organic resin bonding material, using a resin bonding method. To be more precise, the powder consisting of microscopic crystal formed with R, Fe and B using a super-quenching method is used. The size of the powder is 170mum or less, desirably in the range of 3-50mum, and fine powder is formed using a ball mill or an attritor mill and the like by adding the organic solvent such as hexane, toluene and the like The quantity of organic resin of the binder is set at 0.5-5%, it is formed into the state of high density, namely, high efficiency. As a result, high magnetic efficiency can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁石の基本組成がR1F81Bからなり樹脂結
合法でつくられた希土類磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rare earth magnet whose basic composition is R1F81B and which is manufactured by a resin bonding method.

〔従来の技術〕[Conventional technology]

希土類金属、鉄、ボロンからなる希土類金属間化合物の
磁石化の試みは、例えばターン等は(Fe、82.B、
18)、9Rb、05Da、05の超急冷法リボンをア
ニールするとHc=9K。
Attempts to magnetize rare earth intermetallic compounds consisting of rare earth metals, iron, and boron include, for example, turns (Fe, 82.B,
18), 9Rb, 05Da, and 05 ultra-quenched ribbons were annealed, Hc = 9K.

o、B’r=5KG1但しくBH)Maxが低い。o, B'r=5KG1 However, BH) Max is low.

(N、C,Koon他Apl 1.phys、Let、
er39.(10)、1981.840−842)希土
類・鉄・ボロン系超急冷アモルファスリボンは粉末状で
その緒特性を測定することによって磁石化の可能性を論
じている。実用材料としての評価は見当たらない。
(N, C, Koon et al.Apl 1.phys, Let,
er39. (10), 1981.840-842) Discusses the possibility of magnetization of ultra-quenched amorphous ribbons based on rare earth elements, iron, and boron by measuring their properties in powder form. No evaluation as a practical material has been found.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は超急冷法で製造された、R,Fe、B粉末と結
合材である有機物樹脂(熱可塑性、熱硬化性樹脂のいず
れかを用いる)からなるボンド磁石である。
The present invention is a bonded magnet manufactured by an ultra-quenching method and made of R, Fe, and B powders and an organic resin (using either thermoplastic or thermosetting resin) as a binder.

従来は、超急冷法の例えばNdFeB、PrFe% Y
FelNdDyFeB等の組成物の磁石物性に関する研
究例が主体的であった。
Conventionally, ultra-quenching methods such as NdFeB, PrFe% Y
Most of the research focused on the magnetic properties of compositions such as FeINdDyFeB.

また実用材料としてとらえれば基本組成が鉄なので、大
変酸化(錆)しやすい問題があった。
Furthermore, when considered as a practical material, since its basic composition is iron, it has the problem of being extremely susceptible to oxidation (rusting).

また、実用永久磁石としてみれば、形杖のつくりやすさ
、精度、量産性、磁石性など所望の特性が得られていな
い。
Furthermore, when viewed as a practical permanent magnet, desired characteristics such as ease of making shaped rods, precision, mass production, and magnetic properties are not obtained.

本発明は前記問題を解決するもので、等方性の高性能磁
石を提供することを目的とする。
The present invention solves the above problem and aims to provide an isotropic high-performance magnet.

〔問題点を解決するための手段〕[Means for solving problems]

本発明における組成物は、R,Fe、Bで超急冷法でつ
くられた微結晶からなる粉末を用いる。
The composition of the present invention uses a powder consisting of microcrystals made of R, Fe, and B by an ultra-quenching method.

その粉末の大きさは170μm以下このましくは50μ
mから3μmの範囲である。微粉末化は、ヘキサン、ト
ルエンなどの存機溶剤を加えたボールミル又はアトライ
ターミルなどで行う。
The size of the powder is 170 μm or less, preferably 50 μm.
m to 3 μm. Pulverization is performed using a ball mill or attritor mill to which a solvent such as hexane or toluene is added.

バインダーの有機物樹脂は、熱可塑性樹脂、熱硬化性樹
脂いずれかを選択すれば良い。
As the organic resin of the binder, either a thermoplastic resin or a thermosetting resin may be selected.

熱可塑性樹脂は、 ナイロン6.66.12など、pp
(ポリプロビレy) 、EVA、PPS。
Thermoplastic resins include nylon 6.66.12, pp
(polypropylene), EVA, PPS.

