JP7499975B2 - 測位方法 - Google Patents

測位方法 Download PDF

Info

Publication number
JP7499975B2
JP7499975B2 JP2023545516A JP2023545516A JP7499975B2 JP 7499975 B2 JP7499975 B2 JP 7499975B2 JP 2023545516 A JP2023545516 A JP 2023545516A JP 2023545516 A JP2023545516 A JP 2023545516A JP 7499975 B2 JP7499975 B2 JP 7499975B2
Authority
JP
Japan
Prior art keywords
positioning
satellite
earth
flying object
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023545516A
Other languages
English (en)
Other versions
JPWO2023032822A1 (ja
JPWO2023032822A5 (ja
Inventor
久幸 迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2023032822A1 publication Critical patent/JPWO2023032822A1/ja
Publication of JPWO2023032822A5 publication Critical patent/JPWO2023032822A5/ja
Priority to JP2024068954A priority Critical patent/JP2024097013A/ja
Application granted granted Critical
Publication of JP7499975B2 publication Critical patent/JP7499975B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

本開示は、測位方法、月測位システム、および、測位衛星に関する。
月および火星をはじめとする惑星への進出が加速している。このため、地球から月あるいは惑星へ向かう飛翔体、往還する飛翔体、および、月あるいは惑星を周回する飛翔体の位置計測手段と環境の整備が必要となる。地球上および大気圏では、測位衛星群により地球固定座標系での位置計測が可能となっている。また、地球周辺においても測位衛星群の測位信号により、地球上および大気圏と同様に地球固定座標系における位置計測が可能である。
特許文献1は、地球低軌道または静止軌道から、目標の軌道または目的地まで輸送船を電気推進で推進する方法が開示されている。
国際公開第2018/029839号
測位衛星の送信する測位信号は、電波環境を健全に維持するため、ITUで管理される。そのため、周波数と送信レベルに制約があり、地球から遠方を飛翔するとノイズに埋もれて測位ができなくなるという課題がある。ITUは、International Telecommunication Unionの略語である。
本開示では、地球固定座標系における位置座標が既知である地上局から、遠方を飛翔する飛翔体に向けて指向性を有する狭域ビームで測位信号を送信する。これにより、飛翔体の地球固定座標系における位置計測を可能とすることを目的とする。
本開示に係る測位方法は、地球から月または惑星に向かう宇宙空間ないし月または惑星の近傍を飛翔する飛翔体の位置座標を計測する測位方法である。
前記飛翔体は、測位信号受信装置を具備する。前記地上局は、指向方向制御機能付き測位信号送信装置を具備し、地球固定座標系における位置座標が既知である。
前記飛翔体は、地上局から送信される測位信号を、同時に4か所の地上局から受信して、地球固定座標系における位置座標を計測する。
本開示に係る測位方法では、地球固定座標系における位置座標が既知である地上局から、遠方を飛翔する飛翔体に向けて指向性を有する狭域ビームで測位信号を送信する。よって、本開示に係る測位方法によれば、飛翔体の地球固定座標系における位置計測を可能とするという効果がある。
実施の形態1に係る測位システム800の構成例を示す図である。 実施の形態1に係る飛翔体の機能構成例を示す図。 実施の形態1に係る測位方法の例1を示す図。 実施の形態2に係る衛星の構成例を示す図。 実施の形態2に係る測位方法の例2を示す図。 実施の形態2に係る静止衛星の機能構成例を示す図。 実施の形態2に係る準天頂衛星の機能構成例を示す図。 実施の形態2に係る測位方法の例3を示す図。 実施の形態2に係る測位方法の例3における飛翔体の機能構成例を示す図。 実施の形態3に係る測位方法の例5を示す図。 実施の形態3に係る第1の飛翔体の構成例を示す図。 実施の形態4に係る測位方法の例6を示す図。 実施の形態4に係る測位方法の例7を示す図。 実施の形態4に係る月面局の構成例を示す図。 実施の形態4に係る測位方法の例8を示す図。 実施の形態5に係る月測位システムの構成例を示す図。 実施の形態5に係る第3の飛翔体の構成例を示す図。 実施の形態6に係る測位衛星の構成例を示す図。 実施の形態6に係る測位衛星を用いた測位信号の送信例を示す図。
以下、本開示の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。また、以下の図面では各構成の大きさの関係が実際のものとは異なる場合がある。また、実施の形態の説明において、「上」、「下」、「左」、「右」、「前」、「後」、「表」、「裏」といった方向あるいは位置が示されている場合がある。それらの表記は、説明の便宜上、そのように記載しているだけであって、装置、器具、あるいは部品といった構成の配置および向きを限定するものではない。
実施の形態1.
***構成の説明***
図1は、本実施の形態に係る測位システム800の構成例を示す図である。
図2は、本実施の形態に係る飛翔体500の機能構成例を示す図である。
