JPH01100919A - Electron beam lithography apparatus - Google Patents

Electron beam lithography apparatus

Info

Publication number
JPH01100919A
JPH01100919A JP25730287A JP25730287A JPH01100919A JP H01100919 A JPH01100919 A JP H01100919A JP 25730287 A JP25730287 A JP 25730287A JP 25730287 A JP25730287 A JP 25730287A JP H01100919 A JPH01100919 A JP H01100919A
Authority
JP
Japan
Prior art keywords
electron
electron beam
aperture
aperture member
blanking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25730287A
Other languages
Japanese (ja)
Other versions
JP2618924B2 (en
Inventor
Fumiharu Yabunaka
藪中 文春
Eishin Murakami
村上 英信
Masashi Yasunaga
安永 政司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62257302A priority Critical patent/JP2618924B2/en
Publication of JPH01100919A publication Critical patent/JPH01100919A/en
Application granted granted Critical
Publication of JP2618924B2 publication Critical patent/JP2618924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To simplify a beam optical system and to make beam position accuracy in blanking gentle, by providing an aperture at the central axis of a conical aperture member, with an electron beam incident side as an apex, and covering the outer slant surface of the aperture member with a conductive reflecting electron cover. CONSTITUTION:An aperture 20 is provided at the central axis of a conical aperture member 21 with an electron-beam incident side as an apex. The outer slant surface of the aperture member is covered with a conductive reflecting electron cover 23 at a gap 23b. The aperture member and the refelcting electron cover are attached to a partitioning wall 26 between an electron gun chamber 24 and a machining chamber 25 through an insulator 22. An electron beam arresting device, which is formed with the outer slant surface of the aperture member and the reflecting electron cover, is arranged in the very close vicinity of the aperture, where the electron beam 2 passes during machining at the center of an optical axis. Therefore, an expanding lens system is not required and the optical system is simplified. Since the opening part of the electron beam arresting device is located in all around directions with the aperture as the center, the position accuracy of the projection of the beam in blanking becomes gentle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子ビーム露光による電子ビーム加工装置
に関し、とりわけ、ブランキングまたはアンブランキン
グされた電子ビームをそれぞれ非通過または通過させる
アパーチャ機構を備えた電子ビーム加工装置に関するも
のである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an electron beam processing apparatus using electron beam exposure, and in particular, an apparatus including an aperture mechanism that allows blanked or unblanked electron beams to pass or not pass through, respectively. This invention relates to an electron beam processing device.

〔従来の技術〕[Conventional technology]

第4図は、例えば特開昭50−18425号公報に示さ
れた従来の電子ビーム露光装置を示し、査用偏光系であ
る。ブランキング偏向系(7)はターゲット(0上に照
射される電子ビーム(2)をON・−0FFする。走査
用偏向系(6)、ブランキング偏向系(7)は電子計算
機(5)で制御される。ブランキングされた電子ビーム
(2a)を受ける電子ビーム捕集箱(8)Kは***(9
)が形成されている。
FIG. 4 shows a conventional electron beam exposure apparatus disclosed in, for example, Japanese Unexamined Patent Publication No. 50-18425, which has a scanning polarization system. The blanking deflection system (7) turns on and -0FF the electron beam (2) irradiated onto the target (0).The scanning deflection system (6) and the blanking deflection system (7) are operated by the electronic computer (5). The electron beam collection box (8) K that receives the blanked electron beam (2a) has a small hole (9).
) is formed.

(113)、(11)、(12)は三段拡大レンズであ
る。
(113), (11), and (12) are three-stage magnifying lenses.

