JP7506316B2 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP7506316B2
JP7506316B2 JP2020149152A JP2020149152A JP7506316B2 JP 7506316 B2 JP7506316 B2 JP 7506316B2 JP 2020149152 A JP2020149152 A JP 2020149152A JP 2020149152 A JP2020149152 A JP 2020149152A JP 7506316 B2 JP7506316 B2 JP 7506316B2
Authority
JP
Japan
Prior art keywords
light
fluorescent member
groove
emitting device
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020149152A
Other languages
Japanese (ja)
Other versions
JP2022043713A (en
Inventor
靖長 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2020149152A priority Critical patent/JP7506316B2/en
Publication of JP2022043713A publication Critical patent/JP2022043713A/en
Application granted granted Critical
Publication of JP7506316B2 publication Critical patent/JP7506316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、発光装置に関する。 The present invention relates to a light-emitting device.

半導体レーザ素子と蛍光部材とを組み合わせた発光装置が知られている。特許文献1には、励起光を出射する励起光源と、励起光を受光して蛍光を発する発光部と、を有する発光装置が記載されている。特許文献1の発光装置では、蛍光体層の周囲に反射体を形成する等、発光部の発光パターンを規定するための構造を設けている。反射体の材料は例えば白色顔料やセラミックスである。 Light-emitting devices that combine a semiconductor laser element and a fluorescent material are known. Patent Document 1 describes a light-emitting device that has an excitation light source that emits excitation light, and a light-emitting section that receives the excitation light and emits fluorescence. The light-emitting device of Patent Document 1 has a structure for defining the light-emitting pattern of the light-emitting section, such as forming a reflector around the phosphor layer. The material of the reflector is, for example, a white pigment or ceramics.

特開2015-002160号公報JP 2015-002160 A

しかしながら、セラミックスのように屈折率差によって光を反射する部品は、光の一部がその部品の内部に入射する。このため、セラミックスを光反射部材として用いた発光装置では、光反射部材の表面から光が漏れる場合がある。 However, in components that reflect light due to differences in refractive index, such as ceramics, some of the light enters the interior of the component. For this reason, in light-emitting devices that use ceramics as a light-reflecting material, light may leak from the surface of the light-reflecting material.

本開示は、以下の発明を含む。レーザ素子と、前記レーザ素子からの光の少なくとも一部を波長変換する蛍光部材と、前記蛍光部材の側面に直接的に又は透光性の接合部材を介して固定されたセラミックスからなる光反射部材と、を備え、前記蛍光部材は、前記蛍光部材からの光が取り出される主面となる光取出面を有し、前記光反射部材には、前記蛍光部材の前記光取出面の側にある表面に溝が設けられている発光装置。 The present disclosure includes the following invention: A light-emitting device comprising a laser element, a fluorescent member that converts the wavelength of at least a portion of the light from the laser element, and a light-reflecting member made of ceramics that is fixed to a side surface of the fluorescent member directly or via a translucent joining member, the fluorescent member having a light extraction surface that is the main surface through which light from the fluorescent member is extracted, and the light-reflecting member having grooves on the surface on the side of the light extraction surface of the fluorescent member.

本開示の発光装置によれば、光反射部材からの光の漏れを低減することができる。 The light-emitting device disclosed herein can reduce light leakage from the light-reflecting member.

本発明の実施形態に係る発光装置を示す模式的な断面図である。1 is a schematic cross-sectional view showing a light-emitting device according to an embodiment of the present invention. 図2BのIIA-IIA線における模式的な断面図である。FIG. 2C is a schematic cross-sectional view taken along line IIA-IIA in FIG. 2B. 本発明の実施形態に係る蛍光部材および光反射部材を示す模式的な上面図である。3 is a schematic top view showing a fluorescent member and a light reflecting member according to the embodiment of the present invention. FIG. 実験例1~5の観察結果を示す表である。1 is a table showing the observation results of Experimental Examples 1 to 5.

以下、発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置の製造方法は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。 The following describes an embodiment of the invention with reference to the drawings as appropriate. However, the manufacturing method of the light emitting device described below is intended to embody the technical concept of the present invention, and unless otherwise specified, the present invention is not limited to the following. The size and positional relationship of the components shown in each drawing may be exaggerated for clarity of explanation.