本実施の形態では、地球から月または惑星に向かう宇宙空間、ないし、月または惑星の近傍を飛翔する飛翔体500の位置座標を計測する測位方法について説明する。
地上局100は、地上に設置され、地球固定座標系における位置座標が既知の局である。地上局100は、指向方向制御機能付き測位信号送信装置である測位信号送信装置10を備える。
地上局100は、測位信号送信装置10により、遠方を飛翔する飛翔体500に向けて指向性を有する狭域ビームで測位信号21を送信する。
飛翔体500は、地球から月または惑星に向かう宇宙空間、ないし、月または惑星の近傍を飛翔する。
飛翔体500は、測位信号受信装置501を具備する。また、飛翔体500は、計測装置502を具備する。
測位信号受信装置501は、測位信号21を受信する。
計測装置502は、測位信号受信装置501が受信した測位信号21により、飛翔体500の位置座標を計測する。
<測位方法の例1>
図3は、本実施の形態に係る測位方法の例1を示す図である。
測位方法の例1は、測位システム800により実現される。
測位方法の例1では、測位システム800は、地球70の地上に設置された4か所の地上局100を備える。
飛翔体500は、地上局100から送信される測位信号21を、同時に4か所の地上局100から受信して、地球固定座標系における位置座標を計測する。
具体的には、飛翔体500は、測位信号受信装置501により、地上局100の測位信号送信装置10から飛翔体500に向けて指向性を有する狭域ビームで送信された測位信号21を受信する。測位信号受信装置501は、同時に4か所の地上局100から測位信号21を受信する。
そして、飛翔体500は、計測装置502により、同時に4か所の地上局100から受信した測位信号21を用いて、飛翔体500の地球固定座標系における位置座標を計測する。
近年、地球から月あるいは惑星へ向かう飛翔体、往還する飛翔体、および、月あるいは惑星を周回する飛翔体の位置計測手段と環境の整備が必要となっている。測位衛星の送信する測位信号は、電波環境を健全に維持するため、ITUで管理される。そのため、周波数と送信レベルに制約があり、地球から遠方を飛翔するとノイズに埋もれて測位ができなくなる場合がある。
図3に示す測位方法の例1では、地球固定座標系における位置座標が既知である地上局100から、遠方を飛翔する飛翔体500に向けて指向性を有する狭域ビームで測位信号21を送信する。これにより、有意な信号強度で測位信号21を送信でき、飛翔体500の地球固定座標系における位置計測が可能となる。
空間三角測量において、位置座標が既知の3点から、固定する点を計測すれば位置座標が決定する。原子時計といった高精度時計を具備しない測位信号受信装置では、信号到達時間の不確定性がある。このため、同時に4か所の地上局100から測位信号21を受信することにより、飛翔体500の位置座標が計測可能となる。
位置座標が既知の点を見わたす立体角が大きいほど測位精度が向上するので、地上局100は南北方向と東西方向に分散した状態で測位をすると精度向上に寄与する。
実施の形態2.
本実施の形態では、主に、実施の形態1に追加する点あるいは異なる点について説明する。なお、実施の形態1と同様の構成には同一の符号を付し、その説明を省略する場合がある。
本実施の形態では、地球から月または惑星に向かう宇宙空間、ないし、月または惑星の近傍を飛翔する飛翔体500の位置座標を計測する測位方法について説明する。
実施の形態1では、同時に4か所の地上局100から測位信号21を受信することにより、飛翔体500の位置座標を計測した。
本実施の形態では、各種の衛星30から測位信号21を受信することにより、飛翔体500の位置座標を計測する態様について説明する。
まず、図4を用いて、本実施の形態に係る衛星30の構成例について説明する。
衛星30は、衛星制御装置31と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35とを備える。その他、各種の機能を実現する構成要素を備えるが、図4では、衛星制御装置31と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35について説明する。
衛星制御装置31は、推進装置33と姿勢制御装置34とを制御するコンピュータであり、処理回路を備える。具体的には、衛星制御装置31は、地上設備から送信される各種コマンドにしたがって、推進装置33と姿勢制御装置34とを制御する。
衛星通信装置32は、地上設備と通信する装置である。具体的には、衛星通信装置32は、自衛星に関する各種データを地上設備へ送信する。また、衛星通信装置32は、地上設備から送信される各種コマンドを受信する。
推進装置33は、衛星30に推進力を与える装置であり、衛星30の速度を変化させる。具体的には、推進装置33は電気推進機である。具体的には、推進装置33は、イオンエンジンまたはホールスラスタである。
姿勢制御装置34は、衛星30の姿勢と衛星30の角速度と視線方向(Line Of
Sight)といった姿勢要素を制御するための装置である。姿勢制御装置34は、各姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置34は、各姿勢要素を所望の方向に維持する。姿勢制御装置34は、姿勢センサとアクチュエータとコントローラとを備える。姿勢センサは、ジャイロスコープ、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサといった装置である。アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールおよびコントロール・モーメント・ジャイロといった装置である。コントローラは、姿勢センサの計測データまたは地上設備からの各種コマンドにしたがって、アクチュエータを制御する。
電源装置35は、太陽電池、バッテリおよび電力制御装置といった機器を備え、衛星30に搭載される各機器に電力を供給する。
衛星制御装置31に備わる処理回路について説明する。
処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。
