JP7499982B2 - Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose - Google Patents

Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose Download PDF

Info

Publication number
JP7499982B2
JP7499982B2 JP2023557822A JP2023557822A JP7499982B2 JP 7499982 B2 JP7499982 B2 JP 7499982B2 JP 2023557822 A JP2023557822 A JP 2023557822A JP 2023557822 A JP2023557822 A JP 2023557822A JP 7499982 B2 JP7499982 B2 JP 7499982B2
Authority
JP
Japan
Prior art keywords
cellulose
resin
pulp
fibrous cellulose
carbamate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023557822A
Other languages
Japanese (ja)
Other versions
JPWO2023162433A5 (en
JPWO2023162433A1 (en
Inventor
隆之介 青木
一紘 松末
貴章 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Publication of JPWO2023162433A1 publication Critical patent/JPWO2023162433A1/ja
Publication of JPWO2023162433A5 publication Critical patent/JPWO2023162433A5/ja
Application granted granted Critical
Publication of JP7499982B2 publication Critical patent/JP7499982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)

Description

本発明は、繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法に関するものである。 The present invention relates to fibrous cellulose, a fibrous cellulose composite resin, and a method for producing fibrous cellulose.

近年、セルロースナノファイバー、マイクロ繊維セルロース(ミクロフィブリル化セルロース)等の微細繊維は、樹脂の補強材としての使用が脚光を浴びている。もっとも、微細繊維が親水性であるのに対し、樹脂は疎水性であるため、微細繊維を樹脂の補強材として使用するには、当該微細繊維の分散性に問題があった。そこで、本発明者等は、微細繊維のヒドロキシ基をカルバメート基で置換することを提案した(特許文献1参照)。この提案によると、微細繊維の分散性が向上し、もって樹脂の補強効果が向上する。もっとも、現在でも、更なる補強効果の向上が望まれており、種々の研究が続けられている。 In recent years, fine fibers such as cellulose nanofibers and microfiber cellulose (microfibrillated cellulose) have been attracting attention for their use as reinforcing materials for resins. However, since fine fibers are hydrophilic while resins are hydrophobic, there is a problem with the dispersibility of the fine fibers when using them as reinforcing materials for resins. Therefore, the present inventors have proposed replacing the hydroxyl groups of the fine fibers with carbamate groups (see Patent Document 1). According to this proposal, the dispersibility of the fine fibers is improved, and the reinforcing effect of the resin is improved. However, even now, there is a demand for further improvement in the reinforcing effect, and various research efforts are ongoing.

特開2019-1876号公報JP 2019-1876 A

発明が解決しようとする主たる課題は、樹脂の補強効果の高い繊維状セルロース、強度の高い繊維状セルロース複合樹脂、及び樹脂の補強効果の高い繊維状セルロースの製造方法を提供することにある。 The main problem that the invention aims to solve is to provide fibrous cellulose with a high reinforcing effect for resins, a high-strength fibrous cellulose composite resin, and a method for producing fibrous cellulose with a high reinforcing effect for resins.

従来の開発、例えば、上記特許文献の開発においては、微細繊維の変性に主眼が置かれ、エステル化、エーテル化、アミド化、スルフィド化等、数々存在する変性方法の中で、カルバメート基の導入(カルバメート化)が優れることを見出したものであった。これに対し、本発明は、カルバメート基の導入を主眼とするものではなく、カルバメート基の導入を前提に数々の試験を行うなかで、樹脂の補強効果を詳細に分析し、微細繊維の物性を追求することで上記課題を解決することができることを知見し、想到するに至ったものである。 In previous developments, such as the development of the above-mentioned patent documents, the focus was on the modification of fine fibers, and among the many modification methods available, such as esterification, etherification, amidation, and sulfidation, the introduction of carbamate groups (carbamation) was found to be superior. In contrast, the present invention does not focus on the introduction of carbamate groups, but rather has come to the realization that the above-mentioned problems can be solved by analyzing the reinforcing effect of resins in detail and pursuing the physical properties of fine fibers while conducting various tests based on the premise of the introduction of carbamate groups.

(請求項1に記載の手段)
原料はNKP5~95質量%及びLKP5~95質量%が混在するパルプ原料で、
平均繊維幅が0.1~20μmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されており、
前記カルバメート基の置換率が0.5mmol/g以上で、
Fine率A/Fine率Bが1.5~10である、
ことを特徴とする繊維状セルロース。
(Means as described in claim 1)
The raw material is a pulp material containing 5-95% by mass of NKP and 5-95% by mass of LKP.
The average fiber width is 0.1 to 20 μm, and some or all of the hydroxyl groups are substituted with carbamate groups;
The substitution rate of the carbamate group is 0.5 mmol/g or more,
Fine rate A/Fine rate B is 1.5 to 10;
Fibrous cellulose characterized by:

(請求項2に記載の手段)
前記Fine率Aが、20~60%である、
請求項1に記載の繊維状セルロース。
(Means described in claim 2)
The Fine ratio A is 20 to 60%.
2. The fibrous cellulose of claim 1.

(請求項3に記載の手段)
平均繊維長が0.10~2.0mmである、
請求項1又は請求項2に記載の繊維状セルロース。
(Means described in claim 3)
The average fiber length is 0.10 to 2.0 mm.
The fibrous cellulose according to claim 1 or 2.

(請求項4に記載の手段)
請求項1に記載の繊維状セルロース及び樹脂を含む、
ことを特徴とする繊維状セルロース複合樹脂。
(Means described in claim 4)
A composition comprising the fibrous cellulose and resin according to claim 1 .
A fibrous cellulose composite resin characterized by:

(請求項5に記載の手段)
NKP及びLKPが混在する原料パルプを微細化及びカルバメート化して、平均繊維幅を0.1~20μmとし、かつカルバメート基の置換率を0.5mmol/g以上とする方法であり、
前記微細化においては、ディスクリファイナー(DR)を使用し、このディスクリファイナーの初期負荷率を76%以上とする、
ことを特徴とする繊維状セルロースの製造方法。
(Means described in claim 5)
A method for finely refining and carbamate-converting a raw material pulp containing a mixture of NKP and LKP to have an average fiber width of 0.1 to 20 μm and a carbamate group substitution rate of 0.5 mmol/g or more,
In the refinement, a disc refiner (DR) is used, and the initial load factor of the disc refiner is set to 76 % or more.
1. A method for producing fibrous cellulose comprising the steps of:

(請求項6に記載の手段)
前記カルバメート化に際して加熱処理し、この加熱処理後に置換洗浄率が80%以上となるように洗浄する、
請求項5に記載の繊維状セルロースの製造方法。
(Means described in claim 6)
A heat treatment is performed during the carbamate formation, and washing is performed after the heat treatment so that the replacement washing rate is 80% or more.
The method for producing fibrous cellulose according to claim 5 .

本発明によると、樹脂の補強効果の高い繊維状セルロース、強度の高い繊維状セルロース複合樹脂、及び樹脂の補強効果の高い繊維状セルロースの製造方法になる。 The present invention provides a method for producing fibrous cellulose with a high reinforcing effect for resins, a high-strength fibrous cellulose composite resin, and a method for producing fibrous cellulose with a high reinforcing effect for resins.

次に、発明を実施するための形態を説明する。なお、本実施の形態は、本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。 Next, a description will be given of an embodiment of the invention. Note that this embodiment is an example of the present invention. The scope of the present invention is not limited to the scope of this embodiment.

本形態の繊維状セルロース(以下、「セルロース繊維」ともいう。)は、平均繊維幅(径)が0.1~20μmで、かつヒドロキシ基(-OH基)の一部又は全部がカルバメート基で置換されている。また、カルバメート基の置換率が0.5mmol/g以上で、かつ Fine率A/Fine率Bが1.5~10である。さらに、この繊維状セルロースと樹脂とを含むことで、繊維状セルロース複合樹脂が構成されている。一方、繊維状セルロースを製造する方法においては、原料パルプを微細化及びカルバメート化して、平均繊維幅を0.1~20μmとし、かつカルバメート基の置換率を0.5mmol/g以上とする。そして、微細化においては、ディスクリファイナー(DR)を使用し、このディスクリファイナーの初期負荷率(初期DR負荷率)を65%以上とする。以下、詳細に説明する。 The fibrous cellulose of this embodiment (hereinafter also referred to as "cellulose fiber") has an average fiber width (diameter) of 0.1 to 20 μm, and some or all of the hydroxyl groups (-OH groups) are replaced with carbamate groups. The carbamate group replacement rate is 0.5 mmol/g or more, and the Fine ratio A/Fine ratio B is 1.5 to 10. Furthermore, a fibrous cellulose composite resin is formed by containing this fibrous cellulose and a resin. Meanwhile, in the method for producing fibrous cellulose, raw material pulp is refined and carbamate-treated to have an average fiber width of 0.1 to 20 μm and a carbamate group replacement rate of 0.5 mmol/g or more. In the refinement, a disc refiner (DR) is used, and the initial load rate (initial DR load rate) of this disc refiner is set to 65% or more. Details will be described below.

(繊維状セルロース)
本形態の繊維状セルロース複合樹脂は、本形態の繊維状セルロース(以下、「セルロース繊維」ともいう。)、樹脂、好ましくは更に酸変性樹脂を含む。酸変性樹脂を含む場合、カルバメート基の一部又は全部は、酸変性樹脂の酸基とイオン結合又は共有結合する。
(fibrous cellulose)
The fibrous cellulose composite resin of the present embodiment contains the fibrous cellulose of the present embodiment (hereinafter also referred to as "cellulose fiber"), a resin, and preferably an acid-modified resin. When the acid-modified resin is contained, a part or all of the carbamate groups are ionic- or covalently bonded to the acid groups of the acid-modified resin.

本形態において微細繊維である繊維状セルロースは、平均繊維径が0.1~20μmのマイクロ繊維セルロース(ミクロフィブリル化セルロース)である。マイクロ繊維セルロースであると、樹脂の補強効果が著しく向上する。また、カルバメート化反応の後に未反応で残留している尿素等を除去する目的で行う洗浄工程において、洗浄する繊維がセルロースナノファイバーであると脱水性が非常に悪い。これに対し、マイクロ繊維セルロースは、同じく微細繊維であるセルロースナノファイバーよりもカルバメート基で変性する(カルバメート化)のが脱水性の観点で容易である。ただし、微細化する前のセルロース原料をカルバメート化するのがより好ましく、この場合においてはセルロース原料を洗浄することになるため、マイクロ繊維セルロース及びセルロースナノファイバーは同等である。 In this embodiment, the fibrous cellulose, which is a fine fiber, is a microfiber cellulose (microfibrillated cellulose) having an average fiber diameter of 0.1 to 20 μm. The use of microfiber cellulose significantly improves the reinforcing effect of the resin. In addition, in the washing process carried out for the purpose of removing unreacted urea and the like remaining after the carbamate reaction, if the fiber to be washed is cellulose nanofiber, the dehydration is very poor. In contrast, microfiber cellulose is easier to modify with carbamate groups (carbamate) from the standpoint of dehydration than cellulose nanofiber, which is also a fine fiber. However, it is more preferable to carbamate the cellulose raw material before it is pulverized, and in this case, the cellulose raw material is washed, so microfiber cellulose and cellulose nanofiber are equivalent.

本形態において、マイクロ繊維セルロースは、セルロースナノファイバーよりも平均繊維幅の太い繊維を意味する。具体的には、平均繊維径が、例えば0.1~20μm、好ましくは0.2~19μm、より好ましくは0.5超~18μmである。マイクロ繊維セルロースの平均繊維径が0.1μmを下回ると(未満になると)、セルロースナノファイバーであるのと変わらなくなり、樹脂の強度(特に曲げ弾性率)向上効果が十分に得られないおそれがある。また、解繊時間が長くなり、大きなエネルギーが必要になる。さらに、セルロース繊維スラリーの脱水性が悪化する。脱水性が悪化すると、乾燥に大きなエネルギーが必要になり、乾燥に大きなエネルギーをかけるとマイクロ繊維セルロースが熱劣化して、強度が低下するおそれがある。他方、マイクロ繊維セルロースの平均繊維径が20μmを上回ると(超えると)、パルプであるのと変わらなくなり、補強効果が十分でなくなるおそれがある。 In this embodiment, microfiber cellulose means a fiber having a larger average fiber width than cellulose nanofiber. Specifically, the average fiber diameter is, for example, 0.1 to 20 μm, preferably 0.2 to 19 μm, and more preferably more than 0.5 to 18 μm. If the average fiber diameter of microfiber cellulose is less than 0.1 μm, it becomes the same as cellulose nanofiber, and there is a risk that the effect of improving the strength of the resin (especially the bending modulus) is not sufficiently obtained. In addition, the defibration time becomes longer and a large amount of energy is required. Furthermore, the dehydration of the cellulose fiber slurry deteriorates. If the dehydration deteriorates, a large amount of energy is required for drying, and if a large amount of energy is applied to dry, the microfiber cellulose may be thermally deteriorated and the strength may decrease. On the other hand, if the average fiber diameter of microfiber cellulose exceeds 20 μm, it becomes the same as pulp, and there is a risk that the reinforcing effect may not be sufficient.

マイクロ繊維セルロースの平均繊維径の測定方法は、次のとおりである。
まず、固形分濃度0.01~0.1質量%の微細繊維(マイクロ繊維セルロース)の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
The method for measuring the average fiber diameter of the microfibrous cellulose is as follows.
First, 100 ml of an aqueous dispersion of fine fibers (microfiber cellulose) with a solid content concentration of 0.01 to 0.1% by mass is filtered through a Teflon (registered trademark) membrane filter, and the solvent is replaced once with 100 ml of ethanol and three times with 20 ml of t-butanol. Next, the sample is freeze-dried and osmium-coated to obtain a sample. This sample is observed using an electron microscope SEM image at a magnification of 3,000 to 30,000 times depending on the width of the fibers that constitute it. Specifically, two diagonal lines are drawn on the observed image, and three straight lines passing through the intersection of the diagonal lines are arbitrarily drawn. Furthermore, the width of a total of 100 fibers that intersect with these three straight lines is visually measured. The median diameter of the measured value is then taken as the average fiber diameter.

マイクロ繊維セルロースは、セルロース原料(以下、「原料パルプ」ともいう。)を解繊(微細化)することで得ることができる。原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。なお、以上の各種原料は、例えば、セルロース系パウダーなどと言われる粉砕物(粉状物)の状態等であってもよい。 Microfiber cellulose can be obtained by defibrating (refining) cellulose raw material (hereinafter also referred to as "raw material pulp"). As the raw material pulp, one or more types can be selected from wood pulp made from broadleaf trees, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, hemp, bast fiber, etc., and waste paper pulp (DIP) made from recycled waste paper, broke paper, etc. The above various raw materials may be in the form of a pulverized material (powdered material) called, for example, cellulose-based powder.

ただし、不純物の混入を可及的に避けるために、原料パルプとしては、木材パルプを使用するのが好ましい。木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。 However, in order to avoid the inclusion of impurities as much as possible, it is preferable to use wood pulp as the raw material pulp. As the wood pulp, for example, one or more types can be selected from chemical pulps such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), and mechanical pulp (TMP), etc.

広葉樹クラフトパルプは、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。同様に、針葉樹クラフトパルプは、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。 Hardwood kraft pulp may be bleached hardwood kraft pulp, unbleached hardwood kraft pulp, or semi-bleached hardwood kraft pulp. Similarly, softwood kraft pulp may be bleached softwood kraft pulp, unbleached softwood kraft pulp, or semi-bleached softwood kraft pulp.

機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。 As mechanical pulp, one or more types can be selected and used from, for example, stone ground pulp (SGP), pressed stone ground pulp (PGW), refiner ground pulp (RGP), chemi-ground pulp (CGP), thermo-ground pulp (TGP), ground pulp (GP), thermo-mechanical pulp (TMP), chemi-thermomechanical pulp (CTMP), refiner mechanical pulp (RMP), bleached thermo-mechanical pulp (BTMP), etc.