図1は、実施形態に係る発光装置100を示す模式的な断面図である。図2Aは、図2BのIIA-IIA線における模式的な断面図である。図2Bは、実施形態に係る蛍光部材12および光反射部材11を示す模式的な上面図である。実施形態の発光装置100は、レーザ素子21と、蛍光部材12と、光反射部材11とを有する。蛍光部材12は、レーザ素子21からの光の少なくとも一部を波長変換する部材である。蛍光部材12は、蛍光部材12からの光が取り出される主面となる光取出面12aを有する。光反射部材11は、セラミックスからなり、蛍光部材12の側面に直接的に又は透光性の接合部材を介して固定されている。光反射部材11には、蛍光部材12の光取出面12aの側にある表面(第1面11a)に溝11cが設けられている。 Figure 1 is a schematic cross-sectional view showing a light-emitting device 100 according to an embodiment. Figure 2A is a schematic cross-sectional view taken along line IIA-IIA in Figure 2B. Figure 2B is a schematic top view showing a fluorescent member 12 and a light-reflecting member 11 according to an embodiment. The light-emitting device 100 according to the embodiment has a laser element 21, a fluorescent member 12, and a light-reflecting member 11. The fluorescent member 12 is a member that converts the wavelength of at least a portion of the light from the laser element 21. The fluorescent member 12 has a light-extracting surface 12a, which is the main surface from which light from the fluorescent member 12 is extracted. The light-reflecting member 11 is made of ceramics and is fixed to the side of the fluorescent member 12 directly or via a translucent bonding member. The light-reflecting member 11 has a groove 11c on the surface (first surface 11a) on the side of the light-extracting surface 12a of the fluorescent member 12.

発光装置100によれば、溝11cが設けられていることで、蛍光部材12からの光を溝11cによって反射することができるため、光反射部材11の第1面11aからの光の漏れを低減することができる。したがって、光反射部材11からの光の漏れを低減することができる。 According to the light emitting device 100, the groove 11c is provided so that the light from the fluorescent member 12 can be reflected by the groove 11c, thereby reducing the leakage of light from the first surface 11a of the light reflecting member 11. Therefore, the leakage of light from the light reflecting member 11 can be reduced.

図2A及び図2Bに示すように、光反射部材11は、第1面11aと、第1面11aの反対の側の第2面11bとを有する。第1面11aは蛍光部材12の光取出面12aの側にある表面であり、第2面11bは蛍光部材12の光入射面12bの側にある表面である。 As shown in Figures 2A and 2B, the light reflecting member 11 has a first surface 11a and a second surface 11b on the opposite side of the first surface 11a. The first surface 11a is the surface on the side of the light extraction surface 12a of the fluorescent member 12, and the second surface 11b is the surface on the side of the light incidence surface 12b of the fluorescent member 12.

図2Aに示すように、光反射部材11は、貫通孔を有することができる。この貫通孔が光の通路となるため、この場合、貫通孔の内壁を反射面とする。光反射部材11の材料としては、高熱伝導率及び高反射率であるアルミナ(Al)セラミックスを用いることが好ましい。光反射部材11の厚みは、強度を考慮すると0.2mm以上であることが好ましい。また、光反射部材11は蛍光部材12を保持できる程度の厚みがあればよく、コスト増大及び発光装置100の高さの増大を抑えるため、光反射部材11の厚みは2mm以下とすることができる。 As shown in FIG. 2A, the light reflecting member 11 may have a through hole. Since the through hole serves as a light passage, in this case, the inner wall of the through hole serves as a reflecting surface. As the material of the light reflecting member 11, alumina (Al 2 O 3 ) ceramics having high thermal conductivity and high reflectance is preferably used. In consideration of strength, the thickness of the light reflecting member 11 is preferably 0.2 mm or more. In addition, the light reflecting member 11 only needs to be thick enough to hold the fluorescent member 12, and the thickness of the light reflecting member 11 may be 2 mm or less in order to suppress an increase in cost and an increase in the height of the light emitting device 100.

図2Aでは、光反射部材11の貫通孔の内壁は、光の進行方向に沿って拡がる形状である。このような形状とすることにより、入射した光の戻り光を貫通孔の内壁によって反射させて、光出射側に効率的に取り出すことができる。貫通孔の開口の形状としては、三角形及び四角形等の多角形のほか、円形又は楕円形であるものが挙げられる。貫通孔の形状としては、柱状、錐形状又はこれらを組み合わせた形状が挙げられる。 In FIG. 2A, the inner wall of the through hole of the light reflecting member 11 has a shape that expands along the light traveling direction. With such a shape, the return light of the incident light can be reflected by the inner wall of the through hole and efficiently extracted to the light exit side. The shape of the opening of the through hole can be polygonal such as a triangle or a rectangle, as well as a circle or an ellipse. The shape of the through hole can be columnar, cone-shaped, or a combination of these.

