JP7498580B2 - Disinfectant, method for producing disinfectant, disinfection method, slime inhibitor for separation membrane, and method for inhibiting slime in separation membrane - Google Patents

Disinfectant, method for producing disinfectant, disinfection method, slime inhibitor for separation membrane, and method for inhibiting slime in separation membrane Download PDF

Info

Publication number
JP7498580B2
JP7498580B2 JP2020053012A JP2020053012A JP7498580B2 JP 7498580 B2 JP7498580 B2 JP 7498580B2 JP 2020053012 A JP2020053012 A JP 2020053012A JP 2020053012 A JP2020053012 A JP 2020053012A JP 7498580 B2 JP7498580 B2 JP 7498580B2
Authority
JP
Japan
Prior art keywords
disinfectant
iodine
water
slime
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020053012A
Other languages
Japanese (ja)
Other versions
JP2021151966A (en
Inventor
昌平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2020053012A priority Critical patent/JP7498580B2/en
Publication of JP2021151966A publication Critical patent/JP2021151966A/en
Application granted granted Critical
Publication of JP7498580B2 publication Critical patent/JP7498580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、殺菌剤、その殺菌剤の製造方法、その殺菌剤を用いる殺菌方法、その殺菌剤を含む分離膜用スライム抑制剤、およびその分離膜用スライム抑制剤を用いる分離膜のスライム抑制方法に関する。 The present invention relates to a bactericide, a method for producing the bactericide, a sterilization method using the bactericide, a slime inhibitor for separation membranes containing the bactericide, and a method for inhibiting slime in separation membranes using the slime inhibitor for separation membranes.

ヨウ素は高い殺菌効果を有していることが知られており、医薬、食品加工、環境衛生分野の殺菌に広く用いられている。ヨウ素系の殺菌剤としては、エタノールにヨウ素およびヨウ化カリウムを溶解させたヨードチンキ、有機ポリマーや界面活性剤等にヨウ素を担持させたヨードホール、ポリビニルピロリドンにヨウ素を配位させたポピドンヨード(特許文献1参照)、シクロデキストリンにヨウ素を包接させたヨウ素包接シクロデキストリン(特許文献2参照)、ヨードグリシン錯体(特許文献3参照)等がよく知られている。 Iodine is known to have a strong bactericidal effect and is widely used for sterilization in the fields of medicine, food processing, and environmental hygiene. Well-known iodine-based bactericides include iodine tincture, which is made by dissolving iodine and potassium iodide in ethanol; iodophor, which is made by supporting iodine on organic polymers or surfactants; povidone-iodine, which is made by coordinating iodine with polyvinylpyrrolidone (see Patent Document 1); iodine-inclusion cyclodextrin, which is made by encapsulating iodine in cyclodextrin (see Patent Document 2); and iodine-glycine complex (see Patent Document 3).

ヨウ素は常温で固体であり、水への溶解度は極めて低い一方で、エタノール、メタノール等のアルコール類、ベンゼン等の有機溶媒への溶解度が高いことが知られており、上記ヨウ素系の殺菌剤は、アルコール、ポリビニルピロリドン、シクロデキストリン等の有機溶媒を用いてヨウ素を溶解させた殺菌剤である。 Iodine is a solid at room temperature and has extremely low solubility in water, but is known to have high solubility in alcohols such as ethanol and methanol, and in organic solvents such as benzene. The above-mentioned iodine-based disinfectants are disinfectants in which iodine is dissolved using organic solvents such as alcohol, polyvinylpyrrolidone, and cyclodextrin.

しかし、アルコール類等の有機溶媒を用いて溶解させたヨウ素系殺菌剤は、水処理用殺菌剤として用いる場合、溶媒由来の有機物が水系に残留することによって微生物の栄養源となり微生物の増殖を促進させ、強固なバイオフィルムの形成を促進させる可能性があり、適用は困難であった。 However, when iodine-based disinfectants dissolved in organic solvents such as alcohols are used as disinfectants for water treatment, organic matter from the solvent remains in the water system and acts as a nutrient source for microorganisms, promoting their growth and the formation of strong biofilms, making their application difficult.

