JP7506017B2 - Low hydrogen iron powder covered metal arc welding rod - Google Patents

Low hydrogen iron powder covered metal arc welding rod Download PDF

Info

Publication number
JP7506017B2
JP7506017B2 JP2021061672A JP2021061672A JP7506017B2 JP 7506017 B2 JP7506017 B2 JP 7506017B2 JP 2021061672 A JP2021061672 A JP 2021061672A JP 2021061672 A JP2021061672 A JP 2021061672A JP 7506017 B2 JP7506017 B2 JP 7506017B2
Authority
JP
Japan
Prior art keywords
metal
total
less
alloy
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021061672A
Other languages
Japanese (ja)
Other versions
JP2022157448A (en
Inventor
瑠太 三浦
将 高橋
雅大 渡部
実紗子 小松
Original Assignee
日鉄溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄溶接工業株式会社 filed Critical 日鉄溶接工業株式会社
Priority to JP2021061672A priority Critical patent/JP7506017B2/en
Publication of JP2022157448A publication Critical patent/JP2022157448A/en
Application granted granted Critical
Publication of JP7506017B2 publication Critical patent/JP7506017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、鉄粉低水素系被覆アーク溶接棒に関する。 The present invention relates to an iron powder low hydrogen type covered metal arc welding electrode.

低水素系被覆アーク溶接棒は、アーク安定性が良好で、耐割れ性や溶接金属の低温靱性が優れていることから、拘束が強い箇所や高張力鋼の溶接に広く使用されている。
一方、最近の溶接構造物の大型化にともない、使用鋼材の高強度化が要望されている。 また、天然資源の開発を目的とした大型海洋構造物や球形タンク等では、安全性の確保のため、溶接金属の低温での靱性の更なる向上や、溶接後熱処理(溶接熱影響部の軟化、溶接部の靱性改善及び溶接残留応力の除去を目的に行われる熱処理:以下、PWHTという。)後の機械的性能確保が重要となる。しかし、一般に溶接金属の強度増加と低温靱性確保は相反する傾向を示すため、高強度化とともに低温靱性を向上させるためには新たな手法が必要となる。
Low-hydrogen covered electrodes have good arc stability and excellent crack resistance and low-temperature toughness of the weld metal, and are therefore widely used in areas with strong restraint and for welding high-tensile steel.
On the other hand, with the recent increase in the size of welded structures, there is a demand for higher strength steel materials. In addition, in large marine structures and spherical tanks aimed at the development of natural resources, in order to ensure safety, it is important to further improve the toughness of weld metal at low temperatures and ensure mechanical performance after post-weld heat treatment (heat treatment performed for the purpose of softening the weld heat affected zone, improving the toughness of the weld and removing welding residual stress: hereinafter referred to as PWHT). However, since increasing the strength of weld metal and ensuring low-temperature toughness generally show contradictory trends, a new method is required to improve low-temperature toughness while increasing strength.

また、低水素系被覆アーク溶接棒は、一般的に交流電源を用いて溶接するように設計されるが、球形タンクや海洋構造物の現場溶接では直流電源を使用することが多い。低水素系被覆アーク溶接棒を、直流電源を用いて溶接すると、磁気吹きや被覆剤の片溶けが生じてアークが不安定となり、健全なビードが得られないという課題がある。このため、直流電源を使用した場合においても、アークの安定性に優れ、溶接金属の機械性能が良好な鉄粉低水素系被覆アーク溶接棒の開発要望が高い。 Although low-hydrogen covered metal arc welding rods are generally designed to be welded using an AC power source, DC power sources are often used for on-site welding of spherical tanks and marine structures. When low-hydrogen covered metal arc welding rods are welded using a DC power source, problems arise in that magnetic blow and one-sided melting of the coating material occur, making the arc unstable and making it difficult to obtain a sound bead. For this reason, there is a high demand for the development of iron powder low-hydrogen covered metal arc welding rods that have excellent arc stability and good mechanical performance of the weld metal even when using a DC power source.

このような状況に対し、溶接金属の機械的性能の向上手段として、種々提案がされている。例えば、特許文献1には、Ni含有量が1質量%以下でも低温靱性が優れた溶接金属を得ることを目的とした被覆アーク溶接棒が開示されている。
また、特許文献2には、直流電源を用いた溶接でアーク安定性が良好で低温靱性が優れた溶接金属を得る被覆アーク溶接棒の技術が開示されている。
また、特許文献3には、直流電源を用いた溶接でCTOD値(き裂先端開口変位)が優れた溶接金属を得る被覆アーク溶接棒の技術が開示されている。
さらに、特許文献4には、直流電源を用いた溶接でアーク安定性が良好で、AW(溶接のまま)とPWHT後において低温靭性が優れた溶接金属が得られる低水素系被覆アーク溶接棒が開示されている。
In response to this situation, various proposals have been made to improve the mechanical properties of the weld metal. For example, Patent Document 1 discloses a covered metal arc welding rod that aims to obtain a weld metal with excellent low-temperature toughness even when the Ni content is 1 mass % or less.
Furthermore, Patent Document 2 discloses a technique for a covered electrode for producing a weld metal having good arc stability and excellent low-temperature toughness in welding using a DC power source.
Furthermore, Patent Document 3 discloses a technique for a covered metal arc welding electrode that produces a weld metal having an excellent CTOD value (crack tip opening displacement) when welding using a DC power source.
Furthermore, Patent Document 4 discloses a low-hydrogen covered metal arc welding electrode that has good arc stability when used for welding with a DC power source and can provide a weld metal with excellent low-temperature toughness both in AW (as welded) and after PWHT.

特開2014-151338号公報JP 2014-151338 A 特開2015-196183号公報JP 2015-196183 A 特開2010-227968号公報JP 2010-227968 A 特開2017-064740号公報JP 2017-064740 A

特許文献1に記載された被覆アーク溶接棒は、直流電源を用いて溶接を行った場合、磁気吹きや被覆の片溶けが発生しやすいなど十分な溶接作業性が得られない。
特許文献2に記載された被覆アーク溶接棒は、溶接のまま(AW)では溶接金属の低温靭性の向上は得られるものの、PWHT後の溶接金属では十分な低温靭性が得られない。
特許文献3に記載の技術もAWでの溶接金属の機械性能は得られるが、PWHT後では溶接金属の十分な強度及び低温靭性は得られない。
特許文献4に記載された被覆アーク溶接棒は、Ni含有量が4~8%と非常に多く、高温割れが発生しやすい。
When the covered metal arc welding electrode described in Patent Document 1 is used for welding using a DC power source, magnetic arc blow and one-sided melting of the coating are likely to occur, and sufficient welding workability cannot be obtained.
The covered metal arc welding electrode described in Patent Document 2 improves the low-temperature toughness of the weld metal in the as-welded state (AW), but does not provide sufficient low-temperature toughness in the weld metal after PWHT.
The technique described in Patent Document 3 also provides mechanical properties of the weld metal in AW, but does not provide sufficient strength and low-temperature toughness of the weld metal after PWHT.
The covered metal arc welding electrode described in Patent Document 4 has a very high Ni content of 4 to 8%, and is prone to hot cracking.

本開示は、アーク安定性等の溶接作業性が良好であり、特にPWHT後の溶接金属において適正な強度及び低温での優れた靱性が得られる鉄粉低水素系被覆アーク溶接棒を提供することを課題とする。 The objective of this disclosure is to provide an iron powder, low-hydrogen, covered metal arc welding rod that has good welding workability, such as arc stability, and that provides appropriate strength and excellent toughness at low temperatures in the weld metal after PWHT in particular.

前記課題を解決するための本開示の要旨は、以下の通りである。
<1> 鋼心線と、前記鋼心線を被覆する被覆剤とを含み、
溶接棒全質量に対する前記被覆剤の質量割合が25%以上40%以下であり、
前記被覆剤が、被覆剤全質量に対する質量%で、
金属又は合金としてのMn:2.0~5.0%、
金属又は合金としてのNi:1.0~2.0%、
金属又は合金としてのMo:0.3~1.5%、
金属又は合金としてのSi:1.5~3.5%
Si酸化物のSiO換算値:4.0~8.0%
金属炭酸塩の合計:25~45%、
金属弗化物の合計:5~15%、
Ti酸化物のTiO換算値の合計:2.0~7.0%、
Al酸化物のAl換算値の合計:0.5~2.5%、
Mg酸化物のMgO換算値の合計:0.1~1.0%、
Ca酸化物のCaO換算値の合計:0.30%以下、
Zr酸化物のZrO換算値の合計:0.5~1.5%、
Na換算値とK換算値の合計:0.5~3.0%、
鉄粉及び鉄合金粉のFe:20~35%、並びに
残部:前記Mnから前記Feまでの成分を除く塗装剤の残部及び1.00%以下の不純物、
を含む鉄粉低水素系被覆アーク溶接棒。
<2> 前記被覆剤が、前記被覆剤を構成する成分の一部に替えて、前記被覆剤全質量に対する質量%で、
金属又は合金としてのTi:3.50%以下、並びに
金属B、B合金、及びB酸化物の各B換算値の合計:0.60%以下、
を含む<1>に記載の鉄粉低水素系被覆アーク溶接棒。
<3> 前記被覆剤が、前記被覆剤を構成する成分の一部に替えて、前記被覆剤全質量に対する質量%で、
金属又は合金としてのMg:3.0%以下、及び
金属又は合金としてのAl:3.5%以下、
の一方又は両方を含む<1>又は<2>に記載の鉄粉低水素系被覆アーク溶接棒。
<4> 前記被覆剤が、前記被覆剤を構成する成分の一部に替えて、前記金属炭酸塩及び前記金属弗化物を除く成分として、前記被覆剤全質量に対する質量%で、下記(1)~(5)からなる群より選ばれる一種又は二種以上を含む<1>~<3>のいずれか1つに記載の鉄粉低水素系被覆アーク溶接棒。
(1)Li:0.5%以下
(2)V、Nb、及びTa:一種又は二種以上の合計で0.5%以下
(3)Co:0.5%以下
(4)Cu及びBi:一種又は二種の合計で0.5%以下
(5)Cr:0.5%以下
The gist of the present disclosure for solving the above problems is as follows.
<1> A steel core wire and a coating material that coats the steel core wire,
The mass ratio of the coating material to the total mass of the welding rod is 25% or more and 40% or less,
The coating agent is, in mass % based on the total mass of the coating agent,
Mn as metal or alloy: 2.0 to 5.0%;
Ni as metal or alloy: 1.0 to 2.0%,
Mo as metal or alloy: 0.3 to 1.5%,
Si as metal or alloy: 1.5 to 3.5%
Si oxide converted into SiO2 : 4.0 to 8.0%
Total metal carbonates: 25-45%,
Total metal fluorides: 5-15%,
Total of Ti oxides converted into TiO2 : 2.0 to 7.0%,
Sum of Al oxides converted into Al 2 O 3 : 0.5 to 2.5%,
Total Mg oxide converted into MgO: 0.1 to 1.0%,
Sum of Ca oxides converted into CaO: 0.30% or less,
Total Zr oxide converted into ZrO2 : 0.5 to 1.5%,
Sum of Na equivalent and K equivalent: 0.5 to 3.0%,
Fe in the iron powder and iron alloy powder: 20 to 35%, and the balance: the balance of the coating agent excluding the components from Mn to Fe, and impurities of 1.00% or less.
A low hydrogen-based iron powder covered metal arc welding electrode comprising:
<2> The coating agent is, in mass% relative to the total mass of the coating agent, replacing a part of the components constituting the coating agent,
Ti as a metal or alloy: 3.50% or less; and The sum of the B2O3 converted values of metal B, B alloy, and B oxide: 0.60% or less.
The iron powder low hydrogen type covered metal arc welding rod according to <1>,
<3> The coating agent is, in mass% with respect to the total mass of the coating agent, replacing a part of the components constituting the coating agent,
Mg as a metal or alloy: 3.0% or less; and Al as a metal or alloy: 3.5% or less;
The low hydrogen-based iron powder covered metal arc welding rod according to <1> or <2>, comprising one or both of the following:
<4> The iron powder low hydrogen type covered metal arc welding electrode according to any one of <1> to <3>, wherein the coating agent contains, as a component other than the metal carbonate and the metal fluoride, one or more selected from the group consisting of the following (1) to (5), in mass % with respect to the total mass of the coating agent, instead of a part of the components constituting the coating agent:
(1) Li: 0.5% or less (2) V, Nb, and Ta: 0.5% or less in total of one or more of them (3) Co: 0.5% or less (4) Cu and Bi: 0.5% or less in total of one or more of them (5) Cr: 0.5% or less