光反射部材11の第1面11aには溝11cが設けられている。図2Bに示すように、上面視において、すなわち、蛍光部材12の光取出面12aの側から視て、溝11cの内縁の形状は、蛍光部材12の外縁の形状と同じであることが好ましい。これにより、蛍光部材12の光取出面12aの上面視形状と同じ形状の発光パターンを得ることができる。光取出面12aの側から視て、溝11cの内縁の形状及び蛍光部材12の外縁の形状は、円形とすることができる。これらの形状が円形であることにより、発光パターンの形状も円形となるため、レンズとの組み合わせに適している。例えば、溝11cは、蛍光部材12の外縁と同じ中心であって直径が異なる円形で設けることができる。図2Bにおいて、溝11cは、蛍光部材12の全周囲に亘って途切れなく設けられている。これにより、蛍光部材12の全周囲において光反射部材11の第1面11aからの光漏れを低減することができる。 The first surface 11a of the light reflecting member 11 is provided with a groove 11c. As shown in FIG. 2B, in top view, that is, when viewed from the light extraction surface 12a side of the fluorescent member 12, the shape of the inner edge of the groove 11c is preferably the same as the shape of the outer edge of the fluorescent member 12. This makes it possible to obtain an emission pattern having the same shape as the top view shape of the light extraction surface 12a of the fluorescent member 12. When viewed from the light extraction surface 12a side, the shape of the inner edge of the groove 11c and the shape of the outer edge of the fluorescent member 12 can be circular. Since these shapes are circular, the shape of the emission pattern is also circular, making it suitable for combination with a lens. For example, the groove 11c can be provided as a circle having the same center as the outer edge of the fluorescent member 12 and a different diameter. In FIG. 2B, the groove 11c is provided continuously around the entire circumference of the fluorescent member 12. This makes it possible to reduce light leakage from the first surface 11a of the light reflecting member 11 around the entire circumference of the fluorescent member 12.

図2Aに示すように、溝11cの深さd1は、光反射部材11の第1面11aから第2面11bまでの距離d2よりも小さい。光反射部材11の第1面11aから第2面11bまでの距離d2は、光反射部材11の厚みと言い換えることができる。図2Aに示すように光反射部材11の厚みが一定でない場合は、溝11cが設けられた部分の厚みを距離d2とする。溝11cの深さd1は、光反射部材11の第1面11aから第2面11bまでの距離d2の1/10以上1/3以下の範囲内とすることができる。1/10以上とすることにより、溝11cによる光の漏れ低減の効果をより確実に得ることができる。1/3以下とすることにより、溝11cに起因する光反射部材11の破損の可能性を低減することができる。溝11cの深さd1は、0.07mm以上とすることができる。溝11cの深さd1は、0.2mm以下であってもよい。 As shown in FIG. 2A, the depth d1 of the groove 11c is smaller than the distance d2 from the first surface 11a to the second surface 11b of the light reflecting member 11. The distance d2 from the first surface 11a to the second surface 11b of the light reflecting member 11 can be rephrased as the thickness of the light reflecting member 11. When the thickness of the light reflecting member 11 is not constant as shown in FIG. 2A, the thickness of the portion where the groove 11c is provided is the distance d2. The depth d1 of the groove 11c can be in the range of 1/10 to 1/3 of the distance d2 from the first surface 11a to the second surface 11b of the light reflecting member 11. By making it 1/10 or more, the effect of reducing light leakage by the groove 11c can be more reliably obtained. By making it 1/3 or less, the possibility of damage to the light reflecting member 11 caused by the groove 11c can be reduced. The depth d1 of the groove 11c can be 0.07 mm or more. The depth d1 of the groove 11c may be 0.2 mm or less.

図2Bに示すように、蛍光部材12の光取出面12aの側から視て、溝11cは、蛍光部材12と接しない位置に設ける。蛍光部材12の光取出面12aの側から視て、溝11cと蛍光部材12との距離は、0.07mm以上とすることができ、0.1mm以下とすることができる。溝11cと蛍光部材12との距離を0.1mm以下とすることにより、光反射部材11からの光の漏れをより効果的に低減することができる。また、蛍光部材12が光反射部材11の貫通孔の内壁に固定されている場合、蛍光部材12の光取出面12aの側から視て、溝11cと貫通孔との距離d3は、溝11cと蛍光部材12との距離と等しくしてよい。溝11cと貫通孔との距離d3は、0.07mm以上とすることができ、0.1mm以下とすることができる。 2B, the groove 11c is provided at a position not in contact with the fluorescent member 12 when viewed from the light extraction surface 12a of the fluorescent member 12. When viewed from the light extraction surface 12a of the fluorescent member 12, the distance between the groove 11c and the fluorescent member 12 can be 0.07 mm or more and 0.1 mm or less. By setting the distance between the groove 11c and the fluorescent member 12 to 0.1 mm or less, the leakage of light from the light reflecting member 11 can be more effectively reduced. In addition, when the fluorescent member 12 is fixed to the inner wall of the through hole of the light reflecting member 11, the distance d3 between the groove 11c and the through hole can be equal to the distance between the groove 11c and the fluorescent member 12 when viewed from the light extraction surface 12a of the fluorescent member 12. The distance d3 between the groove 11c and the through hole can be 0.07 mm or more and 0.1 mm or less.