特開昭50-035318号公報Japanese Patent Application Laid-Open No. 50-035318 特開2002-370902号公報JP 2002-370902 A 特開平10-167917号公報Japanese Patent Application Laid-Open No. 10-167917

本発明の目的は、有機物の含有量が低減されたヨウ素系の殺菌剤、その殺菌剤の製造方法、その殺菌剤を用いる殺菌方法、その殺菌剤を含む分離膜用スライム抑制剤、およびその分離膜用スライム抑制剤を用いる分離膜のスライム抑制方法を提供することにある。 The object of the present invention is to provide an iodine-based disinfectant with a reduced organic matter content, a method for producing the disinfectant, a disinfection method using the disinfectant, a slime inhibitor for separation membranes containing the disinfectant, and a method for inhibiting slime in separation membranes using the slime inhibitor for separation membranes.

本発明は、水、ヨウ素、ヨウ化カリウム、およびヨウ素酸カリウムを含有し、pHが7を超え12以下の範囲である、殺菌剤である。 The present invention is a disinfectant that contains water, iodine, potassium iodide, and potassium iodate and has a pH in the range of more than 7 to 12 or less.

前記殺菌剤において、有機物含有量が、TOCとして1000mg/L以下であることが好ましい。 In the above bactericide, it is preferable that the organic matter content is 1000 mg/L or less as TOC.

前記殺菌剤において、全塩素が、0.1質量%以上であることが好ましい。 In the disinfectant, it is preferable that the total chlorine content is 0.1% by mass or more.

本発明は、前記殺菌剤の製造方法であって、水水酸化カリウム、ヨウ素の順に混合する混合工程を含む、殺菌剤の製造方法である。 The present invention is a method for producing the disinfectant, which includes a mixing step of mixing water , potassium hydroxide, and iodine in this order.

本発明は、前記殺菌剤を用いる(ただし、ヒトへの使用を除く)殺菌方法である。 The present invention is a method for sterilization using the above-mentioned germicide (excluding use on humans) .

本発明は、前記殺菌剤を含む、分離膜用スライム抑制剤である。 The present invention is a slime inhibitor for separation membranes that contains the above-mentioned bactericide.

本発明は、分離膜を備える膜分離装置の被処理水中に、前記分離膜用スライム抑制剤を存在させる、分離膜のスライム抑制方法である。 The present invention is a method for suppressing slime in a separation membrane, in which the slime inhibitor for separation membranes is present in the water to be treated in a membrane separation device equipped with a separation membrane.

本発明により、有機物の含有量が低減されたヨウ素系の殺菌剤、その殺菌剤の製造方法、その殺菌剤を用いる殺菌方法、その殺菌剤を含む分離膜用スライム抑制剤、およびその分離膜用スライム抑制剤を用いる分離膜のスライム抑制方法を提供することができる。 The present invention provides an iodine-based disinfectant with a reduced organic matter content, a method for producing the disinfectant, a disinfection method using the disinfectant, a slime inhibitor for separation membranes containing the disinfectant, and a method for suppressing slime in separation membranes using the slime inhibitor for separation membranes.

本発明の実施形態に係る殺菌剤を適用可能な水処理装置の一例を示す概略構成図である。1 is a schematic diagram showing an example of a water treatment device to which a bactericide according to an embodiment of the present invention can be applied. 実施例7、比較例5の結果を示すグラフである。1 is a graph showing the results of Example 7 and Comparative Example 5.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 The following describes an embodiment of the present invention. This embodiment is an example of implementing the present invention, and the present invention is not limited to this embodiment.

<殺菌剤>
本発明の実施形態に係る殺菌剤は、水、ヨウ素、およびアルカリ剤を含有し、pHが7を超え12以下の範囲である殺菌剤である。この殺菌剤は、例えば、分離膜用スライム抑制剤として用いることもできる。
<Fungicide>
The disinfectant according to the embodiment of the present invention contains water, iodine, and an alkaline agent, and has a pH in the range of more than 7 and not more than 12. This disinfectant can also be used, for example, as a slime inhibitor for a separation membrane.