原料パルプは、微細化するに先立って化学的手法によって前処理することができる。化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。ただし、化学的手法による前処理としては、酵素処理を施すのが好ましく、加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すのがより好ましい。以下、酵素処理について詳細に説明する。 The raw pulp can be pretreated by a chemical method prior to refining. Examples of pretreatment by a chemical method include hydrolysis of polysaccharides with an acid (acid treatment), hydrolysis of polysaccharides with an enzyme (enzyme treatment), swelling of polysaccharides with an alkali (alkali treatment), oxidation of polysaccharides with an oxidizing agent (oxidation treatment), and reduction of polysaccharides with a reducing agent (reduction treatment). However, as a pretreatment by a chemical method, it is preferable to carry out an enzyme treatment, and it is more preferable to additionally carry out one or more treatments selected from an acid treatment, an alkali treatment, and an oxidation treatment. The enzyme treatment will be described in detail below.

酵素処理に使用する酵素としては、セルラーゼ系酵素及びヘミセルラーゼ系酵素の少なくともいずれか一方を使用するのが好ましく、両方を併用するのがより好ましい。これらの酵素を使用すると、セルロース原料の解繊がより容易になる。なお、セルラーゼ系酵素は、水共存下でセルロースの分解を惹き起こす。また、ヘミセルラーゼ系酵素は、水共存下でヘミセルロースの分解を惹き起こす。 As the enzymes used in the enzymatic treatment, it is preferable to use at least one of cellulase enzymes and hemicellulase enzymes, and it is more preferable to use both in combination. The use of these enzymes makes it easier to defibrate the cellulose raw material. Note that cellulase enzymes cause the decomposition of cellulose in the presence of water. Also, hemicellulase enzymes cause the decomposition of hemicellulose in the presence of water.

セルラーゼ系酵素としては、例えば、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生する酵素を使用することができる。これらのセルラーゼ系酵素は、試薬や市販品として購入可能である。市販品としては、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラ-ゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼ系酵素GC220(ジェネンコア社製)等を例示することができる。 Examples of cellulase enzymes that can be used include enzymes produced by the genera Trichoderma (filamentous fungi), Acremonium (filamentous fungi), Aspergillus (filamentous fungi), Phanerochaete (basidiomycetes), Trametes (basidiomycetes), Humicola (filamentous fungi), Bacillus (bacteria), Schizophyllum (basidiomycetes), Streptomyces (bacteria), and Pseudomonas (bacteria). These cellulase enzymes can be purchased as reagents or commercial products. Examples of commercially available products include Celluleucin T2 (manufactured by HPI), Meicelase (manufactured by Meiji Seika Kaisha), Novozyme 188 (manufactured by Novozyme), Multifect CX10L (manufactured by Genencor), and cellulase enzyme GC220 (manufactured by Genencor).

また、セルラーゼ系酵素としては、EG(エンドグルカナーゼ)及びCBH(セロビオハイドロラーゼ)のいずれかもを使用することもできる。EG及びCBHは、それぞれを単体で使用しても、混合して使用してもよい。また、ヘミセルラーゼ系酵素と混合して使用してもよい。 As the cellulase enzyme, either EG (endoglucanase) or CBH (cellobiohydrolase) can be used. EG and CBH can be used alone or in combination. They can also be used in combination with a hemicellulase enzyme.

ヘミセルラーゼ系酵素としては、例えば、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)等を使用することができる。また、ペクチンを分解する酵素であるペクチナーゼも使用することができる。 As hemicellulase enzymes, for example, xylanase, which is an enzyme that breaks down xylan, mannase, which is an enzyme that breaks down mannan, and arabanase, which is an enzyme that breaks down araban, can be used. In addition, pectinase, which is an enzyme that breaks down pectin, can also be used.

ヘミセルロースは、植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で木材の種類や細胞壁の壁層間でも異なる。針葉樹の2次壁では、グルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そこで、針葉樹晒クラフトパルプ(NBKP)から微細繊維を得る場合は、マンナーゼを使用するのが好ましい。また、広葉樹晒クラフトパルプ(LBKP)から微細繊維を得る場合は、キシラナーゼを使用するのが好ましい。 Hemicellulose is a polysaccharide excluding pectins found between cellulose microfibrils in plant cell walls. Hemicellulose is diverse and differs depending on the type of wood and between the layers of the cell wall. The main component of the secondary wall of softwood is glucomannan, while the main component of the secondary wall of hardwood is 4-O-methylglucuronoxylan. Therefore, when obtaining fine fibers from softwood bleached kraft pulp (NBKP), it is preferable to use mannase. Also, when obtaining fine fibers from hardwood bleached kraft pulp (LBKP), it is preferable to use xylanase.

セルロース原料に対する酵素の添加量は、例えば、酵素の種類、原料となる木材の種類(針葉樹か広葉樹か)、機械パルプの種類等によって決まる。ただし、セルロース原料に対する酵素の添加量は、好ましくは0.1~3質量%、より好ましくは0.3~2.5質量%、特に好ましくは0.5~2質量%である。酵素の添加量が0.1質量%を下回ると、酵素の添加による効果が十分に得られないおそれがある。他方、酵素の添加量が3質量%を上回ると、セルロースが糖化され、微細繊維の収率が低下するおそれがある。また、添加量の増量に見合う効果の向上を認めることができないとの問題もある。 The amount of enzyme added to the cellulose raw material is determined by, for example, the type of enzyme, the type of wood used as the raw material (coniferous or broadleaf), the type of mechanical pulp, etc. However, the amount of enzyme added to the cellulose raw material is preferably 0.1 to 3 mass%, more preferably 0.3 to 2.5 mass%, and particularly preferably 0.5 to 2 mass%. If the amount of enzyme added is less than 0.1 mass%, the effect of adding the enzyme may not be sufficient. On the other hand, if the amount of enzyme added is more than 3 mass%, the cellulose may be saccharified, and the yield of fine fibers may decrease. There is also the problem that the effect may not be improved commensurate with the increase in the amount added.

酵素としてセルラーゼ系酵素を使用する場合、酵素処理時のpHは、酵素反応の反応性の観点から、弱酸性領域(pH=3.0~6.9)であるのが好ましい。他方、酵素としてヘミセルラーゼ系酵素を使用する場合、酵素処理時のpHは、弱アルカリ性領域(pH=7.1~10.0)であるのが好ましい。 When using a cellulase enzyme as the enzyme, the pH during the enzyme treatment is preferably in the weak acidic range (pH = 3.0 to 6.9) from the viewpoint of the reactivity of the enzyme reaction. On the other hand, when using a hemicellulase enzyme as the enzyme, the pH during the enzyme treatment is preferably in the weak alkaline range (pH = 7.1 to 10.0).

酵素処理時の温度は、酵素としてセルラーゼ系酵素及びヘミセルラーゼ系酵素のいずれを使用する場合においても、好ましくは30~70℃、より好ましくは35~65℃、特に好ましくは40~60℃である。酵素処理時の温度が30℃以上であれば、酵素活性が低下し難くなり、処理時間の長期化を防止することができる。他方、酵素処理時の温度が70℃以下であれば、酵素の失活を防止することができる。 The temperature during the enzyme treatment is preferably 30 to 70°C, more preferably 35 to 65°C, and particularly preferably 40 to 60°C, regardless of whether a cellulase enzyme or a hemicellulase enzyme is used as the enzyme. If the temperature during the enzyme treatment is 30°C or higher, the enzyme activity is less likely to decrease, and the treatment time can be prevented from being prolonged. On the other hand, if the temperature during the enzyme treatment is 70°C or lower, the enzyme can be prevented from being inactivated.

酵素処理の時間は、例えば、酵素の種類、酵素処理の温度、酵素処理時のpH等によって決まる。ただし、一般的な酵素処理の時間は、0.5~24時間である。 The time for enzyme treatment depends on, for example, the type of enzyme, the temperature of the enzyme treatment, the pH during the enzyme treatment, etc. However, the general time for enzyme treatment is 0.5 to 24 hours.

酵素処理した後には、酵素を失活させるのが好ましい。酵素を失活させる方法としては、例えば、アルカリ水溶液(好ましくはpH10以上、より好ましくはpH11以上)を添加する方法、80~100℃の熱水を添加する方法等が存在する。 After the enzyme treatment, it is preferable to inactivate the enzyme. Methods for inactivating the enzyme include, for example, adding an alkaline aqueous solution (preferably pH 10 or higher, more preferably pH 11 or higher) and adding hot water at 80 to 100°C.

次に、アルカリ処理の方法について説明する。 Next, we will explain the alkaline treatment method.

解繊に先立ってアルカリ処理すると、パルプが持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、解繊におけるセルロース原料の分散が促進される。 When the pulp is treated with alkali prior to defibration, some of the hydroxyl groups in the hemicellulose and cellulose contained in the pulp are dissociated, and the molecules become anionic, weakening the intra- and intermolecular hydrogen bonds and promoting the dispersion of the cellulose raw material during defibration.

アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。 Examples of alkalis that can be used in the alkaline treatment include sodium hydroxide, lithium hydroxide, potassium hydroxide, aqueous ammonia, and organic alkalis such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and benzyltrimethylammonium hydroxide. However, from the viewpoint of production costs, it is preferable to use sodium hydroxide.

解繊に先立って酵素処理や酸処理、酸化処理を施すと、マイクロ繊維セルロースの保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。この点、マイクロ繊維セルロースの保水度が低いと脱水し易くなり、セルロース繊維スラリーの脱水性が向上する。 By carrying out enzyme treatment, acid treatment, or oxidation treatment prior to defibration, it is possible to reduce the water retention of the microfiber cellulose, increase the degree of crystallinity, and increase the homogeneity. In this regard, if the water retention of the microfiber cellulose is low, it becomes easier to dehydrate, and the dehydration of the cellulose fiber slurry is improved.

原料パルプを酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解される。結果、解繊のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。ただし、前処理は、マイクロ繊維セルロースのアスペクト比を低下させるため、樹脂の補強材として使用する場合には、過度の前処理を避けるのが好ましい。 When raw pulp is treated with enzymes, acids, or oxidation, the hemicellulose and amorphous regions of cellulose contained in the pulp are broken down. As a result, the energy required for defibration can be reduced, and the uniformity and dispersibility of the cellulose fibers can be improved. However, since pretreatment reduces the aspect ratio of microfiber cellulose, it is preferable to avoid excessive pretreatment when using it as a reinforcing material for resins.

原料パルプの解繊(微細化)は、例えば、ビーター、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用して原料パルプを叩解することによって行うことができる。ただし、リファイナーやジェットミルを使用して行うのが好ましく、ディスクリファイナー(DR)を使用して行うのがより好ましく、シングルディスクリファイナー(SDR)を使用して行うのが特に好ましい。 The raw pulp can be defibrated (refined) by beating the raw pulp using, for example, a homogenizer such as a beater, high-pressure homogenizer, or high-pressure homogenizer, a grinder, a mill-type friction machine such as a grinder or grinder, a single-shaft kneader, a multi-shaft kneader, a kneader refiner, or a jet mill. However, it is preferable to use a refiner or jet mill, more preferably a disc refiner (DR), and particularly preferably a single disc refiner (SDR).

マイクロ繊維セルロースの平均繊維長(単繊維の長さの平均)は、好ましくは0.10~2.0mm、より好ましくは0.2~1.5mm、特に好ましくは0.3~1.2mmである。平均繊維長が0.10mmを下回ると、繊維同士の三次元ネットワークを形成できず、複合樹脂の曲げ弾性率等が低下するおそれがあり、Fine率A/Fine率Bを所定の範囲内に調節しても補強効果が向上しないとされる可能性がある。他方、平均繊維長が2.0mmを上回ると、原料パルプと変わらない長さのため補強効果が不十分となるおそれがある。 The average fiber length of microfiber cellulose (average length of single fibers) is preferably 0.10 to 2.0 mm, more preferably 0.2 to 1.5 mm, and particularly preferably 0.3 to 1.2 mm. If the average fiber length is less than 0.10 mm, a three-dimensional network cannot be formed between the fibers, and the flexural modulus of the composite resin may decrease, and even if Fine ratio A/Fine ratio B is adjusted to within a specified range, the reinforcing effect may not be improved. On the other hand, if the average fiber length exceeds 2.0 mm, the reinforcing effect may be insufficient because the length is the same as that of the raw material pulp.

マイクロ繊維セルロースの原料となるセルロース原料の平均繊維長は、好ましくは0.50~5.00mm、より好ましくは1.00~3.00mm、特に好ましくは1.50~2.50mmである。セルロース原料の平均繊維長が0.50mmを下回ると、解繊処理した際の、樹脂の補強効果が十分得られない可能性がある。他方、平均繊維長が5.00mmを上回ると、解繊時の製造コストの面で不利となるおそれがある。 The average fiber length of the cellulose raw material used to make microfiber cellulose is preferably 0.50 to 5.00 mm, more preferably 1.00 to 3.00 mm, and particularly preferably 1.50 to 2.50 mm. If the average fiber length of the cellulose raw material is less than 0.50 mm, the reinforcing effect of the resin may not be sufficient when defibrated. On the other hand, if the average fiber length exceeds 5.00 mm, there is a risk of it being disadvantageous in terms of manufacturing costs during defibration.

マイクロ繊維セルロースの平均繊維長は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。 The average fiber length of microfiber cellulose can be adjusted as desired, for example, by selecting the raw pulp, pre-treating, defibrating, etc.

マイクロ繊維セルロースのFine率A(ファイン率A)は、10~90%であるのが好ましく、20~60%であるのがより好ましく、25~50%であるのが特に好ましい。FineAが10%以上であると、均質な繊維の割合が多く、複合樹脂の破壊が進行し難くなる。ただし、Fine率Aが90%を超えると、曲げ弾性率が不十分になる可能性がある。 The Fine ratio A of the microfiber cellulose is preferably 10 to 90%, more preferably 20 to 60%, and particularly preferably 25 to 50%. If Fine ratio A is 10% or more, the proportion of homogeneous fibers is high, and the composite resin is less likely to break down. However, if Fine ratio A exceeds 90%, the flexural modulus may be insufficient.

以上はマイクロ繊維セルロースのFine率Aであるが、マイクロ繊維セルロースの原料となるセルロース原料のFine率Aも所定の範囲内としておくとより好ましいものとなる。具体的には、マイクロ繊維セルロースの原料となるセルロース原料のFine率Aが、1%以上であるのが好ましく、3~25%であるのがより好ましく、5~20%であるのが特に好ましい。解繊前のセルロース原料のFine率Aが上記範囲内であれば、マイクロ繊維セルロースのFine率Aが10%以上になるように解繊したとしても繊維のダメージが少なく、樹脂の補強効果が向上すると考えられる。 The above is the fineness A of the microfiber cellulose, but it is more preferable if the fineness A of the cellulose raw material from which the microfiber cellulose is made is also within a specified range. Specifically, the fineness A of the cellulose raw material from which the microfiber cellulose is made is preferably 1% or more, more preferably 3 to 25%, and particularly preferably 5 to 20%. If the fineness A of the cellulose raw material before defibration is within the above range, it is believed that even if the microfiber cellulose is defibrated so that the fineness A of the microfiber cellulose is 10% or more, there will be little damage to the fibers and the reinforcing effect of the resin will be improved.

一方、マイクロ繊維セルロースのFine率B(ファイン率B)は、1~75%であるのが好ましく、10~75%であるのがより好ましく、35~75%であるのが特に好ましい。Fine率Bが1%未満であると、繊維長が短い繊維が多いまたは、繊維幅の大きい繊維が多いことから、補強効果が十分でなくなる可能性がある。他方、Fine率Bが75%を超えると、細くて長い繊維が多くなり、繊維同士が絡まってしまい、外部から衝撃が加わった際に繊維の絡まり部分が異物のようにきっかけとなってそこから破断し、曲げ物性や耐衝撃性が低下する可能性がある。 On the other hand, the Fine ratio B of the microfiber cellulose is preferably 1 to 75%, more preferably 10 to 75%, and particularly preferably 35 to 75%. If the Fine ratio B is less than 1%, there will be many short fibers or many wide fibers, which may result in insufficient reinforcing effect. On the other hand, if the Fine ratio B exceeds 75%, there will be many thin and long fibers, which may cause the fibers to become entangled. When an impact is applied from the outside, the entangled part of the fibers may act as a foreign object and break from there, which may result in reduced bending properties and impact resistance.