溝11cは、例えば空気で満たされている。この場合、空気と光反射部材11との屈折率差により、光反射部材の内部の光を溝11cにおいて反射することができる。上面視において、溝11cの幅は、例えば15μm以上とすることができ、40μm以下とすることができる。図2Aにおいて、溝11cの内壁は、第2面11bから第1面11aに向けて溝11cの内径が拡がるように傾斜している。溝11cの内壁がこのような形状であることにより、溝11cにおいて光を第2面11bに向かう方向に反射させ易い。このため、光反射部材11の第1面11aからの光漏れをより低減することができる。溝11cは、例えば、レーザ照射によるレーザ加工によって形成することができる。 The groove 11c is filled with air, for example. In this case, the difference in refractive index between air and the light reflecting member 11 allows the light inside the light reflecting member to be reflected in the groove 11c. When viewed from above, the width of the groove 11c can be, for example, 15 μm or more and 40 μm or less. In FIG. 2A, the inner wall of the groove 11c is inclined so that the inner diameter of the groove 11c expands from the second surface 11b toward the first surface 11a. Since the inner wall of the groove 11c has such a shape, the light is easily reflected in the groove 11c in a direction toward the second surface 11b. Therefore, the light leakage from the first surface 11a of the light reflecting member 11 can be further reduced. The groove 11c can be formed, for example, by laser processing using laser irradiation.

光反射部材11は、蛍光部材12の側面に直接的に又は透光性の接合部材を介して固定されている。透光性の接合部材としては、例えば、ホウケイ酸ガラス、ソーダ石灰ガラス、ソーダガラス、鉛ガラス等のガラスが挙げられる。例えば、500℃~900℃の間に軟化点を有するホウ珪酸ガラスを透光性の接合部材として用いることができる。図2A及び図2Bにおいて、光反射部材11には貫通孔が設けられ、蛍光部材12は貫通孔の内壁に固定されている。 The light reflecting member 11 is fixed to the side of the fluorescent member 12 directly or via a light-transmitting joining member. Examples of light-transmitting joining members include glass such as borosilicate glass, soda-lime glass, soda glass, and lead glass. For example, borosilicate glass with a softening point between 500°C and 900°C can be used as the light-transmitting joining member. In Figures 2A and 2B, a through hole is provided in the light reflecting member 11, and the fluorescent member 12 is fixed to the inner wall of the through hole.

蛍光部材12は、励起光によって蛍光を発する蛍光体を含有する。励起光とは、レーザ素子21が出射する光である。蛍光体としては、例えば、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)、セリウムで賦活されたルテチウム・アルミニウム・ガーネット(LAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO-Al-SiO)、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)、αサイアロン蛍光体、βサイアロン蛍光体などが挙げられる。蛍光体としては、耐熱性が良好な蛍光体であるYAG蛍光体を用いることが好ましい。 The fluorescent member 12 contains a phosphor that emits fluorescence when exposed to excitation light. The excitation light is light emitted by the laser element 21. Examples of the phosphor include yttrium aluminum garnet (YAG) activated with cerium, lutetium aluminum garnet (LAG) activated with cerium, nitrogen-containing calcium aluminosilicate (CaO-Al 2 O 3 -SiO 2 ) activated with europium and/or chromium, silicate ((Sr,Ba) 2 SiO 4 ) activated with europium, α-sialon phosphor, and β-sialon phosphor. It is preferable to use a YAG phosphor, which is a phosphor with good heat resistance, as the phosphor.

