JP7510656B1 - Scanning type vehicle-mounted imaging device - Google Patents

Scanning type vehicle-mounted imaging device Download PDF

Info

Publication number
JP7510656B1
JP7510656B1 JP2024059829A JP2024059829A JP7510656B1 JP 7510656 B1 JP7510656 B1 JP 7510656B1 JP 2024059829 A JP2024059829 A JP 2024059829A JP 2024059829 A JP2024059829 A JP 2024059829A JP 7510656 B1 JP7510656 B1 JP 7510656B1
Authority
JP
Japan
Prior art keywords
visible light
angle limiting
imaging device
limiting section
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024059829A
Other languages
Japanese (ja)
Inventor
義英 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2024059829A priority Critical patent/JP7510656B1/en
Application granted granted Critical
Publication of JP7510656B1 publication Critical patent/JP7510656B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

【課題】本発明は、受光面に対して極力垂直方向の可視光を抽出するための可視光入射角制限部を備えた撮像素子を複数以上異なる角度で車両に配置することで、物体の接近を光学的に検知することに特化し、従来の自動運転車用の撮像装置やセンサーを補完することを特徴とし、車両衝突時の衝撃吸収をする役割をもたせた撮像装置に関するものである。【解決手段】入射する可視光において、受光面に対して垂直方向以外の指向性を低減するための仕切りを多数設け、前記可視光入射角制限部の後方に撮像素子もしくは光センサーを備えた撮像装置を複数以上、且つ異なる角度で車両に配置し、車両衝突時の衝撃吸収することを特徴とする。【選択図】図1[Problem] The present invention relates to an imaging device that is specialized in optically detecting the approach of an object by arranging multiple or more imaging elements with a visible light incident angle limiting unit for extracting visible light in a direction as perpendicular as possible to the light receiving surface at different angles on the vehicle, complementing conventional imaging devices and sensors for self-driving cars, and absorbing impacts in the event of a vehicle collision. [Solution] A large number of partitions are provided to reduce directivity of incident visible light in directions other than perpendicular to the light receiving surface, and multiple or more imaging devices with imaging elements or optical sensors are arranged on the vehicle at different angles behind the visible light incident angle limiting unit, absorbing impacts in the event of a vehicle collision. [Selected Figure] Figure 1

Description

本発明は、車両に受光面に対して垂直方向の可視光のみ透過する可視光入射角制限部を備えたイメージセンサーを複数以上異なる角度で配置することを特徴とする撮像装置に関するものである。 The present invention relates to an imaging device that is characterized by arranging multiple or more image sensors at different angles on a vehicle, each of which has a visible light incident angle limiting section that transmits only visible light perpendicular to the light receiving surface.

現在、車両の自動運転を行うため、主にデジタル映像で周囲の状態を把握しているが、小さな撮像素子にレンズで光を集めて撮像する構造上、レンズの汚れで映像に大きな欠損が生じる欠点がある。また、デジタルカメラの撮像素子はダイナミックレンジに限界があり、明暗差が大きいと白飛び、黒潰れという現象が発生し映像が正確に取得できない。映像が正確に取得できないと事故につながる可能性が高く危険である。 Currently, in order to enable autonomous driving of vehicles, the surrounding conditions are mainly understood through digital images. However, due to the structure of the system, which collects light through a lens onto a small image sensor, a drawback is that a dirty lens can cause significant defects in the image. In addition, the image sensor in a digital camera has a limited dynamic range, and if there is a large difference between light and dark, phenomena such as white blowout and black crush occur, making it impossible to capture an accurate image. If images cannot be captured accurately, there is a high possibility of an accident occurring, which is dangerous.

特開2009-071676Patent Publication 2009-071676 特開2009-080846Patent Publication 2009-080846 特開2009-258632JP2009-258632 特開2022-175162Patent Publication 2022-175162 特開2023-036549Patent Publication 2023-036549 特開平07-264360JP 07-264360 特開平10-107973JP 10-107973 A CN-A-102177719CN-A-102177719 CN-U-212278293CN-U-212278293 KR-A-150140251KR-A-150140251 KR-A-220104634KR-A-220104634 特開平11-078737JP 11-078737 A 国際公開第2006/035510International Publication No. 2006/035510 特開2012-194055Patent Publication 2012-194055

従来は車載用デジタルカメラの欠点を補完するために、LiDARやミリ派レーダーなどの技術を併用していた。しかし、LiDARやミリ派レーダーは物体からの反射を利用する性質上、対象の形状や素材によって情報の取得が出来ない可能性がある。本発明は、低解像度且つ、大きな撮像装置により、光学的に且つ、取得する画像範囲をセンターラインの認識や、物体接近の検知に絞り込むことで、従来の車載用デジタルカメラを補完し、自動運転車両の事故の可能性を低減させるものである。 Conventionally, technologies such as LiDAR and millimeter wave radar have been used in combination to compensate for the shortcomings of in-vehicle digital cameras. However, because LiDAR and millimeter wave radar use the reflection from objects, there is a possibility that information cannot be acquired depending on the shape and material of the object. This invention complements conventional in-vehicle digital cameras by using a low-resolution, large imaging device to optically capture images and narrow down the range of images acquired to centerline recognition and detection of approaching objects, thereby reducing the possibility of accidents involving self-driving vehicles.

上記目的を達成するために、スキャン式車載用撮像装置において請求項1に係るものは、入射する可視光において、受光面に対して垂直方向以外の指向性を低減するための仕切りを多数設けた可視光入射角制限部を備え、前記可視光入射角制限部の後方に撮像素子もしくは光センサーを備え、車両衝突時の衝撃吸収をする役割をもたせることを特徴とするものである。 To achieve the above object, the scanning type vehicle-mounted imaging device according to claim 1 is characterized in that it has a visible light incident angle limiting section with multiple partitions to reduce the directivity of the incident visible light in directions other than perpendicular to the light receiving surface, and has an imaging element or optical sensor behind the visible light incident angle limiting section, which serves to absorb shock in the event of a vehicle collision.