本開示によれば、アーク安定性等の溶接作業性が良好であり、特にPWHT後の溶接金属において適正な強度及び低温での優れた靱性が得られる鉄粉低水素系被覆アーク溶接棒が提供される。 The present disclosure provides an iron powder low-hydrogen covered metal arc welding rod that has good welding workability, such as arc stability, and that provides appropriate strength and excellent toughness at low temperatures in the weld metal after PWHT in particular.

以下、本開示の一例である実施形態について説明する。
なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値に「超」又は「未満」が付されていない場合は、これらの数値を下限値及び上限値として含む範囲を意味する。また、「~」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これらの数値を下限値又は上限値として含まない範囲を意味する。
本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値は、他の段階的な記載の数値範囲の上限値に置き換えてもよく、実施例に示されている値に置き換えてもよい。また、ある段階的な数値範囲の下限値は、他の段階的な記載の数値範囲の下限値に置き換えてもよく、実施例に示されている値に置き換えてもよい。
含有量について、「%」は特に断りのない限り「質量%」を意味する。
また、含有量(%)について下限値を限定せずに「~%以下」として上限値のみを限定している場合は、0%超~上限値の範囲内で含み得ることを意味する。
Hereinafter, an embodiment that is an example of the present disclosure will be described.
In this specification, when a numerical range expressed using "to" is not preceded or followed by "more than" or "less than", it means a range that includes these numerical values as the lower and upper limits. When "to" is preceded or followed by "more than" or "less than", it means a range that does not include these numerical values as the lower or upper limit.
In the present specification, the upper limit of a certain numerical range may be replaced by the upper limit of another numerical range, or may be replaced by a value shown in an example. The lower limit of a certain numerical range may be replaced by the lower limit of another numerical range, or may be replaced by a value shown in an example.
With respect to the content, "%" means "mass %" unless otherwise specified.
In addition, when the content (%) is specified with only an upper limit such as "not more than ..." without specifying a lower limit, this means that the content may be in the range from more than 0% to the upper limit.

本発明者らは、鉄粉低水素系被覆アーク溶接棒の溶着金属のPWHT後の強度及び低温靱性の改善について鋭意研究した結果、被覆剤におけるMn、Ni及びMoの含有量を適正とすることによってPWHT後の溶接金属の強度を改善できることを見出し、さらに、金属炭酸塩、Si含有量を適正にし、鋼心線への被覆率を適正にすることで、PWHT後の溶接金属の低温靭性を改善できることを見出し、さらに検討を重ねて本発明を完成した。具体的には、鉄粉低水素系被覆アーク溶接棒の被覆剤の被覆率及び被覆剤の成分と効果に関して以下のような知見を得た。 As a result of extensive research into improving the strength and low-temperature toughness of the weld metal after PWHT of low-hydrogen iron powder covered metal arc welding electrodes, the inventors discovered that the strength of the weld metal after PWHT can be improved by optimizing the contents of Mn, Ni, and Mo in the coating, and further discovered that the low-temperature toughness of the weld metal after PWHT can be improved by optimizing the metal carbonate and Si contents and the coating rate on the steel core wire. After further investigation, the inventors completed the present invention. Specifically, the following findings were obtained regarding the coating rate of low-hydrogen iron powder covered metal arc welding electrodes and the components and effects of the coating.

溶接作業性に関しては、アークの安定化及びスパッタ発生量の低減には、被覆率、Si、金属炭酸塩、金属弗化物、Ti酸化物のTiO換算値の合計、Al酸化物のAl換算値の合計、Ca酸化物のCaO換算値の合計、Na換算値とK換算値の合計、鉄及び鉄合金粉のFeを適正にすることで良好になることを見出した。
また、ビード形状及びビード外観は、Si酸化物のSiO換算値、金属炭酸塩、金属弗化物、Ti酸化物のTiO換算値の合計、Al酸化物のAl換算値の合計、Mg酸化物のMgO換算値の合計、Zr酸化物のZrO換算値の合計を適正にすることで良好になることを突き止めた。
Regarding welding workability, it was found that the arc can be stabilized and the amount of spatter generated can be reduced by optimizing the coverage, Si, metal carbonates, metal fluorides, the sum of the TiO2 converted values of Ti oxides, the sum of the Al2O3 converted values of Al oxides, the sum of the CaO converted values of Ca oxides, the sum of the Na converted values and the K converted values, and the Fe in the iron and iron alloy powder.
In addition, the inventors have found that the bead shape and bead appearance can be improved by optimizing the amounts of Si oxide in terms of SiO2 , metal carbonates, metal fluorides, the sum of Ti oxide in terms of TiO2 , the sum of Al oxide in terms of Al2O3 , the sum of Mg oxide in terms of MgO, and the sum of Zr oxide in terms of ZrO2 .

さらに、スラグ剥離性は、Si酸化物のSiO換算値、金属炭酸塩、Al酸化物のAl換算値の合計を適正にすることで良好になることを見出した。
また、溶接棒自体が赤熱する棒焼けを防止するには、鉄及び鉄合金粉のFeを適正にすることで、溶接棒の保護筒の片溶けを防止するには金属弗化物、Mg酸化物のMgO換算値の合計、Zr酸化物のZrO換算値の合計、鉄及び鉄合金粉のFeを適正にすることで、被覆剤の塗装性等の溶接棒の生産性はNa換算値とK換算値の合計を適正にすることで良好になることを見出した。
Furthermore, it was found that the slag removability can be improved by optimizing the total of the SiO2 equivalent value of silicon oxide, the metal carbonate, and the Al2O3 equivalent value of aluminum oxide.
In addition, it was found that in order to prevent rod burn, in which the welding rod itself becomes red hot, the Fe content of the iron and iron alloy powder should be adjusted appropriately, and in order to prevent one-sided melting of the protective tube of the welding rod, the total of the metal fluoride, the Mg oxide's MgO equivalent value, the total of the Zr oxide's ZrO2 equivalent value, and the Fe content of the iron and iron alloy powder should be adjusted appropriately, and that the productivity of the welding rod, such as the paintability of the coating agent, can be improved by adjusting the total of the Na equivalent value and the K equivalent value.

さらに、Tiと金属B及びB合金並びにB酸化物の合計、Mg及びAlの一種或いは両方の適量により低温での溶接金属の靭性がさらに向上することを見出した。
また、Li、V、Cr、Co、Cu、Nb、Ta、Biを適量含有することで様々な効果が得られることを見出した。
Furthermore, it has been found that the toughness of the weld metal at low temperatures can be further improved by adding an appropriate amount of the total of Ti and metal B, B alloy and B oxide, and one or both of Mg and Al.
In addition, it was found that various effects can be obtained by containing appropriate amounts of Li, V, Cr, Co, Cu, Nb, Ta, and Bi.

<鉄粉低水素系被覆アーク溶接棒>
本開示に係る鉄粉低水素系被覆アーク溶接棒(本開示において「被覆アーク溶接棒」又は単に「溶接棒」などと称する場合がある。)は、鋼心線と、鋼心線を被覆する被覆剤とを含んで構成されている。
<Iron powder low hydrogen type covered metal arc welding electrode>
The iron powder low hydrogen type covered metal arc welding rod according to the present disclosure (which may be referred to as a “covered metal arc welding rod” or simply a “welding rod” in the present disclosure) includes a steel core wire and a coating material that coats the steel core wire.

(鋼心線)
鋼心線は、公知の低水素系被覆アーク溶接棒に使用される鋼心線を用いることができる。例えば、JIS G 3523:1980に規定されるSWY11の線材から製造した心線を用いることが好ましい。
(Steel core wire)
The steel core wire may be a steel core wire used in a known low-hydrogen covered metal arc welding rod. For example, it is preferable to use a core wire manufactured from SWY11 wire material specified in JIS G 3523:1980.

(被覆剤)
鋼心線の外周面には、被覆剤全質量に対する質量%で、
金属又は合金としてのMn:2.0~5.0%、
金属又は合金としてのNi:1.0~2.0%、
金属又は合金としてのMo:0.3~1.5%、
金属又は合金としてのSi:1.5~3.5%
Si酸化物のSiO換算値:4.0~8.0%、
金属炭酸塩の合計:25~45%、
金属弗化物の合計:5~15%、
Ti酸化物のTiO換算値の合計:2.0~7.0%、
Al酸化物のAl換算値の合計:0.5~2.5%、
Mg酸化物のMgO換算値の合計:0.1~1.0%、
Ca酸化物のCaO換算値の合計:0.30%以下
Zr酸化物のZrO換算値の合計:0.5~1.5%、
Na換算値とK換算値の合計:0.5~3.0%、並びに
鉄粉及び鉄合金粉のFe:20~35%、
を含有し、さらに前記Mnから前記Feまでの成分を除く塗装剤の残部と1.00%以下の不純物を含む被覆剤が塗装されている。
(Coating agent)
The outer surface of the steel core wire is coated with the following material (mass % relative to the total mass of the coating material):
Mn as metal or alloy: 2.0 to 5.0%;
Ni as metal or alloy: 1.0 to 2.0%,
Mo as metal or alloy: 0.3 to 1.5%,
Si as metal or alloy: 1.5 to 3.5%
Si oxide converted into SiO2 : 4.0 to 8.0%,
Total metal carbonates: 25-45%,
Total metal fluorides: 5-15%,
Total of Ti oxides converted into TiO2 : 2.0 to 7.0%,
Sum of Al oxides converted into Al 2 O 3 : 0.5 to 2.5%,
Total Mg oxide converted into MgO: 0.1 to 1.0%,
Sum of Ca oxides converted into CaO: 0.30% or less Sum of Zr oxides converted into ZrO2 : 0.5 to 1.5%,
The sum of Na and K converted values: 0.5 to 3.0%, and Fe in iron powder and iron alloy powder: 20 to 35%,
and further comprising the remainder of the coating agent excluding the components from Mn to Fe, and a coating agent containing 1.00% or less of impurities.