図2Aに示すように、蛍光部材12は、光反射部材11の貫通孔内に配置することができる。蛍光部材12は、光取出面12aと光入射面12bとを有する。蛍光部材12は、さらに、光取出面12aと光入射面12bとを繋ぐ側面を有することができる。側面は、図2Aに示すように、貫通孔の内壁と略一致した形状とすることにより、光反射部材11との密着性を向上させ、蛍光部材12で生じる熱を効果的に光反射部材11側に逃がすことができる。 As shown in FIG. 2A, the fluorescent member 12 can be disposed in the through-hole of the light reflecting member 11. The fluorescent member 12 has a light extraction surface 12a and a light incidence surface 12b. The fluorescent member 12 can further have a side surface connecting the light extraction surface 12a and the light incidence surface 12b. As shown in FIG. 2A, the side surface is shaped to approximately match the inner wall of the through-hole, thereby improving adhesion with the light reflecting member 11 and allowing heat generated by the fluorescent member 12 to effectively escape to the light reflecting member 11.

蛍光部材12としては、蛍光体を含有するセラミックス又は蛍光体の単結晶が挙げられる。蛍光部材12がこのような耐光性及び耐熱性の良好な材料によって形成されていることにより、レーザ光のような高密度の光が照射されても変質が生じ難い。蛍光部材12の厚みは、例えば、0.1mm~1.5mm程度が挙げられる。蛍光部材12は、例えば、蛍光体と酸化アルミニウム(Al、融点:約1900℃~2100℃)等の透光性材料とを焼結させた蛍光体セラミックスとすることができる。この場合、蛍光体の含有量は、蛍光部材12の総重量に対して0.05~50重量%とすることが好ましく、1~30重量%がより好ましい。また、このような透光性材料を用いずに蛍光体の紛体を焼結させることにより形成する、実質的に蛍光体のみからなる蛍光体セラミックスを蛍光部材12として用いてもよい。また、蛍光部材12として、蛍光体からなる単結晶を用いてもよい。なお、蛍光部材12の表面には、バンドパスフィルター等のコーティングが施されていてもよい。蛍光部材12は、単一層から構成されていてもよく、2以上の複数層から構成されていてもよい。 The fluorescent member 12 may be ceramics containing a phosphor or a single crystal of a phosphor. Since the fluorescent member 12 is formed of such a material having good light resistance and heat resistance, it is unlikely to be altered even when irradiated with high-density light such as laser light. The thickness of the fluorescent member 12 may be, for example, about 0.1 mm to 1.5 mm. The fluorescent member 12 may be a phosphor ceramic obtained by sintering a phosphor and a light-transmitting material such as aluminum oxide (Al 2 O 3 , melting point: about 1900° C. to 2100° C.). In this case, the content of the phosphor is preferably 0.05 to 50% by weight, more preferably 1 to 30% by weight, based on the total weight of the fluorescent member 12. Alternatively, the fluorescent member 12 may be a phosphor ceramic substantially composed of only a phosphor, which is formed by sintering a powder of the phosphor without using such a light-transmitting material. Alternatively, the fluorescent member 12 may be a single crystal composed of a phosphor. The surface of the fluorescent member 12 may be coated with a band-pass filter or the like. The fluorescent member 12 may be composed of a single layer, or may be composed of two or more layers.

レーザ素子21は、出射するレーザ光が蛍光部材12の光入射面12bに照射されるように配置される。レーザ素子21は、例えば半導体レーザ素子である。なお、蛍光部材12の光入射面12b側にサファイア等の蛍光体を含有しない透光性部材を配置してもよい。この場合、レーザ素子21からの光が透光性部材を介して蛍光部材12に照射することになる。 The laser element 21 is arranged so that the emitted laser light is irradiated onto the light incident surface 12b of the fluorescent member 12. The laser element 21 is, for example, a semiconductor laser element. Note that a translucent member that does not contain phosphor, such as sapphire, may be arranged on the light incident surface 12b side of the fluorescent member 12. In this case, the light from the laser element 21 is irradiated onto the fluorescent member 12 via the translucent member.

発光装置100は、図1に示すように、レーザ素子21を有するパッケージを有する。光反射部材11は、押さえ部15と蓋部16とに挟まれて固定されている。光反射部材11は貫通孔を有し、その貫通孔内には、蛍光部材12が配置されている。図1に示すように、蓋部16は、光反射部材11の下面である第2面11bに配置される第1蓋部16Aと、第1蓋部16Aの下面に接続された第2蓋部16Bとの2つの部分からなってもよい。 As shown in FIG. 1, the light emitting device 100 has a package having a laser element 21. The light reflecting member 11 is fixed by being sandwiched between a pressing portion 15 and a lid portion 16. The light reflecting member 11 has a through hole, and a fluorescent member 12 is disposed in the through hole. As shown in FIG. 1, the lid portion 16 may be composed of two parts: a first lid portion 16A disposed on the second surface 11b, which is the lower surface of the light reflecting member 11, and a second lid portion 16B connected to the lower surface of the first lid portion 16A.