処理回路において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
専用のハードウェアは、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
ASICは、Application Specific Integrated Circuitの略称である。FPGAは、Field Programmable Gate Arrayの略称である。
<測位方法の例2>
図5は、本実施の形態に係る測位方法の例2を示す図である。
図6は、本実施の形態に係る静止衛星200の機能構成例を示す図である。
図7は、本実施の形態に係る準天頂衛星300の機能構成例を示す図である。
測位方法の例2では、測位システム800は、静止衛星200ないし準天頂衛星300を備える。
静止衛星200は、図4の構成に加え、測位信号送信装置10の機能を有する。
静止衛星200は、地球固定座標系における位置座標が既知である。
準天頂衛星300は、図4の構成に加え、測位信号送信装置10の機能を有する。
準天頂衛星300は、地球固定座標系における位置座標が既知である。
測位方法の例2では、飛翔体500は、静止衛星200から送信される測位信号21と、準天頂衛星300から送信される測位信号21とを、同時に4機の静止衛星200ないし準天頂衛星300から受信して、地球固定座標系における位置座標を計測する。
静止衛星200または準天頂衛星300が備える測位信号送信装置10は、指向方向制御機能付き測位信号送信装置であってもよいし、指向方向制御機能付き測位信号送信装置でなくてもよい。
なお、測位方法の例2では、測位信号送信装置10が指向方向制御機能付き測位信号送信装置ではない場合でも以下のような効果がある。
実施の形態1では、地上局100から測位信号21を送信する測位方法であった。地上局100から送信する測位信号21は、電離層を通過する際の遅延効果により測位誤差が大きいという課題がある。これに対して、衛星から送信する測位信号21によれば、電離層を通過せずに測位信号21を送受できるので測位精度が高いという効果がある。
静止衛星200は、赤道上空約36000kmを地球70の自転と同期して周回することにより、地表面から観てあたかも上空に静止しているように見える衛星である。静止衛星200の軌道面に45°程度の軌道傾斜角をつけて、地球の自転と同期して周回させると、地表面から見て南北に移動するように見え、厳密には左右の動きと相まって一日に8の字を描くように見える。これが準天頂軌道であり、準天頂衛星300は準天頂測位衛星システムにおける測位衛星として活用されている。
地上局100、および、静止衛星200に加えて、地球固定座標系の位置座標が既知の準天頂衛星300からの測位信号21を含めて飛翔体500の位置計測をすれば、立体角が更に広がるため、遠方の飛翔体の計測精度が向上するという効果がある。
位置座標が既知の点を見わたす立体角を大きいほど測位精度が向上するので、東西方向に離れた2機の静止衛星200と、東西方向に離れた2機の準天頂衛星300から測位信号21を受信すると、測位精度向上に寄与する。
また、地球は自転しているため、特定の地上局で月周辺を飛翔する飛翔体に対して測位信号を送信し続けることができない。このため、多くの地上局が必要になるという課題があった。これに対して静止衛星200および準天頂衛星300では、一部地球の陰になる幾何学的制約はあるものの、地上局に比較して、一機の衛星が飛翔体500に測位信号21を送信し続ける時間が長いという効果がある。このため、地上局のみから測位信号21を送信する場合に必要となる地上局総数と比較して、必要衛星総数が少なくて済むという効果がある。
また、測位信号送信装置10が指向方向制御機能付き測位信号送信装置である場合は、さらに以下のような効果がある。
飛翔体500の飛翔位置が遠距離になると、通常の測位信号送信機から送信した測位信号がノイズに埋もれて計測できなくなるという課題がある。
そこで、地球固定座標系における位置座標が既知の静止衛星200または準天頂衛星300から、遠方を飛翔する飛翔体500に向けて指向性を有する狭域ビームで測位信号21を送信する。これにより、有意な信号強度で測位信号を送信でき、飛翔体500の地球固定座標系における位置計測が可能となる。
<測位方法の例3>
図8は、本実施の形態に係る測位方法の例3を示す図である。
図9は、本実施の形態に係る測位方法の例3における飛翔体500の機能構成例を示す図である。
測位方法の例3では、飛翔体500は、測位信号受信装置501と計測装置502に加えて、高精度時計503を具備する。
高精度時計503の具体例は、原子時計あるいは光格子時計といった高精度の時計である。
飛翔体500は、静止衛星200から送信される測位信号21と、準天頂衛星300から送信される測位信号21とを、同時に3機の静止衛星200ないし準天頂衛星300から受信して、地球固定座標系における位置座標を計測する。
静止衛星200または準天頂衛星300が備える測位信号送信装置10は、指向方向制御機能付き測位信号送信装置であってもよいし、指向方向制御機能付き測位信号送信装置でなくてもよい。
飛翔体500が原子時計あるいは光格子時計といった高精度時計503を具備していれば、飛翔体500は、位置座標が既知の3か所からの測位信号21を受信するだけで、位置座標が計測可能となるという効果がある。
なお、静止衛星200または準天頂衛星300が指向方向制御機能付き測位信号送信装置を具備すれば、より遠方の飛翔体でも位置計測が可能となることは測位方法の例2と同様である。
<測位方法の例4>
測位方法の例4では、飛翔体500は、測位信号受信装置501と計測装置502を具備する。飛翔体500は、高精度時計503を具備していてもよいし、具備していなくてもよい。
静止衛星200は、測位信号送信装置10を具備し、地球固定座標系または慣性座標系における位置座標が既知であるものとする。
準天頂衛星300は、測位信号送信装置10を具備し、地球固定座標系または慣性座標系における位置座標が既知であるものとする。
飛翔体500は、静止衛星200から送信される測位信号21と、準天頂衛星300から送信される測位信号21とを、同時に3機以上の静止衛星200ないし準天頂衛星300から受信して、慣性座標系における位置座標を計測する。