以下、本開示に係る鉄粉低水素系被覆アーク溶接棒の被覆剤の成分組成及び成分組成の限定理由について詳細に説明する。なお、各成分の含有量は、被覆剤全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載することとする。また、本開示に係る溶接棒の被覆剤を構成する成分に関し、例えば、「金属炭酸塩の合計」とは、金属炭酸塩を一種のみ含んでもよいし、二種以上含んでもよく、二種以上含む場合はそれらの合計含有量を意味する。「金属弗化物の合計」についても同様である。
また、酸化物に関し、例えば「Ti酸化物のTiO換算値」とは、TiO以外のTi酸化物も含め、Ti酸化物として含まれるTiが全てTiOとして含まれているとみなして換算した値を意味する。
The composition of the coating material of the iron powder low hydrogen type covered metal arc welding electrode according to the present disclosure and the reasons for limiting the composition of the components will be described in detail below. The content of each component is expressed as mass% relative to the total mass of the coating material, and when expressing the mass%, it will be written simply as %. In addition, with regard to the components constituting the coating material of the welding electrode according to the present disclosure, for example, "total of metal carbonates" may contain only one type of metal carbonate or may contain two or more types, and when two or more types are contained, it means the total content of them. The same applies to "total of metal fluorides".
Regarding oxides, for example, " TiO2 equivalent value of Ti oxide" means a value calculated by assuming that all Ti contained as Ti oxide is contained as TiO2 , including Ti oxides other than TiO2 .

また、後述する「金属B、B合金、及びB酸化物の各B換算値の合計」とは、金属B、B合金、及びB酸化物のいずれか一種又は二種以上を含んでもよく、また、例えばB合金を含む場合は一種又は二種以上のB合金を含んでもよいが、B酸化物だけでなく、金属B及びB合金も「B」に換算した含有量とし、「各B換算値の合計:0.60%以下」とは、いずれの場合においてもB換算値の合計が0.60%以下であることを意味する。 Furthermore, the "total of the B 2 O 3 equivalent values of metal B, B alloy, and B oxide" described below may include any one or more of metal B, B alloy, and B oxide, and may also include, for example, one or more of B alloys when B alloy is included, but it refers to the content converted into "B 2 O 3 " of not only B oxide but also metal B and B alloy, and "the sum of the B 2 O 3 equivalent values: 0.60% or less" means that the sum of the B 2 O 3 equivalent values is 0.60% or less in any case.

[被覆率:溶接棒全質量に対する被覆剤の質量%で25~40%]
被覆剤の鋼心線の外周への被覆率は、溶接時の耐シールド性に大きく影響する。被覆率が鉄粉低水素系被覆アーク溶接棒全質量に対する被覆剤の質量%(以下、単に%という。)で25%未満では、被覆剤自体が少なくなってシールド不足となり、溶接金属中のN含有量が増加してPWHT後の溶接金属の靱性が低下する。一方、被覆剤の被覆率が40%を超えると、スラグ量が過多となってアークが不安定になる。従って、被覆率は25~40%とする。
なお、溶接棒全質量に対する被覆剤の質量割合(被覆率:%)は、以下の式によって算出される値である。
被覆率%=被覆剤質量/溶接棒全質量×100
[Covering rate: 25-40% by mass of coating material relative to the total mass of the welding rod]
The coverage rate of the coating material on the outer circumference of the steel core wire has a large effect on the shielding resistance during welding. If the coverage rate is less than 25% by mass of the coating material relative to the total mass of the iron powder low hydrogen type covered metal arc welding electrode (hereinafter simply referred to as %), the coating material itself becomes less, resulting in insufficient shielding, and the N content in the weld metal increases, reducing the toughness of the weld metal after PWHT. On the other hand, if the coverage rate of the coating material exceeds 40%, the amount of slag becomes excessive and the arc becomes unstable. Therefore, the coverage rate is set to 25 to 40%.
The mass ratio of the coating material to the total mass of the welding rod (coverage rate: %) is a value calculated by the following formula.
Coverage % = mass of coating material / total mass of welding rod × 100

[金属又は合金としてのMn:2.0~5.0%]
Mnは、金属又は合金、例えば金属Mn、Fe-Mn、Fe-Si-Mn等として含有され、Siと同様に脱酸剤として重要であり、溶接金属組織を微細化して溶接金属の低温靱性及び強度を高める効果がある。また、焼入れ性が強いことから、PWHT後の溶接金属の強度確保にも有効である。Mnが2.0%未満では、PWHT後の溶接金属の強度及び低温靭性が低下する。また、脱酸不足となって溶接金属中にブローホールが発生しやすくなる。一方、Mnが5.0%を超えると、溶接金属の強度が過剰に高くなり、靭性が低下する。また、焼入れ性が強く作用し、PWHT後の溶接金属の強度が高くなって靱性が低下する。従って、Mnは2.0~5.0%とする。
[Mn as metal or alloy: 2.0 to 5.0%]
Mn is contained as a metal or an alloy, such as metal Mn, Fe-Mn, Fe-Si-Mn, etc., and is important as a deoxidizer like Si, and has the effect of refining the weld metal structure and increasing the low-temperature toughness and strength of the weld metal. In addition, since it has strong hardenability, it is also effective in ensuring the strength of the weld metal after PWHT. If the Mn content is less than 2.0%, the strength and low-temperature toughness of the weld metal after PWHT will decrease. In addition, deoxidization will be insufficient, and blowholes will easily occur in the weld metal. On the other hand, if the Mn content exceeds 5.0%, the strength of the weld metal will be excessively high and the toughness will decrease. In addition, the hardenability will be strong, and the strength of the weld metal after PWHT will be high and the toughness will decrease. Therefore, the Mn content is set to 2.0 to 5.0%.

[金属又は合金としてのNi:1.0~2.0%]
Niは、金属又は合金、例えば金属NiやNi合金粉等として含有され、PWHT後の溶接金属の強度及び低温靭性を向上させる効果がある。Niが1.0%未満では、PWHT後の溶接金属の強度及び低温靭性が低下する。一方、Niが2.0%を超えると、溶接金属の強度が過剰に高くなる。従って、Niは1.0~2.0%とする。
[Ni as metal or alloy: 1.0 to 2.0%]
Ni is contained as a metal or alloy, for example, Ni metal or Ni alloy powder, and has the effect of improving the strength and low-temperature toughness of the weld metal after PWHT. If Ni is less than 1.0%, the strength and low-temperature toughness of the weld metal after PWHT decrease. On the other hand, if Ni exceeds 2.0%, the strength of the weld metal becomes excessively high. Therefore, Ni is set to 1.0 to 2.0%.

[金属又は合金としてのMo:0.3~1.5%]
Moは、金属又は合金、例えば金属Mo、Fe-Mo等として含有され、溶接金属の強度をより向上させる効果がある。また、焼入れ性が強いことから、PWHT後の強度確保にも有効である。Moが0.3%未満では、PWHT後の溶接金属の強度が低下する。一方、Moが1.5%を超えると、PWHT後の溶接金属の強度が過剰に高くなり、靭性が低下する。従って、Moは0.3~1.5%とする。
[Mo as metal or alloy: 0.3 to 1.5%]
Mo is contained as a metal or alloy, such as metallic Mo, Fe-Mo, etc., and has the effect of further improving the strength of the weld metal. In addition, since it has strong hardenability, it is also effective in ensuring strength after PWHT. If Mo is less than 0.3%, the strength of the weld metal after PWHT decreases. On the other hand, if Mo exceeds 1.5%, the strength of the weld metal after PWHT becomes excessively high and the toughness decreases. Therefore, Mo is set to 0.3 to 1.5%.

[金属又は合金としてのSi:1.5~3.5%]
Siは、金属又は合金、例えば金属Si、Fe-Si、Fe-Si-Mn等として含有され、溶接金属の脱酸を目的として使用される。Siが1.5%未満では、脱酸不足となって溶接金属中にブローホールが発生しやすくなり、アークも不安定となる。一方、Siが3.5%を超えると、溶接金属の粒界に低融点酸化物を析出させ、溶接金属の低温靱性が低下する。従って、Siは1.5~3.5%とする。
[Si as metal or alloy: 1.5 to 3.5%]
Silicon is contained as a metal or an alloy, such as metal silicon, Fe-Si, Fe-Si-Mn, etc., and is used for the purpose of deoxidizing the weld metal. If the silicon content is less than 1.5%, deoxidation is insufficient, making blowholes more likely to occur in the weld metal and making the arc unstable. On the other hand, if the silicon content exceeds 3.5%, low-melting-point oxides are precipitated at the grain boundaries of the weld metal, reducing the low-temperature toughness of the weld metal. Therefore, the silicon content is set to 1.5 to 3.5%.

[Si酸化物のSiO換算値:4.0~8.0%]
Si酸化物のSiO換算値は、珪砂、ジルコンサンド、カリ長石、珪酸ナトリウムや珪酸カリウム等の水ガラスの固質分、珪灰石等として含有され、溶融スラグの粘性を高め、適切な粘性のスラグを確保してビード形状を良好にする効果がある。Si酸化物のSiO換算値が4.0%未満では、溶融スラグの粘性が低くなり、ビード形状が不良となる。一方、Si酸化物のSiO換算値が8.0%を超えると、スラグがガラス状になり、スラグ剥離性が不良になる。従って、Si酸化物のSiO換算値は4.0~8.0%とする。
[ SiO2 equivalent value of Si oxide: 4.0 to 8.0%]
The SiO2 equivalent of Si oxide is contained as silica sand, zircon sand, potassium feldspar, solid components of water glass such as sodium silicate and potassium silicate, wollastonite, etc., and has the effect of increasing the viscosity of the molten slag, ensuring slag with appropriate viscosity, and improving the bead shape. If the SiO2 equivalent of Si oxide is less than 4.0%, the viscosity of the molten slag will be low and the bead shape will be poor. On the other hand, if the SiO2 equivalent of Si oxide exceeds 8.0%, the slag will become glassy and the slag removability will be poor. Therefore, the SiO2 equivalent of Si oxide is set to 4.0 to 8.0%.

[金属炭酸塩の合計:25~45%]
金属炭酸塩は、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等として含有され、アークの熱で分解してCOガスを発生し、溶接金属を大気から保護する効果がある。金属炭酸塩の一種又は二種以上の合計が25%未満では、シールド効果が不足し、ブローホールが発生しやすくなる。また、溶接金属中に大気中の窒素が混入し、PWHT後の低温靱性が低下する。一方、金属炭酸塩の一種又は二種以上の合計が45%を超えると、アークが不安定となってビード形状が凸状になり、スラグ剥離性も悪くなる。従って、金属炭酸塩の合計は25~45%とする。
[Total of metal carbonates: 25-45%]
Metal carbonates are contained as calcium carbonate, magnesium carbonate, barium carbonate, etc., and decompose with the heat of the arc to generate CO2 gas, which has the effect of protecting the weld metal from the atmosphere. If the total of one or more metal carbonates is less than 25%, the shielding effect is insufficient and blowholes are likely to occur. In addition, nitrogen from the atmosphere is mixed into the weld metal, reducing the low-temperature toughness after PWHT. On the other hand, if the total of one or more metal carbonates exceeds 45%, the arc becomes unstable, the bead shape becomes convex, and slag removability is also poor. Therefore, the total of the metal carbonates is set to 25-45%.