PEEK等を磁石粉末と共に混線材などを用いて混練物
(コンパウンド)をつくる。その量は、成形方式にもよ
るが、15重量%以下である。好ましくは10%〜5%
の範囲である。一方熱硬化性樹脂は、エポキシ、ポリエ
ステル、フェノール、ケイ素等の有機物樹脂が適応され
る。その配合量は最大15%であり、成形方法によって
好ましい範囲が選定される。
A compound is made by using PEEK, etc., with magnetic powder, and a mixed wire material. The amount depends on the molding method, but is 15% by weight or less. Preferably 10% to 5%
is within the range of On the other hand, as the thermosetting resin, organic resins such as epoxy, polyester, phenol, and silicon are applicable. Its blending amount is at most 15%, and a preferable range is selected depending on the molding method.

本発明法では、金型を用いる加圧成形法では、圧縮圧力
が1〜7トン/cm’ と比較的高圧にして、高密度化
すなわち高性能化を目的とするので樹脂量は、0.5〜
5%が適用される。また、射出成形、押出成形カレンダ
ーロール成形などは、混合物の流動性が重要になるので
、樹脂は5〜15%と多くする。
In the method of the present invention, in the pressure molding method using a mold, the compression pressure is set at a relatively high pressure of 1 to 7 tons/cm', and the aim is to increase the density, that is, to improve the performance, so the amount of resin is 0. 5~
5% applies. Further, in injection molding, extrusion molding, calendar roll molding, etc., the fluidity of the mixture is important, so the resin content is increased to 5 to 15%.

〔実施例〕〔Example〕

以下に本発明の効果を具体的に実施例に従って詳述する
The effects of the present invention will be specifically explained in detail below according to Examples.

実施例−1 Nd29.8%B0.8%残部Feおよび不可避の不純
物からなる組成合金を高周波溶解炉で溶解、水冷銅ロー
ル上に吐出し超急冷法によってリボン状薄帯粉末を得た
。その、大きさは厚さは10〜30μmであった。次に
素原料は、以下の手順で実用永久磁石材料とした。
Example 1 A composition alloy consisting of 29.8% Nd, 0.8% B, balance Fe, and unavoidable impurities was melted in a high-frequency melting furnace, and discharged onto a water-cooled copper roll to obtain a ribbon-shaped ribbon powder by ultra-quenching. Its size was 10 to 30 μm in thickness. Next, the raw material was made into a practical permanent magnet material using the following procedure.

■ 粉末粒度177μm以下に粉砕した。もちろん、A
rガス零四気下で、ボールミル中で行った。
■ Pulverized to a powder particle size of 177 μm or less. Of course, A
It was carried out in a ball mill under zero and four atmospheres of r gas.

■ 仔機溶媒のグイフロン113(ダイキン工業製)を
加えアトライターミル中で約10分間粉砕した。粉末の
量は、10kg5 グイフロン1135 k gl ス
チールボール20’kgの量を容器内に投入して行った
(2) Guiflon 113 (manufactured by Daikin Industries), a child solvent, was added and pulverized in an attritor mill for about 10 minutes. The amount of powder was 10 kg, 1135 kg of Guiflon, and 20 kg of steel balls, which were put into a container.

■ FSSS、(フィッシャーサブシーブサイザー)法
による平均粒度を測定した。
(2) The average particle size was measured using the FSSS (Fisher Subsieve Sizer) method.

約0μmの平均粒度であった。The average particle size was approximately 0 μm.

■ バインダー(結合材)にエポキシ樹脂、フェノール
樹脂の熱硬化性樹脂を選定、第1表に示す磁石粉末との
混合比率のサンプルについて、自動混線材にて行った。
(2) Thermosetting resins such as epoxy resin and phenol resin were selected as the binder (binding material), and samples with the mixing ratio with magnet powder shown in Table 1 were tested using an automatic cross-wire material.

■ 金型はφ12X10ρmm円柱吠試料とした。■ The mold was a φ12×10ρmm cylindrical sample.

成形圧力は第1表に示す条件で行った。この時のプレス
は、−軸油圧プレスで、グイフローティング方式による
もので成形した。
The molding pressure was carried out under the conditions shown in Table 1. The press used at this time was a -axis hydraulic press, and the molding was performed using a Gui floating method.

■ 次に成形体は、加熱焼成固化させたが、温度ハ、1
00〜180″CX1時間、N x カス中7−行った
■ Next, the molded body was heated and baked to solidify, but the temperature was 1.
00-180″CX1 hour, 7-performed in Nx gas.