Fine率A,Bの調整は、酵素処理等の前処理によって行うことができる。ただし、特に酵素処理する場合は、分子量が小さくなり、剛直性が失われると考えられるため、樹脂の補強効果が低下する可能性がある。したがって、この観点からの酵素の添加量は、2質量%以下であるのが好ましく、1質量%以下であるのがより好ましく、0.5質量%以下であるのが特に好ましい。また、酵素処理しない(添加量0質量%)のも1つの選択枠である。 The fine ratios A and B can be adjusted by pretreatment such as enzyme treatment. However, when enzyme treatment is performed, the molecular weight becomes smaller and rigidity is thought to be lost, which may reduce the reinforcing effect of the resin. Therefore, from this perspective, the amount of enzyme added is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. Another option is to not perform enzyme treatment (addition amount 0% by mass).

さらに、本形態において、Fine率A/Fine率B(Fine率比)は、好ましくは1.5~10、より好ましくは1.8~9.5、特に好ましくは2.0~9.0である。特にFine率Aが所定の範囲内(好ましくは、20~60%)の場合において、Fine率比が1.5未満であると、LKPのような短くて柔らかい繊維が多くなる場合と同様に三次元ネットワークが構築できず、補強効果が不十分となる可能性がある。他方、特にFine率Aが所定の範囲内(好ましくは、20~60%)の場合において、Fine率比が10を超えると、NKPのような長くて固い繊維が多くなる場合と同様に繊維同士が絡まってしまい、外部から衝撃が加わった際に繊維の絡まり部分が異物のようにきっかけとなってそこから破断し、曲げ物性や耐衝撃性が低下する可能性がある。 Furthermore, in this embodiment, the Fine ratio A/Fine ratio B (Fine ratio ratio) is preferably 1.5 to 10, more preferably 1.8 to 9.5, and particularly preferably 2.0 to 9.0. In particular, when the Fine ratio A is within a specified range (preferably 20 to 60%), if the Fine ratio ratio is less than 1.5, a three-dimensional network cannot be constructed, as in the case where there are many short and soft fibers such as LKP, and the reinforcing effect may be insufficient. On the other hand, in particular, when the Fine ratio A is within a specified range (preferably 20 to 60%), if the Fine ratio ratio exceeds 10, the fibers may become entangled with each other, as in the case where there are many long and hard fibers such as NKP, and when an impact is applied from the outside, the entangled part of the fibers may act as a foreign object and break from there, which may reduce the bending properties and impact resistance.

(Fine率比の調節)
ここで、Fine率比の調節方法について説明する。
Fine率比の調節にあたっては、例えば、Fine率の異なる2種類、又はそれ以上の複数種類のマイクロ繊維セルロースを混ぜ合わせる方法によることができる。ただし、1つのセルロース原料を単に微細化してFine率比を調節する方が製造効率に優れる。そこで、例えば、セルロース原料として複数のパルプ原料が混在したものを使用することができる。
(Fine rate ratio adjustment)
Here, a method for adjusting the fine rate ratio will be described.
The fine ratio can be adjusted, for example, by mixing two or more types of microfiber cellulose with different fine ratios. However, it is more efficient to simply refine one cellulose raw material and adjust the fine ratio. Therefore, for example, a mixture of multiple pulp raw materials can be used as the cellulose raw material.

具体的には、例えば、NKP(針葉樹クラフトパルプ)及びLKP(広葉樹クラフトパルプ)が混在するパルプ原料を用いるのが好ましく、NKP(好適には、NBKP。)5~95質量%、LKP(好適には、LBKP。)5~95質量%からなるパルプ原料を用いるのがより好ましく、NKP25~75質量%、LKP25~75質量%からなるパルプ原料を用いるのが特に好ましい。NKPには長くて固い(太い)繊維が多いとの特徴があり、LKPには短くて柔らかい(細い)繊維が多いとの特徴があるため、上記配合割合によるとFine率比を前記範囲内に調節することができる。 Specifically, for example, it is preferable to use a pulp raw material that is a mixture of NKP (softwood kraft pulp) and LKP (hardwood kraft pulp), it is more preferable to use a pulp raw material consisting of 5 to 95 mass% NKP (preferably NBKP) and 5 to 95 mass% LKP (preferably LBKP), and it is particularly preferable to use a pulp raw material consisting of 25 to 75 mass% NKP and 25 to 75 mass% LKP. NKP is characterized by having many long, hard (thick) fibers, while LKP is characterized by having many short, soft (thin) fibers, so the fine ratio can be adjusted to within the above range by using the above blending ratio.

ただし、本形態においては、更に以下の方法を推奨する。
すなわち、セルロース原料を微細化においては、ディスクリファイナー(DR)を使用し、このディスクリファイナーの初期負荷率(初期DR負荷率)を65~100%、好ましくは65~90%、より好ましくは65~85%とする。このように初期負荷率を調節することで、後述する実施例から明らかなようにFine率比を調節することができる。
However, in this embodiment, the following method is further recommended.
That is, in refining the cellulose raw material, a disc refiner (DR) is used, and the initial load factor of this disc refiner (initial DR load factor) is set to 65 to 100%, preferably 65 to 90%, and more preferably 65 to 85%. By adjusting the initial load factor in this way, it is possible to adjust the fine rate ratio, as will be apparent from the examples described later.

なお、初期DR負荷率とは、リファイナーの歯に対してパルプ(初期のため叩解がほとんど進んでいない)をどのくらい圧力をかけて押し付けているかを示す指標であり、叩解処理を開始した際の消費電力(Kw)/定格電力(Kw)から算出した値である。 The initial DR load rate is an index showing how much pressure is being applied to the pulp (which is still in the early stages and has barely progressed in beating) against the refiner teeth, and is a value calculated from the power consumption (Kw) at the start of the beating process divided by the rated power (Kw).

本形態において「ファイン率A(Fine率A)」とは、繊維長が0.2mm以下で、かつ繊維幅が75μm以下であるセルロース繊維の質量基準の割合をいう。また、「ファイン率B(Fine率B)」とは、繊維長が0.2mmを超え、かつ繊維幅が10μm以下であるセルロース繊維の質量基準の割合をいう。 In this embodiment, "fine ratio A" refers to the mass ratio of cellulose fibers having a fiber length of 0.2 mm or less and a fiber width of 75 μm or less. Also, "fine ratio B" refers to the mass ratio of cellulose fibers having a fiber length of more than 0.2 mm and a fiber width of 10 μm or less.

マイクロ繊維セルロースのアスペクト比は、好ましくは2~15,000、より好ましくは10~10,000である。アスペクト比が2を下回ると、三次元ネットワークを十分に構築することができないため、たとえ平均繊維長が0.10mm以上であるとしても、補強効果が不十分となるおそれがある。他方、アスペクト比が15,000を上回ると、マイクロ繊維セルロース同士の絡み合いが高くなり、樹脂中での分散が不十分となるおそれがある。 The aspect ratio of the microfiber cellulose is preferably 2 to 15,000, and more preferably 10 to 10,000. If the aspect ratio is less than 2, a three-dimensional network cannot be sufficiently constructed, and even if the average fiber length is 0.10 mm or more, the reinforcing effect may be insufficient. On the other hand, if the aspect ratio exceeds 15,000, the microfiber cellulose may become highly entangled, resulting in insufficient dispersion in the resin.

アスペクト比とは、平均繊維長を平均繊維幅で除した値である。アスペクト比が大きいほど引っかかりが生じる箇所が多くなるため補強効果が上がるが、他方で引っかかりが多くなる分、樹脂の延性が低下するものと考えられる。 The aspect ratio is the average fiber length divided by the average fiber width. The larger the aspect ratio, the more points at which snagging occurs, and therefore the greater the reinforcing effect, but on the other hand, the more snagging occurs, which is thought to reduce the ductility of the resin.

マイクロ繊維セルロースの繊維長、ファイン率(Fine率)等は、バルメット社製の繊維分析計「FS5」によって測定した値である。 The fiber length, fineness ratio, etc. of microfiber cellulose were measured using a fiber analyzer "FS5" manufactured by Valmet.

マイクロ繊維セルロースのフィブリル化率は、好ましくは1.0~30.0%、より好ましくは1.5~20.0%、特に好ましくは2.0~15.0%である。フィブリル化率が30.0%を上回ると、水との接触面積が広くなり過ぎるため、たとえ平均繊維幅が0.1μm以上に留まる範囲で解繊したとしても、脱水が困難になる可能性がある。他方、フィブリル化率が1.0%下回ると、フィブリル同士の水素結合が少なく、強硬な三次元ネットワークを形成することができなくなるおそれがある。 The fibrillation rate of microfiber cellulose is preferably 1.0 to 30.0%, more preferably 1.5 to 20.0%, and particularly preferably 2.0 to 15.0%. If the fibrillation rate exceeds 30.0%, the contact area with water becomes too large, so dehydration may become difficult even if the fiber is defibrated to an average fiber width of 0.1 μm or more. On the other hand, if the fibrillation rate is below 1.0%, there may be few hydrogen bonds between fibrils, making it impossible to form a strong three-dimensional network.

本形態においてフィブリル化率とは、セルロース繊維をJIS-P-8220:2012「パルプ-離解方法」に準拠して離解し、得られた離解パルプをFiberLab.(Kajaani社)を用いて測定した値をいう。 In this embodiment, the fibrillation rate refers to the value obtained by disintegrating cellulose fibers in accordance with JIS-P-8220:2012 "Pulp - Disintegration method" and measuring the resulting disintegrated pulp using FiberLab. (Kajaani).

マイクロ繊維セルロースの結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。結晶化度が50%を下回ると、パルプやセルロースナノファイバーとの混合性は向上するものの、繊維自体の強度が低下するため、樹脂の強度を向上することができなくなるおそれがある。他方、マイクロ繊維セルロースの結晶化度は、好ましくは95%以下、より好ましくは90%以下、特に好ましくは85%以下である。結晶化度が95%を上回ると、分子内の強固な水素結合割合が多くなり、繊維自体が剛直となり、分散性が劣るようになる。 The crystallinity of the microfiber cellulose is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more. If the crystallinity is below 50%, the mixability with pulp and cellulose nanofibers will improve, but the strength of the fiber itself will decrease, and there is a risk that the strength of the resin will not be improved. On the other hand, the crystallinity of the microfiber cellulose is preferably 95% or less, more preferably 90% or less, and particularly preferably 85% or less. If the crystallinity is above 95%, the proportion of strong hydrogen bonds within the molecule will increase, the fiber itself will become rigid, and dispersibility will be poor.

マイクロ繊維セルロースの結晶化度は、例えば、原料パルプの選定、前処理、微細化処理で任意に調整可能である。 The crystallinity of microfiber cellulose can be adjusted as desired, for example, by selecting the raw pulp, pre-treating it, and refining it.

マイクロ繊維セルロースの結晶化度は、JIS K 0131(1996)に準拠して測定した値である。 The crystallinity of microfiber cellulose is measured in accordance with JIS K 0131 (1996).

マイクロ繊維セルロースのパルプ粘度は、好ましくは1cps以上、より好ましくは2cps以上である。パルプ粘度は、セルロースを銅エチレンジアミン液に溶解させた後の溶解液の粘度であり、パルプ粘度が大きいほどセルロースの重合度が大きいことを示している。マイクロ繊維セルロースのパルプ粘度が1cps以上であれば、スラリーに脱水性を付与しつつ、樹脂と混練する際にセルロースナノファイバーの分解を抑えられ、十分な補強効果を得ることができる。 The pulp viscosity of the microfiber cellulose is preferably 1 cps or more, more preferably 2 cps or more. The pulp viscosity is the viscosity of the solution obtained after dissolving cellulose in a copper ethylenediamine liquid, and a higher pulp viscosity indicates a higher degree of polymerization of cellulose. If the pulp viscosity of the microfiber cellulose is 1 cps or more, the slurry can be dehydrated while suppressing the decomposition of the cellulose nanofibers when kneaded with the resin, and a sufficient reinforcing effect can be obtained.

マイクロ繊維セルロースのパルプ粘度は、TAPPI T 230に準拠して測定した値である。 The pulp viscosity of microfiber cellulose is measured in accordance with TAPPI T 230.

マイクロ繊維セルロースのフリーネスは、好ましくは500ml以下、より好ましくは300ml以下、特に好ましくは100ml以下である。マイクロ繊維セルロースのフリーネスが500mlを上回ると、マイクロ繊維セルロースの平均繊維径が20μmを超え、樹脂の強度向上効果が十分に得られなくなるおそれがある。 The freeness of the microfiber cellulose is preferably 500 ml or less, more preferably 300 ml or less, and particularly preferably 100 ml or less. If the freeness of the microfiber cellulose exceeds 500 ml, the average fiber diameter of the microfiber cellulose will exceed 20 μm, and the strength improvement effect of the resin may not be sufficiently obtained.

マイクロ繊維セルロースのフリーネスは、JIS P8121-2(2012)に準拠して測定した値である。 The freeness of microfiber cellulose is a value measured in accordance with JIS P8121-2 (2012).

マイクロ繊維セルロースのゼータ電位は、好ましくは-150~20mV、より好ましくは-100~0mV、特に好ましくは-80~-10mVである。ゼータ電位が-150mVを下回ると、樹脂との相溶性が著しく低下し補強効果が不十分となるおそれがある。他方、ゼータ電位が20mVを上回ると、分散安定性が低下するおそれがある。 The zeta potential of the microfiber cellulose is preferably -150 to 20 mV, more preferably -100 to 0 mV, and particularly preferably -80 to -10 mV. If the zeta potential is below -150 mV, compatibility with the resin may decrease significantly, resulting in insufficient reinforcing effect. On the other hand, if the zeta potential is above 20 mV, dispersion stability may decrease.

マイクロ繊維セルロースは、カルバメート基を有する。どのようにしてカルバメート基を有するものとされているかは特に限定されない。例えば、セルロース原料がカルバメート化されていることでカルバメート基を有するものであっても、マイクロ繊維セルロース(微細化されたセルロース原料)がカルバメート化されることでカルバメート基を有するものであってもよい。 Microfiber cellulose has a carbamate group. There is no particular limitation on how it is made to have a carbamate group. For example, it may have a carbamate group by carbamate-ifying a cellulose raw material, or it may have a carbamate group by carbamate-ifying a microfiber cellulose (a finely divided cellulose raw material).

なお、カルバメート基を有するとは、繊維状セルロースにカルバメート基(カルバミン酸のエステル)が導入された状態を意味する。カルバメート基は、-O-CO-NH-で表される基であり、例えば、-O-CO-NH、-O-CONHR、-O-CO-NR等で表わされる基である。つまり、カルバメート基は、下記の構造式(1)で示すことができる。 Incidentally, "having a carbamate group" means that a carbamate group (an ester of carbamic acid) has been introduced into the fibrous cellulose. The carbamate group is a group represented by -O-CO-NH-, such as a group represented by -O-CO-NH 2 , -O-CONHR, -O-CO-NR 2 , etc. In other words, the carbamate group can be represented by the following structural formula (1).

Figure 0007499982000001
Figure 0007499982000001

ここでnは、1以上の整数を表す。Rは、それぞれ独立して、水素、飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基の少なくともいずれかである。 Here, n is an integer of 1 or more. Each R is independently at least one of hydrogen, a saturated linear hydrocarbon group, a saturated branched hydrocarbon group, a saturated cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated branched hydrocarbon group, an aromatic group, and derivatives thereof.

飽和直鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1~10の直鎖状のアルキル基を挙げることができる。 Examples of saturated linear hydrocarbon groups include linear alkyl groups having 1 to 10 carbon atoms, such as methyl, ethyl, and propyl groups.

飽和分岐鎖状炭化水素基としては、例えば、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数3~10の分岐鎖状アルキル基を挙げることができる。 Examples of saturated branched hydrocarbon groups include branched alkyl groups having 3 to 10 carbon atoms, such as isopropyl, sec-butyl, isobutyl, and tert-butyl groups.

飽和環状炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基を挙げることができる。 Examples of saturated cyclic hydrocarbon groups include cycloalkyl groups such as cyclopentyl, cyclohexyl, and norbornyl.

不飽和直鎖状炭化水素基としては、例えば、エテニル基、プロペン-1-イル基、プロペン-3-イル基等の炭素数2~10の直鎖状のアルケニル基、エチニル基、プロピン-1-イル基、プロピン-3-イル基等の炭素数2~10の直鎖状のアルキニル基等を挙げることができる。 Examples of unsaturated linear hydrocarbon groups include linear alkenyl groups having 2 to 10 carbon atoms, such as ethenyl, propen-1-yl, and propen-3-yl, and linear alkynyl groups having 2 to 10 carbon atoms, such as ethynyl, propyn-1-yl, and propyn-3-yl.