本発明者らが鋭意検討した結果、ヨウ素とアルカリ剤を混合させることでヨウ素を容易に水に溶解させることが可能であり、有機物の含有量が低減されたヨウ素系の殺菌剤が得られることを見出した。本発明者は、特に、例えば、殺菌剤のpH範囲についての創意工夫を施すことによって、有機物の含有量を低減することができることを明らかにし、水処理用の殺菌剤としての適用可能性を見出すことに成功した。 As a result of intensive research, the inventors have found that by mixing iodine with an alkaline agent, it is possible to easily dissolve iodine in water, and to obtain an iodine-based disinfectant with a reduced organic matter content. In particular, the inventors have shown that it is possible to reduce the organic matter content by, for example, being creative in adjusting the pH range of the disinfectant, and have succeeded in finding the applicability of the disinfectant as a disinfectant for water treatment.

殺菌剤に含有されている有機物によって微生物の増殖を促進するおそれがあるため、殺菌剤に有機物が多量に含有されていることは好ましくない。例えば、一般的に良く知られている殺菌剤であるヨードチンキには60質量%以上のエタノールという多量の有機物が含有されており、殺菌剤自体が微生物の増殖リスクを増大させる。一方、本実施形態に係る殺菌剤は、有機物含有量がTOCとして例えば1000mg/L以下に低減されており、殺菌剤自体による微生物の増殖リスクは極めて低い。 It is not preferable for a disinfectant to contain a large amount of organic matter, as there is a risk that the organic matter contained in the disinfectant may promote the growth of microorganisms. For example, tincture of iodine, a commonly known disinfectant, contains a large amount of organic matter, more than 60% by mass of ethanol, and the disinfectant itself increases the risk of microbial growth. On the other hand, the disinfectant according to this embodiment has an organic matter content reduced to, for example, 1000 mg/L or less in terms of TOC, and the risk of microbial growth due to the disinfectant itself is extremely low.

アルカリ剤としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の水酸化物、炭酸ナトリウム、炭酸カリウム等の炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素塩等が挙げられる。これらのうち、製剤コスト、保存安定性、有効成分の収率等の点から水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の水酸化物が好ましく、水酸化カリウムがより好ましい。 Examples of alkaline agents include hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, carbonates such as sodium carbonate and potassium carbonate, and bicarbonates such as sodium bicarbonate and potassium bicarbonate. Of these, hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide are preferred from the standpoint of formulation cost, storage stability, and yield of active ingredients, with potassium hydroxide being more preferred.

水、ヨウ素、アルカリ剤を混合することによってヨウ素とヨウ化物とヨウ素酸とアルカリとを含む製剤が得られる。例えば、ヨウ素(I)を水酸化カリウム(KOH)に溶解させてヨウ化カリウム(KI)とヨウ素酸カリウム(KIO)を得て(下記式(1))、ヨウ素酸カリウムを炭素、アルミニウム、亜鉛等の還元剤を用いて還元させる(下記式(2))ことによってヨウ化カリウムを得る方法が知られている。
3I+6KOH → 5KI+KIO+3HO 式(1)
KIO → 炭素等の還元剤で還元 → KI 式(2)
By mixing water, iodine, and an alkaline agent, a preparation containing iodine, iodide, iodic acid, and an alkali is obtained. For example, a method is known in which iodine (I 2 ) is dissolved in potassium hydroxide (KOH) to obtain potassium iodide (KI) and potassium iodate (KIO 3 ) (see formula (1) below), and potassium iodate is reduced with a reducing agent such as carbon, aluminum, or zinc (see formula (2) below) to obtain potassium iodide.
3I2 +6KOH→5KI+ KIO3 + 3H2O Formula (1)
KIO3 → reduced with a reducing agent such as carbon → KI Equation (2)

式(1)および式(2)の製法でヨウ化カリウムを得る場合、ヨウ化カリウムを精製する必要があるために製造コストが高価となることが考えられる。また、上記の通りヨウ化物塩を用いてヨウ素を溶解させることはコストの点では好ましくなく、安価にヨウ化物塩を得ることが好ましい。 When potassium iodide is obtained by the methods of formula (1) and formula (2), the production costs are likely to be high because the potassium iodide needs to be purified. In addition, as described above, dissolving iodine using iodide salt is not preferable in terms of cost, and it is preferable to obtain iodide salt inexpensively.