本発明は、以上説明したように構成されており、以下に記載されるような効果を有する。 請求項1に係る仕組みを用いた場合、入射する可視光において、受光面に対して垂直方向以外の指向性を低減するための仕切りを多数設けた可視光入射角制限部を備える。また、前記可視光入射角制限部の後方に撮像素子もしくは光センサーを備えた撮像装置を車両に配置する。本発明の撮像装置は撮影範囲が狭いため、本発明の撮像装置を複数以上、且つ異なる角度で取り付けることで安全性をより向上することができる。可視光の振幅は光の強さに比例して変化するため仕切りによって完全な垂直方向の光のみを抽出するのは不可能であり、受光面に対して垂直方向以外の指向性を低減すると表記した。 The present invention is configured as described above, and has the effects described below. When the mechanism according to claim 1 is used, a visible light incident angle limiting section is provided with a number of partitions for reducing directivity in incident visible light in directions other than perpendicular to the light receiving surface. Also, an imaging device equipped with an image sensor or a photosensor is disposed on the vehicle behind the visible light incident angle limiting section. Since the imaging device of the present invention has a narrow shooting range, safety can be further improved by mounting multiple or more imaging devices of the present invention at different angles. Since the amplitude of visible light changes in proportion to the light intensity, it is impossible to extract only light in a completely vertical direction using partitions, and it is described as reducing directivity in directions other than perpendicular to the light receiving surface.

受光面に対して極力垂直方向の可視光を抽出するために、一方向に貫通する多数の穴で構成される構造体を用いてもよい。穴のサイズを小さく奥行を長くすることで、入射する可視光において、より垂直方向以外の指向性を低減でき、また、穴の中を黒くすることで垂直方向以外から入射する可視光を極力吸収することができる。また、取得したい可視光の振幅と同程度の幅を持つ多数のスリットが入ったフィルムを前後に配置し、後ろに配置した前記フィルムの透過軸の方向を前に配置した前記フィルムの透過軸の方向に対して直交方向にすることで垂直方向の可視光のみ透過させてもよい。その場合、どちらか一方のフィルムを偏光フィルムにしてもかまわない。これらのように受光面に対して極力垂直方向の可視光を抽出させる部位を便宜上、可視光入射角制限部と呼称する。また、受光面とは可視光入射角制限部前面を指すが、可視光入射角制限部仕切りと穴で構成される場合、受光面は前記穴も含む仮想の面とする。 In order to extract visible light as perpendicular as possible to the light receiving surface, a structure consisting of many holes penetrating in one direction may be used. By making the size of the holes small and the depth long, the directivity of the incident visible light in directions other than the vertical direction can be reduced, and by making the inside of the holes black, visible light incident from directions other than the vertical direction can be absorbed as much as possible. In addition, a film with many slits having a width equivalent to the amplitude of the visible light to be obtained may be arranged in front and behind, and the direction of the transmission axis of the film arranged in the back may be perpendicular to the direction of the transmission axis of the film arranged in the front, thereby transmitting only visible light in the vertical direction. In that case, one of the films may be a polarizing film. For convenience, the part that extracts visible light as perpendicular as possible to the light receiving surface in this way is called the visible light incident angle limiting part. In addition, the light receiving surface refers to the front surface of the visible light incident angle limiting part, but when the light receiving surface is composed of the visible light incident angle limiting part partition and holes, the light receiving surface is considered to be a virtual surface including the holes.

極力垂直方向以外の指向性を低減させた可視光で撮像した場合、撮像範囲は遠くに行ってもさほど変化せず、撮像したい範囲と同じぐらいの大きさの撮像素子が必要になる。デジタルカメラで使われている撮像素子をそのまま使うのであれば非常に高価になるが、本発明の撮像装置では、既存の車載カメラやセンサーの補助として障害物の接近やセンターラインの検出ができればよいので、5mm~1cmに1画素程度の密度で十分と考えられる。5mmに1画素とした場合、横1m縦5cmの撮像素子でも画素数は2千画素である。昨今の撮像素子の画素数は約1センチ角で1000万画素を超えるものもあるが、本発明では、1画素を構成する光センサーを5mm~1cm角に1つずつ取り付けたような物でもよい。前述したように本発明の撮像に必要な解像度は極めて低いため可視光入射角制限部の可視光を通す穴のサイズは1画素が受け持つサイズでも機能する。 When imaging with visible light that reduces directivity in directions other than the vertical direction as much as possible, the imaging range does not change much even if it goes far away, so an imaging element of about the same size as the range to be imaged is required. If the imaging element used in digital cameras were used as is, it would be very expensive, but in the imaging device of the present invention, it is sufficient to detect approaching obstacles and center lines as an auxiliary to existing vehicle-mounted cameras and sensors, so a density of about one pixel per 5 mm to 1 cm is considered sufficient. If one pixel is per 5 mm, the number of pixels in an imaging element that is 1 m wide and 5 cm long is 2,000. The number of pixels in some imaging elements today is about 1 cm square and exceeds 10 million pixels, but in the present invention, it is also possible to install one optical sensor that makes up one pixel every 5 mm to 1 cm square. As mentioned above, the resolution required for imaging in the present invention is extremely low, so the size of the hole through which visible light passes in the visible light incident angle limiting part can function even if it is the size of one pixel.

また、画素数が少ないので情報量も少なくなり、AIなどによる映像解析の処理速度が速くなる。つまり、低性能な画像処理チップでも十分な処理速度が得られるので、コストや消費電力も抑えられる。その他、撮像装置が大きいことは安全性の確保にも繋がる。例えば既存のカメラの場合、レンズで光を集約する構造上、レンズに虫が一匹付いただけでも画像の大部分が潰れてしまうが、本発明においては、虫や汚れにより撮像素子の20%程度が受光ができなくてもAIの画像認識にそれほどの障害は起きない。もし、光量が足りない場合には自動でヘッドライトを点灯させる仕組みを設けてもよい。その場合はライトの明るさを必要に応じて自動で調節できるようにできると尚よい。 In addition, because the number of pixels is small, the amount of information is also small, and the processing speed of image analysis by AI and the like is faster. In other words, even a low-performance image processing chip can achieve sufficient processing speed, so costs and power consumption are also reduced. In addition, a large imaging device also ensures safety. For example, in the case of existing cameras, due to the structure in which light is concentrated by the lens, even if a single insect gets on the lens, most of the image is crushed. However, in this invention, even if about 20% of the imaging element cannot receive light due to insects or dirt, this does not cause much of a hindrance to AI image recognition. If there is not enough light, a mechanism can be provided to automatically turn on the headlights. In that case, it would be even better if the brightness of the lights could be automatically adjusted as needed.