以上の構成になる電子ビーム露光装置では、描画される
各パダーン間で、ブランキング偏向系(7)により、ビ
ームON−OFFが頻繁に行われる。しかし、ブランキ
ングされた電子ビーム(2a)を例えば簡単な金属板で
受けると、反射電子や2次電子が発生し、電子ビーム光
軸周辺の部品を汚染または帯電させて描画精度を低下さ
せる。また1発生した反射電子や2次電子の一部はブラ
ンキング中にターゲット(4)に達し、不必要な露光を
行vI÷ため描画精度をさらに低下させる。そこで、ブ
ランキング偏向系(7)で偏向された電子ビーム(2a
)を三段拡大レンズ(10)、(11)、(12)で光
軸から外へ大きく移動させ、比較的空間に余裕のある光
学レンズ系の外側に配置された電子ビーム捕集箱(8)
の***(9) K電子ビーム(2a)を照射させ、ブラ
ンキング時の照射の漏れを小さくしていた。
In the electron beam exposure apparatus having the above configuration, the beam is frequently turned on and off by the blanking deflection system (7) between each pattern to be written. However, if the blanked electron beam (2a) is received by a simple metal plate, for example, reflected electrons and secondary electrons are generated, contaminating or charging parts around the electron beam optical axis, and reducing drawing accuracy. In addition, some of the generated reflected electrons and secondary electrons reach the target (4) during blanking, resulting in unnecessary exposure and further deterioration of drawing accuracy. Therefore, the electron beam (2a) is deflected by the blanking deflection system (7).
) is moved largely outward from the optical axis using three-stage magnifying lenses (10), (11), and (12), and an electron beam collection box (8 )
The small hole (9) was used to irradiate the K electron beam (2a) to reduce leakage of irradiation during blanking.

〔発明が触法しようとする問題点〕[Issues that the invention attempts to violate]

従来の電子ビーム加工装置では、ブランキング機構が以
上のよ5に構成されているので、ビーム光学系が複雑、
高価になシ、また、拡大レンズを用いて***に正確に入
射させるために、陰極寿命や陰極交換に伴う集束点位置
の移動を随時補正することと、ブランキング電圧(スイ
ッチング速度を最優先する)の精度を上げることが必要
になるなどの問題点があった。
In conventional electron beam processing equipment, the blanking mechanism is configured as described above, so the beam optical system is complicated and
It is not expensive, and in order to accurately direct the incident light into the small hole using a magnifying lens, it is necessary to correct the cathode life and the shift of the focal point position due to cathode replacement, and to adjust the blanking voltage (switching speed is given top priority). ), there were problems such as the need to increase the accuracy of the results.

この発明は上記のような問題点を解消するためになされ
たもので、単純なビーム光学系に適用できるとともに、
ブランキング時のビーム位置精度が高く要求されない電
子ビーム捕集機能を有するアパーチャ機構を備えた電子
ビーム加工装置を得ることを目的とする。
This invention was made to solve the above problems, and can be applied to a simple beam optical system, and
It is an object of the present invention to obtain an electron beam processing device equipped with an aperture mechanism having an electron beam collection function that does not require high beam position accuracy during blanking.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電子ビーム加工装置は、アパーチャを電
子ビーム入射側を頂点とした円錐状アパーチャ部材の中
心軸に設け、アパーチャ部材の外側斜面を間隙をおいて
導電性の反射電子カバーでおおい、アパーチャ部材と反
射電子カバーは電子銃室と加工室との隔壁に絶縁物を介
して取付けられている。
In the electron beam processing apparatus according to the present invention, an aperture is provided on the central axis of a conical aperture member with the apex on the electron beam incident side, and the outer slope of the aperture member is covered with a conductive backscattered electron cover with a gap between the aperture and the aperture. The member and the backscattered electron cover are attached to the partition wall between the electron gun chamber and the processing chamber via an insulator.

〔作用〕[Effect]

この発明においては、アパーチャ部材の外側斜面ど反射
電子カバーで形成された電子ビーム捕集器を、光学軸中
心で加工中(アンブランキング時)に電子ビームが通過
するアパーチャの極近傍に配置したので、拡大レンズ系
を必要とせず、光学系が単純になり、また、電子ビーム
捕集器の開口部がアパーチャを中心とした全周方向にあ
るため。
In this invention, the electron beam collector formed by the reflective electron cover on the outer slope of the aperture member is placed very close to the aperture through which the electron beam passes during processing (during unblanking) at the center of the optical axis. , the optical system is simple without the need for a magnifying lens system, and the opening of the electron beam collector is located all around the aperture.