不飽和分岐鎖状炭化水素基としては、例えば、プロペン-2-イル基、ブテン-2-イル基、ブテン-3-イル基等の炭素数3~10の分岐鎖状アルケニル基、ブチン-3-イル基等の炭素数4~10の分岐鎖状アルキニル基等を挙げることができる。 Examples of unsaturated branched hydrocarbon groups include branched alkenyl groups having 3 to 10 carbon atoms, such as propen-2-yl, buten-2-yl, and buten-3-yl groups, and branched alkynyl groups having 4 to 10 carbon atoms, such as butyn-3-yl groups.

芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基等を挙げることができる。 Examples of aromatic groups include phenyl, tolyl, xylyl, and naphthyl groups.

誘導基としては、例えば、上記飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基及び芳香族基が有する1又は複数の水素原子が、置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等。)で置換された基を挙げることができる。 Examples of derivative groups include groups in which one or more hydrogen atoms in the above-mentioned saturated linear hydrocarbon groups, saturated branched hydrocarbon groups, saturated cyclic hydrocarbon groups, unsaturated linear hydrocarbon groups, unsaturated branched hydrocarbon groups, and aromatic groups are substituted with a substituent (e.g., a hydroxy group, a carboxy group, a halogen atom, etc.).

カルバメート基を有する(カルバメート基が導入された)マイクロ繊維セルロースにおいては、極性の高いヒドロキシ基の一部又は全部が、相対的に極性の低いと考えられるカルバメート基に置換されている。結果、極性の低い樹脂等との親和性が高くなる。故に、カルバメート基を有するマイクロ繊維セルロースは、樹脂との均一分散性に優れる。また、カルバメート基を有するマイクロ繊維セルロースのスラリーは、粘性が低く、ハンドリング性が良い。 In microfiber cellulose having carbamate groups (introduced with carbamate groups), some or all of the highly polar hydroxyl groups are replaced with carbamate groups, which are considered to have relatively low polarity. As a result, the affinity with resins and the like having low polarity is high. Therefore, microfiber cellulose having carbamate groups has excellent uniform dispersion with resins. In addition, a slurry of microfiber cellulose having carbamate groups has low viscosity and good handling properties.

マイクロ繊維セルロースのヒドロキシ基に対するカルバメート基の置換率は、好ましくは0.5~5.0mmol/g、より好ましくは0.6~3.0mmol/g、特に好ましくは0.7~2.0mmol/gである。置換率を0.5mmol/g以上にすると、カルバメート基を導入した効果、特に樹脂の曲げ弾性率の向上効果が確実に奏せられる。他方、置換率が5.0mmol/gを超えると、セルロース繊維が繊維の形状を保てなくなり、樹脂の補強効果が十分得られないおそれがある。また、カルバメート基の置換率が2.0mmol/gを超えると、原料パルプをカルバメート化する場合においてパルプの平均繊維長が短くなり、結果としてマイクロ繊維セルロースの平均繊維長が0.1mm未満となり、十分な樹脂補強効果が出せなくなるおそれがある。 The substitution rate of carbamate groups relative to hydroxyl groups in microfiber cellulose is preferably 0.5 to 5.0 mmol/g, more preferably 0.6 to 3.0 mmol/g, and particularly preferably 0.7 to 2.0 mmol/g. When the substitution rate is 0.5 mmol/g or more, the effect of introducing carbamate groups, particularly the effect of improving the bending modulus of the resin, is reliably achieved. On the other hand, when the substitution rate exceeds 5.0 mmol/g, the cellulose fibers are unable to maintain the shape of the fibers, and the reinforcing effect of the resin may not be sufficiently obtained. In addition, when the substitution rate of carbamate groups exceeds 2.0 mmol/g, the average fiber length of the pulp becomes shorter when the raw pulp is carbamateized, and as a result, the average fiber length of the microfiber cellulose becomes less than 0.1 mm, and there is a risk that the resin reinforcing effect may not be sufficient.

本形態においてカルバメート基の置換率(mmol/g)とは、カルバメート基を有するセルロース原料1gあたりに含まれるカルバメート基の物質量をいう。カルバメート基の置換率は、カルバメート化したパルプ内に存在するN原子をケルダール法によって測定し、単位重量当たりのカルバメート化率を算出する。また、セルロースは、無水グルコースを構造単位とする重合体であり、一構造単位当たり3つのヒドロキシ基を有する。 In this embodiment, the carbamate group substitution rate (mmol/g) refers to the amount of carbamate groups contained per gram of cellulose raw material having carbamate groups. The carbamate group substitution rate is calculated by measuring the N atoms present in the carbamed pulp by the Kjeldahl method and calculating the carbamate rate per unit weight. Cellulose is a polymer whose structural unit is anhydroglucose, and has three hydroxyl groups per structural unit.

<カルバメート化>
マイクロ繊維セルロース(解繊前にカルバメート化する場合は、セルロース原料。以下、同様であり、「マイクロ繊維セルロース等」ともいう。)にカルバメート基を導入する(カルバメート化)点については、前述したようにセルロース原料をカルバメート化してから微細化する方法と、セルロース原料を微細化してからカルバメート化する方法とがある。この点、本明細書においては、先にセルロース原料の解繊について説明し、その後にカルバメート化(変性)について説明している。しかしながら、解繊及びカルバメート化は、どちらを先に行うこともできる。ただし、先にカルバメート化を行い、その後に、解繊をする方が好ましい。解繊する前のセルロース原料は脱水効率が高く、また、カルバメート化に伴う加熱によってセルロース原料が解繊され易い状態になるためである。
<Carbamate formation>
Regarding the introduction of carbamate groups (carbamation) into microfiber cellulose (when carbamate is performed before defibration, it is the cellulose raw material. Hereinafter, the same is also referred to as "microfiber cellulose, etc."), there are a method of carbamate-ifying the cellulose raw material and then pulverizing it, as described above, and a method of pulverizing the cellulose raw material and then carbamate-ifying it. In this regard, in this specification, defibration of the cellulose raw material is explained first, and then carbamate-ification (modification) is explained. However, either defibration or carbamate-ification can be performed first. However, it is preferable to perform carbamate-ification first and then defibration. This is because the cellulose raw material before defibration has a high dehydration efficiency, and the cellulose raw material is in a state where it is easily defibrated by the heating accompanying carbamate-ification.

マイクロ繊維セルロース等をカルバメート化する工程は、例えば、混合処理、除去処理、及び加熱処理に、主に区分することができる。なお、混合処理及び除去処理は合わせて、加熱処理に供される混合物を調製する調製処理ということもできる。ちなみに、カルバメート化の方法としては、例えば、マイクロ繊維セルロース等をシート状にし、このシート状のマイクロ繊維セルロース等に尿素等を塗布して加熱処理する方法、つまり混合処理ではない方法なども存在する。本形態においては、このシート状にする方法を否定するものではなく、以下では、1つの例としてマイクロ繊維セルロース等及び尿素等を混合処理する形態について、詳細に説明する。 The process of carbamate-forming microfiber cellulose, etc. can be mainly divided into, for example, a mixing process, a removal process, and a heat treatment. The mixing process and the removal process can be collectively called a preparation process for preparing a mixture to be subjected to a heat treatment. Incidentally, as a method of carbamate-forming, for example, there is a method in which microfiber cellulose, etc. is made into a sheet, and urea, etc. is applied to the sheet-like microfiber cellulose, etc., and then the sheet-like microfiber cellulose, etc. is subjected to a heat treatment, i.e., a method that is not a mixing process. In this embodiment, the method of making into a sheet is not denied, and the following will explain in detail an example of a form in which microfiber cellulose, etc. and urea, etc. are mixed.

混合処理においては、マイクロ繊維セルロース等(前述したようにセルロース原料の場合もある。以下、同様。)と尿素又は尿素の誘導体(以下、単に「尿素等」ともいう。)とを分散媒中で混合する。 In the mixing process, microfiber cellulose, etc. (as mentioned above, it may be a cellulose raw material. The same applies below) and urea or a urea derivative (hereinafter simply referred to as "urea, etc.") are mixed in a dispersion medium.

尿素や尿素の誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、尿素の水素原子をアルキル基で置換した化合物等を使用することができる。これらの尿素又は尿素の誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、尿素を使用するのが好ましい。 Examples of urea and urea derivatives that can be used include urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, and compounds in which the hydrogen atoms of urea are substituted with alkyl groups. These ureas and urea derivatives can be used alone or in combination. However, it is preferable to use urea.

マイクロ繊維セルロース等に対する尿素等の混合質量比(尿素等/マイクロ繊維セルロース等)の下限は、好ましくは10kg/pt、より好ましくは20kg/ptである。他方、上限は、好ましくは300kg/pt、より好ましくは200kg/ptである。混合質量比を10kg/pt以上にすることで、カルバメート化の効率が向上する。他方、混合質量比が300kg/ptを上回っても、カルバメート化は頭打ちになる。 The lower limit of the mixture mass ratio of urea etc. to microfiber cellulose etc. (urea etc./microfiber cellulose etc.) is preferably 10 kg/pt, more preferably 20 kg/pt. On the other hand, the upper limit is preferably 300 kg/pt, more preferably 200 kg/pt. By making the mixture mass ratio 10 kg/pt or more, the efficiency of carbamate conversion is improved. On the other hand, if the mixture mass ratio exceeds 300 kg/pt, the carbamate conversion will reach a plateau.

分散媒は、通常、水である。ただし、アルコール、エーテル等の他の分散媒や、水と他の分散媒との混合物を用いてもよい。 The dispersion medium is usually water. However, other dispersion media such as alcohol, ether, and mixtures of water with other dispersion media may also be used.

混合処理においては、例えば、水にマイクロ繊維セルロース等及び尿素等を添加しても、尿素等の水溶液にマイクロ繊維セルロース等を添加しても、マイクロ繊維セルロース等を含むスラリーに尿素等を添加してもよい。また、均一に混合するために、添加後、攪拌してもよい。さらに、マイクロ繊維セルロース等と尿素等とを含む分散液には、その他の成分が含まれていてもよい。 In the mixing process, for example, microfiber cellulose, etc. and urea, etc. may be added to water, microfiber cellulose, etc. may be added to an aqueous solution of urea, etc., or urea, etc. may be added to a slurry containing microfiber cellulose, etc. Furthermore, stirring may be performed after addition to ensure uniform mixing. Furthermore, the dispersion containing microfiber cellulose, etc. and urea, etc. may contain other components.

除去処理においては、混合処理において得られたマイクロ繊維セルロース等及び尿素等を含む分散液から分散媒を除去する。分散媒を除去することで、これに続く加熱処理において効率的に尿素等を反応させることができる。 In the removal process, the dispersion medium is removed from the dispersion liquid containing the microfiber cellulose, etc. and urea, etc. obtained in the mixing process. By removing the dispersion medium, the urea, etc. can be reacted efficiently in the subsequent heating process.

分散媒の除去は、加熱によって分散媒を揮発させることで行うのが好ましい。この方法によると、尿素等の成分を残したまま分散媒のみを効率的に除去することができる。 The dispersion medium is preferably removed by volatilizing it through heating. This method allows the dispersion medium to be efficiently removed while leaving behind components such as urea.

除去処理における加熱温度の下限は、分散媒が水である場合は、好ましくは50℃、より好ましくは70℃、特に好ましくは90℃である。加熱温度を50℃以上にすることで効率的に分散媒を揮発させる(除去する)ことができる。他方、加熱温度の上限は、好ましくは120℃、より好ましくは100℃である。加熱温度が120℃を上回ると、分散媒と尿素が反応し、尿素が単独分解するおそれがある。 When the dispersion medium is water, the lower limit of the heating temperature in the removal process is preferably 50°C, more preferably 70°C, and particularly preferably 90°C. By setting the heating temperature at 50°C or higher, the dispersion medium can be efficiently volatilized (removed). On the other hand, the upper limit of the heating temperature is preferably 120°C, more preferably 100°C. If the heating temperature exceeds 120°C, the dispersion medium and urea may react, resulting in the urea decomposing independently.

除去処理における加熱時間は、分散液の固形分濃度等に応じて適宜調節することができる。具体的には、例えば、6~24時間である。 The heating time in the removal process can be adjusted appropriately depending on the solids concentration of the dispersion liquid. Specifically, it is, for example, 6 to 24 hours.

除去処理に続く加熱処理においては、マイクロ繊維セルロース等と尿素等との混合物を加熱処理する。この加熱処理において、マイクロ繊維セルロース等のヒドロキシ基の一部又は全部が尿素等と反応してカルバメート基に置換される。より詳細には、尿素等が加熱されると下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。そして、イソシアン酸はとても反応性が高く、例えば、下記の反応式(2)に示すようにセルロースの水酸基にカルバメート基が形成される。 In the heat treatment following the removal treatment, a mixture of the microfiber cellulose and urea is heat-treated. In this heat treatment, some or all of the hydroxyl groups of the microfiber cellulose react with urea and are replaced with carbamate groups. More specifically, when urea is heated, it is decomposed into isocyanic acid and ammonia as shown in the following reaction formula (1). Isocyanic acid is highly reactive, and for example, carbamate groups are formed on the hydroxyl groups of cellulose as shown in the following reaction formula (2).

NH-CO-NH → H-N=C=O + NH …(1) NH 2 -CO-NH 2 → H-N=C=O + NH 3 ... (1)

Cell-OH + H-N=C=O → Cell-O-CO-NH…(2) Cell-OH + H-N=C=O → Cell-O-CO-NH 2 ... (2)

加熱処理における加熱温度の下限は、好ましくは120℃、より好ましくは130℃、特に好ましくは尿素の融点(約134℃)以上、さらに好ましくは150℃、最も好ましくは160℃である。加熱温度を120℃以上にすることで、カルバメート化が効率的に行われる。加熱温度の上限は、好ましくは280℃、より好ましくは260℃である。加熱温度が280℃を上回ると、尿素等が熱分解する可能性があり、また、着色が顕著になる可能性がある。 The lower limit of the heating temperature in the heat treatment is preferably 120°C, more preferably 130°C, particularly preferably above the melting point of urea (about 134°C), even more preferably 150°C, and most preferably 160°C. By setting the heating temperature at 120°C or higher, carbamate formation is carried out efficiently. The upper limit of the heating temperature is preferably 280°C, more preferably 260°C. If the heating temperature exceeds 280°C, urea etc. may thermally decompose, and coloring may become noticeable.

加熱処理における加熱時間は、加熱温度や方法によっても異なるが、好ましくは1秒~5時間、より好ましくは3秒~3時間、特に好ましくは5秒~2時間である。加熱時間が5時間を超えると、着色が顕著になる可能性があり、また、生産性に劣る。 The heating time in the heat treatment varies depending on the heating temperature and method, but is preferably 1 second to 5 hours, more preferably 3 seconds to 3 hours, and particularly preferably 5 seconds to 2 hours. If the heating time exceeds 5 hours, there is a possibility that discoloration will become noticeable and productivity will be poor.

加熱処理については、加熱ロールに接触させるなどして接触式で行うこともできる。この場合、加熱処理における加熱温度は180~280℃、より好ましくは200~270℃、特に好ましくは220~260℃で行うことができ、加熱時間は好ましくは1~60秒、より好ましくは1~30秒、特に好ましくは1~20秒である。
また、加熱処理は、熱風式加熱や遠赤外線加熱のような非接触の加熱方法で行うこともできる。この場合、反応温度を高くすることでカルバメート化反応を効率よく進めることができる。
The heat treatment can also be performed by contact with a heated roll, etc. In this case, the heating temperature in the heat treatment can be 180 to 280° C., more preferably 200 to 270° C., and particularly preferably 220 to 260° C., and the heating time is preferably 1 to 60 seconds, more preferably 1 to 30 seconds, and particularly preferably 1 to 20 seconds.
The heat treatment can also be carried out by a non-contact heating method such as hot air heating or far infrared heating. In this case, the carbamate reaction can be efficiently carried out by increasing the reaction temperature.