本発明の撮像装置を車両の前面に配置する場合は垂直より下に傾けて配置した方がよい。仮に垂直に設置した場合、被写体の左右の動きを検知できても前後の動きの検知が難しい。しかし、垂直より下に傾けて配置すれば、被写体が遠ざかれば撮像装置では上に移動し、被写体が近寄れば撮像装置では下に移動するので被写体の接近を検知できるし道路もスキャンできる。撮像装置を垂直より斜め上に傾けても被写体の接近を検知できるが、逆光が入りやすいので下向きに傾けた方がよい。 When placing the imaging device of the present invention on the front of a vehicle, it is better to place it tilted downward from vertical. If it is installed vertically, it may be possible to detect left and right movement of the subject, but it is difficult to detect forward and backward movement. However, if it is installed tilted downward from vertical, the imaging device will move upward if the subject moves away, and will move downward if the subject approaches, making it possible to detect the approach of the subject and scan the road. The imaging device can also be tilted diagonally upward from vertical to detect the approach of the subject, but it is better to tilt it downward as it is more likely to be backlit.

可視光入射角制限部によって可能な限り直交方向から入って来た可視光を撮像素子に受光させるようにすることにより白飛びという現象をかなり抑えることができる。また、直交方向から強い光が入って来た撮像装置は白飛びが発生するが、その場合は異なる角度で配置された他の撮像装置で補完する。また、撮像装置の角度を自動で動かせるようにしてもよい。また、可視光の振幅は光の強さに比例して変化するため可視光入射角制限部にナノスリットを用いて白飛びが起きるほどの振幅の可視光をカットしてもよい。 The phenomenon of whiteout can be significantly suppressed by having the image sensor receive as much visible light coming from an orthogonal direction as possible using the visible light incident angle limiting section. Also, whiteout occurs in an image sensor where strong light comes from an orthogonal direction, but in that case, it can be compensated for by using another image sensor placed at a different angle. The angle of the image sensor may also be made to move automatically. Also, because the amplitude of visible light changes in proportion to the light intensity, nanoslits may be used in the visible light incident angle limiting section to cut visible light with an amplitude large enough to cause whiteout.

可視光入射角制限部と撮像素子の間に、格子状もしくは六角形状もしくは円形状に区切られた構造体を設け、格子状もしくは六角形状もしくは円形状に区切られた前記構造体の各穴の中にレンズを設け、レンズの焦点方向に撮像素子を設けることで、撮像素子を小さくすることができる。また、撮像素子の代わりにや光センサーを用いてもよい。 The image sensor can be made smaller by providing a structure divided into a lattice, hexagon, or circle between the visible light incident angle limiting section and the image sensor, providing a lens in each hole of the structure divided into a lattice, hexagon, or circle, and providing the image sensor in the focal direction of the lens. Also, a light sensor may be used instead of the image sensor.

本発明の撮像装置は形状的に大きくなるので、重量増による燃費の悪化や配置する場所の問題が発生する。だが、衝突時の衝撃吸収をする役割をもたせることにより既存のバンパーとの置き換えが可能となり、重量と配置の問題を解決できる。 The imaging device of the present invention is large in size, which increases its weight, leading to poor fuel economy and problems with the location of its installation. However, by making it capable of absorbing shock during a collision, it can be used in place of an existing bumper, solving the problems of weight and installation.

特許文献12の特開平11-078737と特許文献13の国際公開第2006/035510で用いられているカメラは広範囲を撮影できるものであるので、偏光板は迷光を防ぐのが目的である。仮に両文献が、当発明で用いる受光面に対して垂直方向の可視光のみ透過する可視光入射角制限部を備えた場合、特許文献12の特開平11-078737においては運転手がフロントガラスから外を見ることが出来なくなり危険であるし、カメラは車外の映像を移すことはできない。また、特許文献13の国際公開第2006/035510の特許はカメラとレーダーを1つのユニットにまとめたものであり、カメラ自体は通常の車載カメラである。よって特許文献13で当発明の可視光入射角制限部を用いた場合、レンズ径の範囲しかできなくなるので用をなさない。当発明で用いる受光面に対して垂直方向の可視光のみ透過する可視光入射角制限部を備えた場合、可視光入射角制限部の大きさまでの映像しか取得できないため、従来の車載カメラの補助としての用途にならざる得ないのだが、特許文献12の特開平11-078737と特許文献13の国際公開第2006/035510にはその点に関する記述がないので、当発明とは異なるものである。 The cameras used in Patent Document 12, JP Patent Publication No. 11-078737 and Patent Document 13, WO 2006/035510, can capture a wide range, so the polarizing plate is intended to prevent stray light. If both documents were equipped with a visible light incident angle limiting section that transmits only visible light perpendicular to the light receiving surface used in the present invention, in Patent Document 12, JP Patent Publication No. 11-078737, the driver would not be able to see outside through the windshield, which would be dangerous, and the camera would not be able to capture images outside the vehicle. In addition, Patent Document 13, WO 2006/035510, combines a camera and radar into a single unit, and the camera itself is a normal vehicle-mounted camera. Therefore, if Patent Document 13 were to use the visible light incident angle limiting section of the present invention, it would be useless because it would only be possible to capture the range of the lens diameter. If the present invention is equipped with a visible light incident angle limiting section that transmits only visible light perpendicular to the light receiving surface, it will only be able to capture images up to the size of the visible light incident angle limiting section, so it will have to be used as an auxiliary to conventional vehicle-mounted cameras. However, Patent Document 12 (JP Patent Publication No. 11-078737) and Patent Document 13 (WO 2006/035510) do not mention this point, and therefore are different from the present invention.