地球固定座標系と慣性座標系は座標変換が可能である。よって、地球固定座標系で位置座標が既知の静止衛星200または準天頂衛星300の位置座標は、慣性座標系に変換することができる。
高精度時計503を具備する飛翔体500であれば、飛翔体500は、3機の静止衛星200または準天頂衛星300からの測位信号21を受信して位置座標の計測ができる。
一方、高精度時計503を具備しない飛翔体500であれば、飛翔体500は、4機の静止衛星200または準天頂衛星300からの測位信号21を受信して位置座標の計測ができる。
月探査あるいは惑星探査を目的とする飛翔体では、地球の自転と同期して回転する地球固定座標系よりも、慣性座標系で位置計測するのが合理的である。よって、測位方法の例4によれば、月惑星探査目的の飛翔体の測位方法として利便性に優れるという効果がある。
実施の形態3.
本実施の形態では、主に、実施の形態1,2に追加する点あるいは異なる点について説明する。なお、実施の形態1,2と同様の構成には同一の符号を付し、その説明を省略する場合がある。
本実施の形態では、地球から月または惑星に向かう宇宙空間ないし月または惑星の近傍を飛翔し、測位信号受信装置501を具備する第2の飛翔体520の位置座標を計測する測位方法について説明する。
<測位方法の例5>
図10は、本実施の形態に係る測位方法の例5を示す図である。
図11は、本実施の形態に係る第1の飛翔体510の構成例を示す図である。
測位方法の例5では、測位システム800は、第1の飛翔体510と、静止衛星200と、準天頂衛星300とにより構成される。
第1の飛翔体510は、高精度時計503と、測位信号受信装置501と、測位信号送信装置10とを具備する飛翔体である。また、第1の飛翔体510は、計測装置502も具備する。
第2の飛翔体520は、測位信号受信装置501を具備する飛翔体である。また、第2の飛翔体520は、計測装置502も具備する。
静止衛星200は、測位信号送信装置10を具備し、地球固定座標系または慣性座標系における位置座標が既知である。
準天頂衛星300は、測位信号送信装置10を具備し、地球固定座標系または慣性座標系における位置座標が既知である。
第1の飛翔体510が、同時に3機以上の静止衛星200ないし準天頂衛星から測位信号21を受信して、地球固定座標系または慣性座標系における位置座標を計測して、位置座標が既知の飛翔体として測位信号21を送信する。
第2の飛翔体520は、同時に第1の飛翔体510と、3機の静止衛星200または準天頂衛星300から測位信号21を受信して、地球固定座標系または慣性座標系における位置座標を計測する。
第1の飛翔体510は、高精度時計503を具備するので、3機の静止衛星200または準天頂衛星300から測位信号21を受信すれば位置座標を計測でき、位置座標が既知の飛翔体として測位信号21を送信できる。
高精度時計を具備しない第2の飛翔体520は、同時に位置座標が既知の4か所から測位信号21を受信すれば時刻の不確定性も含めて位置座標を計測できる。よって、高精度時計を具備しない第2の飛翔体520は、第1の飛翔体510と、3機の静止衛星200または準天頂衛星300から測位信号21を受信すれば位置座標を計測可能となる。
なお、第1の飛翔体510が測位信号21を受信する受信元の静止衛星200ないし準天頂衛星300は、第2の飛翔体520が測位信号21を受信する受信元の静止衛星200ないし準天頂衛星300と別の衛星であってもよい。
実施の形態4.
本実施の形態では、主に、実施の形態1から3に追加する点あるいは異なる点について説明する。なお、実施の形態1から3と同様の構成には同一の符号を付し、その説明を省略する場合がある。
本実施の形態では、地球から月または惑星に向かう宇宙空間ないし月または惑星の近傍を飛翔し、測位信号受信装置501を具備する第2の飛翔体500の位置座標を計測する測位方法について説明する。
<測位方法の例6>
図12は、本実施の形態に係る測位方法の例6を示す図である。
測位方法の例6では、測位システム800は、第1の飛翔体510と、静止衛星200と、準天頂衛星300とにより構成される。
第1の飛翔体510は、月71を周回する。第1の飛翔体510は、測位信号送信装置10を具備して月71を周回し、月固定座標系または慣性座標系の位置座標が既知である。
静止衛星200は、測位信号送信装置10を具備し、慣性座標系における位置座標が既知である。
準天頂衛星300は、測位信号送信装置10を具備し、慣性座標系における位置座標が既知である。
第2の飛翔体520は、同時に第1の飛翔体510と、3機の静止衛星200または準天頂衛星300から測位信号21を受信して、慣性座標系における位置座標を計測する。
月固定座標系としては、「メスティングA」と呼ばれる小さなボウル型のクレーターを基準位置とし、地球の経度と緯度に相当する2つの値で月表面の位置座標を定義する月面座標系が知られている。
月の重心を原点とし、経度、緯度に高度を加えた3次元座標系として月固定座標系を定義することが可能である。
月の軌道面(地球に対する公転面)は黄道に対して5.15°傾いており、月の自転軸は黄道垂線から6.69°傾いている。自転軸が黄道垂線から23.4°傾斜している地球において、地球固定座標系と慣性座標系の座標変換ができるのと同様に、月固定座標系と慣性座標系の座標変換が可能である。
将来の月惑星探査の拠点として、LOP-G(以下ゲートウェイと称する)の構想がある。ゲートウェイは、地球と月の重力ポテンシャルが均衡点となるラグランジェポイントにおいて、NRHOと呼ばれる非常に細長い楕円軌道で運用することが検討されている。NRHOは月を南北に回る、高度4500kmから75000kmという極端に細長い楕円軌道である。
LOP-Gは、Lunar Orbital Platform-Gatewayの略語である。NRHOは、Near Rectilinear Halo Orbitの略語である。
ゲートウェイが高精度時計と測位信号送信装置を具備し、月固定座標系または慣性座標系における位置座標が既知であると仮定する。このとき、cislunar空間と呼ばれる地球と月の間を飛翔する第2の飛翔体では、ゲートウェイの位置座標が既知であり、ゲートウェイからの測位信号を含めて計測ができれば、立体角が大きくなり、測位精度が向上するという効果がある。