もっとも、加熱時間の長期化は、セルロース繊維の劣化を招く。そこで、加熱処理におけるpH条件が重要となる。pHは、好ましくはpH9以上、より好ましくはpH9~13、特に好ましくはpH10~12のアルカリ性条件である。また、次善の策として、pH7以下、好ましくはpH3~7、特に好ましくはpH4~7の酸性条件又は中性条件である。pH7~8の中性条件であると、セルロース繊維の平均繊維長が短くなり、樹脂の補強効果に劣る可能性がある。これに対し、pH9以上のアルカリ性条件であると、セルロース繊維が膨潤することで、繊維内部まで分散媒に溶解した尿素が浸透し、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。他方、pH7以下の酸性条件であると、尿素等からイソシアン酸及びアンモニアに分解する反応が進み、セルロース繊維への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。ただし、可能であれば、アルカリ性条件で加熱処理する方が好ましい。酸性条件であるとセルロースの酸加水分解が進行するおそれがあるためである。 However, prolonged heating time leads to deterioration of the cellulose fibers. Therefore, the pH conditions in the heat treatment are important. The pH is preferably 9 or more, more preferably 9 to 13, and particularly preferably 10 to 12, which is an alkaline condition. As a second best option, the pH is 7 or less, preferably 3 to 7, and particularly preferably 4 to 7, which is an acidic or neutral condition. Under neutral conditions of pH 7 to 8, the average fiber length of the cellulose fibers is shortened, and the reinforcing effect of the resin may be inferior. On the other hand, under alkaline conditions of pH 9 or more, the cellulose fibers swell, allowing the urea dissolved in the dispersion medium to penetrate into the fibers and efficiently undergo a carbamate reaction, so that the average fiber length of the cellulose fibers can be sufficiently secured. On the other hand, under acidic conditions of pH 7 or less, the reaction of decomposing urea, etc. into isocyanic acid and ammonia proceeds, promoting the reaction to cellulose fibers, and efficiently undergoing a carbamate reaction, so that the average fiber length of the cellulose fibers can be sufficiently secured. However, if possible, it is preferable to perform the heat treatment under alkaline conditions. This is because acidic conditions can lead to acid hydrolysis of cellulose.

pHの調整は、混合物に酸性化合物(例えば、酢酸、クエン酸等。)やアルカリ性化合物(例えば、水酸化ナトリウム、水酸化カルシウム等。)を添加すること等によって行うことができる。 The pH can be adjusted by adding an acidic compound (e.g., acetic acid, citric acid, etc.) or an alkaline compound (e.g., sodium hydroxide, calcium hydroxide, etc.) to the mixture.

加熱処理において加熱する装置としては、例えば、熱風乾燥機、抄紙機、ドライパルプマシン等を使用することができる。 For example, a hot air dryer, a papermaking machine, a dry pulp machine, etc. can be used as the heating device in the heat treatment.

加熱処理後の混合物は、洗浄してもよい。この洗浄は、水等で行えばよい。この洗浄によって未反応で残留している尿素等を除去することができる。 The mixture after the heat treatment may be washed. This washing can be done with water or the like. This washing can remove any unreacted urea or other substances that remain.

ここで、洗浄が十分に行われたかどうかは、濾液(スラリー)の窒素濃度や透明度を測定することで確認することができるが、次記で定義される「置換洗浄率」をもって評価するのが好ましい。なお、以下の「初段」とは、脱水前(離解後)のパルプスラリーを脱水工程に供した1回目のことを意味する。また、「2段目以降」とは、上記の初段が全量完了し、希釈水添加、撹拌後に同様の脱水工程を再度行うことを意味する。 Whether washing has been sufficient can be confirmed by measuring the nitrogen concentration and transparency of the filtrate (slurry), but it is preferable to evaluate it using the "replacement washing rate" defined below. Note that the "first stage" below refers to the first time that the pulp slurry before dewatering (after disintegration) is subjected to the dewatering process. Also, "second stage or later" means that the first stage described above has been completed, and the same dewatering process is carried out again after adding dilution water and stirring.

置換洗浄率D0(初段)=(A0)/(X0+Y0)
X0:脱水前のパルプ中に含まれる水量=脱水前のパルプ水分散液量-脱水前のパルプ濃度×脱水前のパルプ水分散液量
Y0:脱水後のパルプ中に含まれる水量=脱水後のパルプ水分散液量-脱水後のパルプ濃度×脱水後のパルプ水分散液量
A0:脱水後の濾液量
Replacement cleaning rate D0 (first stage) = (A0) / (X0 + Y0)
X0: Amount of water contained in pulp before dehydration = Amount of pulp water dispersion before dehydration - Pulp concentration before dehydration x Amount of pulp water dispersion before dehydration Y0: Amount of water contained in pulp after dehydration = Amount of pulp water dispersion after dehydration - Pulp concentration after dehydration x Amount of pulp water dispersion after dehydration A0: Amount of filtrate after dehydration

置換洗浄率Dn(2段目以降)=Dn-1+An×(1-Dn-1)/(Xn+Yn)
Dn-1:前段の置換洗浄率
Xn:脱水前のパルプ中に含まれる水量=脱水前のパルプ水分散液量-脱水前のパルプ濃度×脱水前のパルプ水分散液量
Yn:脱水後のパルプ中に含まれる水量=脱水後のパルプ水分散液量-脱水後のパルプ濃度×脱水後のパルプ水分散液量
An:脱水後の濾液量
Replacement cleaning rate Dn (second stage and after) = Dn-1 + An × (1-Dn-1) / (Xn + Yn)
Dn-1: Replacement washing rate in the previous stage Xn: Amount of water contained in pulp before dewatering = Amount of pulp water dispersion before dewatering - Pulp concentration before dewatering x Amount of pulp water dispersion before dewatering Yn: Amount of water contained in pulp after dewatering = Amount of pulp water dispersion after dewatering - Pulp concentration after dewatering x Amount of pulp water dispersion after dewatering An: Amount of filtrate after dewatering

本形態において置換洗浄率は、80%以上となることが好ましい。1回の脱水洗浄では洗浄率が80%以上とすることが難しい場合は、80%以上となるまで脱水洗浄を数回繰り返し、希釈脱水洗浄を行うことが好ましい。 In this embodiment, the replacement cleaning rate is preferably 80% or more. If it is difficult to achieve a cleaning rate of 80% or more with a single dehydration cleaning, it is preferable to repeat the dehydration cleaning several times until the cleaning rate reaches 80% or more, and then perform a dilution dehydration cleaning.

(スラリー)
マイクロ繊維セルロースは、必要により、水系媒体中に分散して分散液(スラリー)にする。水系媒体は、全量が水であるのが特に好ましいが、一部が水と相溶性を有する他の液体である水系媒体も使用することができる。他の液体としては、炭素数3以下の低級アルコール類等を使用することができる。
(slurry)
If necessary, the microfiber cellulose is dispersed in an aqueous medium to form a dispersion (slurry). The aqueous medium is particularly preferably entirely water, but an aqueous medium containing other liquids that are partially compatible with water can also be used. As the other liquid, lower alcohols having 3 or less carbon atoms can be used.

スラリーの固形分濃度は、好ましくは0.1~10.0質量%、より好ましくは0.5~5.0質量%である。固形分濃度が0.1質量%を下回ると、脱水や乾燥する際に過大なエネルギーが必要となるおそれがある。他方、固形分濃度が10.0質量%を上回ると、スラリー自体の流動性が低下してしまい分散剤を使用する場合において均一に混合できなくなるおそれがある。 The solids concentration of the slurry is preferably 0.1 to 10.0% by mass, and more preferably 0.5 to 5.0% by mass. If the solids concentration is below 0.1% by mass, excessive energy may be required for dehydration and drying. On the other hand, if the solids concentration is above 10.0% by mass, the fluidity of the slurry itself may decrease, making it difficult to mix uniformly when a dispersant is used.

(酸変性樹脂)
酸変性樹脂は、前述したように、酸基がカルバメート基の一部又は全部とイオン結合又は共有結合する。このイオン結合又は共有結合により、樹脂の補強効果が向上する。
(Acid-modified resin)
As described above, in the acid-modified resin, the acid groups are ionic or covalently bonded to some or all of the carbamate groups, and this ionic or covalent bond improves the reinforcing effect of the resin.

酸変性樹脂としては、例えば、酸変性ポリオレフィン樹脂、酸変性エポキシ樹脂、酸変性スチレン系エラストマー樹脂等を使用することができる。ただし、酸変性ポリオレフィン樹脂を使用するのが好ましい。酸変性ポリオレフィン樹脂は、不飽和カルボン酸成分とポリオレフィン成分との共重合体である。 As the acid-modified resin, for example, an acid-modified polyolefin resin, an acid-modified epoxy resin, an acid-modified styrene-based elastomer resin, etc. can be used. However, it is preferable to use an acid-modified polyolefin resin. An acid-modified polyolefin resin is a copolymer of an unsaturated carboxylic acid component and a polyolefin component.

ポリオレフィン成分としては、例えば、エチレン、プロピレン、ブタジエン、イソプレン等のアルケンの重合体の中から1種又は2種以上を選択して使用することができる。ただし、好適には、プロピレンの重合体であるポリプロピレン樹脂を用いることが好ましい As the polyolefin component, one or more of alkene polymers such as ethylene, propylene, butadiene, and isoprene can be selected and used. However, it is preferable to use polypropylene resin, which is a polymer of propylene.

不飽和カルボン酸成分としては、例えば、無水マレイン酸類、無水フタル酸類、無水イタコン酸類、無水シトラコン酸類、無水クエン酸類等の中から1種又は2種以上を選択して使用することができる。ただし、好適には、無水マレイン酸類を使用するのが好ましい。つまり、無水マレイン酸変性ポリプロピレン樹脂を用いることが好ましい。 As the unsaturated carboxylic acid component, for example, one or more selected from maleic anhydrides, phthalic anhydrides, itaconic anhydrides, citraconic anhydrides, citric anhydrides, etc. can be used. However, it is preferable to use maleic anhydrides. In other words, it is preferable to use maleic anhydride-modified polypropylene resin.

酸変性樹脂の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。特に酸変性樹脂が無水マレイン酸変性ポリプロピレン樹脂である場合は、好ましくは1~200質量部、より好ましくは10~100質量部である。酸性変性樹脂の混合量が0.1質量部を下回ると強度の向上が十分ではない。他方、混合量が1,000質量部を上回ると、過剰となり強度が低下する傾向となる。 The amount of acid-modified resin mixed is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass, per 100 parts by mass of microfiber cellulose. In particular, when the acid-modified resin is maleic anhydride-modified polypropylene resin, the amount is preferably 1 to 200 parts by mass, more preferably 10 to 100 parts by mass. If the amount of acid-modified resin mixed is less than 0.1 parts by mass, the improvement in strength is insufficient. On the other hand, if the amount mixed is more than 1,000 parts by mass, it becomes excessive and the strength tends to decrease.

無水マレイン酸変性ポリプロピレンの重量平均分子量は、例えば1,000~100,000、好ましくは3,000~50,000である。 The weight average molecular weight of the maleic anhydride modified polypropylene is, for example, 1,000 to 100,000, preferably 3,000 to 50,000.

また、無水マレイン酸変性ポリプロピレンの酸価は、0.5mgKOH/g以上、100mgKOH/g以下が好ましく、1mgKOH/g以上、50mgKOH/g以下がより好ましい。 The acid value of the maleic anhydride-modified polypropylene is preferably 0.5 mgKOH/g or more and 100 mgKOH/g or less, and more preferably 1 mgKOH/g or more and 50 mgKOH/g or less.

さらに、酸変性樹脂のMFR(メルトフローレート)が2000g/10分(190℃/2.16kg)以下であるのが好ましく、1500g/10分以下であるのがより好ましく、500g/10分以下であるのが特に好ましい。MFRが2000g/10分を上回ると、セルロース繊維の分散性が低下する可能性がある。 Furthermore, the MFR (melt flow rate) of the acid-modified resin is preferably 2000 g/10 min (190°C/2.16 kg) or less, more preferably 1500 g/10 min or less, and particularly preferably 500 g/10 min or less. If the MFR exceeds 2000 g/10 min, the dispersibility of the cellulose fibers may decrease.

なお、酸価の測定は、JIS-K2501に準拠し、水酸化カリウムで滴定する。また、MFRの測定は、JIS-K7210に準拠し、190℃で2.16kgの荷重を載せ、10分間に流れ出る試料の重量で決める。 The acid value is measured in accordance with JIS-K2501 by titration with potassium hydroxide. The MFR is measured in accordance with JIS-K7210 by placing a load of 2.16 kg at 190°C and determining the weight of the sample that flows out in 10 minutes.

(分散剤)
セルロース原料又はマイクロ繊維セルロースは、分散剤と混合するとより好ましいものになる。分散剤としては、芳香族類にアミン基及び/又は水酸基を有する化合物、脂肪族類にアミン基及び/又は水酸基を有する化合物が好ましい。
(Dispersant)
The cellulose raw material or microfiber cellulose is more preferably mixed with a dispersant, which is preferably an aromatic compound having an amine group and/or a hydroxyl group, or an aliphatic compound having an amine group and/or a hydroxyl group.

芳香族類にアミン基及び/又は水酸基を有する化合物としては、例えば、アニリン類、トルイジン類、トリメチルアニリン類、アニシジン類、チラミン類、ヒスタミン類、トリプタミン類、フェノール類、ジブチルヒドロキシトルエン類、ビスフェノールA類、クレゾール類、オイゲノール類、没食子酸類、グアイアコール類、ピクリン酸類、フェノールフタレイン類、セロトニン類、ドーパミン類、アドレナリン類、ノルアドレナリン類、チモール類、チロシン類、サリチル酸類、サリチル酸メチル類、アニスアルコール類、サリチルアルコール類、シナピルアルコール類、ジフェニドール類、ジフェニルメタノール類、シンナミルアルコール類、スコポラミン類、トリプトフォール類、バニリルアルコール類、3-フェニル‐1-プロパノール類、フェネチルアルコール類、フェノキシエタノール類、ベラトリルアルコール類、ベンジルアルコール類、ベンゾイン類、マンデル酸類、マンデロニトリル類、安息香酸類、フタル酸類、イソフタル酸類、テレフタル酸類、メリト酸類、ケイ皮酸類などが挙げられる。 Examples of compounds having an amine group and/or a hydroxyl group in the aromatic group include anilines, toluidines, trimethylanilines, anisidines, tyramines, histamines, tryptamines, phenols, dibutylhydroxytoluenes, bisphenol A, cresols, eugenols, gallic acids, guaiacols, picric acids, phenolphthalein, serotonins, dopamines, adrenalines, noradrenalines, thymols, tyrosines, salicylic acids, methyl salicylates, anilines, These include alcohols, salicyl alcohols, sinapyl alcohols, diphenidol, diphenylmethanols, cinnamyl alcohols, scopolamines, tryptophols, vanillyl alcohols, 3-phenyl-1-propanols, phenethyl alcohols, phenoxyethanols, veratryl alcohols, benzyl alcohols, benzoins, mandelic acids, mandelonitriles, benzoic acids, phthalic acids, isophthalic acids, terephthalic acids, mellitic acids, and cinnamic acids.

また、脂肪族類にアミン基及び/又は水酸基を有する化合物としては、例えば、カプリルアルコール類、2-エチルヘキサノール類、ペラルゴンアルコール類、カプリンアルコール類、ウンデシルアルコール類、ラウリルアルコール類、トリデシルアルコール類、ミリスチルアルコール類、ペンタデシルアルコール類、セタノール類、ステアリルアルコール類、エライジルアルコール類、オレイルアルコール類、リノレイルアルコール類、メチルアミン類、ジメチルアミン類、トリメチルアミン類、エチルアミン類、ジエチルアミン類、エチレンジアミン類、トリエタノールアミン類、N,N-ジイソプロピルエチルアミン類、テトラメチルエチレンジアミン類、ヘキサメチレンジアミン類、スペルミジン類、スペルミン類、アマンタジン類、ギ酸類、酢酸類、プロピオン酸類、酪酸類、吉草酸類、カプロン酸類、エナント酸類、カプリル酸類、ペラルゴン酸類、カプリン酸類、ラウリン酸類、ミリスチン酸類、パルミチン酸類、マルガリン酸類、ステアリン酸類、オレイン酸類、リノール酸類、リノレン酸類、アラキドン酸類、エイコサペンタエン酸類、ドコサヘキサエン酸類、ソルビン酸類などが挙げられる。 In addition, examples of compounds having an amine group and/or a hydroxyl group in the aliphatic group include capryl alcohols, 2-ethylhexanols, pelargonic alcohols, capric alcohols, undecyl alcohols, lauryl alcohols, tridecyl alcohols, myristyl alcohols, pentadecyl alcohols, cetanols, stearyl alcohols, elaidyl alcohols, oleyl alcohols, linoleyl alcohols, methylamines, dimethylamines, trimethylamines, ethylamines, diethylamines, ethylenediamines, These include triethanolamines, N,N-diisopropylethylamines, tetramethylethylenediamines, hexamethylenediamines, spermidines, spermines, amantadines, formic acids, acetic acids, propionic acids, butyric acids, valeric acids, caproic acids, enanthic acids, caprylic acids, pelargonic acids, capric acids, lauric acids, myristic acids, palmitic acids, margaric acids, stearic acids, oleic acids, linoleic acids, linolenic acids, arachidonic acids, eicosapentaenoic acids, docosahexaenoic acids, and sorbic acids.