発明を実施するための形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the invention. 実施例1を示す横面図である。FIG. 2 is a side view showing the first embodiment. 実施例1を示す横面図である。FIG. 2 is a side view showing the first embodiment. 実施例2を示す横面図である。FIG. 11 is a side view showing the second embodiment. 実施例3を示す上面図である。FIG. 11 is a top view showing a third embodiment. 実施例4を示す斜視図である。FIG. 13 is a perspective view showing a fourth embodiment. 実施例5を示す断面図である。FIG. 11 is a cross-sectional view showing Example 5. 実施例6を示す斜視図である。FIG. 13 is a perspective view showing a sixth embodiment. 実施例6を示す斜視図である。FIG. 13 is a perspective view showing a sixth embodiment. 実施例7を示す横面図である。FIG. 13 is a cross-sectional view showing Example 7. 実施例8を示す断面図である。FIG. 13 is a cross-sectional view showing Example 8. 実施例9を示す斜視図である。FIG. 13 is a perspective view showing a ninth embodiment.

本発明を実施するための形態を図1に基づいて説明する。図1は車両(5)の前面に多数のスキャン式車載用撮像装置を備えた斜視図である。撮像装置の可視光入射角制限部(1a)は垂直よりやや下方向に傾いている。撮像装置の可視光入射角制限部(1b)は撮像装置の可視光入射角制限部(1a)より下方向に傾いている。撮像装置の可視光入射角制限部(1c)は撮像装置の可視光入射角制限部(1b)より下方向に傾いている。車両の衝突時にはこれらのスキャン式車載用撮像装置が壊れることで衝撃を吸収する。 An embodiment of the present invention will be described with reference to FIG. 1. FIG. 1 is a perspective view of a vehicle (5) equipped with multiple scanning-type vehicle-mounted imaging devices on the front side. The visible light incident angle limiting portion (1a) of the imaging device is tilted slightly downward from the vertical. The visible light incident angle limiting portion (1b) of the imaging device is tilted downward from the visible light incident angle limiting portion (1a) of the imaging device. The visible light incident angle limiting portion (1c) of the imaging device is tilted downward from the visible light incident angle limiting portion (1b) of the imaging device. In the event of a vehicle collision, these scanning-type vehicle-mounted imaging devices break to absorb the impact.

撮像装置の可視光入射角制限部(2c)は正面よりやや右方向に傾いている。撮像装置の可視光入射角制限部(2b)は撮像装置の可視光入射角制限部(2c)より右方向に傾いている。撮像装置の可視光入射角制限部(2a)は撮像装置の可視光入射角制限部(2b)より右方向に傾いている。 The visible light incidence angle limiting section (2c) of the imaging device is tilted slightly to the right from the front. The visible light incidence angle limiting section (2b) of the imaging device is tilted to the right more than the visible light incidence angle limiting section (2c) of the imaging device. The visible light incidence angle limiting section (2a) of the imaging device is tilted to the right more than the visible light incidence angle limiting section (2b) of the imaging device.

撮像装置の可視光入射角制限部(2d)は正面よりやや左方向に傾いている。撮像装置の可視光入射角制限部(2e)は撮像装置の可視光入射角制限部(2d)より左方向に傾いている。撮像装置の可視光入射角制限部(2f)は撮像装置の可視光入射角制限部(2e)より左方向に傾いている。 The visible light incidence angle limiting section (2d) of the imaging device is tilted slightly to the left from the front. The visible light incidence angle limiting section (2e) of the imaging device is tilted further to the left than the visible light incidence angle limiting section (2d) of the imaging device. The visible light incidence angle limiting section (2f) of the imaging device is tilted further to the left than the visible light incidence angle limiting section (2e) of the imaging device.

実施例1を図2、図3を基に説明する。図2は正面に取り付けられたスキャン式車載用撮像装置の撮像範囲を示す横面図である。撮像装置の可視光入射角制限部(1a~1c)は車両(5a)の前方に設置されている。撮像装置の可視光入射角制限部(1a)は垂直よりやや下方向に傾いている。撮像装置の可視光入射角制限部(1b)は撮像装置の可視光入射角制限部(1a)より下方向に傾いている。撮像装置の可視光入射角制限部(1c)は撮像装置の可視光入射角制限部(1b)より下方向に傾いている。撮像範囲(3a)は撮像装置の可視光入射角制限部(1a)の上下の範囲から直交方向に伸びて車両(5b)の後方の一部を捉えている。撮像範囲(3b)は撮像装置の可視光入射角制限部(1b)の上下の範囲から直交方向に伸びて路面(6)を捉えている。撮像範囲(3c)は撮像装置の可視光入射角制限部(1c)の上下の範囲から直交方向に伸びて路面(6)を捉えている。撮像範囲(3a)と撮像範囲(3b)の間には撮像出来ない死角(4a)が存在する。撮像範囲(3b)と撮像範囲(3c)の間には撮像出来ない死角(4b)が存在する。撮像装置の可視光入射角制限部をより多く設け死角を小さくしてもよい。 The first embodiment will be described with reference to Figs. 2 and 3. Fig. 2 is a side view showing the imaging range of a scanning type vehicle-mounted imaging device attached to the front. The visible light incidence angle limiting section (1a to 1c) of the imaging device is installed in front of the vehicle (5a). The visible light incidence angle limiting section (1a) of the imaging device is tilted slightly downward from the vertical. The visible light incidence angle limiting section (1b) of the imaging device is tilted downward from the visible light incidence angle limiting section (1a) of the imaging device. The visible light incidence angle limiting section (1c) of the imaging device is tilted downward from the visible light incidence angle limiting section (1b) of the imaging device. The imaging range (3a) extends perpendicularly from the upper and lower ranges of the visible light incidence angle limiting section (1a) of the imaging device to capture a part of the rear of the vehicle (5b). The imaging range (3b) extends perpendicularly from the upper and lower ranges of the visible light incidence angle limiting section (1b) of the imaging device to capture the road surface (6). The imaging range (3c) extends perpendicularly from the range above and below the visible light incident angle limiting section (1c) of the imaging device to capture the road surface (6). A blind spot (4a) that cannot be imaged exists between the imaging range (3a) and the imaging range (3b). A blind spot (4b) that cannot be imaged exists between the imaging range (3b) and the imaging range (3c). The blind spot may be reduced by providing more visible light incident angle limiting sections of the imaging device.