ゲートウェイの位置計測は、測位方法の例2から測位方法の例5のいずれかにより実施してもよいし、別途地上からの測距あるいは測角、および、月周回軌道の軌道情報などを用いて解析的に導出してもよい。
月を周回する第1の飛翔体510を含めて測位することにより、地球と月の間を飛翔する第2の飛翔体520の地球からの距離計測精度が向上するという効果がある。
またゲートウェイがNRHOを飛翔する場合には、黄道面から75000km程度まで南方に移動するので、第2の飛翔体520からみて立体角の大きな測位が可能となり、測位精度が向上するという効果がある。
<測位方法の例7>
図13は、本実施の形態に係る測位方法の例7を示す図である。
図14は、本実施の形態に係る月面局550の構成例を示す図である。
測位方法の例7では、測位システム800は、月面局550と、静止衛星200と、準天頂衛星300とから構成される。
月面局550は、月面に設置され、高精度時計503と、測位信号送信装置10を具備する。
静止衛星200は、測位信号送信装置10を具備し、慣性座標系における位置座標が既知である。
準天頂衛星300は、測位信号送信装置10を具備し、慣性座標系における位置座標が既知である。
第2の飛翔体520が、同時に月面局550と、3機の静止衛星200または準天頂衛星300から測位信号21を受信して、慣性座標系における位置座標を計測する。
月面局550は、高精度時計503と測位信号送信装置10を具備し、月面に整備される。月面局550は、運用寿命が限定される飛翔体と比較して、装置類のメンテナンスあるいは換装を含めて恒久的に月座標系の位置座補基準として活用することができるという効果がある。
<測位方法の例8>
図15は、本実施の形態に係る測位方法の例8を示す図である。
測位方法の例8では、測位システム800は、月面局550と、第1の飛翔体510と、静止衛星200と、準天頂衛星300とにより構成される。
月面局550は、月面に設置され、高精度時計503と測位信号送信装置10を具備する。月面局550は、月固定座標系または慣性座標系の位置座標が既知である。
第1の飛翔体510は、月を周回する。第1の飛翔体510は、測位信号送信装置10を具備して月を周回し、月固定座標系または慣性座標系の位置座標が既知である。
静止衛星200は、測位信号送信装置10を具備し、慣性座標系における位置座標が既知である。
準天頂衛星300は、測位信号送信装置10を具備し、慣性座標系における位置座標が既知である。
第2の飛翔体520は、同時に月面局550と、第1の飛翔体510と、2機の静止衛星200または準天頂衛星300から測位信号21を受信して、慣性座標系における位置座標を計測する。
月面局550と月周回する第1の飛翔体510とを含めて第2の飛翔体520の位置座標を計測することにより、地球と月間を飛翔する第2の飛翔体520の飛翔位置計測精度を向上できるという効果がある。
また地球からみて月より遠方を飛翔する惑星探査衛星といった第2の飛翔体520の位置座標の計測が可能となるという効果がある。
実施の形態5.
本実施の形態では、主に、実施の形態1から4に追加する点あるいは異なる点について説明する。なお、実施の形態1から4と同様の構成には同一の符号を付し、その説明を省略する場合がある。
本実施の形態では、月面の移動体あるいは月近傍を飛翔する第2の飛翔体の月固定座標系における位置座標を計測可能になる月測位システム801について説明する。
図16は、本実施の形態に係る月測位システム801の構成例を示す図である。
図17は、本実施の形態に係る第3の飛翔体530の構成例を示す図である。
月面局550は、月面に設置され、高精度時計503と測位信号送信装置10を具備し、月固定座標系の位置座標が既知である。
第3の飛翔体530は、月を周回する。第3の飛翔体530は、高精度時計503と測位信号送信装置10を具備して月を周回し、月固定座標系の位置座標が既知である。
月測位システム801は、月面局550と、第3の飛翔体530の両方または片方により構成され、月面局550と第3の飛翔体530の合計数が4以上である。
なお、図16では第3の飛翔体が同一軌道面を飛翔している例を示したが、第3の飛翔体が異なる軌道面を飛翔してもよいことは言うまでもない。
月測位システム801によれば、測位信号受信装置を具備し、月面で活動するローバーといった移動体、あるいは、月近傍を飛翔する第2の飛翔体520において、月固定座標系における位置座標の計測が可能となる。
月面の移動体あるいは月近傍を飛翔する第2の飛翔体520について、月固定座標系が既知の4か所以上の月面局550ないし月周回衛星(第3の飛翔体530)から測位信号を受信すれば、地球上の測位衛星システムと同様に、月固定座標系における位置座標の計測が可能となる。
人類の月面進出が進展した場合、月面上の測位拠点を確保して、月固定座標系に対する測位システムを形成することは、月周回衛星の運用制御の利便性を高めるという効果がある。
測位方法の例2から測位方法の例8によれば、慣性座標系が既知の月面局ないし月周回衛星を整備することが可能である。慣性座標系と月固定座標系の座標変換が可能なので、月固定座標系の位置座標が既知の月面局ないし月周回衛星を整備することが可能となる。
さらに、月面上活動に伴う多用な計測手段を含めて、月固定座標系の位置座標が既知の月面局ないし月周回衛星を増やしていくことができる。これにより、月面の移動体あるいは月近傍を飛翔する第2の飛翔体が、同時に4か所以上の月面局ないし月周回衛星から測位信号を受信できる月測位システムを構築可能である。
月測位システムによれば、月面の移動体あるいは月近傍を飛翔する第2の飛翔体の月固定座標系における位置座標が計測可能になるという効果がある。
実施の形態6.
本実施の形態では、主に、実施の形態1から5に追加する点あるいは異なる点について説明する。なお、実施の形態1から5と同様の構成には同一の符号を付し、その説明を省略する場合がある。