例えば、過剰量のヨウ素を加えることによって遊離ヨウ素の含有量が高い製剤が可能になる。本実施形態に係る殺菌剤は、上記式(1)において生成したヨウ素酸カリウムを還元しなくても、上記式(1)の水酸化カリウムに対するヨウ素のモル当量以上にヨウ素と水酸化カリウム等のアルカリ剤とを混合させることによって遊離ヨウ素を得ることができる。式(1)のモル当量以上に混合させた過剰なヨウ素は式(1)で生成されたKIと反応して溶解する。これは、下記式(3)で表される反応である。本製造方法を用いることで安価に得たヨウ化物塩をヨウ素の溶解に有効活用することができ、安価に殺菌効果が得られる殺菌剤を得ることができる。このようにして得られる殺菌剤は、ヨウ素、ヨウ化物イオン、ヨウ素酸イオンを含有する。 For example, by adding an excess amount of iodine, a formulation with a high content of free iodine can be prepared. The disinfectant according to this embodiment can obtain free iodine by mixing iodine with an alkaline agent such as potassium hydroxide in an amount equal to or greater than the molar equivalent of iodine to the potassium hydroxide in the above formula (1) without reducing the potassium iodate produced in the above formula (1). Excess iodine mixed in an amount equal to or greater than the molar equivalent of formula (1) reacts with KI produced in formula (1) and dissolves. This is the reaction represented by the following formula (3). By using this production method, it is possible to effectively use inexpensively obtained iodide salts to dissolve iodine, and it is possible to obtain a disinfectant that provides a disinfecting effect at low cost. The disinfectant obtained in this manner contains iodine, iodide ions, and iodate ions.

なお、ヨウ素(I)を水酸化カリウム(KOH)に溶解させる際に、下記式(4)により微量な次亜ヨウ素酸塩(KIO)を生成すると考えられる。次亜ヨウ素酸塩は高い酸化力を持った物質であり、本実施形態に係る殺菌剤では、この次亜ヨウ素酸塩が酸化力および殺菌力に寄与することが期待できる。
+2KOH → KI+KIO+HO 式(4)
When iodine (I 2 ) is dissolved in potassium hydroxide (KOH), it is believed that a small amount of hypoiodite (KIO) is generated according to the following formula (4). Hypoiodite is a substance with high oxidizing power, and in the disinfectant according to this embodiment, this hypoiodite is expected to contribute to the oxidizing power and disinfecting power.
I2 +2KOH→KI+KIO+ H2O Equation (4)

ここで、ヨウ化物とは、酸化数1のヨウ素化合物のことを指し、例えば、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ化水素、ヨウ化銀等が挙げられる。また、これらのヨウ化物は当然、水に溶解することで解離し、ヨウ化物イオンになる。 Here, iodide refers to an iodine compound with an oxidation number of 1, such as potassium iodide, sodium iodide, hydrogen iodide, and silver iodide. Naturally, these iodides dissociate when dissolved in water, turning into iodide ions.

本実施形態に係る殺菌剤は、極めて高い殺菌力により、極めて低い濃度での殺菌が可能である。また、次亜塩素酸等と同様に水処理の現場等で濃度を測定することができるため、より正確な濃度管理が可能である。 The disinfectant according to this embodiment has extremely high disinfecting power, making it possible to disinfect at extremely low concentrations. In addition, like hypochlorous acid, the concentration can be measured at the water treatment site, allowing for more accurate concentration management.