[金属弗化物の合計:5~15%]
金属弗化物は、蛍石、弗化マグネシウム、弗化アルミニウム、弗化リチウム、弗化ナトリウム、珪弗化カリウム等として含有され、溶融スラグの流動性を調整してビード外観を良好にする効果がある。金属弗化物の一種又は二種以上の合計が5%未満では、溶融スラグの流動性が悪くなりスラグ被包性が悪くなってビード外観が不良になる。一方、金属弗化物の一種又は二種以上の合計が15%を超えると、被覆筒の形状が不完全となって片溶け状態となり、アークが不安定となる。従って、金属弗化物の合計は5~15%とする。
[Total of metal fluorides: 5-15%]
Metal fluorides are contained as fluorite, magnesium fluoride, aluminum fluoride, lithium fluoride, sodium fluoride, potassium silicofluoride, etc., and have the effect of adjusting the fluidity of the molten slag and improving the bead appearance. If the total of one or more metal fluorides is less than 5%, the fluidity of the molten slag is poor, the slag encapsulation is poor, and the bead appearance is poor. On the other hand, if the total of one or more metal fluorides exceeds 15%, the shape of the covering tube becomes incomplete, resulting in a one-sided melting state and an unstable arc. Therefore, the total of the metal fluorides is set to 5-15%.

[Ti酸化物のTiO換算値の合計:2.0~7.0%]
Ti酸化物は、ルチール、酸化チタン、チタンスラグ、チタン酸カルシウム等として含有され、アークを安定にし、溶融スラグの粘性を調整してビード形状を良好にする効果がある。Ti酸化物のTiO換算値の合計が2.0%未満であると、アークが不安定となり、ビード形状が不良になる。一方、Ti酸化物のTiO換算値の合計が7.0%を超えると、溶融スラグの粘性が高くなってスラグの流動性が悪くなるので、ビード形状が凸状となる。従って、Ti酸化物のTiO換算値の合計は2.0~7.0%とする。
[Total of Ti oxides converted into TiO2 : 2.0 to 7.0%]
Ti oxides are contained as rutile, titanium oxide, titanium slag, calcium titanate, etc., and have the effect of stabilizing the arc and adjusting the viscosity of the molten slag to improve the bead shape. If the total of the Ti oxides in terms of TiO2 is less than 2.0%, the arc becomes unstable and the bead shape becomes poor. On the other hand, if the total of the Ti oxides in terms of TiO2 exceeds 7.0%, the viscosity of the molten slag increases and the fluidity of the slag deteriorates, resulting in a convex bead shape. Therefore, the total of the Ti oxides in terms of TiO2 is set to 2.0 to 7.0%.

[Al酸化物のAl換算値の合計:0.5~2.5%]
Al酸化物は、アルミナ、カリ長石等として含有され、アークを安定させるとともにビード形状を良好にする効果がある。Al酸化物のAlの合計が0.5%未満であると、アークが不安定となりビード形状が不良となる。一方、Al酸化物のAlの合計が2.5%を超えると、スラグがガラス状となってスラグ剥離性が不良になる。従って、Al酸化物のAlの合計は0.5~2.5%とする。
[Total Al2O3 converted value of Al oxide : 0.5 to 2.5%]
Aluminum oxide is contained as alumina, potassium feldspar, etc., and has the effect of stabilizing the arc and improving the bead shape. If the total amount of aluminum oxide (Al 2 O 3 ) is less than 0.5%, the arc becomes unstable and the bead shape becomes poor. On the other hand, if the total amount of aluminum oxide (Al 2 O 3 ) exceeds 2.5%, the slag becomes glassy and the slag removability becomes poor. Therefore, the total amount of aluminum oxide (Al 2 O 3 ) is set to 0.5-2.5%.

[Mg酸化物のMgO換算値の合計:0.1~1.0%]
Mg酸化物は、酸化マグネシウム、マグネシアクリンカー等として含有され、耐熱性に優れており、被覆剤の片溶けを抑制する効果がある。Mg酸化物のMgO換算値の合計が0.1%未満では、被覆剤の片溶けが発生しやすくなる。一方、Mg酸化物のMgO換算値の合計が1.0%を超えると、溶融スラグの粘性が高くなるので、ビード形状が凸状となる。従って、Mg酸化物のMgO換算値の合計は0.1~1.0%とする。
[Total of Mg oxides converted into MgO: 0.1 to 1.0%]
Mg oxide is contained as magnesium oxide, magnesia clinker, etc., has excellent heat resistance, and is effective in suppressing one-sided dissolution of the coating agent. If the total of Mg oxides in terms of MgO is less than 0.1%, one-sided dissolution of the coating agent is likely to occur. On the other hand, if the total of Mg oxides in terms of MgO exceeds 1.0%, the viscosity of the molten slag increases, and the bead shape becomes convex. Therefore, the total of Mg oxides in terms of MgO is set to 0.1 to 1.0%.

[Ca酸化物のCaO換算値の合計:0.30%以下]
Ca酸化物は、チタン酸カルシウム、珪灰石等として含有され、アークを安定化させてスパッタ発生の低減に効果がある。Ca酸化物のCaO換算値の合計が0.30%を超えると、アークが弱くなって不安定になり、融合不良等の溶接欠陥が発生しやすくなる。従って、Ca酸化物のCaO換算値の合計は0.30%以下とする。
[Total of Ca oxides converted into CaO: 0.30% or less]
Ca oxides are contained as calcium titanate, wollastonite, etc., and are effective in stabilizing the arc and reducing the occurrence of spatter. If the total of Ca oxides converted into CaO exceeds 0.30%, the arc becomes weak and unstable, and welding defects such as poor fusion are likely to occur. Therefore, the total of Ca oxides converted into CaO is set to 0.30% or less.

[Zr酸化物のZrO換算値の合計:0.5~1.5%]
Zr酸化物は、ジルコンサンド、ジルコニア等として含有され、融点が2700℃と高く、被覆剤及び鋼心線が過熱した際も安定した耐火性を有し、被覆剤の片溶けを抑制する上で有効である。Zr酸化物のZrO換算値の合計が0.5%未満では、被覆剤の片溶けが発生しやすくなる。一方、Zr酸化物のZrO換算値の合計が1.5%を超えると、溶融スラグの粘性が高くなってスラグの流動性が悪くなり、ビード形状が凸状となる。従って、Zr酸化物のZrO換算値の合計は0.5~1.5%とする。
[Total of Zr oxide converted into ZrO2 : 0.5 to 1.5%]
Zr oxide is contained as zircon sand, zirconia, etc., and has a high melting point of 2700°C, and has stable fire resistance even when the coating material and steel core wire are overheated, and is effective in suppressing one-sided melting of the coating material. If the total of Zr oxides converted into ZrO2 is less than 0.5%, one-sided melting of the coating material is likely to occur. On the other hand, if the total of Zr oxides converted into ZrO2 exceeds 1.5%, the viscosity of the molten slag increases, the fluidity of the slag deteriorates, and the bead shape becomes convex. Therefore, the total of Zr oxides converted into ZrO2 is set to 0.5 to 1.5%.

[Na換算値とK換算値の合計:0.5~3.0%]
Naは、珪酸ナトリウム等の水ガラスの固質分や弗化ナトリウム等として含有され、また、Kは、珪酸カリウム等の水ガラスの固質分、珪弗化カリウム及びカリ長石等として含有され、溶接棒製造時の塗装性及び溶接時のアークの安定性を向上する効果がある。Na換算値とK換算値の合計が0.5%未満では、アークが不安定になる。また、生産時の塗装性が悪くなるとともに、溶接棒製造時に被覆剤表面に割れが生じやすくなるなど被覆アーク溶接棒の生産性が低下する。一方、Na換算値とK換算値の合計が3.0%を超えると、アークの吹き付けが強くなり、スパッタ発生量が多くなる。従って、Na換算値とK換算値の合計は0.5~3.0%とする。なお、NaとKの含有形態は限定されず、金属、合金、他の化合物として含まれていてもよい。また、NaとKを両方含んでもよいし、NaとKの一方は含まない、すなわち0%であってもよい。
[Total of Na and K converted values: 0.5 to 3.0%]
Na is contained as a solid component of water glass such as sodium silicate or sodium fluoride, and K is contained as a solid component of water glass such as potassium silicate, potassium silicofluoride, and potassium feldspar, and has the effect of improving the paintability during the manufacture of the welding rod and the stability of the arc during welding. If the total of the Na equivalent value and the K equivalent value is less than 0.5%, the arc becomes unstable. In addition, the paintability during production deteriorates, and cracks are likely to occur on the coating surface during the manufacture of the welding rod, so that the productivity of the covered arc welding rod decreases. On the other hand, if the total of the Na equivalent value and the K equivalent value exceeds 3.0%, the arc blow becomes strong and the amount of spatter generation increases. Therefore, the total of the Na equivalent value and the K equivalent value is set to 0.5 to 3.0%. The form of inclusion of Na and K is not limited, and they may be contained as metals, alloys, or other compounds. In addition, both Na and K may be contained, or one of Na and K may not be contained, that is, 0%.

[鉄粉及び鉄合金粉のFe:20~35%]
鉄粉及び鉄合金粉のFe(鉄粉及び鉄合金粉として含まれるFe)は、アークの電位傾度を低下させてアーク長を短くして被覆剤の片溶けを防止させる効果があり、特に直流電源を用いた溶接において最も重要な原材料である。鉄粉及び鉄合金粉のFeが20%未満では、アーク長が長くなって被覆剤の片溶けが発生しやすくなる。一方、鉄粉及び鉄合金粉のFeが35%を超えると、被覆アーク溶接棒による溶接では溶接後半になると被覆アーク溶接棒自体が赤熱(以下、棒焼けという。)してしまい、溶接が困難となる。従って、鉄粉及び鉄合金粉のFeは20~35%とする。
[Fe in iron powder and iron alloy powder: 20 to 35%]
The Fe in the iron powder and iron alloy powder (Fe contained in the iron powder and iron alloy powder) has the effect of reducing the potential gradient of the arc, shortening the arc length, and preventing one-sided melting of the coating material, and is the most important raw material, especially in welding using a DC power source. If the Fe content of the iron powder and iron alloy powder is less than 20%, the arc length becomes long and one-sided melting of the coating material is likely to occur. On the other hand, if the Fe content of the iron powder and iron alloy powder exceeds 35%, in welding with a covered electrode, the covered electrode itself becomes red hot (hereinafter referred to as "rod burn") in the latter half of welding, making welding difficult. Therefore, the Fe content of the iron powder and iron alloy powder is set to 20-35%.

本開示に係る被覆アーク溶接棒の被覆剤は、上記各成分の一部に替えて、以下の成分を含んでもよい。 The coating material of the covered metal arc welding electrode according to the present disclosure may contain the following components instead of some of the above components.

[金属又は合金としてのTi:3.5%以下]
Tiは、金属又は合金、例えば金属Ti、Fe-Ti等として含有され、脱酸剤として有効であると同時に、アークの電位傾度を低下させてアークを安定化させる効果がある。Tiが3.5%を超えると、溶接金属中のTi酸化物の析出が増加し、溶接金属の低温靱性が低下する。従って、Tiは3.5%以下とする。
[Ti as metal or alloy: 3.5% or less]
Ti is contained as a metal or alloy, for example, metallic Ti, Fe-Ti, etc., and is effective as a deoxidizer, and at the same time, has the effect of lowering the potential gradient of the arc and stabilizing the arc. If Ti exceeds 3.5%, the precipitation of Ti oxide in the weld metal increases, and the low-temperature toughness of the weld metal decreases. Therefore, Ti is set to 3.5% or less.