図3のように車両(5a)と車両(5b)の車間距離が縮まれば、撮像範囲(3b)に車両(5b)の後方の一部が撮像されるので、死角(4a、4b)があったとしても障害物接近の検知を行うことができる。 As shown in Figure 3, if the distance between vehicles (5a) and (5b) is reduced, a part of the rear of vehicle (5b) will be captured in the imaging range (3b), so approaching obstacles can be detected even if there are blind spots (4a, 4b).

実施例2を図4を基に説明する。入射光(7)が路面(6)で反射光(8)となり、撮像装置の可視光入射角制限部(1b)の撮像範囲(3b)の角度と一致している。もし入射光(7)が太陽光のように強い光であった場合、スキャン式車載用撮像装置の可視光入射角制限部(1b)の取得する映像は白飛びになる可能性が高い。しかしその場合において他の撮像装置の可視光入射角制限部(1a、1c)の撮像範囲(3a、3c)は反射光(8)の反射角と異なるため白飛びが起きず装置としての役割を果たすことができる。撮像装置の可視光入射角制限部の角度を自動で変更できるようにしてもよい。 A second embodiment will be described with reference to FIG. 4. Incident light (7) becomes reflected light (8) on the road surface (6), and the angle coincides with the imaging range (3b) of the visible light incidence angle limiting unit (1b) of the imaging device. If the incident light (7) is strong light such as sunlight, there is a high possibility that the image acquired by the visible light incidence angle limiting unit (1b) of the scanning type vehicle-mounted imaging device will be overexposed. However, in that case, the imaging range (3a, 3c) of the visible light incidence angle limiting unit (1a, 1c) of the other imaging device is different from the reflection angle of the reflected light (8), so overexposure does not occur and the device can function as it is. The angle of the visible light incidence angle limiting unit of the imaging device may be automatically changed.

実施例3を図5を基に説明する。図5は正面に取り付けられたスキャン式車載用撮像装置の撮像範囲を示す上面図である。撮像装置の可視光入射角制限部(1a)は車両(5a)の前方に設置され、撮像範囲(3a)は撮像装置の可視光入射角制限部(1a)の左右の範囲から直交方向に伸びている。 The third embodiment will be described with reference to FIG. 5. FIG. 5 is a top view showing the imaging range of a scanning-type vehicle-mounted imaging device attached to the front. The visible light incident angle limiting section (1a) of the imaging device is installed in front of the vehicle (5a), and the imaging range (3a) extends in perpendicular directions from the left and right ranges of the visible light incident angle limiting section (1a) of the imaging device.

撮像装置の可視光入射角制限部(2a~2c)は車両(5a)の右前方に設置されている。撮像装置の可視光入射角制限部(2a)は正面より右斜めを向いている。撮像装置の可視光入射角制限部(2b)は撮像装置の可視光入射角制限部(2a)より少し正面を向いている。撮像装置の可視光入射角制限部(2c)は撮像装置の可視光入射角制限部(2b)より少し正面を向いている。撮像範囲(9a)は撮像装置の可視光入射角制限部(2a)の左右の範囲から直交方向に伸びている。撮像範囲(9b)は撮像装置の可視光入射角制限部(2b)の左右の範囲から直交方向に伸びている。撮像範囲(9c)は撮像装置の可視光入射角制限部(2c)の左右の範囲から直交方向に伸びている。撮像範囲(9a~9c)によって、車両(5a)から見て右前方から接近してくる障害物を光学的に検知できる。 The visible light incident angle limiting section (2a to 2c) of the imaging device is installed on the right front of the vehicle (5a). The visible light incident angle limiting section (2a) of the imaging device faces diagonally to the right from the front. The visible light incident angle limiting section (2b) of the imaging device faces slightly further forward than the visible light incident angle limiting section (2a) of the imaging device. The visible light incident angle limiting section (2c) of the imaging device faces slightly further forward than the visible light incident angle limiting section (2b) of the imaging device. The imaging range (9a) extends in a direction perpendicular to the left and right ranges of the visible light incident angle limiting section (2a) of the imaging device. The imaging range (9b) extends in a direction perpendicular to the left and right ranges of the visible light incident angle limiting section (2b) of the imaging device. The imaging range (9c) extends in a direction perpendicular to the left and right ranges of the visible light incident angle limiting section (2c) of the imaging device. The imaging ranges (9a to 9c) make it possible to optically detect obstacles approaching from the right front as viewed from the vehicle (5a).

撮像装置の可視光入射角制限部(2d~2f)は車両(5a)の左前方に設置されている。撮像装置の可視光入射角制限部(2d)は正面より左斜めを向いている。撮像装置の可視光入射角制限部(2e)は撮像装置の可視光入射角制限部(2d)より少し左を向いている。撮像装置の可視光入射角制限部(2f)は撮像装置の可視光入射角制限部(2e)より少し左を向いている。撮像範囲(9d)は撮像装置の可視光入射角制限部(2d)の左右の範囲から直交方向に伸びている。撮像範囲(9e)は撮像装置の可視光入射角制限部(2e)の左右の範囲から直交方向に伸びている。撮像範囲(9f)は撮像装置の可視光入射角制限部(2f)の左右の範囲から直交方向に伸びている。撮像範囲(9d~9f)によって、車両(5a)から見て左前方から接近してくる障害物を光学的に検知できる。また、同様の仕組みを車両の後方にも設置してよい。 The visible light incident angle limiting section (2d to 2f) of the imaging device is installed on the left front of the vehicle (5a). The visible light incident angle limiting section (2d) of the imaging device faces diagonally left from the front. The visible light incident angle limiting section (2e) of the imaging device faces slightly left of the visible light incident angle limiting section (2d) of the imaging device. The visible light incident angle limiting section (2f) of the imaging device faces slightly left of the visible light incident angle limiting section (2e) of the imaging device. The imaging range (9d) extends in a perpendicular direction from the left and right ranges of the visible light incident angle limiting section (2d) of the imaging device. The imaging range (9e) extends in a perpendicular direction from the left and right ranges of the visible light incident angle limiting section (2e) of the imaging device. The imaging range (9f) extends in a perpendicular direction from the left and right ranges of the visible light incident angle limiting section (2f) of the imaging device. The imaging ranges (9d to 9f) make it possible to optically detect obstacles approaching from the left front as viewed from the vehicle (5a). A similar system may also be installed at the rear of the vehicle.