以上の分散剤は、セルロース繊維同士の水素結合を阻害する。したがって、マイクロ繊維セルロース及び樹脂の混練に際してマイクロ繊維セルロースが樹脂中において確実に分散するようになる。また、以上の分散剤は、マイクロ繊維セルロース及び樹脂の相溶性を向上させる役割も有する。この点でマイクロ繊維セルロースの樹脂中における分散性が向上する。 The above dispersants inhibit hydrogen bonding between cellulose fibers. Therefore, when the microfiber cellulose and resin are mixed, the microfiber cellulose is reliably dispersed in the resin. The above dispersants also improve the compatibility of the microfiber cellulose and the resin. In this respect, the dispersibility of the microfiber cellulose in the resin is improved.

なお、繊維状セルロース及び樹脂の混練に際して、別途、相溶剤(薬剤)を添加することも考えられるが、この段階で薬剤を添加するよりも、予め繊維状セルロースと分散剤(薬剤)を混合する方が、繊維状セルロースに対する薬剤の纏わりつきが均一になり、樹脂との相溶性向上効果が高くなる。 It is possible to add a compatibilizer (chemical) separately when kneading the fibrous cellulose and resin, but mixing the fibrous cellulose with a dispersant (chemical) beforehand rather than adding the chemical at this stage will ensure that the chemical sticks to the fibrous cellulose evenly, and will be more effective at improving compatibility with the resin.

また、例えば、ポリプロピレンは融点が160℃であり、したがって繊維状セルロース及び樹脂の混練は、180℃程度で行う。しかるに、この状態で分散剤(液)を添加すると、一瞬で乾燥してしまう。そこで、融点の低い樹脂を使用してマスターバッチ(マイクロ繊維セルロースの濃度の濃い複合樹脂)を作製し、その後に通常の樹脂で濃度を下げる方法が存在する。しかしながら、融点の低い樹脂は一般的に強度が低い。したがって、当該方法によると、複合樹脂の強度が下がるおそれがある。 For example, polypropylene has a melting point of 160°C, so the kneading of fibrous cellulose and resin is carried out at around 180°C. However, if a dispersant (liquid) is added in this state, it dries out in an instant. Therefore, there is a method in which a master batch (composite resin with a high concentration of microfiber cellulose) is made using a resin with a low melting point, and then the concentration is reduced with a normal resin. However, resins with low melting points generally have low strength. Therefore, this method may reduce the strength of the composite resin.

分散剤の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。分散剤の混合量が0.1質量部を下回ると、樹脂強度の向上が十分ではないとされるおそれがある。他方、混合量が1,000質量部を上回ると、過剰となり樹脂強度が低下する傾向となる。 The amount of dispersant mixed is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass, per 100 parts by mass of microfiber cellulose. If the amount of dispersant mixed is less than 0.1 parts by mass, there is a risk that the improvement in resin strength will not be sufficient. On the other hand, if the amount mixed is more than 1,000 parts by mass, it will be excessive and the resin strength will tend to decrease.

この点、前述した酸変性樹脂は酸基とマイクロ繊維セルロースのカルバメート基とがイオン結合又は共有結合することで相溶性を向上し、もって補強効果を上げるためのものであり、分子量が大きいため樹脂とも馴染み易く、強度向上に寄与していると考えられる。一方、上記の分散剤は、マイクロ繊維セルロース同士の水酸基同士の間に介在して凝集を防ぎ、もって樹脂中での分散性を向上するものであり、また、分子量が酸変性樹脂に比べ小さいため、酸変性樹脂が入り込めないようなマイクロ繊維セルロース間の狭いスペースに入ることができ、分散性を向上して強度向上する役割を果たす。以上のような観点から、上記酸変性樹脂の分子量は、分散剤の分子量の2~2,000倍、好ましくは5~1,000倍であると好適である。 In this regard, the acid-modified resin described above is intended to improve compatibility by forming ionic or covalent bonds between the acid groups and the carbamate groups of the microfiber cellulose, thereby enhancing the reinforcing effect, and is thought to be compatible with the resin due to its large molecular weight, thereby contributing to improved strength. On the other hand, the dispersant described above is intended to intervene between the hydroxyl groups of the microfiber cellulose to prevent aggregation, thereby improving dispersibility in the resin, and since its molecular weight is smaller than that of the acid-modified resin, it can enter the narrow spaces between the microfiber cellulose that the acid-modified resin cannot enter, thereby improving dispersibility and improving strength. From the above perspective, the molecular weight of the acid-modified resin described above is preferably 2 to 2,000 times, preferably 5 to 1,000 times, the molecular weight of the dispersant.

この点をより詳細に説明すると、樹脂粉末は物理的にマイクロ繊維セルロース同士の間に介在することで水素結合を阻害し、もってマイクロ繊維セルロースの分散性を向上する。これに対し、酸変性樹脂は、酸基とマイクロ繊維セルロースのカルバメート基とをイオン結合又は共有結合することで相溶性を向上し、もって補強効果を上げる。この点、分散剤がマイクロ繊維セルロース同士の水素結合を阻害する点は同じであるが、樹脂粉末はマイクロオーダーであるため、物理的に介在して水素結合を抑制する。したがって、分散性が分散剤にくらべ低いものの、樹脂粉末自身が溶融してマトリックスになるため物性低下に寄与しない。一方、分散剤は分子レベルであり、極めて小さいためマイクロ繊維セルロースを覆うようにして水素結合を阻害し、マイクロ繊維セルロースの分散性を向上する効果は高い。しかしながら、樹脂中に残り、物性低下に働く可能性がある。 To explain this in more detail, the resin powder physically intervenes between the microfiber cellulose particles, inhibiting hydrogen bonding and thereby improving the dispersibility of the microfiber cellulose. In contrast, the acid-modified resin improves compatibility by ionic or covalent bonding between the acid group and the carbamate group of the microfiber cellulose, thereby enhancing the reinforcing effect. In this respect, the dispersant inhibits hydrogen bonding between the microfiber cellulose particles, but since the resin powder is on the micro-order, it physically intervenes and suppresses hydrogen bonding. Therefore, although the dispersibility is lower than that of the dispersant, the resin powder itself melts and becomes a matrix, so it does not contribute to a decrease in physical properties. On the other hand, the dispersant is at the molecular level and is extremely small, so it covers the microfiber cellulose, inhibiting hydrogen bonding, and is highly effective in improving the dispersibility of the microfiber cellulose. However, it may remain in the resin and contribute to a decrease in physical properties.

(製造方法)
繊維状セルロース及び酸変性樹脂、分散剤等の混合物は、樹脂と混練するに先立って乾燥及び粉砕して粉状物にすることができる。この形態によると、樹脂との混練に際して繊維状セルロースを乾燥させる必要がなく、熱効率が良い。また、混合物に分散剤が混合されている場合は、当該混合物を乾燥したとしても、繊維状セルロース(マイクロ繊維セルロース)が再分散しなくなるおそれが低い。なお、混練時の生産性を高めるために、圧縮して繊維状セルロース固形物としてもよい。
(Production method)
The mixture of fibrous cellulose, acid-modified resin, dispersant, etc. can be dried and pulverized to a powder prior to kneading with the resin. In this form, there is no need to dry the fibrous cellulose when kneading with the resin, and thermal efficiency is good. In addition, when a dispersant is mixed into the mixture, there is a low risk that the fibrous cellulose (microfiber cellulose) will not be redispersed even if the mixture is dried. In addition, in order to increase productivity during kneading, it may be compressed to form a fibrous cellulose solid.

混合物は、必要により、乾燥するに先立って脱水して脱水物にする。この脱水は、例えば、ベルトプレス、スクリュープレス、フィルタープレス、ツインロール、ツインワイヤーフォーマ、バルブレスフィルタ、センターディスクフィルタ、膜処理、遠心分離機等の脱水装置の中から1種又は2種以上を選択使用して行うことができる。 If necessary, the mixture is dehydrated prior to drying to produce a dehydrated product. This dehydration can be carried out using one or more dehydration devices selected from the following: belt press, screw press, filter press, twin roll, twin wire former, valveless filter, center disk filter, membrane treatment, centrifuge, etc.

混合物の乾燥は、例えば、ロータリーキルン乾燥、円板式乾燥、気流式乾燥、媒体流動乾燥、スプレー乾燥、ドラム乾燥、スクリューコンベア乾燥、パドル式乾燥、一軸混練乾燥、多軸混練乾燥、真空乾燥、攪拌乾燥等の中から1種又は2種以上を選択使用して行うことができる。 The mixture can be dried using one or more of the following: rotary kiln drying, disk drying, air flow drying, media flow drying, spray drying, drum drying, screw conveyor drying, paddle drying, single-axis kneading drying, multi-axis kneading drying, vacuum drying, and stirring drying.

乾燥した混合物(乾燥物)は、粉砕して粉状物にする。乾燥物の粉砕は、例えば、ビーズミル、ニーダー、ディスパー、ツイストミル、カットミル、ハンマーミル等の中から1種又は2種以上を選択使用して行うことができる。
ただし、圧縮して繊維状セルロース固形物とする場合は、例えば、粉粒状物に外圧をかけて圧縮し、ペレット状に造粒する装置を用いて行うのが好ましい。当該装置としては、アースエンジニアリング社のバイオマスペレット製造装置、株式会社チヨダマシナリーのプレスペレッター、アプテジャパン社の木質ペレット製造装置、新興工機株式会社のバイオマスペレット製造装置、株式会社土佐テックのペレタイザー、WELHOUSE社のブリケッター、日鉄物産株式会社のブリケットマシンを例示できる。当該混合物は、当該装置に投入されることで圧縮されてペレット状のマイクロ繊維セルロース固形物になる。
The dried mixture (dried product) is pulverized to obtain a powder. The pulverization of the dried product can be carried out using one or more mills selected from a bead mill, a kneader, a disperser, a twist mill, a cut mill, a hammer mill, and the like.
However, when compressing to form a fibrous cellulose solid, it is preferable to use, for example, an apparatus that applies external pressure to a powdery or granular material to compress it and granulate it into a pellet shape. Examples of such an apparatus include a biomass pellet manufacturing apparatus from Earth Engineering Co., Ltd., a press pelletizer from Chiyoda Machinery Co., Ltd., a wood pellet manufacturing apparatus from Apte Japan Co., Ltd., a biomass pellet manufacturing apparatus from Shinko Koki Co., Ltd., a pelletizer from Tosa Tech Co., Ltd., a briquette from WELHOUSE Co., Ltd., and a briquette machine from Nippon Steel Corporation. The mixture is compressed into a pellet-shaped microfiber cellulose solid by being put into the apparatus.

粉状物の平均粒子径は、好ましくは1~10,000μm、より好ましくは10~5,000μm、特に好ましくは100~1,000μmである。粉状物の平均粒子径が10,000μmを上回ると、樹脂との混練性に劣るものになるおそれがある。他方、粉状物の平均粒子径が1μmを下回るものにするには大きなエネルギーが必要になるため、経済的でない。 The average particle size of the powder is preferably 1 to 10,000 μm, more preferably 10 to 5,000 μm, and particularly preferably 100 to 1,000 μm. If the average particle size of the powder exceeds 10,000 μm, it may be difficult to knead with resin. On the other hand, a large amount of energy is required to reduce the average particle size of the powder to less than 1 μm, which is not economical.

粉状物の平均粒子径の制御は、粉砕の程度を制御することのほか、フィルター、サイクロン等の分級装置を使用した分級によることができる。 The average particle size of powdered materials can be controlled by controlling the degree of grinding, as well as by classification using a classifier such as a filter or cyclone.

混合物(粉状物)の嵩比重は、好ましくは0.03~1.0、より好ましくは0.04~0.9、特に好ましくは0.05~0.8である。嵩比重が1.0を超えるということは繊維状セルロース同士の水素結合がより強固であり、樹脂中で分散させることは容易ではなくなることを意味する。他方、嵩比重が0.03を下回るものにするのは、移送コストの面から不利である。ただし、繊維状セルロース固形物を使用する場合は、1個当たり、嵩比重が0.4~0.8であると好ましい。 The bulk density of the mixture (powder material) is preferably 0.03 to 1.0, more preferably 0.04 to 0.9, and particularly preferably 0.05 to 0.8. A bulk density of more than 1.0 means that the hydrogen bonds between the fibrous cellulose particles are stronger, making it difficult to disperse the fibrous cellulose in the resin. On the other hand, a bulk density of less than 0.03 is disadvantageous in terms of transportation costs. However, when using fibrous cellulose solids, it is preferable that the bulk density per unit is 0.4 to 0.8.

嵩比重は、JIS K7365に準じて測定した値である。 The bulk density is a value measured in accordance with JIS K7365.

混合物(粉状物)の水分率は、好ましくは50%以下、より好ましくは30%以下、特に好ましくは10%以下である。水分率が50%を上回ると、樹脂と混練する際のエネルギーが膨大になり、経済的でない。 The moisture content of the mixture (powdered material) is preferably 50% or less, more preferably 30% or less, and particularly preferably 10% or less. If the moisture content exceeds 50%, the energy required to knead with the resin becomes enormous, which is not economical.

水分率は、定温乾燥機を用いて、試料を105℃で6時間以上保持し質量の変動が認められなくなった時点の質量を乾燥後質量とし、下記式にて算出した値である。
繊維水分率(%)=[(乾燥前質量-乾燥後質量)÷乾燥前質量]×100
The moisture content was calculated by the following formula using a sample kept at 105° C. for 6 hours or more in a constant temperature dryer, and the mass after drying was determined as the mass at which no change in mass was observed.
Fiber moisture content (%) = [(mass before drying - mass after drying) ÷ mass before drying] x 100

脱水・乾燥したマイクロ繊維セルロースには、樹脂が含まれていても良い。樹脂が含まれていると、脱水・乾燥したマイクロ繊維セルロース同士の水素結合が阻害され、混練の際の樹脂中での分散性を向上することができる。 The dehydrated and dried microfiber cellulose may contain a resin. If a resin is contained, hydrogen bonding between the dehydrated and dried microfiber cellulose is inhibited, and dispersibility in the resin during kneading can be improved.

脱水・乾燥したマイクロ繊維セルロースに含まれる樹脂の形態としては、例えば、粉末状、ペレット状、シート状等が挙げられる。ただし、粉末状(粉末樹脂)が好ましい。 The resin contained in the dehydrated and dried microfiber cellulose may be in the form of, for example, powder, pellets, or sheets. However, powder (powdered resin) is preferred.

粉末状とする場合、脱水・乾燥したマイクロ繊維セルロースに含まれる樹脂粉末の平均粒子径は、1~10,000μmが好ましく、10~5,000μmがより好ましく、100~1,000μmが特に好ましい。平均粒子径が10,000μmを超えると、粒子径が大きいために混練装置内に入らないおそれがある。他方、平均粒子径が1μm未満であると、微細なためにマイクロ繊維セルロース同士の水素結合を阻害することができないおそれがある。なお、ここで使用する粉末樹脂等の樹脂は、マイクロ繊維セルロースと混練する樹脂(主原料としての樹脂)と同種であっても異種であってもよいが、同種である方が好ましい。 When powdered, the average particle size of the resin powder contained in the dehydrated and dried microfiber cellulose is preferably 1 to 10,000 μm, more preferably 10 to 5,000 μm, and particularly preferably 100 to 1,000 μm. If the average particle size exceeds 10,000 μm, the particles may be too large to enter the kneading device. On the other hand, if the average particle size is less than 1 μm, the particles may be too fine to inhibit hydrogen bonding between the microfiber cellulose. The resin, such as the powdered resin, used here may be the same or different from the resin (resin as the main raw material) to be kneaded with the microfiber cellulose, but it is preferable that they are the same type.