[金属B、B合金、及びB酸化物の各B換算値の合計:0.6%以下]
金属B、B合金、及びB酸化物はFe-B、Fe-Mn-B、三酸化硼素、硼酸ナトリウム等として含有され、微量で焼入れ性を向上させて粒界フェライトの生成抑制に有効な元素で、溶接金属の低温靭性の向上に効果がある。金属B、B合金、及びB酸化物の一種又は二種以上のB換算値の合計が0.6%を超えると、溶接金属が粗大なラス状組織になり、溶接金属の低温靭性が低下する。従って、金属B、B合金及びB酸化物の各B換算値の合計は0.6%以下とする。
[Total of B2O3 converted values of metal B, B alloy, and B oxide: 0.6 % or less]
Metal B, B alloy, and B oxide are contained as Fe-B, Fe-Mn-B, boron trioxide, sodium borate, etc., and are effective elements in improving hardenability and suppressing the formation of grain boundary ferrite in small amounts, and are effective in improving the low-temperature toughness of the weld metal. If the total of the B2O3 -equivalent values of one or more of metal B, B alloy, and B oxide exceeds 0.6%, the weld metal will become a coarse lath-like structure, and the low-temperature toughness of the weld metal will decrease. Therefore, the total of the B2O3 - equivalent values of metal B, B alloy, and B oxide should be 0.6% or less.

[金属又は合金としてのMg:3.0%以下]
Mgは、金属又は合金、例えば金属Mg、Al-Mg等として含有され、脱酸剤として有効であり、溶接金属の低温靭性を向上させる。また、アークの電位傾度を低下させてアークを安定化させる効果がある。Mgが3.0%を超えると、溶接金属中のSiやMn等、その他脱酸剤が溶接金属中に残存し、溶接金属のミクロ組織が得られないため、溶接金属の低温靭性を劣化させる。従って、Mgは3.0%以下とする。
[Mg as metal or alloy: 3.0% or less]
Mg is contained as a metal or alloy, for example, metallic Mg, Al-Mg, etc., and is effective as a deoxidizer, improving the low-temperature toughness of the weld metal. It also has the effect of lowering the potential gradient of the arc and stabilizing the arc. If Mg exceeds 3.0%, other deoxidizers such as Si and Mn in the weld metal remain in the weld metal, and the microstructure of the weld metal cannot be obtained, deteriorating the low-temperature toughness of the weld metal. Therefore, Mg is set to 3.0% or less.

[金属又は合金としてのAl:3.5%以下]
Alは、金属又は合金、例えば金属Al、Fe-Al等として含有され、脱酸剤として有効であり、溶接金属の低温靭性を向上させる。Alが3.5%を超えると、溶接金属中のSiやMn等、その他脱酸剤が溶接金属中に残存し、溶接金属のミクロ組織が得られないため、溶接金属の低温靭性を劣化させる。従って、Alは3.5%以下とする。
[Al as metal or alloy: 3.5% or less]
Al is contained as a metal or alloy, for example, metallic Al, Fe-Al, etc., and is effective as a deoxidizer, improving the low-temperature toughness of the weld metal. If Al exceeds 3.5%, other deoxidizers in the weld metal, such as Si and Mn, remain in the weld metal, and the microstructure of the weld metal cannot be obtained, deteriorating the low-temperature toughness of the weld metal. Therefore, Al is set to 3.5% or less.

[Li、V、Cr、Co、Cu、Nb、Ta、Bi]
Li、V、Cr、Co、Cu、Nb、Ta、Bi(本開示において「微量元素」と記す場合がある。)は、溶接金属に微量含有することで、様々な効果を得られる。
Li:アークを安定にする効果が得られるが、0.5%を超えるとアークが強くなり、スパッタが多くなる。
V、Nb、Ta:アークの吹き付け強さを強くするが、一種又は二種以上の合計で0.5%を超えると溶接金属の強度が高くなる。
Co:アークの集中性が良くなるが、0.5%を超えると強度が高くなる
Cu、Bi:スラグ剥離性が良くなるが、一種又は二種の合計で0.5%を超えると高温割れが生じやすくなる。
Cr:溶接ビードの防錆効果があるが、0.5%を超えると溶接金属の強度が高くなる。
以上から、被覆剤は、下記(1)~(5)からなる群より選ばれる一種又は二種以上を含んでもよい。
(1)Li:0.5%以下
(2)V、Nb、及びTa:一種又は二種以上の合計で0.5%以下
(3)Co:0.5%以下
(4)Cu及びBi:一種又は二種の合計で0.5%以下
(5)Cr:0.5%以下
なお、これらの微量元素は、(1)~(5)の群のうち2つ以上の群を含んでもよい。例えば、(1)0.5%以下のLiと(5)0.5%以下のCrを含んでもよい。
また、被覆剤がこれらの微量元素を含む場合、各微量元素は前述の金属炭酸塩及び金属弗化物を除く成分として含まれる。すなわち、これらの微量元素は、金属又は合金として含まれていてもよいし、合金、金属炭酸塩、及び金属弗化物以外の化合物として含まれていてもよい。例えば、被覆剤が、前述した金属弗化物として弗化リチウムを含む場合、弗化リチウム以外に0.5%以下のLiを含んでもよい。
[Li, V, Cr, Co, Cu, Nb, Ta, Bi]
Various effects can be obtained by including trace amounts of Li, V, Cr, Co, Cu, Nb, Ta, and Bi (which may be referred to as "trace elements" in this disclosure) in the weld metal.
Li: Has the effect of stabilizing the arc, but if it exceeds 0.5%, the arc becomes stronger and more spatter occurs.
V, Nb, Ta: These elements increase the arc blow strength, but if the total content of one or more elements exceeds 0.5%, the strength of the weld metal increases.
Co: Improves arc concentration, but if it exceeds 0.5%, strength increases. Cu, Bi: Improves slag removability, but if the total content of one or both exceeds 0.5%, hot cracking becomes more likely to occur.
Cr: Has an anti-rust effect on the weld bead, but if it exceeds 0.5%, the strength of the weld metal increases.
In view of the above, the coating agent may contain one or more types selected from the group consisting of the following (1) to (5).
(1) Li: 0.5% or less (2) V, Nb, and Ta: 0.5% or less in total of one or more of them (3) Co: 0.5% or less (4) Cu and Bi: 0.5% or less in total of one or more of them (5) Cr: 0.5% or less These trace elements may include two or more of the groups (1) to (5). For example, it may include (1) 0.5% or less Li and (5) 0.5% or less Cr.
In addition, when the coating agent contains these trace elements, each trace element is contained as a component other than the above-mentioned metal carbonate and metal fluoride. That is, these trace elements may be contained as metals or alloys, or may be contained as compounds other than alloys, metal carbonates, and metal fluorides. For example, when the coating agent contains lithium fluoride as the above-mentioned metal fluoride, it may contain 0.5% or less of Li in addition to lithium fluoride.

[その他]
本開示に係る溶接棒の被覆剤は、上記の成分以外の残部として、上記成分を除く塗装剤の残部及び不純物を含む。
塗装剤は生産性の観点から含有されており、例えばアルギン酸ソーダ、ヘクトライトなどが挙げられる。被覆剤における塗装剤の含有量は、例えば5.0%以下である。なお、塗装剤の残部とは、塗装剤のうち前述した成分以外の成分であり、例えば有機物が挙げられる。
不純物は、原材料に含まれる成分や、製造の過程で混入される成分であって、被覆剤に意図的に含有させた成分ではない成分である。被覆剤に含まれる不純物としては、有機物、合金粉に含まれるPやSなどが挙げられる。不純物の総量は望ましくは1.00%以下である。
[others]
The coating material for the welding rod according to the present disclosure contains, as the balance other than the above-mentioned components, the balance of the coating material excluding the above-mentioned components and impurities.
The coating agent is included from the viewpoint of productivity, and examples of the coating agent include sodium alginate and hectorite. The content of the coating agent in the covering agent is, for example, 5.0% or less. The remainder of the coating agent is the components of the coating agent other than the above-mentioned components, and examples of the coating agent include organic substances.
Impurities are components contained in raw materials or components mixed in during the manufacturing process, but are not intentionally contained in the coating agent. Impurities contained in the coating agent include organic matter, and P and S contained in alloy powder. The total amount of impurities is preferably 1.00% or less.

なお、本開示における被覆剤の組成成分はJIS K1106:2014に記載のICP発光分光分析方法を用いて調査した。試料は試作溶接棒の被覆剤を剥がして回収し、粉砕した粉末試料とした。粉末試料の分解には、酸分解法又はアルカリ融解法を用いた。溶液の一部を噴霧してICP発光分光分析装置のアルゴンプラズマ中に導入し、定量成分の分析線の発光強度又は定量成分の分析線の発光強度の内標準元素の発光強度に対する比を測定した。得られた発光強度から検量線法を用いて試料溶液中の測定対象元素の濃度を求めた。
また、SiとSiOなど、金属系と酸化物系の定量分析にはX線回折分析法を用いた。例えば被覆剤中のSi量を、ICP発光分光分析方法を用いて特定し、同じ被覆剤を用いてX線回折分析法で金属系Siと酸化物系Siを測定し、それぞれの定量分析値を求めた。なお、分析精度を高めるために、被覆剤はメノウ乳鉢などで10μm以下の細粒に粉砕することが望ましい。試料充填の手順は、10cm角、厚さ5mm程度の厚みのある平らなガラス板の上にガラス試料板を置き、深さ0.5mm程度の溝にガラス板で抑え、試料板の表面と試料面が同一面になるように仕上げてX線回折分析装置で分析を行った。
The composition of the coating agent in this disclosure was investigated using the ICP optical emission spectrometry method described in JIS K1106:2014. The coating agent of the prototype welding rod was peeled off, collected, and pulverized to obtain a powder sample. The powder sample was decomposed using an acid decomposition method or an alkali fusion method. A part of the solution was sprayed and introduced into the argon plasma of an ICP optical emission spectrometry analyzer, and the emission intensity of the analytical line of the quantitative component or the ratio of the emission intensity of the analytical line of the quantitative component to the emission intensity of the internal standard element was measured. The concentration of the element to be measured in the sample solution was determined from the obtained emission intensity using a calibration curve method.
In addition, X-ray diffraction analysis was used for quantitative analysis of metals and oxides such as Si and SiO2 . For example, the amount of Si in the coating agent was specified using ICP emission spectroscopy, and the metal Si and oxide Si were measured using the same coating agent by X-ray diffraction analysis to obtain the quantitative analysis values of each. In order to improve the analytical accuracy, it is desirable to crush the coating agent into fine particles of 10 μm or less using an agate mortar. The procedure for filling the sample was to place a glass sample plate on a flat glass plate with a size of 10 cm square and a thickness of about 5 mm, hold it down with a glass plate in a groove with a depth of about 0.5 mm, finish it so that the surface of the sample plate and the sample surface are on the same plane, and analyze it with an X-ray diffraction analysis device.