本実施の形態では、測位方法の例2から測位方法の例8で用いられる静止衛星200あるいは準天頂衛星300といった測位衛星400の構成について説明する。
図18は、本実施の形態に係る測位衛星400の構成例を示す図である。
図19は、本実施の形態に係る測位衛星400を用いた測位信号21の送信例を示す図である。
測位衛星400は、静止軌道、または準天頂軌道を飛翔する。
測位衛星400では、衛星座標系のX軸を東面進行方向、Y軸を南方向、Z軸を地球方向とする。
測位衛星400は、太陽電池パドル401が北面(-Y)1翼構成である。また、測位衛星400は、南面(+Y)に測位信号送信装置10を搭載する。
測位衛星400は、南北軸(Y軸)回りに反地球方向(-Z軸)からAzimuth±170degを包含する測位信号送信視野、および、XZ面に対してElevation-25deg以上(北側)、Elevation36deg以上(南側)の測位信号送信視野を確保する。
NRHOは軌道面の法線ベクトルが地球方向を向くため、月の陰になることなく、ゲートウェイと通信が可能である。一方、地球の静止軌道衛星では測位衛星が月に対して地球の陰になる季節と時間帯は測位信号送信が途絶する。
地球の地軸は慣性空間に対して約23.4度傾斜しているため、冬至と夏至で±23.4度の指向方向の変動がある。
地球半径が約6400kmであるのに対して静止軌道半径は約42000kmと約7倍であり、地軸の傾斜があるため、季節によっては地球の陰が発生しない状況もありうる。
そこで、測位衛星が地球の赤道上空を1周回する間の測位信号送信の途絶を最小化するために、衛星の南北軸回りに視野方向を回転する測位信号送信装置を採用する。衛星上の視野干渉をなくすために、NRHOの遠地点側に広い視野を確保できる衛星南面に測位信号送信装置を搭載し、AzimuthとElevationの2軸指向方向変更により、ゲートウェイとの測位信号送信視野を確保する。
測位信号送信装置の駆動範囲として、360度以上の連続的回動ができない測位信号送信装置では、地球方向をデッドゾーンに充て、南面搭載時のAzimuth回転範囲として、反地球方向に対して±170degを包含する。±175degの測位信号送信装置は実在しており、広視野になるほど測位信号送信の途絶期間を短縮できる。
またゲートウェイが地球の陰に入っている間に、Azimuth指向角度を最東端に設定し、日陰開け後に通信リンクを形成して測位衛星が地球を約1周する間にAzimuth指向角度が最西端まで回動するので、再び日陰入り後にAzimuth指向角度を最東端に設定する運用を繰り返す。
地球と月の距離が約385000kmであり、NRHOの遠地点高度が約75000km、近地点高度が約4000kmである。よって、測位衛星からNRHOの北極上空近地点を見込む角度は、衛星座標系のX軸を東面進行方向、Y軸を南方向、Z軸を地球方向として、衛星XZ面に対するElevation北緯方向に1deg以下、南極上空遠地点を見込む角度は衛星Z軸(地球方向)に対するElevation南緯方向に12deg以下である。
地軸の傾斜約23.4degの変動を考慮して、Elevation北緯方向25deg以上、Elevation南緯方向36deg以上の指向方向変更機能を具備する。これにより、ゲートウェイの遠地点から近地点に至る飛翔経路において、常に通信が可能となる。
ゲートウェイでは有人活動も計画されており、人命の関わる船外活動といったイベントにおいて、長時間にわたり通信途絶することなく地上設備と通信できるという効果がある。
なおNRHOの近地点が月の南極側に設定される場合は、測位衛星も南北を入れ替えた配置にすることは言うまでもない。
また運用途中においてゲートウェイの軌道が変更になった場合であっても、測位衛星をZ軸回りに180度回転して南北を入れ替えた運用が可能であり、上記と同様の効果を得ることができる。
本実施の形態に係る測位衛星400によれば、測位方法の例2から例8において、地球自転に伴う静止衛星ないし準天頂衛星の姿勢の変化を補償しながら指向方向制御機能付き測位信号送信装置を具備する静止衛星ないし準天頂衛星を実現できるという効果がある。
以上の実施の形態1から6において説明した、各システム、各衛星、各局、および各装置はコンピュータを備えており、実施の形態1から6において説明した機能の実現にはコンピュータが用いられている。
コンピュータは、プロセッサあるいは電子回路を備えるとともに、メモリ、補助記憶装置、入力インタフェース、出力インタフェース、および通信装置といった他のハードウェアを備える。プロセッサあるいは電子回路は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
以上の実施の形態1から6において、各システム、各衛星、各局、および各装置の構成は、上述した実施の形態のような構成でなくてもよい。各システム、各衛星、各局、および各装置の構成は、上述した実施の形態1から6で説明した機能を実現することができれば、どのような構成でもよい。
また、実施の形態1から6のうち、複数の部分あるいは実施例を組み合わせて実施しても構わない。あるいは、これらの実施の形態のうち、1つの部分あるいは実施例を実施しても構わない。その他、これらの実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
すなわち、実施の形態1から6では、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
なお、上述した実施の形態は、本質的に好ましい例示であって、本開示の範囲、本開示の適用物の範囲、および本開示の用途の範囲を制限することを意図するものではない。上述した実施の形態は、必要に応じて種々の変更が可能である。
10 測位信号送信装置、21 測位信号、30 衛星、31 衛星制御装置、32 衛星通信装置、33 推進装置、34 姿勢制御装置、35 電源装置、70 地球、71 月、100 地上局、200 静止衛星、300 準天頂衛星、400 測位衛星、401 太陽電池パドル、500 飛翔体、510 第1の飛翔体、520 第2の飛翔体、530 第3の飛翔体、550 月面局、501 測位信号受信装置、502 計測装置、503 高精度時計、800,801 測位システム。