ブランキング時のビーム照射位置精度が緩やかである。Beam irradiation position accuracy during blanking is slow.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。第
1図において、頂点が電子ビームの入射側にある円錐状
の導電体でなるアパーチャ部材(21)に、中心軸に沿
う開口(20)が形成されている。アパーチャ部材(2
1)はセラミックのような絶縁物でなる絶縁支持体(2
2)により、″m電子銃室24)と加工室(26)との
隔[1(26)の開口部(20a) K支持板(27)
を介して支持されている。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, an aperture member (21) made of a conical conductor whose apex is on the incident side of the electron beam is formed with an opening (20) along the central axis. Aperture member (2
1) is an insulating support (2) made of an insulating material such as ceramic.
2), the distance between the electron gun chamber 24) and the processing chamber (26) [1 (26) opening (20a) K support plate (27)
is supported through.

アパーチャ部材(21)の円錐状部分な囲んで装着され
た導電性の反射電子カバー(2B )、には、中央部に
開口(28a)が形成されておシ、かつ、アパーチャ部
材(21)の円錐面との間に円錐環状の空隙(28b)
を形成している。反射電子カバー(2B)Kは、リード
線を介して検知器(28)が接続されている。また1反
射電子カバー(23)と隔壁(20)の段部(28b)
との間には絶縁リング(29)が介在している。
The conductive backscattered electron cover (2B) attached around the conical part of the aperture member (21) has an opening (28a) formed in the center thereof, and Conical annular gap (28b) between the conical surface
is formed. A detector (28) is connected to the backscattered electron cover (2B)K via a lead wire. In addition, the step part (28b) of the 1 reflected electron cover (23) and the partition wall (20)
An insulating ring (29) is interposed between the two.

アパーチャ部材(21)、絶縁支持体(22)、反射電
子カバー(23)、支持板(27)および絶縁リング(
29)により、アパーチャ機構(30)が形成されてい
る。
Aperture member (21), insulating support (22), backscattered electron cover (23), support plate (27) and insulating ring (
29) forms an aperture mechanism (30).

第2図は以上のアパーチャ機構(30)を内蔵した電子
ビーム加工装置であり、陰極(at)、陽極(32)、
第1の集束レンズ(33)、第2の集束レンズ(34)
、ターゲット(4)、電子銃室(24)を真空排気する
第1の真空排気装置(35)、加工室(26)を真空排
気する第2の真空排気装置(36)が図示のように配置
されている。
Figure 2 shows an electron beam processing device incorporating the above aperture mechanism (30), including a cathode (at), an anode (32),
First focusing lens (33), second focusing lens (34)
, a target (4), a first evacuation device (35) that evacuates the electron gun chamber (24), and a second evacuation device (36) that evacuates the processing chamber (26) are arranged as shown in the figure. has been done.

次に動作について説明する。第2図において。Next, the operation will be explained. In fig.

陰極(31)から発生した電子ビーム(2)は、陽極(
32)を通過し、第1の集束レンズ(33)および第2
の集束レンズ(34)で集束され、走査用偏向系(0)
で偏向されてターゲット(4) K照射される。
The electron beam (2) generated from the cathode (31) is transmitted to the anode (
32), the first focusing lens (33) and the second focusing lens (33).
is focused by the focusing lens (34) of the scanning deflection system (0).
The target (4) is then irradiated with K.

<W ここで、ターゲット  )上に照射される電子ビーム(
2)をON−OFFする°ためKは、プランキング用備
向系(7)とアパーチャ機構(30)が用いられる。つ
まり、ブランキング用偏向系(7)に電圧を印加して電
子ビーム(2)を偏向し、アパーチャ機構(30)の開
口を通過しないようにしてOFF動作を実現する。
<W Here, the electron beam (target ) is irradiated onto the electron beam (
2) In order to turn on and off, a planking system (7) and an aperture mechanism (30) are used. That is, the OFF operation is realized by applying a voltage to the blanking deflection system (7) to deflect the electron beam (2) so that it does not pass through the opening of the aperture mechanism (30).