平均粒子径1~10,000μmの樹脂粉末は、脱水・乾燥前の水系分散状態で混合するのが好ましい。水系分散状態で混合することで、樹脂粉末をマイクロ繊維セルロース間へ均一に分散することができ、混練後の複合樹脂中にマイクロ繊維セルロースを均一に分散できることができ、強度物性をより向上することができる。 It is preferable to mix resin powder with an average particle size of 1 to 10,000 μm in an aqueous dispersion state before dehydration and drying. By mixing in an aqueous dispersion state, the resin powder can be uniformly dispersed among the microfiber cellulose, and the microfiber cellulose can be uniformly dispersed in the composite resin after kneading, thereby further improving the strength properties.

以上のようにして得た粉状物(樹脂の補強材)は、樹脂と混練し、繊維状セルロース複合樹脂を得る。この混練は、例えば、ペレット状の樹脂と粉状物とを混ぜ合わす方法によることのほか、樹脂をまず溶融し、この溶融物の中に粉状物を添加するという方法によることもできる。なお、酸変性樹脂や分散剤等は、この段階で添加することもできる。 The powdered material (resin reinforcing material) obtained in the above manner is kneaded with resin to obtain a fibrous cellulose composite resin. This kneading can be performed, for example, by mixing the powdered material with the pellet-like resin, or by first melting the resin and then adding the powdered material to the melt. Acid-modified resins and dispersants can also be added at this stage.

混練処理には、例えば、単軸又は二軸以上の多軸混練機、ミキシングロール、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス、ディスパーザー等の中から1種又は2種以上を選択して使用することができる。それらのなかで、二軸以上の多軸混練機を使用することが好ましい。二軸以上の多軸混練機を2機以上、並列又は直列にして、使用しても良い。 For the kneading process, one or more of a single-shaft or multi-shaft kneader having two or more shafts, a mixing roll, a kneader, a roll mill, a Banbury mixer, a screw press, a disperser, etc. can be selected and used. Among these, it is preferable to use a multi-shaft kneader having two or more shafts. Two or more multi-shaft kneaders having two or more shafts may be used in parallel or in series.

混練処理の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、80~280℃とするのが好ましく、90~260℃とするのがより好ましく、100~240℃とするのが特に好ましい。 The temperature for the kneading process is equal to or higher than the glass transition point of the resin, and varies depending on the type of resin, but is preferably 80 to 280°C, more preferably 90 to 260°C, and particularly preferably 100 to 240°C.

樹脂としては、熱可塑性樹脂又は熱硬化性樹脂の少なくともいずれか一方を使用することができる。 The resin can be either a thermoplastic resin or a thermosetting resin.

熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン、脂肪族ポリエステル樹脂や芳香族ポリエステル樹脂等のポリエステル樹脂、ポリスチレン、メタアクリレート、アクリレート等のポリアクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の中から1種又は2種以上を選択して使用することができる。 As the thermoplastic resin, one or more of the following may be selected and used: polyolefins such as polypropylene (PP) and polyethylene (PE); polyester resins such as aliphatic polyester resins and aromatic polyester resins; polyacrylic resins such as polystyrene, methacrylate, and acrylate; polyamide resins; polycarbonate resins; and polyacetal resins.

ただし、ポリオレフィン及びポリエステル樹脂の少なくともいずれか一方を使用するのが好ましい。また、ポリオレフィンとしては、ポリプロピレンを使用するのが好ましい。さらに、ポリエステル樹脂としては、脂肪族ポリエステル樹脂として、例えば、ポリ乳酸、ポリカプロラクトン等を例示することができ、芳香族ポリエステル樹脂として、例えば、ポリエチレンテレフタレート等を例示することができるが、生分解性を有するポリエステル樹脂(単に「生分解性樹脂」ともいう。)を使用するのが好ましい。 However, it is preferable to use at least one of polyolefin and polyester resin. As the polyolefin, it is preferable to use polypropylene. Furthermore, as the polyester resin, examples of aliphatic polyester resins include polylactic acid and polycaprolactone, and examples of aromatic polyester resins include polyethylene terephthalate, but it is preferable to use a biodegradable polyester resin (also simply called "biodegradable resin").

生分解性樹脂としては、例えば、ヒドロキシカルボン酸系脂肪族ポリエステル、カプロラクトン系脂肪族ポリエステル、二塩基酸ポリエステル等の中から1種又は2種以上を選択して使用することができる。 As the biodegradable resin, for example, one or more types can be selected from hydroxycarboxylic acid-based aliphatic polyesters, caprolactone-based aliphatic polyesters, dibasic acid polyesters, etc.

ヒドロキシカルボン酸系脂肪族ポリエステルとしては、例えば、乳酸、リンゴ酸、グルコース酸、3-ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体や、これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体等の中から1種又は2種以上を選択して使用することができる。ただし、ポリ乳酸、乳酸と乳酸を除く上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体を使用するのが好ましく、ポリ乳酸を使用するのが特に好ましい。 As the hydroxycarboxylic acid-based aliphatic polyester, one or more of homopolymers of hydroxycarboxylic acids such as lactic acid, malic acid, glucose acid, 3-hydroxybutyric acid, etc., and copolymers using at least one of these hydroxycarboxylic acids can be selected and used. However, it is preferable to use polylactic acid, copolymers of lactic acid and the above hydroxycarboxylic acids other than lactic acid, polycaprolactone, and copolymers of at least one of the above hydroxycarboxylic acids and caprolactone, and it is particularly preferable to use polylactic acid.

この乳酸としては、例えば、L-乳酸やD-乳酸等を使用することができ、これらの乳酸を単独で使用しても、2種以上を選択して使用してもよい。 For example, L-lactic acid or D-lactic acid can be used as the lactic acid, and these lactic acids can be used alone or in combination of two or more types.

カプロラクトン系脂肪族ポリエステルとしては、例えば、ポリカプロラクトンの単独重合体や、ポリカプロラクトン等と上記ヒドロキシカルボン酸との共重合体等の中から1種又は2種以上を選択して使用することができる。 As the caprolactone-based aliphatic polyester, one or more types can be selected and used from, for example, a homopolymer of polycaprolactone, a copolymer of polycaprolactone or the like with the above-mentioned hydroxycarboxylic acid, etc.

二塩基酸ポリエステルとしては、例えば、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の中から1種又は2種以上を選択して使用することができる。 As the dibasic acid polyester, for example, one or more of polybutylene succinate, polyethylene succinate, polybutylene adipate, etc. can be selected and used.

生分解性樹脂は、1種を単独で使用しても、2種以上を併用してもよい。 Biodegradable resins may be used alone or in combination of two or more types.

熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレタン系樹脂、シリコーン樹脂、熱硬化性ポリイミド系樹脂等を使用することができる。これらの樹脂は、単独で又は二種以上組み合わせて使用することができる。 Examples of thermosetting resins that can be used include phenolic resins, urea resins, melamine resins, furan resins, unsaturated polyesters, diallyl phthalate resins, vinyl ester resins, epoxy resins, urethane resins, silicone resins, and thermosetting polyimide resins. These resins can be used alone or in combination of two or more.

樹脂には、無機充填剤が、好ましくはサーマルリサイクルに支障が出ない割合で含有されていてもよい。 The resin may contain inorganic fillers, preferably in a proportion that does not interfere with thermal recycling.

無機充填剤としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。 Examples of inorganic fillers include simple metal elements in Groups I to VIII of the periodic table, such as Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, and silicon, as well as oxides, hydroxides, carbonates, sulfates, silicates, and sulfites, and various clay minerals made up of these compounds.

具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、シリカ、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレーワラストナイト、ガラスビーズ、ガラスパウダー、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機充填剤は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよい。 Specific examples include barium sulfate, calcium sulfate, magnesium sulfate, sodium sulfate, calcium sulfite, zinc oxide, silica, heavy calcium carbonate, light calcium carbonate, aluminum borate, alumina, iron oxide, calcium titanate, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sodium hydroxide, magnesium carbonate, calcium silicate, clay wollastonite, glass beads, glass powder, silica sand, silica stone, quartz powder, diatomaceous earth, white carbon, glass fiber, etc. A plurality of these inorganic fillers may be contained. Also, they may be those contained in waste paper pulp.

繊維状セルロース及び樹脂の配合割合は、好ましくは繊維状セルロースが1質量部以上、樹脂が99質量部以下、より好ましくは繊維状セルロースが2質量部以上、樹脂が98質量部以下、特に好ましくは繊維状セルロースが3質量部以上、樹脂が97質量部以下である。また、好ましくは繊維状セルロースが50質量部以下、樹脂が50質量部以上、より好ましくは繊維状セルロースが40質量部以下、樹脂が60質量部以上、特に好ましくは繊維状セルロースが30質量部以下、樹脂が70質量部以上である。特に繊維状セルロースが10~50質量部であると、樹脂組成物の強度、特に曲げ強度及び引張り弾性率の強度を著しく向上させることができる。 The blending ratio of fibrous cellulose and resin is preferably 1 part by mass or more of fibrous cellulose and 99 parts by mass or less of resin, more preferably 2 parts by mass or more of fibrous cellulose and 98 parts by mass or less of resin, and particularly preferably 3 parts by mass or more of fibrous cellulose and 97 parts by mass or less of resin. Also, preferably 50 parts by mass or less of fibrous cellulose and 50 parts by mass or more of resin, more preferably 40 parts by mass or less of fibrous cellulose and 60 parts by mass or more of resin, and particularly preferably 30 parts by mass or less of fibrous cellulose and 70 parts by mass or more of resin. In particular, when the fibrous cellulose is 10 to 50 parts by mass, the strength of the resin composition, particularly the bending strength and tensile modulus, can be significantly improved.

なお、最終的に得られ樹脂組成物に含まれる繊維状セルロース及び樹脂の含有割合は、通常、繊維状セルロース及び樹脂の上記配合割合と同じとなる。 The content ratio of fibrous cellulose and resin in the final resin composition is usually the same as the above-mentioned blend ratio of fibrous cellulose and resin.

マイクロ繊維セルロース及び樹脂の溶解パラメータ(cal/cm1/2(SP値)の差、つまり、マイクロ繊維セルロースのSPMFC値、樹脂のSPPOL値とすると、SP値の差=SPMFC値-SPPOL値とすることができる。SP値の差は10~0.1が好ましく、8~0.5がより好ましく、5~1が特に好ましい。SP値の差が10を超えると、樹脂中でマイクロ繊維セルロースが分散せず、補強効果を得ることはできない可能性がある。他方、SP値の差が0.1未満であるとマイクロ繊維セルロースが樹脂に溶解してしまい、フィラーとして機能せず、補強効果が得られない。この点、樹脂(溶媒)のSPPOL値とマイクロ繊維セルロース(溶質)のSPMFC値の差が小さい程、補強効果が大きい。 The difference between the solubility parameters (cal/cm 3 ) 1/2 (SP value) of the microfiber cellulose and the resin, that is, the SP MFC value of the microfiber cellulose and the SP POL value of the resin, can be expressed as SP MFC value-SP POL value. The difference in SP value is preferably 10 to 0.1, more preferably 8 to 0.5, and particularly preferably 5 to 1. If the difference in SP value exceeds 10, the microfiber cellulose may not disperse in the resin and the reinforcing effect may not be obtained. On the other hand, if the difference in SP value is less than 0.1, the microfiber cellulose will dissolve in the resin and will not function as a filler, and the reinforcing effect will not be obtained. In this regard, the smaller the difference between the SP POL value of the resin (solvent) and the SP MFC value of the microfiber cellulose (solute), the greater the reinforcing effect.

なお、溶解パラメータ(cal/cm1/2(SP値)とは、溶媒-溶質間に作用する分子間力を表す尺度であり、SP値が近い溶媒と溶質であるほど、溶解度が増す。 The solubility parameter (cal/cm 3 ) 1/2 (SP value) is a measure of the intermolecular force acting between a solvent and a solute, and the closer the SP values of a solvent and a solute are, the higher the solubility.

(成形処理)
繊維状セルロース及び樹脂の混練物は、必要により再度混練する等した後、所望の形状に成形することができる。この成形の大きさや厚さ、形状等は、特に限定されず、例えば、シート状、ペレット状、粉末状、繊維状等とすることができる。
(Molding process)
The kneaded product of the fibrous cellulose and the resin can be molded into a desired shape after, if necessary, re-kneading, etc. The size, thickness, shape, etc. of the molded product are not particularly limited, and can be, for example, a sheet, pellet, powder, fiber, etc.

成形処理の際の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、例えば90~260℃、好ましくは100~240℃である。 The temperature during the molding process is equal to or higher than the glass transition point of the resin, and varies depending on the type of resin, but is, for example, 90 to 260°C, preferably 100 to 240°C.

混練物の成形は、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等によることができる。また、混練物を紡糸して繊維状にし、前述した植物材料等と混繊してマット形状、ボード形状とすることもできる。混繊は、例えば、エアーレイにより同時堆積させる方法等によることができる。 The kneaded material can be molded by, for example, mold molding, injection molding, extrusion molding, hollow molding, foam molding, etc. The kneaded material can also be spun into fibers and mixed with the above-mentioned plant materials to form a mat or board shape. The fibers can be mixed by, for example, simultaneous deposition using air laying.

混練物を成形する装置としては、例えば、射出成形機、吹込成形機、中空成形機、ブロー成形機、圧縮成形機、押出成形機、真空成形機、圧空成形機等の中から1種又は2種以上を選択して使用することができる。 As a machine for molding the kneaded material, for example, one or more of an injection molding machine, a blow molding machine, a hollow molding machine, a blow molding machine, a compression molding machine, an extrusion molding machine, a vacuum molding machine, a pressure molding machine, etc. can be selected and used.

以上の成形は、混練に続いて行うことも、混練物をいったん冷却し、破砕機等を使用してチップ化した後、このチップを押出成形機や射出成形機等の成形機に投入して行うこともできる。もちろん、成形は、本発明の必須の要件ではない。 The above molding can be carried out following kneading, or the kneaded material can be cooled and chipped using a crusher or the like, and the chips can then be fed into a molding machine such as an extrusion molding machine or an injection molding machine. Of course, molding is not an essential requirement of the present invention.

以上のようにして得た繊維状セルロース複合樹脂は、曲げ弾性率の標準偏差が30MPa以下であるのが好ましく、29MPa以下であるのがより好ましく、28MPa以下であるのが特に好ましい。標準偏差が30MPaを上回ると、材料として利用する場合に、ばらつきを加味して最低限必要な物性を維持するために、材料の厚みを必要以上にしたり、さらに補強材を用いる等の処置をする必要が生じ、その分コストアップとなる可能性がある。 The fibrous cellulose composite resin obtained in the above manner preferably has a standard deviation in flexural modulus of 30 MPa or less, more preferably 29 MPa or less, and particularly preferably 28 MPa or less. If the standard deviation exceeds 30 MPa, when used as a material, it may be necessary to take measures such as making the material thicker than necessary or using additional reinforcing materials in order to maintain the minimum required physical properties while taking into account the variation, which may result in increased costs.

本形態において曲げ弾性率は、JIS K 7171に準拠して測定した値である。 In this embodiment, the flexural modulus is a value measured in accordance with JIS K 7171.

(その他の組成物)
樹脂組成物には、微細繊維やパルプ等のほか、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花などの各種植物体から得られた植物材料に由来する繊維を含ませることもでき、含まれていてもよい。
(Other Compositions)
The resin composition can contain, or may contain, in addition to fine fibers and pulp, fibers derived from plant materials obtained from various plants such as kenaf, jute, Manila hemp, sisal, gampi, mitsumata, paper mulberry, banana, pineapple, coconut, corn, sugarcane, bagasse, palm, papyrus, reed, esparto, sabai grass, wheat, rice, bamboo, various coniferous trees (such as cedar and cypress), broad-leaved trees, and cotton.