本明細書において、殺菌剤の全ての酸化力をDPD法による全塩素として表す。本明細書において、「全塩素」とは「JIS K 0120:2013の33.残留塩素」に記載の硫酸N,N-ジエチル-p-フェニレンジアンモニウム(DPD)を用いる吸光光度法によって求めた濃度を指す。例えば、0.2mol/Lリン酸二水素カリウム溶液2.5mLを比色管50mLにとり、これにDPD希釈粉末(硫酸N,N-ジエチル-p-フェニレンジアンモニウム1.0gを粉砕し、硫酸ナトリウム24gを混合したもの)0.5gを加え、ヨウ化カリウム0.5gを加えて試料を適量加え、水を標線まで加えて溶解して約3分間放置する。発色した桃色から桃紅色を波長510nm(または555nm)付近の吸光度を測定して定量する。DPDはあらゆる酸化剤によって酸化され、酸化剤としては、例えば、塩素、臭素、ヨウ素、過酸化水素、オゾン等が挙げられ、測定対象とすることができる。本実施形態における殺菌剤では、酸化力を持ちうる全てのヨウ素の形態(例えばI、IO 、IO、HI)をまとめて、「全塩素」として測定した。また、「全塩素」は「全ヨウ素」に換算することが可能である。具体的には「塩素の分子量」と「ヨウ素の分子量」を元に換算する。すなわち、「全塩素」×(126.9/35.45)≒「全塩素」×3.58=「全ヨウ素」となる。 In this specification, the total oxidizing power of the disinfectant is expressed as total chlorine by the DPD method. In this specification, "total chlorine" refers to the concentration determined by the spectrophotometric method using N,N-diethyl-p-phenylenediammonium sulfate (DPD) described in "JIS K 0120: 2013 33. Residual chlorine". For example, 2.5 mL of 0.2 mol/L potassium dihydrogen phosphate solution is taken in a 50 mL colorimetric tube, 0.5 g of DPD diluted powder (1.0 g of N,N-diethyl-p-phenylenediammonium sulfate crushed and mixed with 24 g of sodium sulfate) is added to it, 0.5 g of potassium iodide is added, an appropriate amount of sample is added, water is added to the mark to dissolve, and the mixture is left for about 3 minutes. The colored pink to pink red is quantified by measuring the absorbance at a wavelength of about 510 nm (or 555 nm). DPD is oxidized by any oxidizing agent, and examples of the oxidizing agent include chlorine, bromine, iodine, hydrogen peroxide, ozone, etc., which can be measured. In the disinfectant of this embodiment, all forms of iodine that can have oxidizing power (e.g., I 2 , IO 3 , IO , HI) are collectively measured as “total chlorine”. In addition, “total chlorine” can be converted to “total iodine”. Specifically, the conversion is based on “molecular weight of chlorine” and “molecular weight of iodine”. In other words, “total chlorine” × (126.9/35.45) ≒ “total chlorine” × 3.58 = “total iodine”.

本実施形態に係る殺菌剤の全塩素は、例えば、0.1質量%以上であり、0.2質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。殺菌剤の全塩素の上限は特にないが、例えば、20質量%以下である。殺菌剤の全塩素が0.1質量%未満であると、殺菌効果が低い場合がある。 The total chlorine of the disinfectant according to this embodiment is, for example, 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 2% by mass or more, and even more preferably 3% by mass or more. There is no particular upper limit to the total chlorine of the disinfectant, but it is, for example, 20% by mass or less. If the total chlorine of the disinfectant is less than 0.1% by mass, the disinfecting effect may be low.

本実施形態に係る殺菌剤において、全塩素に対するヨウ素酸イオン(IO )の質量比は、0.5以上10以下の範囲であることが好ましく、1以上2以下の範囲であることがより好ましく、1以上1.4以下の範囲であることがさらに好ましい。ヨウ素酸は水に対する溶解度が低く、低温時に析出しやすい物質であるため、全塩素に対するヨウ素酸イオンの質量比が10を超えると過剰にヨウ素酸イオンが析出する場合がある。一方、ヨウ素酸イオンは酸化力を有する物質であり、殺菌力にも寄与しているため、全塩素に対するヨウ素酸イオンの質量比が0.5未満であると殺菌力が低下する場合がある。 In the disinfectant according to this embodiment, the mass ratio of iodate ions (IO 3 ) to total chlorine is preferably in the range of 0.5 to 10, more preferably in the range of 1 to 2, and even more preferably in the range of 1 to 1.4. Since iodic acid has low solubility in water and is a substance that is prone to precipitation at low temperatures, if the mass ratio of iodate ions to total chlorine exceeds 10, excessive iodate ions may be precipitated. On the other hand, since iodate ions are a substance that has oxidizing power and also contribute to bactericidal power, if the mass ratio of iodate ions to total chlorine is less than 0.5, the bactericidal power may decrease.