第1図において、実線で示した電子ビーム(2)はアン
ブランキング時、破線で示した電子ビーム(2a)はブ
ランキング時の経路を示す。アンブランキング時には電
子ビーム(2)が7パ一チヤ部材(21)の開口(20
)を通過して所定の加工が行われる。ブランキング時に
は電子ビーム(2a)はアパーチャ部材(21)と反射
電子カバー(28)との間に形成された隙間(2(b)
に入射される。アパーチャ部材(21)と反射電子カバ
ー(23)との隙間(2!3a)は同軸状の円錐環状と
なっており、ブランキングされた電子ビーム(2a)が
その面に斜めに入射するため、2次電子や反射電子は隙
間(Zaa)にトラップされる。従って、ブランキング
中に2次電子や反射電子が開口(20)を通過して漏洩
する確率が極めて少なくなるので、例えば、電子ビーム
描画の場合、露光用レジストが2次電子や反射電子で不
要に露光されることが防止でき、描画精度を著しく向上
することができる。
In FIG. 1, the electron beam (2) shown by a solid line shows the path during unblanking, and the electron beam (2a) shown by a broken line shows the path during blanking. During unblanking, the electron beam (2)
), and predetermined processing is performed. During blanking, the electron beam (2a) is transmitted through the gap (2(b)) formed between the aperture member (21) and the reflected electron cover (28).
is incident on the The gap (2!3a) between the aperture member (21) and the backscattered electron cover (23) has a coaxial conical ring shape, and the blanked electron beam (2a) is obliquely incident on that surface. Secondary electrons and reflected electrons are trapped in the gap (Zaa). Therefore, the probability that secondary electrons and reflected electrons will pass through the aperture (20) and leak during blanking is extremely low, so for example, in the case of electron beam drawing, an exposure resist is unnecessary due to secondary electrons and reflected electrons. exposure to light can be prevented, and drawing accuracy can be significantly improved.

また、隙間(23a)でなる電子捕集器の電子ビーム入
射口が光軸に対して同心円状であるので、ブランキング
時のビーム照射位置に要求される精度は緩やかである。
Further, since the electron beam entrance of the electron collector formed by the gap (23a) is concentric with the optical axis, the precision required for the beam irradiation position during blanking is moderate.

さらに、ブランキング偏光系(7)による電子ビームの
偏向量もアパーチャ部材(21)の開口(20)である
***の径(数100μm以下)だけでよいので、ブラン
キング偏向系(7)を動作させるブランキング電圧を低
くできる。
Furthermore, since the amount of deflection of the electron beam by the blanking polarization system (7) is only the diameter of the small hole (several 100 μm or less) that is the opening (20) of the aperture member (21), the blanking deflection system (7) is operated. The blanking voltage can be lowered.

また、アパーチャ部材(21)と反射電子カバー(23
)は絶縁サボー) (22)および絶縁り/グ(29)
で絶縁されているので、リード線によシ検知器(28)
を接続することKより、ブランキングされた電子ビーム
(2a)の電流値を2次電子や反射電子発生による誤差
を極めて小さくして正確に測定するファラデーカップと
して使用することができる。その結果、ターゲット(4
)上に照射される電子ビーム電流を、加工室(26)に
特別に電子ビーム電流測定器を設けることなく随時正確
に測定することができる。ターゲット(4)上に照射さ
れる電子ビーム電流は陰極(31)の絶縁部のリーク電
流の変化や陽極(32)の通過率によ9変化し、電子ビ
ームを引き出す加速電源の電流では正確に測定できない
ので、上記のファラデーカップによる測定は、ターゲッ
ト(4)への電子ビーム照射量の制御に極めて有効であ
る。
In addition, an aperture member (21) and a backscattered electron cover (23) are also included.
) is insulation sabo) (22) and insulation/g (29)
Detector (28) is insulated with lead wires.
By connecting K, the current value of the blanked electron beam (2a) can be used as a Faraday cup for accurately measuring the current value of the blanked electron beam (2a) with extremely small errors due to the generation of secondary electrons and reflected electrons. As a result, the target (4
) can be accurately measured at any time without providing a special electron beam current measuring device in the processing chamber (26). The electron beam current irradiated onto the target (4) varies depending on changes in the leakage current of the insulating part of the cathode (31) and the passage rate of the anode (32). Therefore, the measurement using the Faraday cup described above is extremely effective in controlling the amount of electron beam irradiation to the target (4).