Claims (2)

  1. 地球から月または惑星に向かう宇宙空間ないし月または惑星の近傍を飛翔する飛翔体の位置座標を計測する測位方法であって、
    前記飛翔体は、
    測位信号受信装置を具備し、
    測位信号送信装置を具備し、地球固定座標系における位置座標が既知である静止衛星から送信される測位信号と、測位信号送信装置を具備し、地球固定座標系における位置座標が既知である準天頂衛星から送信される測位信号とを、同時に4機の静止衛星ないし準天頂衛星から受信して、地球固定座標系における位置座標を計測する測位方法。
  2. 静止衛星または準天頂衛星が指向方向制御機能付き測位信号送信装置を具備する請求項1に記載の測位方法。
JP2023545516A 2021-08-30 2022-08-25 測位方法 Active JP7499975B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024068954A JP2024097013A (ja) 2021-08-30 2024-04-22 測位方法、月測位システム、および、測位衛星

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021139510 2021-08-30
JP2021139510 2021-08-30
PCT/JP2022/032122 WO2023032822A1 (ja) 2021-08-30 2022-08-25 測位方法、月測位システム、および、測位衛星

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024068954A Division JP2024097013A (ja) 2021-08-30 2024-04-22 測位方法、月測位システム、および、測位衛星

Publications (3)

Publication Number Publication Date
JPWO2023032822A1 JPWO2023032822A1 (ja) 2023-03-09
JPWO2023032822A5 JPWO2023032822A5 (ja) 2023-11-30
JP7499975B2 true JP7499975B2 (ja) 2024-06-14