また、使用する鋼心線は、JIS G3523:1980 SWY11を用いることが好ましいが、Cは0.08%以下が良く、溶接金属の強度を調整するために被覆剤からもCを適正に調整できる。鋼心線のPは溶接金属の靭性を低下させるので0.010%以下、Sは溶接時のスラグの流動性を悪くするので0.010%以下であることが好ましい。 The steel core wire used should preferably be JIS G3523:1980 SWY11, with C being 0.08% or less, and C can be adjusted appropriately from the coating material to adjust the strength of the weld metal. P in the steel core wire reduces the toughness of the weld metal, so it is preferable that it be 0.010% or less, and S reduces the fluidity of the slag during welding, so it is preferable that it be 0.010% or less.

[溶着金属]
本開示に係る溶接棒を用いて形成される溶着金属は、溶接後熱処理(溶接熱影響部の軟化、溶接部の靱性改善及び溶接残留応力の除去を目的に行われる熱処理:以下、PWHTという。)後の引張強さが590~720MPaであり、かつAWS A5.5:2014に規定されるシャルピー衝撃試験の-50℃でのシャルピー吸収エネルギーが40J以上であることが好ましい。
[Weld metal]
It is preferable that the weld metal formed using the welding rod according to the present disclosure has a tensile strength of 590 to 720 MPa after post-weld heat treatment (heat treatment performed for the purpose of softening the weld heat affected zone, improving the toughness of the weld, and removing welding residual stress: hereinafter referred to as PWHT) and a Charpy absorbed energy of 40 J or more at −50° C. in the Charpy impact test specified in AWS A5.5:2014.

(引張強さ)
本開示に係る溶接棒を用いて作製した溶着金属試験体に対するPWHTは、温度620℃、保持時間1.0hrの条件で行った。本開示に係る溶接棒を用いれば、溶着金属のPWHT後の引張強さを590~720MPaの範囲とすることができる。
溶着金属の引張強さが590MPa以上であることで、高い継手強度を確保することができる。一方、溶着金属の引張強さが720MPa以下であることで溶着金属の割れ発生を抑制できる。溶着金属の引張強さはAWS A5.5:2014に準拠し、引張試験片(AWS B4.0:2007)を用いた引張試験により測定される。試料片の採取位置など、具体的な測定方法については実施例において説明する。
(Tensile strength)
The PWHT of the weld metal specimen prepared using the welding rod according to the present disclosure was performed at a temperature of 620° C. and a holding time of 1.0 hr. By using the welding rod according to the present disclosure, the tensile strength of the weld metal after the PWHT can be set in the range of 590 to 720 MPa.
A high joint strength can be ensured by setting the tensile strength of the weld metal to 590 MPa or more. On the other hand, a high tensile strength can be suppressed by setting the tensile strength of the weld metal to 720 MPa or less. The tensile strength of the weld metal is measured by a tensile test using a tensile test piece (AWS B4.0:2007) in accordance with AWS A5.5:2014. Specific measurement methods, such as the sampling position of the sample piece, will be described in the examples.

(低温靭性)
本開示に係る溶接棒を用いて作製した溶着金属試験体は、溶着金属の-50℃でのシャルピー吸収エネルギーの平均値が40J以上であることが好ましい。より好ましくは60J以上、さらに好ましくは80J以上である。シャルピー衝撃試験はAWS A5.5:2014に準拠し、試験温度-50℃で5回繰り返し、最高値及び最低値を除いた3つの吸収エネルギーの平均値(算術平均)である。試料片の採取位置など、具体的な測定方法については実施例において説明する。
(Low temperature toughness)
In the weld metal specimens prepared using the welding rod according to the present disclosure, the average Charpy absorbed energy of the weld metal at -50°C is preferably 40 J or more. More preferably, it is 60 J or more, and even more preferably, it is 80 J or more. The Charpy impact test conforms to AWS A5.5:2014, and is repeated five times at a test temperature of -50°C, and the average value (arithmetic mean) of the three absorbed energies excluding the highest and lowest values is obtained. Specific measurement methods, such as the sampling position of the sample pieces, will be described in the examples.

(溶接欠陥)
本開示に係る溶接棒を用いて作製した溶着金属試験体は、ブローホールなどの溶接欠陥が抑制されていることが好ましい。具体的には、AWS A5.5に準じてX線透過試験を行い、きずが無いことが好ましい。
(Welding defects)
It is preferable that the weld metal test specimens produced using the welding rod according to the present disclosure have suppressed welding defects such as blowholes. Specifically, it is preferable that the weld metal test specimens have no flaws when subjected to an X-ray transmission test in accordance with AWS A5.5.

(スパッタ発生量)
本開示に係る溶接棒は、スパッタ発生量が少ないことが好ましい。
(Amount of spatter generated)
It is preferable that the welding rod according to the present disclosure generates a small amount of spatter.

(アーク安定性)
本開示に係る溶接棒は、アークが安定してアーク切れが発生しないことが好ましい。
(Arc stability)
In the welding rod according to the present disclosure, it is preferable that the arc is stable and no arc interruption occurs.

(ビード形状・ビード外観)
本開示に係る溶接棒を用いて作製した溶着金属試験体は、溶着金属のビード波形が、均一で乱れが無く、手直しが必要なアンダーカットおよびオーバーラップが発生しないことが好ましい。
(Bead shape and appearance)
It is preferable that a weld metal test specimen prepared using a welding rod according to the present disclosure has a uniform and undisturbed bead waveform of the weld metal, and is free of undercuts and overlaps that require rework.

(スラグ剥離性)
本開示に係る溶接棒は、溶接後、溶接ビード表面上の凝固スラグを簡単に除去できることが好ましい。
(Slag removability)
The welding rod according to the present disclosure preferably allows easy removal of solidified slag on the surface of the weld bead after welding.

(被覆剤の片溶け)
本開示に係る溶接棒は、溶接中に被覆剤の一部が欠けることなくアークが溶接棒と水平に発生し、アーク拡がりが均一で安定していることが好ましい。
(Partial dissolution of coating material)
In the welding rod according to the present disclosure, it is preferable that an arc is generated horizontally to the welding rod without any chipping of the coating material during welding, and that the arc spread is uniform and stable.

(棒焼け)
本開示に係る溶接棒は、溶接時に赤熱して溶接中に被覆剤が脱落することが無いことが好ましい。
(stick burn)
It is preferable that the welding rod according to the present disclosure does not become red hot during welding and the coating material does not fall off during welding.

以下、本開示の効果を実施例により更に詳細に説明するが、本開示は以下の実施例に限定されるものではない。 The effects of this disclosure will be explained in more detail below using examples, but this disclosure is not limited to the following examples.

<被覆アーク溶接棒の製造>
直径4.0mm、長さ400mmのJIS G 3523:2006に規定されるSWY11の鋼心線(鋼心線全質量に対し、C:0.06質量%、Si:0.01質量%、Mn:0.48質量%、P:0.009質量%、S:0.005質量%)に、表1及び表2に示す組成成分の被覆剤を溶接棒全質量に対して被覆率25~40質量%で塗布した後に400℃で焼成した溶接棒を各種試作した。なお、表1及び表2の被覆剤成分について「-」との表記はその成分を意図的に含有させていないことを意味する。残部は、塗装剤の残部、合金粉から不純物で、1.00%以下に調整した。下線は、本開示の範囲外であることを示す。
<Manufacture of covered electrodes>
Various prototypes of welding rods were produced by applying a coating agent having the composition shown in Tables 1 and 2 to a steel core wire of SWY11 specified in JIS G 3523:2006 (C: 0.06 mass%, Si: 0.01 mass%, Mn: 0.48 mass%, P: 0.009 mass%, S: 0.005 mass% relative to the total mass of the steel core wire) having a diameter of 4.0 mm and a length of 400 mm at a coating rate of 25 to 40 mass% relative to the total mass of the welding rod, and then baking at 400°C. Note that the notation "-" for the coating agent components in Tables 1 and 2 means that the component is not intentionally contained. The balance is the remainder of the coating agent and impurities from the alloy powder, and was adjusted to 1.00% or less. Underlines indicate that the content is outside the scope of the present disclosure.

製造した溶接棒の生産性、溶接作業性、溶接欠陥及び機械的性質について調査した。 The productivity, welding workability, welding defects and mechanical properties of the manufactured welding rods were investigated.

[生産性]
溶接棒製造時に溶接棒を乾燥した後に、被覆剤表面に亀裂が生じる乾燥割れが発生する場合がある。乾燥割れは溶接時に保護筒が均一に形成されなくなり、アークが偏向するなど、溶接作業性に悪影響を及ぼす。生産性は、溶接棒製造時に乾燥後の被覆割れの有無を調べた。個々の乾燥割れの大きさが1mmより小さい場合を合格(良好)、個々の乾燥割れの大きさが1mm以上を不合格(不良)とした。
[Productivity]
Drying cracks, which are cracks on the coating surface, may occur after the welding rod is dried during manufacturing. Drying cracks cause the protective tube to be formed unevenly during welding, and cause the arc to deflect, adversely affecting welding workability. Productivity was evaluated by checking the presence or absence of coating cracks after drying during manufacturing of the welding rod. If the size of each drying crack was less than 1 mm, it was considered to be acceptable (good), and if the size of each drying crack was 1 mm or more, it was considered to be unacceptable (bad).

<溶着金属試験体の製造>
溶着金属試験体は、上記製造した溶接棒を用い、開先部は、表3に示す成分を有するJIS G 3106:2017 SM490Aの板厚20mmの鋼板を開先角度:20°、ギャップ16mmの裏当金付開先とし、直流電源を用いて溶接電流170A、溶接入熱17kJ/cm、予熱・パス間温度95~110℃の条件で溶着金属試験体を作製した。PWHTは、温度620℃、保持時間1.0hrの条件で行った。
<Production of Weld Metal Test Pieces>
The weld metal test specimens were prepared using the welding rods manufactured above, and the grooves were made of JIS G 3106:2017 SM490A steel plates having a thickness of 20 mm and the components shown in Table 3, with a groove angle of 20° and a backing metal groove with a gap of 16 mm. A weld metal test specimen was prepared using a DC power source under the conditions of a welding current of 170 A, a welding heat input of 17 kJ/cm, and a preheat/interpass temperature of 95 to 110° C. The PWHT was performed at a temperature of 620° C. and a holding time of 1.0 hr.

[溶接作業性]
(アーク安定性)
溶接時にアークが安定しており、アークが消失しなかった場合を良好、一度でもアークが消失した場合を不良とした。
[Welding workability]
(Arc stability)
If the arc was stable during welding and did not disappear, it was rated as good, and if the arc disappeared even once, it was rated as poor.

(スパッタ発生量)
溶接時のスパッタ発生量が少ないことが好ましい。具体的には、銅製の捕集箱を用いて、1分間溶接した際に発生するスパッタの重量を測定することにより、単時間当たりの値(g/min)を求めた。なお、スパッタの測定は、表4に示す溶接条件で5回測定した平均値とし、2.0g/min以下を良好とした。
(Amount of spatter generated)
It is preferable that the amount of spatter generated during welding is small. Specifically, the weight of spatter generated during one minute of welding was measured using a copper collection box to determine the value per unit time (g/min). The spatter was measured five times under the welding conditions shown in Table 4, and the average value was determined, with 2.0 g/min or less being considered good.