また、アパーチャ部材(21)の開口(20)の近傍に
電子捕集器を設けたので、ビーム集束点の測定を容易に
行うことができる。つまり1m電子ビーム2)を第1の
集束レンズ(33)でアパーチャ部材(21)の開口(
20)付近に集束し、ブランキング偏向系(7)あるい
は他の図示しない偏向手段で開口(20)を横切るよう
に電子ビーム(2)を偏向走査すれば、検知器(28)
によシ第3図(a)に示すような信号を得ることができ
、第1の集束レンズ(33)で第3図(b)に示すよう
に信号が最も急峻に変化するように調整すると、電子ビ
ーム(2)の第1の集束レンズ(33)による集束位置
を開口(20)の位置に正確に一致させることができる
。従って。
Furthermore, since the electron collector is provided near the opening (20) of the aperture member (21), the beam focal point can be easily measured. In other words, the 1 m electron beam 2) is focused by the first focusing lens (33) through the opening (2) of the aperture member (21).
20) If the electron beam (2) is focused nearby and deflected and scanned across the aperture (20) using a blanking deflection system (7) or other deflection means (not shown), the detector (28)
By doing so, it is possible to obtain a signal as shown in Fig. 3(a), and by adjusting the first focusing lens (33) so that the signal changes most steeply as shown in Fig. 3(b). , the focusing position of the electron beam (2) by the first focusing lens (33) can be made to accurately match the position of the aperture (20). Therefore.

加工室(25)に特別な測定装置を設けることなく。without installing special measuring equipment in the processing chamber (25).

陰極寿命等に起因する集束点の変化を随時確認できる。Changes in the focal point due to cathode life etc. can be checked at any time.

さらに、アパーチャ部材(21)の開口(2υ)の近傍
に電子捕集器を設け、小形化したので、アパーチャ機構
(30)を電子銃室(24)と加工室(25)の隔壁(
26)に取付けることKより、アパーチャ機構(30)
に真空差圧機能を併せ持たせることも容易に達成できる
Furthermore, an electron collector is provided near the opening (2υ) of the aperture member (21) to reduce the size, so the aperture mechanism (30) can be connected to the partition wall (2υ) between the electron gun chamber (24) and the processing chamber (25).
26), the aperture mechanism (30)
It is also easy to add a vacuum differential pressure function to the system.

なお、上記実施例では電子ビーム加工装置の場合につい
て説明したが、ターゲットに照射するビーム1!流をブ
ランキング装置でON−OFFするイオンビーム加工装
飲であってもよく、上記実施例と同様の効果を奏する。
In the above embodiment, the case of an electron beam processing apparatus was explained, but the beam 1! which irradiates the target! An ion beam processing device in which the flow is turned on and off using a blanking device may also be used, and the same effects as in the above embodiments can be achieved.

〔発明の効果゛〕[Effects of the invention]