■ JIS1C25’01に準拠した自動自記磁束計で
、有効磁場25Koeを加え磁気性能を測定した。
■ Magnetic performance was measured by applying an effective magnetic field of 25 Koe using an automatic self-recording magnetometer in accordance with JIS1C25'01.

第1表 第2表 ここで比較例は、S m (Co b a ]  Cu
 O’。
Table 1 Table 2 Here, the comparative example is S m (Co ba ] Cu
O'.

07  Fed、2  Zroo、02)8.0組成か
、らなる2−17系希土類金属間化合物磁石粉末である
。本実施例は圧縮成形法で等方性磁石をつくった例であ
るが、比較例に比べ高性能磁石を得られた。等方性磁石
でこれだけ高性能の希土類樹脂結合磁石は知られていな
い。
07 Fed, 2 Zroo, 02) A 2-17 rare earth intermetallic compound magnet powder having a composition of 8.0. This example is an example in which an isotropic magnet was made using a compression molding method, and a high-performance magnet was obtained compared to the comparative example. There is no known isotropic magnet with such high performance as a rare earth resin bonded magnet.

これだけ磁気性能が高い等方性磁石は、多極着磁によっ
て、高い磁束密度を得ることができ、スピーカ、モータ
の高性能化に極めて有効となる。
Isotropic magnets with such high magnetic performance can obtain high magnetic flux density by multipolar magnetization, making them extremely effective in improving the performance of speakers and motors.

実施例−2 実施例1と同一組成のNdFeB磁石粉末を用いて、射
出成形によって永久磁石をつ(った。試料形状は、φ3
0Xφ25X6mmのリング状である。第3表に製造条
件と諸特性を示す。
Example 2 A permanent magnet was made by injection molding using NdFeB magnet powder with the same composition as in Example 1. The sample shape was φ3.
It has a ring shape of 0xφ25x6mm. Table 3 shows the manufacturing conditions and various characteristics.

バインダーは、ナイロン12を使用し磁石粉末との混練
は、280℃に加熱しながらスクリュー式混棟材でコン
パウンドをつくった。
Nylon 12 was used as the binder, and the compound was kneaded with the magnet powder using a screw-type mixing material while heating to 280°C.

なお比較例(7)2−17系Sm(G  Cu  Fe
Zr)合金粉末は実施例1と同様のものを使用した。
Comparative example (7) 2-17 series Sm (G Cu Fe
The same Zr) alloy powder as in Example 1 was used.

比較例と本発明法により得られた射出成形法で第3表 の比較でもやはり高い性能が得られた。このことは、N
d  Fe  B粉末の高い磁気性能がそのまま、現出
させることができた。
In the comparison shown in Table 3, high performance was also obtained between the comparative example and the injection molding method obtained by the method of the present invention. This means that N
The high magnetic performance of the dFeB powder could be brought out as it is.

このようにリング状の磁石でも、(BH)ma×4〜6
NiGOe級の等方性磁石を得られた。このように、精
密複雑形状の等方性磁石の登場は、モータ、スピーカな
どの小型、高性能化に有効となるであろう。
In this way, even with a ring-shaped magnet, (BH) max x 4 ~ 6
An isotropic magnet of NiGOe class was obtained. In this way, the advent of isotropic magnets with precise complex shapes will be effective in making motors, speakers, etc. smaller and with higher performance.

本実施例は、ナイロン12を用いたが、熱可塑性の樹脂
であれば、PPS、PEEK、PPなど同様の効果を得
られるものである。
Although nylon 12 was used in this embodiment, similar effects can be obtained using thermoplastic resins such as PPS, PEEK, and PP.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、基本組成が希土頒金
属、鉄、ボロンからなる超急冷法でつくられた、磁石粉
末とを機物樹脂からボンド型磁石は、従来の希土類コバ
ルト磁石に比べ高い磁気性能を有する等方性磁石を得ら
れた。これを用いた機器は、例えばモータの高出力化、
小型化、ロッドレスシリンダー、スピーカ等へ低コスト
、高性能を実現できるなど多大の効果をもたらす実用性
の高い材料である。
As described above, according to the present invention, a bond type magnet made of magnet powder and machine resin made by an ultra-quenching method whose basic composition is a rare earth arsenic metal, iron, and boron is different from a conventional rare earth cobalt magnet. An isotropic magnet with higher magnetic performance was obtained compared to the previous method. Devices using this include, for example, high output motors,
It is a highly practical material that brings many benefits such as miniaturization, low cost, and high performance for rodless cylinders, speakers, etc.