(ビード形状・ビード外観)
溶着金属のビード波形が均一で乱れが無く、手直しが必要なアンダーカット及びオーバーラップが発生しないことが好ましい。溶着金属の余盛高さ及びビード幅の均一性に優れたビード形状を有することが好ましい。具体的には、溶着金属のビード表面において、ビード波形に乱れがある場合、並びに、手直しが必要なアンダーカット及び/又はオーバーラップが発生した場合のいずれか一方でも該当する場合を不良とした。
(Bead shape and appearance)
It is preferable that the bead waveform of the deposited metal is uniform and free of disturbance, and that undercuts and overlaps that require rework do not occur. It is preferable that the deposited metal has a bead shape with excellent uniformity in the excess height and bead width. Specifically, a case in which either the bead waveform is disturbed on the bead surface of the deposited metal or undercuts and/or overlaps that require rework occur is determined as defective.

(スラグ剥離性)
溶接後、溶接ビード表面上の凝固スラグを簡単に除去できることが好ましい。溶接後、溶接ビード表面上の凝固スラグをチッピングハンマー(全長300mm、重さ350g)を用いて、持ち手を中心に円弧に軽い力で振り下ろして叩いた時に、スラグに亀裂が入りその後簡単に除去できる場合を良好、スラグに亀裂が入らない場合を不良とした。
(Slag removability)
It is preferable that the solidified slag on the weld bead surface can be easily removed after welding. After welding, the solidified slag on the weld bead surface was struck with a chipping hammer (total length 300 mm, weight 350 g) by swinging it down lightly in an arc around the handle. If the slag cracked and could be easily removed, it was rated as good, and if the slag did not crack, it was rated as poor.

(被覆剤の片溶け)
溶接中に被覆剤の一部が欠けることなくアークが溶接棒と水平に発生し、アーク拡がりが均一で安定していることが好ましい。溶接中に被覆剤の一部が欠け、アークが溶接棒と水平以外の方向に偏向し、アーク拡がりが不均一になる場合を不良とした。
(Partial dissolution of coating material)
It is preferable that the arc is generated parallel to the welding rod without any chipping of the coating material during welding, and that the arc spread is uniform and stable. If part of the coating material is chipped during welding, the arc is deflected in a direction other than parallel to the welding rod, and the arc spread is non-uniform, it is rated as defective.

(棒焼け)
溶接時に赤熱して溶接中に被覆剤が脱落することが無いことが好ましい。溶接時に溶接棒の色が変わらず同じ場合を良好、溶接時に赤熱して溶接棒の色が赤色に変色した場合を不良とした。
(stick burn)
It is preferable that the coating does not fall off during welding because the welding rod becomes red hot. A welding rod that does not change color during welding is rated as good, and a welding rod that becomes red hot and turns red is rated as bad.

[溶接欠陥]
具体的には、AWS A5.5に準じてX線透過試験を行い、溶接金属におけるきずを判定した。きずが無い場合を良好(欠陥無し)、きずが一つでもある場合を不良とした。
[Welding defects]
Specifically, an X-ray test was performed in accordance with AWS A5.5 to judge whether there were any flaws in the weld metal. A specimen without flaws was rated as good (no defects), and a specimen with even one flaw was rated as poor.

[機械的性質]
機械的性質の評価は、JIS G 3106:2017 SM490Aの板厚20mmの鋼板を用い、AWS A5.5に準じてDC(直流電源)で溶着金属試験体を作製し、引張試験(AWS B4.0:2007)とシャルピー衝撃試験(AWS B4.0:2007)の各試験片を採取して機械的性能を調査した。
引張試験は引張強さが590~720MPaを良好とし、シャルピー衝撃試験は試験温度-50℃で各々繰り返し5回のうち、最低値と最高値を除いた3回の平均値が40J以上を良好とした。
[mechanical nature]
For the evaluation of mechanical properties, a 20 mm thick steel plate of JIS G 3106:2017 SM490A was used, and a deposited metal test specimen was prepared using DC (direct current power source) in accordance with AWS A5.5. Test specimens were then taken for a tensile test (AWS B4.0:2007) and a Charpy impact test (AWS B4.0:2007) to investigate the mechanical properties.
In the tensile test, a tensile strength of 590 to 720 MPa was considered good, and in the Charpy impact test, a test temperature of -50°C was repeated five times, and an average of three values excluding the minimum and maximum values of 40 J or more was considered good.

試験結果を表5に示す。 The test results are shown in Table 5.

表1、表2及び表5中の溶接棒No.1~No.14が本発明例、溶接棒No.15~No.28は比較例である。
本発明例であるNo.1~No.14は、被覆剤のMn、Ni、Mo、SiとSi酸化物のSi換算値との合計、金属炭酸塩、金属弗化物、Ti酸化物のTiO換算値の合計、Al酸化物のAl換算値の合計、Mg酸化物のMgO換算値の合計、Ca酸化物のCaO換算値の合計、Zr酸化物のZrO換算値の合計、Na換算値とK換算値の合計、鉄粉及び鉄合金粉のFe、被覆率がいずれも適量であるので、アーク状態が良好でスパッタ発生量が少なく、保護筒の状態も良好で、棒焼けも発生せず、ビード外観、ビード形状、スラグ剥離性及びスラグ被包性が良好であるなど溶接作業性が良好である。また、生産性も良好であり、溶接欠陥も無く、PWHT後の溶着金属の引張強さ及び吸収エネルギーが良好であり、極めて満足な結果であった。
In Tables 1, 2 and 5, welding rods No. 1 to No. 14 are examples of the present invention, and welding rods No. 15 to No. 28 are comparative examples.
In the present invention, No. 1 to No. 14 have a suitable amount of Mn, Ni, Mo, Si, Si oxides in the coating agent, metal carbonate, metal fluoride, Ti oxides in TiO2 equivalent, Al oxides in Al2O3 equivalent, Mg oxides in MgO equivalent, Ca oxides in CaO equivalent, Zr oxides in ZrO2 equivalent, Na and K equivalent, Fe in iron powder and iron alloy powder, and the coating rate, so that the arc condition is good, the amount of spatter generation is small, the condition of the protective tube is good, rod burn does not occur, the bead appearance, bead shape, slag detachability and slag encapsulation are good, and the welding workability is good. In addition, the productivity is good, there are no welding defects, and the tensile strength and absorbed energy of the weld metal after PWHT are good, which is an extremely satisfactory result.

さらに、No.2、No.10、No.11はTi、金属B、B合金、及びB酸化物のB換算値の合計が適量であり、No.4、No.12、No.13はMg、Alが適量であるので、その他の発明例よりも低温靭性が優れていた。
また、No.6はNbが適量であるので、その他の発明例よりもアークの吹き付け強さが強かった。No.8はBiが適量であるので、その他の発明例よりもスラグ剥離性が良好であった。No.14はCrが適量であるので、その他の発明例よりも溶接ビードの防錆効果があった。
Furthermore, No. 2, No. 10, and No. 11 had appropriate amounts of Ti, metal B, B alloy, and the total of B oxide converted into B2O3 , and No. 4, No. 12, and No. 13 had appropriate amounts of Mg and Al, so they had better low-temperature toughness than the other inventive examples.
In addition, No. 6 had a higher arc blow strength than the other inventive examples because it contained an appropriate amount of Nb. No. 8 had better slag removability than the other inventive examples because it contained an appropriate amount of Bi. No. 14 had a higher rust prevention effect on the weld bead than the other inventive examples because it contained an appropriate amount of Cr.

比較例中、溶接棒No.15は、被覆率が低く、Siが少なく、Al酸化物のAl換算値の合計が多く、Mg酸化物のMgO換算値の合計が少なく、Zr酸化物のZrO換算値の合計が多いので、スラグ剥離性が不良で、ビード形状が凸状となり、アークが不安定で、ブローホールが発生し、片溶けが発生し、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.16は、被覆率が高く、Mnが多く、Si酸化物が多く、Zr酸化物のZrO換算値の合計が少ないので、スラグ剥離性が不良で、アークが不安定で、片溶けが発生し、PWHT後の溶着金属の引張強さが高く、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.17は、Mnが少なく、金属炭酸塩の合計が多いので、スラグ剥離性が不良で、ビード形状が凸状となり、アークが不安定で、ブローホールが発生し、PWHT後の溶着金属の引張強さが低く、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.18は、Niが多く、Si酸化物が少なく、Ca酸化物のCaO換算値の合計が多いので、ビード形状が不良で、アークが不安定で、融合不良が発生し、PWHT後の溶着金属の引張強さが高かった。
溶接棒No.19は、Niが低く、金属弗化物が多く、Mg酸化物のMgO換算値の合計が多いので、ビード形状が凸状で、アークが不安定で、片溶けが発生し、PWHT後の溶着金属の引張強さが低く、PWHT後の溶着金属の吸収エネルギーが低かった。
Among the comparative examples, welding rod No. 15 had a low coverage, a low amount of Si, a high total amount of Al oxide converted into Al2O3 , a low total amount of Mg oxide converted into MgO, and a high total amount of Zr oxide converted into ZrO2 , which resulted in poor slag removability, a convex bead shape, an unstable arc, blowholes, and one-sided melting, and the absorbed energy of the weld metal after PWHT was low.
Welding rod No. 16 had a high coverage, a large amount of Mn, a large amount of Si oxide, and a small total amount of Zr oxide converted into ZrO2 , so that the slag removability was poor, the arc was unstable, one-sided melting occurred, the tensile strength of the weld metal after PWHT was high, and the absorbed energy of the weld metal after PWHT was low.
Welding rod No. 17 had a low Mn content and a high total metal carbonate content, which resulted in poor slag removability, a convex bead shape, an unstable arc, blowholes, low tensile strength of the weld metal after PWHT, and low absorbed energy of the weld metal after PWHT.
Welding rod No. 18 had a large amount of Ni, a small amount of Si oxide, and a large amount of Ca oxide converted into CaO, so the bead shape was poor, the arc was unstable, poor fusion occurred, and the tensile strength of the weld metal after PWHT was high.
Welding rod No. 19 had a low Ni content, a high metal fluoride content, and a high total Mg oxide MgO conversion value, so the bead shape was convex, the arc was unstable, one-sided melting occurred, the tensile strength of the weld metal after PWHT was low, and the absorbed energy of the weld metal after PWHT was low.