Family

ID=85412601

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2023545516A Active JP7499975B2 (ja) 2021-08-30 2022-08-25 測位方法
JP2024068954A Pending JP2024097013A (ja) 2021-08-30 2024-04-22 測位方法、月測位システム、および、測位衛星

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024068954A Pending JP2024097013A (ja) 2021-08-30 2024-04-22 測位方法、月測位システム、および、測位衛星

Country Status (2)

Country Link
JP (2) JP7499975B2 (ja)
WO (1) WO2023032822A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191158A (ja) 2002-12-11 2004-07-08 Mitsubishi Electric Corp 飛翔位置計測装置
JP2004317200A (ja) 2003-04-14 2004-11-11 Mitsubishi Electric Corp 衛星測位システム及び飛行体測位システム
JP2005043189A (ja) 2003-07-28 2005-02-17 National Institute Of Information & Communication Technology 宇宙航行システムおよび方法
US20070050102A1 (en) 2005-08-29 2007-03-01 Johnson Gary N Space based navigation system
JP2009244143A (ja) 2008-03-31 2009-10-22 Mitsubishi Electric Corp 宇宙機測位システム
US20200319350A1 (en) 2019-04-02 2020-10-08 Technology And Engineering Center For Space Utilization, Chinese Academy Of Sciences Method for achieving space-based autonomous navigation of global navigation satellite system (gnss) satellites

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986964B (zh) * 2019-12-26 2021-10-01 西安空间无线电技术研究所 一种基于地球gnss和月球导航星的月球导航***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191158A (ja) 2002-12-11 2004-07-08 Mitsubishi Electric Corp 飛翔位置計測装置
JP2004317200A (ja) 2003-04-14 2004-11-11 Mitsubishi Electric Corp 衛星測位システム及び飛行体測位システム
JP2005043189A (ja) 2003-07-28 2005-02-17 National Institute Of Information & Communication Technology 宇宙航行システムおよび方法
US20070050102A1 (en) 2005-08-29 2007-03-01 Johnson Gary N Space based navigation system
JP2009244143A (ja) 2008-03-31 2009-10-22 Mitsubishi Electric Corp 宇宙機測位システム
US20200319350A1 (en) 2019-04-02 2020-10-08 Technology And Engineering Center For Space Utilization, Chinese Academy Of Sciences Method for achieving space-based autonomous navigation of global navigation satellite system (gnss) satellites

Also Published As

Publication number Publication date
WO2023032822A1 (ja) 2023-03-09
JPWO2023032822A1 (ja) 2023-03-09
JP2024097013A (ja) 2024-07-17

Similar Documents

Publication Publication Date Title
Gill et al. Autonomous formation flying for the PRISMA mission
US10483629B1 (en) Antenna beam pointing system
EP1772742A1 (en) Correction of the distance between phase centres of two directional antenneas of a navigational satellite
JP7292132B2 (ja) 衛星制御装置、観測システム、観測方法、および観測プログラム
WO2022065256A1 (ja) 衛星見守りシステム、衛星情報伝送システム、地上設備、通信衛星、監視システム、構成衛星、人工衛星、通信衛星コンステレーション、衛星コンステレーション、および、衛星
EA039190B1 (ru) Способы и устройства для минимизации динамики выдачи команд для спутника
JP3454783B2 (ja) オンボード光学系および他の衛星の天体暦を用いる天体暦/姿勢基準決定システム
US6216983B1 (en) Ephemeris/attitude reference determination using communications links
US6133870A (en) Ephemeris determination using intersatellite ranging and ephemeris knowledge of other satellites
JP2024032957A (ja) ハイブリッドコンステレーション、ハイブリッドコンステレーション形成方法、衛星情報伝送システム、地上システム、ミッション衛星、および、地上設備
US20070050102A1 (en) Space based navigation system
Cui et al. Real-time navigation for Mars final approach using X-ray pulsars
JP7499975B2 (ja) 測位方法
JP7139089B2 (ja) 衛星コンステレーション、地上設備および人工衛星
Kozorez et al. A solution of the navigation problem for autonomous insertion of payload into a geostationary orbit using a low-thrust engine
WO2022137341A1 (ja) 衛星コンステレーション、飛翔体監視システム、人工衛星、傾斜軌道衛星システム、傾斜軌道衛星およびハイブリッドコンステレーション
WO2020256024A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、および地上設備
KR20120071238A (ko) 지구 동기 위성을 이용한 범 지구 위성 항법 시스템
KR20070040085A (ko) 정지궤도 위성의 상대위치보정을 위한 지상 제어 방법
JP2023018714A (ja) 測位衛星コンステレーション、および、地上システム
Wloszek et al. FTS CubeSat constellation providing 3D winds
Zhou Onboard orbit determination using GPS measurements for low Earth orbit satellites
Qiao et al. GNSS-based orbit determination for highly elliptical orbit satellites
Zhao et al. Application of BeiDou navigation satellite system on attitude determination for Chinese Space Station
Greenbaum et al. A combined relative navigation and single antenna attitude determination sensor on the FASTRAC student-built nanosatellite mission

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240604

R150 Certificate of patent or registration of utility model

Ref document number: 7499975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150