以上のように、この発明によれば、アパーチャを電子ビ
ーム入射側を頂点とした円錐状のアバー千ヤ部材の中心
軸に設け、アパーチャ部材の外側斜面を導電性の反射電
子カバーでおおうことKよシ、アパーチャの近傍に電子
捕集器を形成したので、ビーム光学系が単純になり、ブ
ランキング時のビーム位置精度が緩やかになるという効
果がある。また、上記電子捕集器は絶縁されているため
、近傍のアパーチャと組み合わせることによυ、ビーム
集束点を測定することができ、さらに、アパーチャと電
子捕集器が一体小形化されているため、アパーチャ開口
部に真空差圧機能を持たせることも容易にできる効果が
ある。
As described above, according to the present invention, the aperture is provided at the central axis of the conical aperture member with the apex on the electron beam incident side, and the outer slope of the aperture member is covered with the conductive backscattered electron cover. Additionally, since the electron collector is formed near the aperture, the beam optical system is simplified, and the beam position accuracy during blanking is reduced. In addition, since the electron collector is insulated, it is possible to measure the beam focal point by combining it with a nearby aperture.Furthermore, since the aperture and electron collector are integrated and compact, This has the advantage that the aperture opening can be easily provided with a vacuum differential pressure function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の要部縦断面図、第2図は
当該実施例の概略縦断面図、第8図は当該実施例による
アパーチャ機構をビーム集束点位置の測定に応用した場
合の動作例を示す特性線図、第4図は従来の電子ビーム
露光装置の概略縦断面図である。 (2)、 (2a)・・電子ビーム、(4)・・ターゲ
ット(被加工物)、(7)・・ブランキング用偏向系、
(2υ)II会開開口(21)・・アパーチャ部材、(
22)・・絶縁支持体、(28)・・反射電子カバー、
(23b)・壷間隙、  (24)・・電子銃室、(2
5)・・加工室、(28)・・隔壁、(29)・・絶縁
リング。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人 曾 我 道 照・°°1 方1図 心2図 4: ターアーノトくネ皮刀01)〃う7:ブラ、1/
キング用イ扁向爪 30:了パーh棟・構 心3図 (a) (b) 偏uI信号 心4図
Fig. 1 is a vertical sectional view of a main part of an embodiment of the present invention, Fig. 2 is a schematic longitudinal sectional view of the embodiment, and Fig. 8 is an application of the aperture mechanism according to the embodiment to measurement of the beam focal point position. FIG. 4 is a schematic longitudinal sectional view of a conventional electron beam exposure apparatus. (2), (2a)...Electron beam, (4)...Target (workpiece), (7)...Blanking deflection system,
(2υ) II opening aperture (21)...Aperture member, (
22)... Insulating support, (28)... Backscattered electron cover,
(23b)・Pot gap, (24)・Electron gun chamber, (2
5)...Processing chamber, (28)...Partition wall, (29)...Insulating ring. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Zeng Wa Do Teru・°°1 Direction 1 Centroid 2 Diagram 4: Taaano Tokunehide Sword 01)〃7: Bra, 1/
A flat claw 30 for king: Right par h building/center 3 diagram (a) (b) Biased uI signal center diagram 4

Claims (1)

【特許請求の範囲】[Claims]  被加工物上に照射される電子ビームをON−OFFす
るブランキング用偏向系と、前記電子ビームの入射側を
頂点とする円錐状をなし中心軸に沿つて非ブランキング
時に前記電子ビームが通過する開口が形成されているア
パーチャ部材と、このアパーチャ部材を囲んで円錐環状
の隙間でなる電子捕集器を形成している反射電子カバー
と、前記アパーチャ部材および前記反射電子カバーを電
子銃室と加工室との隔壁に絶縁支持している絶縁部材と
を備えてなる電子ビーム加工装置。
a blanking deflection system that turns on and off the electron beam irradiated onto the workpiece; and a blanking deflection system that has a conical shape with the apex on the incident side of the electron beam, and the electron beam passes along the central axis during non-blanking. an aperture member having an opening formed therein, a backscattered electron cover surrounding the aperture member and forming an electron collector formed of a conical annular gap, and the aperture member and the backscattered electron cover forming an electron gun chamber. An electron beam processing device comprising an insulating member that is insulated and supported on a partition wall between the processing chamber and the processing chamber.
JP62257302A 1987-10-14 1987-10-14 Electron beam processing equipment Expired - Lifetime JP2618924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257302A JP2618924B2 (en) 1987-10-14 1987-10-14 Electron beam processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257302A JP2618924B2 (en) 1987-10-14 1987-10-14 Electron beam processing equipment

Publications (2)

Publication Number Publication Date
JPH01100919A true JPH01100919A (en) 1989-04-19
JP2618924B2 JP2618924B2 (en) 1997-06-11

Family

ID=17304476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257302A Expired - Lifetime JP2618924B2 (en) 1987-10-14 1987-10-14 Electron beam processing equipment