溶接棒No.20は、Moが多く、Ti酸化物のTiO換算値の合計が多いので、ビード形状が凸状で、PWHT後の溶着金属の引張強さが高く、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.21は、Moが少なく、Ti酸化物のTiO換算値の合計が少ないので、ビード形状が不良で、アークが不安定で、PWHT後の溶着金属の引張強さが低かった。
溶接棒No.22は、Siが多く、Al酸化物のAl換算値の合計が少ないので、ビード形状が不良で、アークが不安定で、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.23は、金属炭酸塩が少なく、Na換算値とK換算値の合計が多いので、アークが強く、スパッタが多く、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.24は、Na換算値とK換算値の合計が少なく、鉄粉及び鉄合金粉のFeが多いので、アークが不安定で、棒焼けが発生し、生産性が不良で、PWHT後の溶着金属の吸収エネルギーが低かった。さらに、Tiを含有したが、Tiが多いので、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.25は、鉄粉及び鉄合金粉のFeが少ないので、片溶けが発生した。さらに、金属B、B合金、及びB酸化物を一種或いは二種以上添加したが、B換算値の合計が多いので、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.26は、金属弗化物が少ないので、スラグの被包性が不良で、ビード外観が不良であった。さらに、Mgを添加したが、Mgが多いので、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.27は、Alを添加したが、Alが多いので、PWHT後の溶着金属の吸収エネルギーが低かった。
溶接棒No.28は、微量元素としてCuを添加したが、Cuが多いので、高温割れが発生した。
Welding rod No. 20 had a large amount of Mo and a large total amount of Ti oxide converted into TiO2 , so the bead shape was convex, the tensile strength of the weld metal after PWHT was high, and the absorbed energy of the weld metal after PWHT was low.
Welding rod No. 21 had a small amount of Mo and a small total amount of Ti oxide converted into TiO2 , so the bead shape was poor, the arc was unstable, and the tensile strength of the weld metal after PWHT was low.
Welding rod No. 22 had a large amount of Si and a small total Al2O3 converted value of Al oxide, so the bead shape was poor, the arc was unstable, and the absorbed energy of the deposited metal after PWHT was low.
Welding rod No. 23 had a small amount of metal carbonate and a large total of Na-converted value and K-converted value, so the arc was strong, there was a lot of spatter, and the absorbed energy of the weld metal after PWHT was low.
Welding rod No. 24 had a low total Na-equivalent value and K-equivalent value, and a high Fe content in the iron powder and iron alloy powder, which resulted in an unstable arc, rod burn, poor productivity, and low absorbed energy of the weld metal after PWHT. Furthermore, although it contained Ti, the Ti content was high, so the absorbed energy of the weld metal after PWHT was low.
In the welding rod No. 25, the Fe content in the iron powder and iron alloy powder was low, so one-sided melting occurred. Furthermore, although one or more of metal B, B alloy, and B oxide were added, the total of the B2O3 equivalent value was high, so the absorbed energy of the weld metal after PWHT was low.
Welding rod No. 26 had a low metal fluoride content, so the encapsulation of the slag was poor and the bead appearance was poor. Furthermore, Mg was added, but the amount of Mg was high, so the absorbed energy of the weld metal after PWHT was low.
Welding rod No. 27 contained Al, but since the amount of Al was large, the absorbed energy of the weld metal after PWHT was low.
Welding rod No. 28 contained Cu as a trace element, but the Cu content was so high that hot cracking occurred.

Claims (4)

鋼心線と、前記鋼心線を被覆する被覆剤とを含み、
溶接棒全質量に対する前記被覆剤の質量割合が25%以上40%以下であり、
前記被覆剤が、被覆剤全質量に対する質量%で、
金属又は合金としてのMn:2.0~5.0%、
金属又は合金としてのNi:1.0~2.0%、
金属又は合金としてのMo:0.3~1.5%、
金属又は合金としてのSi:1.5~3.5%
Si酸化物のSiO換算値:4.0~8.0%
金属炭酸塩の合計:25~45%、
金属弗化物の合計:5~15%、
Ti酸化物のTiO換算値の合計:2.0~7.0%、
Al酸化物のAl換算値の合計:0.5~2.5%、
Mg酸化物のMgO換算値の合計:0.1~1.0%、
Ca酸化物のCaO換算値の合計:0.30%以下、
Zr酸化物のZrO換算値の合計:0.5~1.5%、
Na換算値とK換算値の合計:0.5~3.0%、
鉄粉及び鉄合金粉のFe:20~35%、並びに
残部:前記Mnから前記Feまでの成分を除く塗装剤の残部及び1.00%以下の不純物、
を含む鉄粉低水素系被覆アーク溶接棒。
The steel core wire includes a coating material that coats the steel core wire,
The mass ratio of the coating material to the total mass of the welding rod is 25% or more and 40% or less,
The coating agent is, in mass % based on the total mass of the coating agent,
Mn as metal or alloy: 2.0 to 5.0%;
Ni as metal or alloy: 1.0 to 2.0%,
Mo as metal or alloy: 0.3 to 1.5%,
Si as metal or alloy: 1.5 to 3.5%
Si oxide converted into SiO2 : 4.0 to 8.0%
Total metal carbonates: 25-45%,
Total metal fluorides: 5-15%,
Total of Ti oxides converted into TiO2 : 2.0 to 7.0%,
Sum of Al oxides converted into Al 2 O 3 : 0.5 to 2.5%,
Total Mg oxide converted into MgO: 0.1 to 1.0%,
Sum of Ca oxides converted into CaO: 0.30% or less,
Total Zr oxide converted into ZrO2 : 0.5 to 1.5%,
Sum of Na equivalent and K equivalent: 0.5 to 3.0%,
Fe in the iron powder and iron alloy powder: 20 to 35%, and the balance: the balance of the coating agent excluding the components from Mn to Fe, and impurities of 1.00% or less.
A low hydrogen-based iron powder covered metal arc welding electrode.
前記被覆剤が、前記被覆剤を構成する成分の一部に替えて、前記被覆剤全質量に対する質量%で、
金属又は合金としてのTi:3.50%以下、並びに
金属B、B合金、及びB酸化物の各B換算値の合計:0.60%以下、
を含む請求項1に記載の鉄粉低水素系被覆アーク溶接棒。
The coating agent is, in place of a part of the components constituting the coating agent,
Ti as a metal or alloy: 3.50% or less; and The sum of the B2O3 converted values of metal B, B alloy, and B oxide: 0.60% or less.
The iron powder low hydrogen type covered metal arc welding electrode according to claim 1 .
前記被覆剤が、前記被覆剤を構成する成分の一部に替えて、前記被覆剤全質量に対する質量%で、
金属又は合金としてのMg:3.0%以下、及び
金属又は合金としてのAl:3.5%以下、
の一方又は両方を含む請求項1又は請求項2に記載の鉄粉低水素系被覆アーク溶接棒。
The coating agent is, in place of a part of the components constituting the coating agent,
Mg as a metal or alloy: 3.0% or less; and Al as a metal or alloy: 3.5% or less;
3. The low hydrogen iron powder covered metal arc welding rod according to claim 1, further comprising one or both of the following:
前記被覆剤が、前記被覆剤を構成する成分の一部に替えて、前記金属炭酸塩及び前記金属弗化物を除く成分として、前記被覆剤全質量に対する質量%で、下記(1)~(5)からなる群より選ばれる一種又は二種以上を含む請求項1~請求項3のいずれか1項に記載の鉄粉低水素系被覆アーク溶接棒。
(1)Li:0.5%以下
(2)V、Nb、及びTa:一種又は二種以上の合計で0.5%以下
(3)Co:0.5%以下
(4)Cu及びBi:一種又は二種の合計で0.5%以下
(5)Cr:0.5%以下
The iron powder low hydrogen type covered metal arc welding electrode according to any one of claims 1 to 3, wherein the coating material contains, as a component other than the metal carbonate and the metal fluoride, one or more selected from the group consisting of the following (1) to (5), in mass% with respect to the total mass of the coating material, instead of a part of the components constituting the coating material:
(1) Li: 0.5% or less (2) V, Nb, and Ta: 0.5% or less in total of one or more of them (3) Co: 0.5% or less (4) Cu and Bi: 0.5% or less in total of one or more of them (5) Cr: 0.5% or less
JP2021061672A 2021-03-31 2021-03-31 Low hydrogen iron powder covered metal arc welding rod Active JP7506017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021061672A JP7506017B2 (en) 2021-03-31 2021-03-31 Low hydrogen iron powder covered metal arc welding rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021061672A JP7506017B2 (en) 2021-03-31 2021-03-31 Low hydrogen iron powder covered metal arc welding rod

Publications (2)

Publication Number Publication Date
JP2022157448A JP2022157448A (en) 2022-10-14
JP7506017B2 true JP7506017B2 (en) 2024-06-25

Family

ID=83558802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021061672A Active JP7506017B2 (en) 2021-03-31 2021-03-31 Low hydrogen iron powder covered metal arc welding rod

Country Status (1)

Country Link
JP (1) JP7506017B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227968A (en) 2009-03-27 2010-10-14 Kobe Steel Ltd Low hydrogen based covered electrode
JP2014151338A (en) 2013-02-07 2014-08-25 Kobe Steel Ltd Low hydrogen type covered electrode
JP2015196183A (en) 2014-04-02 2015-11-09 日鐵住金溶接工業株式会社 Low hydrogen type coated electrode
JP2017001053A (en) 2015-06-09 2017-01-05 株式会社神戸製鋼所 Low hydrogen type covered arc welding rod
JP2017064740A (en) 2015-09-29 2017-04-06 日鐵住金溶接工業株式会社 Low-hydrogen type coated arc welding rod
CN111347190A (en) 2018-12-20 2020-06-30 天津大桥焊材集团有限公司 Ultralow-hydrogen high-strength steel welding electrode for welding refractory structural steel and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227968A (en) 2009-03-27 2010-10-14 Kobe Steel Ltd Low hydrogen based covered electrode
JP2014151338A (en) 2013-02-07 2014-08-25 Kobe Steel Ltd Low hydrogen type covered electrode
JP2015196183A (en) 2014-04-02 2015-11-09 日鐵住金溶接工業株式会社 Low hydrogen type coated electrode
JP2017001053A (en) 2015-06-09 2017-01-05 株式会社神戸製鋼所 Low hydrogen type covered arc welding rod
JP2017064740A (en) 2015-09-29 2017-04-06 日鐵住金溶接工業株式会社 Low-hydrogen type coated arc welding rod
CN111347190A (en) 2018-12-20 2020-06-30 天津大桥焊材集团有限公司 Ultralow-hydrogen high-strength steel welding electrode for welding refractory structural steel and preparation method thereof

Also Published As

Publication number Publication date
JP2022157448A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP6382117B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6434387B2 (en) Low hydrogen coated arc welding rod
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP2015080811A (en) FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING
JP6365063B2 (en) High toughness flux shielded wire for gas shielded arc welding with excellent vertical welding workability
JP7506017B2 (en) Low hydrogen iron powder covered metal arc welding rod
JP7387450B2 (en) Iron powder low hydrogen coated arc welding rod
JP2017164772A (en) Flux-cored wire for carbon dioxide gas shield arc welding
JP2020131221A (en) Baked flux for submerged arc welding for high-strength steel
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP2022153136A (en) Low-hydrogen iron-powder coated arc welding rod
JP2022153135A (en) Low-hydrogen iron-powder coated arc welding rod
JP6845094B2 (en) High titanium oxide shielded metal arc welding rod
JP6669680B2 (en) Lime titania coated arc welding rod
JP7239437B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JPS6358077B2 (en)
JP2023152852A (en) Low hydrogen type coated electrode
JP7506043B2 (en) Shielded metal arc welding electrodes
JP2020203302A (en) FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING OF HIGH TENSILE STEEL
JP2022141504A (en) Low hydrogen type coated electrode
JP7346328B2 (en) Low hydrogen coated arc welding rod for horizontal fillet welding
JP7383513B2 (en) Covered arc welding rod for 9% Ni steel welding
JP2022141503A (en) Weld joint and low hydrogen type coated electrode and manufacturing method of weld joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240613