実施例4を図6を基に説明する。図6は可視光入射角制限部(10)と撮像素子(11)を示す斜視図である。一枚板状の撮像素子(11)の可視光入射角制限部の前に格子状に区切られた構造体をした可視光入射角制限部(10)が備えられている。 The fourth embodiment will be described with reference to FIG. 6. FIG. 6 is a perspective view showing a visible light incident angle limiting section (10) and an image sensor (11). A visible light incident angle limiting section (10) having a structure divided into a lattice shape is provided in front of the visible light incident angle limiting section of the single plate-shaped image sensor (11).

可視光入射角制限部は直交方向以外の光を極力低減できればよいので、撮像素子(11)の受光面に対して垂直方向に区切られた構造体を撮像素子の前に配置し、その穴の中を光を吸収する率の高い塗料で塗っても機能を果たすことが出来る。その場合、格子のサイズを小さくし、構造体の奥行きを長くすることで、撮像素子への光の入射角をより制限できる。可視光入射角制限部(10)の穴の形状は六角形でも円形でも構わない。可視光入射角制限部(10)の構造体にバンパーのように衝撃吸収の役割を与える。 The visible light incident angle limiting section only needs to reduce light in directions other than the orthogonal direction as much as possible, so it can function by placing a structure partitioned in a direction perpendicular to the light receiving surface of the image sensor (11) in front of the image sensor and painting the inside of the hole with a paint that has a high light absorption rate. In that case, by reducing the size of the lattice and increasing the depth of the structure, it is possible to further limit the angle of incidence of light to the image sensor. The shape of the hole in the visible light incident angle limiting section (10) can be hexagonal or circular. The structure of the visible light incident angle limiting section (10) is given the role of shock absorption like a bumper.

実施例5を図7を基に説明する。図7は可視光入射角制限部(10)の後ろにレンズ(12)を用いた場合の撮像装置の断面図である。可視光入射角制限部(10)の後ろに間仕切り(13)が配置され、間仕切り(13)の各仕切りの中にはレンズ(12)と光センサー(15)が配置されている。可視光入射角制限部(10)を透過した光は各レンズ(12)で各光センサー(15)に集約される。光センサー(15)はモノクロしか識別できなくてもよいが、ある程度の諧調を識別できる必要がある。基本的に光センサーは撮像素子の1画素分の機能でしかないため、光センサーを用いる場合は、必要な画素数分の光センサー(15)を基盤(14)に備える必要がある。間仕切り(13)にバンパーのように衝撃吸収の役割を与える。 A fifth embodiment will be described with reference to FIG. 7. FIG. 7 is a cross-sectional view of an imaging device using a lens (12) behind the visible light incident angle limiting section (10). A partition (13) is arranged behind the visible light incident angle limiting section (10), and a lens (12) and a light sensor (15) are arranged inside each partition of the partition (13). Light transmitted through the visible light incident angle limiting section (10) is collected by each lens (12) into each light sensor (15). The light sensor (15) does not need to be able to distinguish only monochrome, but it needs to be able to distinguish a certain degree of gradation. Since a light sensor basically only has the function of one pixel of an imaging element, when a light sensor is used, it is necessary to provide the light sensors (15) for the number of pixels required on the base (14). The partition (13) is given the role of absorbing shock like a bumper.

実施例6を図8、図9を基に説明する。図8はスリットの幅が取得したい可視光の振幅と同程度である可視光入射角限定フィルムaの仕切り(16)と可視光入射角限定フィルムを透過する可視光(17a、17b、17c)を表したものである。透過軸は水平なので、可視光入射角限定フィルムの受光面に対して水平方向から入射する以外の可視光は減衰される。ただし、水平方向であれば、左右の角度からの可視光に対しては効果がないので、可視光入射角限定フィルムの受光面において直交方向から入射する可視光(17b)以外の可視光(17a、17c)も減衰せずに透過してしまう。なお便宜上、取得したい可視光の振幅と同程度のスリットが多数入ったフィルムを可視光入射角限定フィルムと呼称する。 Example 6 will be described with reference to Figures 8 and 9. Figure 8 shows the partitions (16) of the visible light incidence angle limiting film a, in which the width of the slits is approximately the same as the amplitude of the visible light to be acquired, and the visible light (17a, 17b, 17c) that passes through the visible light incidence angle limiting film. Since the transmission axis is horizontal, visible light other than that incident from the horizontal direction on the light receiving surface of the visible light incidence angle limiting film is attenuated. However, if the direction is horizontal, there is no effect on visible light from the left and right angles, so visible light (17a, 17c) other than visible light (17b) that is incident from the perpendicular direction on the light receiving surface of the visible light incidence angle limiting film is also transmitted without attenuation. For convenience, a film with many slits of the same width as the amplitude of the visible light to be acquired is called a visible light incidence angle limiting film.