パッケージは、図1に示すように、ステム24と、ステム24を貫通するリード端子25と、ステム24が有する凸部の側面に固定されたサブマウント26と、サブマウント26に固定されたレーザ素子21を有する。パッケージは、さらに、ステム24に固定されたキャップ22と、キャップ22が有する開口に固定されたレンズ23とを有する。蓋部16は、ステム24に固定されている。図1に一点鎖線で示すように、レーザ素子21から出射したレーザ光は、レンズ23で集光され、蛍光部材12の手前で焦点を結び、蛍光部材12に入射する。発光装置100の発光が白色光である場合、例えば、蛍光部材12が発する蛍光を黄色光とし、レーザ素子21が出射するレーザ光を青色光(ピーク波長が420nm~470nm程度)とする。蛍光部材12が含有する蛍光体としては、YAG蛍光体等の黄色蛍光体が挙げられる。青色レーザ光を出射するレーザ素子21としては、InGaN井戸層の活性層を有するGaN系レーザ素子が挙げられる。パッケージは、レーザ素子21とリード端子25のそれぞれとを電気的に接続するワイヤを有してよい。 As shown in FIG. 1, the package has a stem 24, a lead terminal 25 penetrating the stem 24, a submount 26 fixed to the side of the convex portion of the stem 24, and a laser element 21 fixed to the submount 26. The package further has a cap 22 fixed to the stem 24 and a lens 23 fixed to an opening of the cap 22. The lid portion 16 is fixed to the stem 24. As shown by the dashed line in FIG. 1, the laser light emitted from the laser element 21 is collected by the lens 23, focuses in front of the fluorescent member 12, and enters the fluorescent member 12. When the light emitted by the light emitting device 100 is white light, for example, the fluorescence emitted by the fluorescent member 12 is yellow light, and the laser light emitted by the laser element 21 is blue light (peak wavelength is about 420 nm to 470 nm). Examples of phosphors contained in the fluorescent member 12 include yellow phosphors such as YAG phosphors. An example of the laser element 21 that emits blue laser light is a GaN-based laser element having an active layer of an InGaN well layer. The package may have wires that electrically connect the laser element 21 to each of the lead terminals 25.

(実験例)
実験例1~5として、図2A及び図2Bに示す蛍光部材12及び光反射部材11を作製した。実験例1~5において、光反射部材11の厚みは0.67mmであった。実験例1~5において、光反射部材11の上面視形状は直径4mmの円形であり、蛍光部材12の上面視形状は直径0.65mmの円形であった。溝11cは、蛍光部材12の外縁と同じ中心であって直径が異なる円形で設けた。溝11cについて、実験例1~3は直径0.8mmの位置にレーザ加工によって形成し、実験例4及び5は直径1.2mmの位置にレーザ加工によって形成した。上面視における溝11cと蛍光部材12の距離は、実験例1~3で約0.07mmであり、実験例4及び5で約0.27mmであった。溝11cの深さは、実験例1は0.07mm、実験例2は0.14mm、実験例3は0.2mm、実験例4は0.14mm、実験例5は0.2mmで形成した。実験例1~5の蛍光部材12の光入射面12bに励起光を照射し、光取出面12a側から観察した。その結果を図3に示す。
(Experimental Example)
As Experimental Examples 1 to 5, the fluorescent member 12 and the light reflecting member 11 shown in FIG. 2A and FIG. 2B were produced. In Experimental Examples 1 to 5, the thickness of the light reflecting member 11 was 0.67 mm. In Experimental Examples 1 to 5, the shape of the light reflecting member 11 in a top view was a circle with a diameter of 4 mm, and the shape of the fluorescent member 12 in a top view was a circle with a diameter of 0.65 mm. The groove 11c was provided as a circle with the same center as the outer edge of the fluorescent member 12 and different diameters. The groove 11c was formed by laser processing at a position with a diameter of 0.8 mm in Experimental Examples 1 to 3, and was formed by laser processing at a position with a diameter of 1.2 mm in Experimental Examples 4 and 5. The distance between the groove 11c and the fluorescent member 12 in a top view was about 0.07 mm in Experimental Examples 1 to 3, and about 0.27 mm in Experimental Examples 4 and 5. The depth of the groove 11c was 0.07 mm in Experimental Example 1, 0.14 mm in Experimental Example 2, 0.2 mm in Experimental Example 3, 0.14 mm in Experimental Example 4, and 0.2 mm in Experimental Example 5. The light incident surface 12b of the fluorescent member 12 in Experimental Examples 1 to 5 was irradiated with excitation light, and the fluorescent member 12 was observed from the light extraction surface 12a side. The results are shown in FIG.