樹脂組成物には、例えば、帯電防止剤、難燃剤、抗菌剤、着色剤、ラジカル捕捉剤、発泡剤等の中から1種又は2種以上を選択して、本発明の効果を阻害しない範囲で添加することができる。これらの原料は、繊維状セルロースの分散液に添加しても、繊維状セルロース及び樹脂の混練の際に添加しても、これらの混練物に添加しても、その他の方法で添加してもよい。ただし、製造効率の面からは、繊維状セルロース及び樹脂の混練の際に添加するのが好ましい。 For example, one or more of antistatic agents, flame retardants, antibacterial agents, colorants, radical scavengers, foaming agents, etc. may be selected and added to the resin composition within a range that does not impair the effects of the present invention. These raw materials may be added to the dispersion of fibrous cellulose, added when kneading the fibrous cellulose and resin, added to the kneaded product, or added by other methods. However, from the standpoint of production efficiency, it is preferable to add them when kneading the fibrous cellulose and resin.

樹脂組成物には、ゴム成分として、エチレン-αオレフィン共重合エラストマー又はスチレン-ブタジエンブロック共重合体が含有されていてもよい。α-オレフィンの例としては、例えば、ブテン、イソブテン、ペンテン、ヘキセン、メチル-ペンテン、オクテン、デセン、ドデセン等が挙げられる。 The resin composition may contain an ethylene-α-olefin copolymer elastomer or a styrene-butadiene block copolymer as a rubber component. Examples of α-olefins include butene, isobutene, pentene, hexene, methyl-pentene, octene, decene, and dodecene.

次に、本発明の実施例を説明する。
(試験例1~6)
まず、Fine率A/Fine率Bやカルバメート化率と曲げ弾性率との関係を明らかにする試験例を示す。
具体的には、まず、水分率10%以下の針葉樹晒クラフトパルプ、広葉樹晒クラフトパルプからなるセルロース原料に、固形分濃度30%の尿素水溶液を用いて、固形分換算の質量比でパルプ:尿素が所定の割合となるように混合した後、105℃で乾燥させた。その後、所定の反応温度、反応時間で反応させ、カルバメート変性パルプを得た。得られたカルバメート変性パルプに対して蒸留水で希釈攪拌して、脱水洗浄を2回繰り返した。洗浄したカルバメート変性パルプを叩解機を用いて、Fine率(FS5による繊維長分布測定で0.2mm以下の繊維の割合)が所定の割合以上となるまでで叩解して、カルバメート変性マイクロ繊維セルロースを得た。得られたカルバメート変性マイクロ繊維セルロースを針葉樹晒クラフトパルプと広葉樹晒クラフトパルプとを所定のパルプ配合割合になるように調整し、固形分濃度2.8質量%のマイクロ繊維セルロース1,570gに、無水マレイン酸変性ポリプロピレンを22.0g添加し、それぞれにポリプロピレン粉末14.0gを添加し、140℃に加熱した接触式乾燥機を用いて加熱し、カルバメート変性マイクロ繊維セルロース含有物を得た。このカルバメート変性マイクロ繊維セルロース含有物の含水率5~22%であった。カルバメート変性マイクロ繊維セルロース含有物には、カルバメート変性マイクロ繊維:その他成分=10:90となるようにポリプロピレンペレットを添加、混合し、180℃、200rpmの条件で二軸混練機にて混練し、繊維配合率10%のカルバメート変性マイクロ繊維セルロース複合樹脂を得た。繊維配合率10%のカルバメート変性マイクロ繊維セルロース複合樹脂をペレッターで2mm径、2mm長の円柱状にカットし、180℃で直方体試験片(長さ59mm、幅9.6mm、厚さ3.8mm)に射出成形した。結果(曲げ弾性率)を表1に示した。
Next, an embodiment of the present invention will be described.
(Test Examples 1 to 6)
First, a test example will be shown to clarify the relationship between the Fine ratio A/Fine ratio B or the carbamate ratio and the flexural modulus.
Specifically, first, a cellulose raw material consisting of softwood bleached kraft pulp and hardwood bleached kraft pulp with a moisture content of 10% or less was mixed with an aqueous urea solution with a solid content concentration of 30% so that the pulp:urea ratio was a predetermined ratio in terms of solid content, and then dried at 105°C. Then, the mixture was reacted at a predetermined reaction temperature and reaction time to obtain carbamate-modified pulp. The obtained carbamate-modified pulp was diluted and stirred with distilled water, and dehydrated and washed twice. The washed carbamate-modified pulp was beaten using a beater until the fine ratio (the ratio of fibers with a fiber length distribution of 0.2 mm or less as measured by FS5) reached a predetermined ratio or more, to obtain carbamate-modified microfiber cellulose. The obtained carbamate-modified microfiber cellulose was adjusted to a predetermined pulp blending ratio of softwood bleached kraft pulp and hardwood bleached kraft pulp, and 22.0 g of maleic anhydride-modified polypropylene was added to 1,570 g of microfiber cellulose having a solid content concentration of 2.8% by mass, and 14.0 g of polypropylene powder was added to each of them, and heated using a contact dryer heated to 140 ° C. to obtain a carbamate-modified microfiber cellulose-containing material. The moisture content of this carbamate-modified microfiber cellulose-containing material was 5 to 22%. To the carbamate-modified microfiber cellulose-containing material, polypropylene pellets were added and mixed so that the carbamate-modified microfiber: other components = 10:90, and the mixture was kneaded with a twin-screw kneader under conditions of 180 ° C. and 200 rpm to obtain a carbamate-modified microfiber cellulose composite resin with a fiber blending ratio of 10%. A carbamate-modified microfiber cellulose composite resin with a fiber loading rate of 10% was cut into a cylindrical shape with a diameter of 2 mm and a length of 2 mm using a pelleter, and injection molded into a rectangular specimen (length 59 mm, width 9.6 mm, thickness 3.8 mm) at 180° C. The results (flexural modulus) are shown in Table 1.

曲げ試験においては、まず、JIS K7171:2008に準拠して曲げ弾性率を調べた。表中には、樹脂自体(ブランク)の曲げ弾性率(1.48GPa)を1として複合樹脂の曲げ弾性率(倍率)を記載した。 In the bending test, the bending modulus was first examined in accordance with JIS K7171:2008. In the table, the bending modulus (multiplication factor) of the composite resin is shown, with the bending modulus (1.48 GPa) of the resin itself (blank) set to 1.

Figure 0007499982000002
Figure 0007499982000002

(試験例7~9)
次に、初期DR負荷率によってFine率A/Fine率Bを調節可能であることを明らかにする試験例を示す。
(Test Examples 7 to 9)
Next, a test example will be shown which demonstrates that the Fine rate A/Fine rate B can be adjusted by the initial DR load rate.

具体的には、まず、水分率10%以下の針葉樹晒クラフトパルプ及び広葉樹晒クラフトパルプからなるセルロース原料に、固形分濃度30%の尿素水溶液を用いて、固形分比でパルプ:尿素が所定の割合になるよう混合した後、105℃で乾燥させた。その後、所定の反応温度、反応時間で反応させ、カルバメート変性パルプを得た。得られたカルバメート変性パルプに対して蒸留水で希釈撹拌して、脱水工程を2回繰り返した。脱水後、濃度3.0%程度となるように希釈撹拌したカルバメート変性パルプを、処理温度80℃以下かつ初期負荷率が65%以上となるよう叩解機の負荷電力を調整し、Fine率(FS5による繊維長分布測定で0.2mm以下の繊維の割合)が所定の割合以上になるまで叩解して、カルバメート変性マイクロ繊維セルロースを得た。結果を表2に示した。なお、試験例8は前述の試験例5と、試験例9は前述の試験例6と、それぞれ対応する。 Specifically, first, a cellulose raw material consisting of softwood bleached kraft pulp and hardwood bleached kraft pulp with a moisture content of 10% or less was mixed with an aqueous urea solution with a solid content concentration of 30% so that the solid content ratio of pulp to urea was a predetermined ratio, and then dried at 105°C. Then, the mixture was reacted at a predetermined reaction temperature and reaction time to obtain carbamate-modified pulp. The obtained carbamate-modified pulp was diluted and stirred with distilled water, and the dehydration process was repeated twice. After dehydration, the carbamate-modified pulp that had been diluted and stirred to a concentration of about 3.0% was beaten until the treatment temperature was 80°C or less and the initial load rate was 65% or more, and the fine rate (the rate of fibers with a fiber length distribution of 0.2 mm or less in a FS5 measurement) was a predetermined rate or more, to obtain carbamate-modified microfiber cellulose. The results are shown in Table 2. Note that Test Example 8 corresponds to the above-mentioned Test Example 5, and Test Example 9 corresponds to the above-mentioned Test Example 6, respectively.

Figure 0007499982000003
Figure 0007499982000003

叩解機の初期負荷率を65%以上となるように調整することで、FineA/Bの比が1.5~10.0になることが分かった。なお、叩解機の初期負荷率を調整する以外は、試験例1~6と同様に直方体試験片を作製し、複合樹脂の曲げ弾性率を測定した。また、ここで言う初期負荷率は、叩解開始から繊維長が25%以上低下するまで間の負荷電力(kw)の定格値100%とした場合に対する相対値である。 It was found that by adjusting the initial load rate of the beater to 65% or more, the Fine A/B ratio became 1.5 to 10.0. Note that, except for adjusting the initial load rate of the beater, rectangular parallelepiped test pieces were prepared in the same manner as in Test Examples 1 to 6, and the flexural modulus of the composite resin was measured. Also, the initial load rate referred to here is a relative value with the rated value of the load power (kW) from the start of beating until the fiber length is reduced by 25% or more being taken as 100%.

本発明は、繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法として利用可能である。例えば、繊維状セルロース複合樹脂は、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品、オフィス機器、玩具、スポーツ用品等の筺体、構造材、内部部品等;建築物、家具等の内装材、外装材、構造材等;文具等の事務機器等;その他、包装体、トレイ等の収容体、保護用部材、パーティション部材等;に利用可能である。 The present invention can be used as fibrous cellulose, fibrous cellulose composite resin, and a method for producing fibrous cellulose. For example, the fibrous cellulose composite resin can be used for interior materials, exterior materials, structural materials, etc. of transportation equipment such as automobiles, trains, ships, and airplanes; housings, structural materials, internal parts, etc. of electrical appliances such as personal computers, televisions, telephones, and watches; housings, structural materials, internal parts, etc. of mobile communication devices such as mobile phones; housings, structural materials, internal parts, etc. of portable music players, video players, printing machines, copying machines, sporting goods, office equipment, toys, sporting goods, etc.; interior materials, exterior materials, structural materials, etc. of buildings, furniture, etc.; office equipment such as stationery; and other containers such as packaging bodies and trays, protective materials, partition members, etc.

Claims (6)

原料はNKP5~95質量%及びLKP5~95質量%が混在するパルプ原料で、
平均繊維幅が0.1~20μmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されており、
前記カルバメート基の置換率が0.5mmol/g以上で、
Fine率A/Fine率Bが1.5~10である、
ことを特徴とする繊維状セルロース。
The raw material is a pulp material containing 5-95% by mass of NKP and 5-95% by mass of LKP.
The average fiber width is 0.1 to 20 μm, and some or all of the hydroxyl groups are substituted with carbamate groups;
The substitution rate of the carbamate group is 0.5 mmol/g or more,
Fine rate A/Fine rate B is 1.5 to 10;
Fibrous cellulose characterized by:
前記Fine率Aが、20~60%である、
請求項1に記載の繊維状セルロース。
The Fine ratio A is 20 to 60%.
2. The fibrous cellulose of claim 1.
平均繊維長が0.10~2.0mmである、
請求項1又は請求項2に記載の繊維状セルロース。
The average fiber length is 0.10 to 2.0 mm.
The fibrous cellulose according to claim 1 or 2.
請求項1に記載の繊維状セルロース及び樹脂を含む、
ことを特徴とする繊維状セルロース複合樹脂。
A composition comprising the fibrous cellulose and resin according to claim 1 .
A fibrous cellulose composite resin characterized by:
NKP及びLKPが混在する原料パルプを微細化及びカルバメート化して、平均繊維幅を0.1~20μmとし、かつカルバメート基の置換率を0.5mmol/g以上とする方法であり、
前記微細化においては、ディスクリファイナー(DR)を使用し、このディスクリファイナーの初期負荷率を76%以上とする、
ことを特徴とする繊維状セルロースの製造方法。
A method for finely refining and carbamate-converting a raw material pulp containing a mixture of NKP and LKP to have an average fiber width of 0.1 to 20 μm and a carbamate group substitution rate of 0.5 mmol/g or more,
In the refinement, a disc refiner (DR) is used, and the initial load factor of the disc refiner is set to 76 % or more.
1. A method for producing fibrous cellulose comprising the steps of:
前記カルバメート化に際して加熱処理し、この加熱処理後に置換洗浄率が80%以上となるように洗浄する、
請求項5に記載の繊維状セルロースの製造方法。
A heat treatment is performed during the carbamate formation, and washing is performed after the heat treatment so that the replacement washing rate is 80% or more.
The method for producing fibrous cellulose according to claim 5 .
JP2023557822A 2022-02-28 2022-12-20 Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose Active JP7499982B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022029845 2022-02-28
JP2022029845 2022-02-28
PCT/JP2022/046854 WO2023162433A1 (en) 2022-02-28 2022-12-20 Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose

Publications (3)

Publication Number Publication Date
JPWO2023162433A1 JPWO2023162433A1 (en) 2023-08-31
JPWO2023162433A5 JPWO2023162433A5 (en) 2024-01-31
JP7499982B2 true JP7499982B2 (en) 2024-06-14

Family

ID=87765475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023557822A Active JP7499982B2 (en) 2022-02-28 2022-12-20 Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose

Country Status (2)

Country Link
JP (1) JP7499982B2 (en)
WO (1) WO2023162433A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006997A (en) 2017-06-22 2019-01-17 国立大学法人京都大学 Fiber reinforced resin composition, fiber reinforced molded body and manufacturing method therefor
JP2021120498A (en) 2020-01-30 2021-08-19 花王株式会社 Cellulose fiber composite
JP2021155544A (en) 2020-03-26 2021-10-07 大王製紙株式会社 Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose
WO2021256471A1 (en) 2020-06-15 2021-12-23 株式会社巴川製紙所 Thermoplastic resin composite material, thermoplastic resin composite material particle, and molded article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200100480A (en) * 2019-02-18 2020-08-26 주식회사 지엘켐 Nanocellulose fiber manufacturing method and nanocellulose fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006997A (en) 2017-06-22 2019-01-17 国立大学法人京都大学 Fiber reinforced resin composition, fiber reinforced molded body and manufacturing method therefor
JP2021120498A (en) 2020-01-30 2021-08-19 花王株式会社 Cellulose fiber composite
JP2021155544A (en) 2020-03-26 2021-10-07 大王製紙株式会社 Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose
WO2021256471A1 (en) 2020-06-15 2021-12-23 株式会社巴川製紙所 Thermoplastic resin composite material, thermoplastic resin composite material particle, and molded article

Also Published As

Publication number Publication date
JPWO2023162433A1 (en) 2023-08-31
WO2023162433A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP7460329B2 (en) Fibrous cellulose composite resin, its manufacturing method, and resin reinforcing material
JP7088888B2 (en) Method for manufacturing fibrous cellulose composite resin
JP7483418B2 (en) Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
JP2021031662A5 (en)
CN115066442B (en) Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose
US20230357449A1 (en) Fibrous cellulose, fibrous cellulose composite resin, and method for preparing fibrous cellulose
US20230183384A1 (en) Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for preparing fibrous cellulose-containing material
JP2022089848A5 (en)
JP7227186B2 (en) Fibrous cellulose and fibrous cellulose composite resin
JP2023168387A (en) Microfiber cellulose solid matter and method for producing microfiber cellulose solid matter
JP2021195483A5 (en)
JP7511362B2 (en) Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for producing fibrous cellulose-containing material
JP7499982B2 (en) Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose
JP2021155545A (en) Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose
JP7213296B2 (en) Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for producing fibrous cellulose-containing material
JP7449323B2 (en) Fibrous cellulose composite resin
JPWO2023162433A5 (en)
JP2024078169A (en) Fibrous cellulose-containing material and fibrous cellulose composite resin
JP2024078170A (en) Cellulose fiber composite resin and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240604

R150 Certificate of patent or registration of utility model

Ref document number: 7499982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150