図9は透過軸が水平の前記可視光入射角限定フィルムaの仕切り(16)の可視光入射角限定フィルムに対して透過軸を垂直にした可視光入射角限定フィルムbの仕切り(18)の可視光入射角限定フィルムを後ろに設けた図である。これにより、可視光入射角限定フィルムの面に対して垂直方向からからの可視光(17b)以外を減衰させることができる。また、前後の可視光入射角限定フィルムのどちらかを偏光フィルムにしてもよい。光の振幅は光の強さによって異なるため、スリットの幅より小さいの振幅の可視光は垂直以外の角度で入射してしまうので、スリットをナノレベルまで小さくしても完全な垂直方向の光のみを抽出することはできない。ただし、スリットの幅で取得する光の強さに制限を設け白飛びの現象を押さえることはできると思われる。 Figure 9 shows a diagram in which a partition (16) of the visible light incident angle limiting film a has a horizontal transmission axis, and a partition (18) of the visible light incident angle limiting film b has a vertical transmission axis, which is placed behind the partition (16). This makes it possible to attenuate visible light (17b) other than that coming from a direction perpendicular to the surface of the visible light incident angle limiting film. Also, either of the front or rear visible light incident angle limiting films may be a polarizing film. Since the amplitude of light differs depending on the intensity of the light, visible light with an amplitude smaller than the width of the slit will enter at an angle other than vertical, so even if the slit is made small to the nanometer level, it is not possible to extract only light in a completely vertical direction. However, it is thought that it is possible to limit the intensity of light obtained by the width of the slit and suppress the phenomenon of overexposure.

実施例7を図10を基に説明する。図10は図1~図4と異なり、撮像装置の可視光入射角制限部(1a~1c)が車両(5a)の車体に対して凹むように配置されている。そのため図1では撮像装置の可視光入射角制限部(1a)が最も遠くの映像を取得していたのに対し、図10では撮像装置の可視光入射角制限部(1c)が最も遠くの映像を取得することができる。車体内に格納するメリットとして、カバー(19)を装着することにより、接触による破損を低減できる他、大雨対策としてのワイパーを装着しやすい。 Example 7 will be described with reference to Figure 10. Figure 10 differs from Figures 1 to 4 in that the visible light incident angle limiting units (1a to 1c) of the imaging device are disposed so as to be recessed into the body of the vehicle (5a). Therefore, whereas in Figure 1 the visible light incident angle limiting unit (1a) of the imaging device captures the most distant image, in Figure 10 the visible light incident angle limiting unit (1c) of the imaging device can capture the most distant image. The advantage of storing the imaging device inside the vehicle body is that by attaching the cover (19), damage due to contact can be reduced, and it is easy to attach windshield wipers as a measure against heavy rain.

実施例8を図11を基に説明する。図11は各レンズ(12)で集約した光を、光センサー(15)ではなく、光ケーブル(21)を用い、全部の前記光ケーブル(21)を束ねて光を1つの撮像素子(23)に集約した形態を示した断面図である。可視光入射角制限部(10)の後ろに間仕切り(13)が配置され、間仕切り(13)の各仕切りの中にはレンズ(12)と光ケーブルの受光部(20)が配置されている。可視光入射角制限部(10)を透過した光は各レンズ(12)で各光ケーブルの受光部(20)に集約され、さらに、各光ケーブルの受光部(20)から各光ケーブル(21)を通り各コネクタ(22)で接続される撮像素子(23)に集約される。 The eighth embodiment will be described with reference to FIG. 11. FIG. 11 is a cross-sectional view showing a configuration in which the light collected by each lens (12) is collected into one image pickup element (23) by bundling all the optical cables (21) together, instead of using an optical sensor (15). A partition (13) is arranged behind the visible light incident angle limiting section (10), and a lens (12) and a light receiving section (20) of the optical cable are arranged inside each partition of the partition (13). The light transmitted through the visible light incident angle limiting section (10) is collected into the light receiving section (20) of each optical cable by each lens (12), and further collected into the image pickup element (23) connected by each connector (22) through each optical cable (21) from the light receiving section (20) of each optical cable.

実施例9を図12を基に説明する。図12は図7の斜視図であり、可視光入射角制限部(24)は受光面に対して垂直方向以外の指向性を低減するため、垂直方向に貫通する多数の穴で構成される構造体を用いている。可視光入射角制限部(24)の前には透明なカバーを付けることでゴミや虫などが穴に入ることを防ぐ。一方向貫通する多数の穴が開いた仕切りの穴の形状は円形でも多角形でもよい。また、スリットを用いる場合には、図9のように2枚以上をスリットが交差するように配置する必要がある。 Example 9 will be described with reference to Figure 12. Figure 12 is a perspective view of Figure 7, and the visible light incident angle limiting section (24) uses a structure made up of many holes that penetrate vertically in order to reduce directivity in directions other than the vertical to the light receiving surface. A transparent cover is attached in front of the visible light incident angle limiting section (24) to prevent dust, insects, etc. from entering the holes. The shape of the holes in the partition with many holes that penetrate in one direction may be circular or polygonal. Also, when slits are used, it is necessary to arrange two or more sheets so that the slits intersect as shown in Figure 9.