以  上 出願人 セイコーエブンン株式会社that's all Applicant: Seiko Even Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)希土類金属(R)、鉄(Fe)、ボロン(B)か
らなり超急冷法でつくられた磁石粉末を重量比で85%
以上、残部有機物樹脂結合材からなる樹脂ボンド(結合
)法で成形して製造されたことを特徴とする希土類磁石
(1) Magnet powder made of rare earth metal (R), iron (Fe), and boron (B) made using an ultra-quenching method with a weight ratio of 85%.
The above rare earth magnet is characterized in that it is manufactured by molding using a resin bonding method in which the remainder is an organic resin binder.
(2)前記鉄の一部をコバルト(Co)マンガン(Mn
)ニッケル(Ni)ニオブ(Nb)クロム(Cr)など
の遷移金属で置換した特許請求の範囲第1項に記載の希
土類磁石
(2) Part of the iron is cobalt (Co) manganese (Mn)
) Rare earth magnet according to claim 1 substituted with a transition metal such as nickel (Ni) niobium (Nb) chromium (Cr)
JP62261208A 1987-10-16 1987-10-16 Rare earth magnet Expired - Lifetime JP2619653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62261208A JP2619653B2 (en) 1987-10-16 1987-10-16 Rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62261208A JP2619653B2 (en) 1987-10-16 1987-10-16 Rare earth magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7255320A Division JPH08181011A (en) 1995-10-02 1995-10-02 Rare earth magnet

Publications (2)

Publication Number Publication Date
JPH01103806A true JPH01103806A (en) 1989-04-20
JP2619653B2 JP2619653B2 (en) 1997-06-11

Family

ID=17358644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62261208A Expired - Lifetime JP2619653B2 (en) 1987-10-16 1987-10-16 Rare earth magnet

Country Status (1)

Country Link
JP (1) JP2619653B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098883A1 (en) * 2011-01-20 2012-07-26 パナソニック株式会社 Bonded magnet and motor provided with same
CN105206370A (en) * 2015-10-12 2015-12-30 北京工业大学 High-temperature-resistant isotropy bonding NdFeB magnet and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211549A (en) * 1983-05-09 1984-11-30 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン Adhered rare earth element-iron magnet
JPS60254708A (en) * 1984-05-31 1985-12-16 Daido Steel Co Ltd Manufacture of permanent magnet
JPS63262802A (en) * 1987-04-21 1988-10-31 Nippon Steel Chem Co Ltd Fe-nd-b plastic magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211549A (en) * 1983-05-09 1984-11-30 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン Adhered rare earth element-iron magnet
JPS60254708A (en) * 1984-05-31 1985-12-16 Daido Steel Co Ltd Manufacture of permanent magnet
JPS63262802A (en) * 1987-04-21 1988-10-31 Nippon Steel Chem Co Ltd Fe-nd-b plastic magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098883A1 (en) * 2011-01-20 2012-07-26 パナソニック株式会社 Bonded magnet and motor provided with same
CN103329222A (en) * 2011-01-20 2013-09-25 松下电器产业株式会社 Bonded magnet and motor provided with same
CN105206370A (en) * 2015-10-12 2015-12-30 北京工业大学 High-temperature-resistant isotropy bonding NdFeB magnet and preparation method thereof

Also Published As

Publication number Publication date
JP2619653B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
US4601875A (en) Process for producing magnetic materials
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
DE69200130T2 (en) Magnetic material.
JPH06340902A (en) Production of sintered rare earth base permanent magnet
EP0249973A1 (en) Permanent magnetic material and method for producing the same
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
JPH0316761B2 (en)
US5536334A (en) Permanent magnet and a manufacturing method thereof
US3682714A (en) Sintered cobalt-rare earth intermetallic product and permanent magnets produced therefrom
JPH0551656B2 (en)
JP3391704B2 (en) Rare earth magnet
JPH01103806A (en) Rare-earth magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH023201A (en) Permanent magnet
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JPS62256411A (en) Permanent magnet with outstanding resistance to oxidation
JPH0535211B2 (en)
JPH044386B2 (en)
JPS6365742B2 (en)
JPH023210A (en) Permanent magnet
GB2069528A (en) Ferromagnetic Alloys
JPH0316764B2 (en)
JPH0151536B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11