Country Status (1)

Country Link
JP (1) JP2618924B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050314A (en) * 2000-08-01 2002-02-15 Hitachi Ltd Charged particle beam device
JP2006210457A (en) * 2005-01-26 2006-08-10 Canon Inc Charged beam exposure device
JP2008016209A (en) * 2006-07-03 2008-01-24 Hitachi High-Technologies Corp Focused ion beam device
JP2009010078A (en) * 2007-06-27 2009-01-15 Nuflare Technology Inc Electron beam drawing device and current density adjustment method for electron beam
JP2013197467A (en) * 2012-03-22 2013-09-30 Nuflare Technology Inc Multi-charged particle beam lithography apparatus and multi-charged particle beam lithography method
EP3879557A1 (en) * 2020-03-09 2021-09-15 ASML Netherlands B.V. Aperture body, flood column and charged particle tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619856A (en) * 1979-07-25 1981-02-24 Hitachi Ltd Electron-ray device
JPS57152128A (en) * 1981-03-13 1982-09-20 Hitachi Ltd Electron beam drawing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619856A (en) * 1979-07-25 1981-02-24 Hitachi Ltd Electron-ray device
JPS57152128A (en) * 1981-03-13 1982-09-20 Hitachi Ltd Electron beam drawing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050314A (en) * 2000-08-01 2002-02-15 Hitachi Ltd Charged particle beam device
JP2006210457A (en) * 2005-01-26 2006-08-10 Canon Inc Charged beam exposure device
JP4634161B2 (en) * 2005-01-26 2011-02-16 キヤノン株式会社 Charged beam exposure apparatus and device manufacturing method
JP2008016209A (en) * 2006-07-03 2008-01-24 Hitachi High-Technologies Corp Focused ion beam device
JP2009010078A (en) * 2007-06-27 2009-01-15 Nuflare Technology Inc Electron beam drawing device and current density adjustment method for electron beam
JP4676461B2 (en) * 2007-06-27 2011-04-27 株式会社ニューフレアテクノロジー Electron beam drawing apparatus and electron beam current density adjusting method
JP2013197467A (en) * 2012-03-22 2013-09-30 Nuflare Technology Inc Multi-charged particle beam lithography apparatus and multi-charged particle beam lithography method
EP3879557A1 (en) * 2020-03-09 2021-09-15 ASML Netherlands B.V. Aperture body, flood column and charged particle tool

Also Published As

Publication number Publication date
JP2618924B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US5872358A (en) Scanning electron microscope
JP4236742B2 (en) Scanning electron microscope
EP1028452B1 (en) Scanning electron microscope
JPH09171791A (en) Scanning type electron microscope
JP2001513258A (en) SEM equipped with electrostatic objective lens and electric scanning device
US7067820B2 (en) Particle-optical apparatus with a permanent-magnetic lens and an electrostatic lens
JPH071681B2 (en) Charged particle beam device
US4728790A (en) Low-abberation spectrometer objective with high secondary electron acceptance
US3801792A (en) Electron beam apparatus
JP3966350B2 (en) Scanning electron microscope
JPH0286036A (en) Ion micro-analyzer
US5591971A (en) Shielding device for improving measurement accuracy and speed in scanning electron microscopy
US6781123B2 (en) Charged particle beam control element, method of fabricating charged particle beam control element, and charged particle beam apparatus
JP4006946B2 (en) Scanning electron microscope
JPH01100919A (en) Electron beam lithography apparatus
US6376839B1 (en) SEM for transmission operation with a location-sensitive detector
JP3376793B2 (en) Scanning electron microscope
US3500042A (en) Ionic microanalyzer which includes a convex mirror as an ion energy filter
JPH01220352A (en) Scanning electron microscope and its analogous device
US4097739A (en) Beam deflection and focusing system for a scanning corpuscular-beam microscope
JP4179369B2 (en) Scanning electron microscope
JP4179390B2 (en) Scanning electron microscope
JP3494152B2 (en) Scanning electron microscope
JP2005063983A (en) Scanning electron microscope
JP3992021B2 (en) Scanning electron microscope