1a 撮像装置の可視光入射角制限部
1b 撮像装置の可視光入射角制限部
1c 撮像装置の可視光入射角制限部
2a 撮像装置の可視光入射角制限部
2b 撮像装置の可視光入射角制限部
2c 撮像装置の可視光入射角制限部
2d 撮像装置の可視光入射角制限部
2e 撮像装置の可視光入射角制限部
2f 撮像装置の可視光入射角制限部
3a 撮像範囲
3b 撮像範囲
3c 撮像範囲
4a 死角
4b 死角
5 車両
5a 車両
5b 車両
6 路面
7 入射光
8 反射光
9a 撮像範囲
9b 撮像範囲
9c 撮像範囲
9d 撮像範囲
9e 撮像範囲
9f 撮像範囲
10 可視光入射角制限部
11 撮像素子
12 レンズ
13 間仕切り
14 基盤
15 光センサー
16 可視光入射角限定フィルムaの仕切り
17a 可視光
17b 可視光
17c 可視光
18 可視光入射角限定フィルムbの仕切り
19 カバー
20 光ケーブルの受光部
21 光ケーブル
22 コネクタ
23 撮像素子
24 可視光入射角制限部
Reference Signs List 1a Visible light incidence angle limiting section 1b Visible light incidence angle limiting section 1c Visible light incidence angle limiting section 2a Visible light incidence angle limiting section 2b Visible light incidence angle limiting section 2c Visible light incidence angle limiting section 2d Visible light incidence angle limiting section 2e Visible light incidence angle limiting section 2f Visible light incidence angle limiting section 3a Imaging range 3b Imaging range 3c Imaging range 4a Blind spot 4b Blind spot 5 Vehicle 5a Vehicle 5b Vehicle 6 Road surface 7 Incident light 8 Reflected light 9a Imaging range 9b Imaging range 9c Imaging range 9d Imaging range 9e Imaging range 9f Imaging range 10 Visible light incidence angle limiting section 11 Imaging element 12 Lens 13 Partition 14 Base 15 Light sensor 16 Partition of visible light incidence angle limiting film a 17a Visible light 17b Visible light 17c Visible light 18 Partition 19 of visible light incident angle limiting film b Cover 20 Light receiving section of optical cable 21 Optical cable 22 Connector 23 Image pickup element 24 Visible light incident angle limiting section

Claims (1)

入射する可視光において、受光面に対して垂直方向以外の指向性を低減するための仕切りを多数設けた可視光入射角制限部を備え、前記可視光入射角制限部の後方に撮像素子もしくは光センサーを備え、車両衝突時の衝撃吸収をする役割をもたせることを特徴とする車載用撮像装置。 An in-vehicle imaging device that is characterized by having a visible light incident angle limiting section with multiple partitions to reduce the directivity of incident visible light in directions other than perpendicular to the light receiving surface, and having an imaging element or optical sensor behind the visible light incident angle limiting section, which serves to absorb shock in the event of a vehicle collision.
JP2024059829A 2024-04-02 2024-04-02 Scanning type vehicle-mounted imaging device Active JP7510656B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024059829A JP7510656B1 (en) 2024-04-02 2024-04-02 Scanning type vehicle-mounted imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024059829A JP7510656B1 (en) 2024-04-02 2024-04-02 Scanning type vehicle-mounted imaging device

Publications (1)

Publication Number Publication Date
JP7510656B1 true JP7510656B1 (en) 2024-07-04

Family

ID=91671347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024059829A Active JP7510656B1 (en) 2024-04-02 2024-04-02 Scanning type vehicle-mounted imaging device

Country Status (1)

Country Link
JP (1) JP7510656B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134936A (en) 2017-02-21 2018-08-30 三菱自動車工業株式会社 Radar installation structure
CN114655127A (en) 2022-02-18 2022-06-24 江苏金晓电子信息股份有限公司 Millimeter wave radar installation protection device for automobile
US20230060018A1 (en) 2020-02-18 2023-02-23 Bayerische Motoren Werke Aktiengesellschaft Support Device of a Front End Module, and Vehicle Comprising a Support Device
CN115871586A (en) 2023-02-03 2023-03-31 中国石油大学(华东) Intelligent automobile collision avoidance system
CN116252716A (en) 2022-12-30 2023-06-13 北京新能源汽车股份有限公司 Radar support assembly, radar assembly and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134936A (en) 2017-02-21 2018-08-30 三菱自動車工業株式会社 Radar installation structure
US20230060018A1 (en) 2020-02-18 2023-02-23 Bayerische Motoren Werke Aktiengesellschaft Support Device of a Front End Module, and Vehicle Comprising a Support Device
CN114655127A (en) 2022-02-18 2022-06-24 江苏金晓电子信息股份有限公司 Millimeter wave radar installation protection device for automobile
CN116252716A (en) 2022-12-30 2023-06-13 北京新能源汽车股份有限公司 Radar support assembly, radar assembly and vehicle
CN115871586A (en) 2023-02-03 2023-03-31 中国石油大学(华东) Intelligent automobile collision avoidance system

Similar Documents

Publication Publication Date Title
US10137842B2 (en) Camera system for a vehicle
DE102016215618B4 (en) VEHICLE CAMERA DEVICE FOR IMAGE CAPTURE IN FRONT OF VEHICLE AND FOR VEHICLE CONTROL
JP3262265B2 (en) Optical road sounding system
CN106331446B (en) Camera device and in-vehicle system
DE10126492B4 (en) Method for improving the visibility in vehicles
CN104442924B (en) All-weather high speed railway vehicle-mounted obstacle detection system and method
US10390004B2 (en) Stereo gated imaging system and method
US10112552B2 (en) Vehicle vision system with camera viewing through windshield
KR102192252B1 (en) System and method for detecting vehicle by using sensor
CN104071084A (en) Camera for a vehicle and vehicle having the camera
JP6785552B2 (en) Imaging device
DE10138361A1 (en) Method for improving the visibility in vehicles
JP7510656B1 (en) Scanning type vehicle-mounted imaging device
CN115308731A (en) Unmanned vehicle with multisensor overall arrangement
US20210306537A1 (en) Vehicular windshield-mounted forward viewing camera with coated stray light shield region of housing
US11082630B2 (en) Vehicular vision system using adaptive mask at camera
JP6246932B2 (en) Lighting to detect raindrops on the window glass using a camera
KR102202195B1 (en) Receiving devices, detection devices and driver assistance systems for optical detection devices
CN216300952U (en) Running environment detection device for vehicle and vehicle
CN213876030U (en) Unmanned robot
KR101963966B1 (en) Laser transmit and receiving module and integrated apparatus including the same
KR102084302B1 (en) Wide angle LiDAR and operation method thereof
DE102009045555A1 (en) Security camera has three-dimensional camera based on photonic mixer devices, where two-dimensional camera and three-dimensional camera are associated for active illumination
DE102011007464A1 (en) Method for visualizing scene, involves selecting scene region in three-dimensional image based on distance information, marking selected scene region in two-dimensional image and presenting scene with marked scene region on display unit
WO2022218050A1 (en) Vehicle-mounted sensing apparatus and vehicle