図3から、溝11cと蛍光部材12の距離が近いほど、また、溝11cの深さが大きいほど、光反射部材11の表面からの光漏れを低減可能であるといえる。 From Figure 3, it can be said that the closer the distance between the groove 11c and the fluorescent member 12 and the deeper the groove 11c, the more light leakage from the surface of the light reflecting member 11 can be reduced.

11 光反射部材
11a 第1面
11b 第2面
11c 溝
12 蛍光部材
12a 光取出面
12b 光入射面
15 押さえ部
16 蓋部
16A 第1蓋部
16B 第2蓋部
21 レーザ素子
22 キャップ
23 レンズ
24 ステム
25 リード端子
26 サブマウント
100 発光装置
REFERENCE SIGNS LIST 11 light reflecting member 11a first surface 11b second surface 11c groove 12 fluorescent member 12a light extraction surface 12b light incidence surface 15 pressing portion 16 lid portion 16A first lid portion 16B second lid portion 21 laser element 22 cap 23 lens 24 stem 25 lead terminal 26 submount 100 light emitting device

Claims (7)

レーザ素子と、
前記レーザ素子からの光の少なくとも一部を波長変換する蛍光部材と、
前記蛍光部材の側面に直接的に又は透光性の接合部材を介して固定されたセラミックスからなる光反射部材と、
を備え、
前記蛍光部材は、前記蛍光部材からの光が取り出される主面となる光取出面を有し、
前記光反射部材には、前記蛍光部材の前記光取出面の側にある表面に溝が設けられている発光装置。
A laser element;
a fluorescent member that converts the wavelength of at least a portion of the light from the laser element;
a light reflecting member made of ceramics fixed to a side surface of the fluorescent member directly or via a light-transmitting bonding member;
Equipped with
the fluorescent member has a light extraction surface that is a main surface through which light from the fluorescent member is extracted,
The light emitting device has a surface of the light reflecting member that is adjacent to the light extraction surface of the fluorescent member and has grooves formed thereon.
前記光取出面の側から視て、前記溝の内縁の形状は、前記蛍光部材の外縁の形状と同じである請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the shape of the inner edge of the groove is the same as the shape of the outer edge of the fluorescent member when viewed from the light extraction surface side. 前記光取出面の側から視て、前記溝の内縁の形状及び前記蛍光部材の外縁の形状は、円形である請求項2に記載の発光装置。 The light-emitting device according to claim 2, wherein the shape of the inner edge of the groove and the shape of the outer edge of the fluorescent member are circular when viewed from the light extraction surface side. 前記光反射部材は、前記溝が設けられた第1面と、前記第1面とは反対の側の第2面と、を有し、
前記溝の深さは、前記光反射部材の前記第1面から前記第2面までの距離の1/10以上1/3以下の範囲内である請求項1~3のいずれか1項に記載の発光装置。
the light reflecting member has a first surface on which the groove is provided and a second surface opposite to the first surface,
4. The light emitting device according to claim 1, wherein the depth of the groove is within a range of 1/10 to 1/3 of the distance from the first surface to the second surface of the light reflecting member.
前記光反射部材には貫通孔が設けられており、
前記蛍光部材は前記貫通孔の内壁に固定されている請求項1~4のいずれか1項に記載の発光装置。
The light reflecting member has a through hole,
5. The light emitting device according to claim 1, wherein the fluorescent member is fixed to an inner wall of the through hole.
前記光取出面の側から視て、前記溝と前記貫通孔との距離は、0.07mm以上0.1mm以下の範囲内である請求項5に記載の発光装置。 The light-emitting device according to claim 5, wherein the distance between the groove and the through hole is within a range of 0.07 mm to 0.1 mm when viewed from the light extraction surface. 前記溝は空気で満たされている請求項1~6のいずれか1項に記載の発光装置。 The light-emitting device according to any one of claims 1 to 6, wherein the groove is filled with air.
JP2020149152A 2020-09-04 2020-09-04 Light-emitting device Active JP7506316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020149152A JP7506316B2 (en) 2020-09-04 2020-09-04 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020149152A JP7506316B2 (en) 2020-09-04 2020-09-04 Light-emitting device

Publications (2)

Publication Number Publication Date
JP2022043713A JP2022043713A (en) 2022-03-16
JP7506316B2 true JP7506316B2 (en) 2024-06-26

Family

ID=80668690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020149152A Active JP7506316B2 (en) 2020-09-04 2020-09-04 Light-emitting device

Country Status (1)

Country Link
JP (1) JP7506316B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201440566U (en) 2009-06-10 2010-04-21 宏瞻科技股份有限公司 Laser device with high wavelength conversion efficiency
JP2014160555A (en) 2013-02-19 2014-09-04 Stanley Electric Co Ltd Light emitting device, vehicle lamp fitting, and stress releasing part molding method
JP2014183269A (en) 2013-03-21 2014-09-29 Stanley Electric Co Ltd Wavelength converter
US20160091171A1 (en) 2014-09-30 2016-03-31 Nichia Corporation Optical component and its method of manufacture, and light emitting device and its mehtod of manufacture
US20170063032A1 (en) 2015-08-28 2017-03-02 Nichia Corporation Semiconductor laser device
JP2017212470A (en) 2017-09-06 2017-11-30 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
JP2019066680A (en) 2017-10-02 2019-04-25 株式会社小糸製作所 Wavelength conversion member and light source module
US20200052168A1 (en) 2018-08-10 2020-02-13 Osram Opto Semiconductors Gmbh Converter for an Optoelectronic Component, Optoelectronic Component, Method for Forming a Converter for an Optoelectronic Component and Material for a Reflector of an Optoelectronic Component

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201440566U (en) 2009-06-10 2010-04-21 宏瞻科技股份有限公司 Laser device with high wavelength conversion efficiency
JP2014160555A (en) 2013-02-19 2014-09-04 Stanley Electric Co Ltd Light emitting device, vehicle lamp fitting, and stress releasing part molding method
JP2014183269A (en) 2013-03-21 2014-09-29 Stanley Electric Co Ltd Wavelength converter
US20160091171A1 (en) 2014-09-30 2016-03-31 Nichia Corporation Optical component and its method of manufacture, and light emitting device and its mehtod of manufacture
JP2016072513A (en) 2014-09-30 2016-05-09 日亜化学工業株式会社 Optical component and manufacturing method of optical component and light emitting device and manufacturing method of light emitting device
US20170063032A1 (en) 2015-08-28 2017-03-02 Nichia Corporation Semiconductor laser device
JP2017045936A (en) 2015-08-28 2017-03-02 日亜化学工業株式会社 Semiconductor laser device
CN106486886A (en) 2015-08-28 2017-03-08 日亚化学工业株式会社 Semicondcutor laser unit
JP2017212470A (en) 2017-09-06 2017-11-30 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
JP2019066680A (en) 2017-10-02 2019-04-25 株式会社小糸製作所 Wavelength conversion member and light source module
CN111149024A (en) 2017-10-02 2020-05-12 株式会社小糸制作所 Wavelength conversion member and light source module
US20200052168A1 (en) 2018-08-10 2020-02-13 Osram Opto Semiconductors Gmbh Converter for an Optoelectronic Component, Optoelectronic Component, Method for Forming a Converter for an Optoelectronic Component and Material for a Reflector of an Optoelectronic Component

Also Published As

Publication number Publication date
JP2022043713A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP6733646B2 (en) Light emitting device and manufacturing method thereof
JP6332294B2 (en) Light emitting device
US10879430B2 (en) Light-emitting device and method of manufacturing the same
CN109817784B (en) Light emitting device and method of manufacturing the same
US10991859B2 (en) Light-emitting device and method of manufacturing the same
KR102231580B1 (en) Light conversion element, Lamp package and automobile lamp using the same
JP6520996B2 (en) Light emitting device and method of manufacturing the same
JP6481559B2 (en) Light emitting device
JP2009272576A (en) Semiconductor light-emitting device
JP2019186513A (en) Manufacturing method of light-emitting device
JP6631553B2 (en) Light emitting device manufacturing method
JP2009170723A (en) Light-emitting device
JP2008147610A (en) Light emitting device
JP7057486B2 (en) Light source device
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
JP2019067905A (en) Light-emitting device
JP7506316B2 (en) Light-emitting device
JP4424170B2 (en) Light emitting device
JP6989807B2 (en) Light emitting device and its manufacturing method
JP7285439B2 (en) planar light source
JP6885494B1 (en) Manufacturing method of light emitting device
US11367818B2 (en) Method of manufacturing light-emitting device
JP7389316B2 (en) light emitting device
JP6696550B2 (en) Light emitting device
JP2018195800A (en) Light-emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240527

R150 Certificate of patent or registration of utility model

Ref document number: 7506316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150