本実施形態に係る殺菌剤のpHは、7を超え12以下の範囲であることが好ましく、7.3以上10以下の範囲であることがより好ましく、8以上9.5以下の範囲であることがさらに好ましい。殺菌剤のpHが7以下であると、ヨウ素の黒色結晶が析出する場合があり、12を超えると有効成分が著しく低下または保存安定性が悪化する場合がある。 The pH of the disinfectant according to this embodiment is preferably in the range of more than 7 and not more than 12, more preferably in the range of 7.3 to 10, and even more preferably in the range of 8 to 9.5. If the pH of the disinfectant is 7 or less, black crystals of iodine may precipitate, and if it exceeds 12, the active ingredient may be significantly reduced or storage stability may deteriorate.

一般的によく知られているイソジンやポピドンヨード等のヨウ素系殺菌剤のpHは7以下であることが多く、特に5以下であることが多い。このように低いpHではヨウ素系殺菌剤の有効成分の安定性が高いことが一般的であったが、本実施形態に係る殺菌剤は、pH7を超える範囲で高い安定性を維持することが可能である。 The commonly known iodine-based disinfectants such as isodine and povidone-iodine often have a pH of 7 or less, and particularly 5 or less. Generally, the active ingredients of iodine-based disinfectants are highly stable at such low pH values, but the disinfectant according to this embodiment is capable of maintaining high stability at a pH range exceeding 7.

本実施形態に係る殺菌剤は、有機物含有量が低減されているため、例えば分離膜用スライム抑制剤として好適に用いることができる。分離膜用スライム抑制剤にアルコール、ポリビニルピロリドン、シクロデキストリン等の有機溶媒(有機物)を用いた場合、有機物が微生物への栄養源となり微生物の増殖を促進させる可能性があり、微生物の増殖によって強固なバイオフィルムの形成を促進させる可能性があった。 The disinfectant according to this embodiment has a reduced organic matter content, and can therefore be suitably used, for example, as a slime inhibitor for separation membranes. When an organic solvent (organic matter) such as alcohol, polyvinylpyrrolidone, or cyclodextrin is used as a slime inhibitor for separation membranes, the organic matter may become a nutrient source for microorganisms and promote the growth of the microorganisms, which may promote the formation of a strong biofilm.

その中でも、ヨウ素の溶解において特に安価に用いることができるエタノール等の低分子のアルコール等の低分子有機物は、分離膜での除去は難しく、逆浸透膜においても透過することが知られており、低分子の有機物を含む殺菌剤を分離膜用スライム抑制剤として用いる場合、水質悪化が懸念となる。また、ポピドンヨードの成分として知られるポリビニルピロリドンは有機物であるだけでなく、分離膜を閉塞し、ファウリングの要因となり得ることから、分離膜用スライム抑制剤としての適用が難しかった。 Among these, low-molecular-weight organic substances such as low-molecular-weight alcohols such as ethanol, which can be used particularly inexpensively to dissolve iodine, are difficult to remove using separation membranes and are known to permeate even reverse osmosis membranes. Therefore, when a bactericide containing a low-molecular-weight organic substance is used as a slime inhibitor for separation membranes, there is a concern that the water quality may deteriorate. In addition, polyvinylpyrrolidone, which is known as a component of povidone-iodine, is not only an organic substance, but also clogs separation membranes and can be a cause of fouling, making it difficult to use as a slime inhibitor for separation membranes.

逆浸透膜を透過しやすい低分子の有機物とは、分子量が200以下の有機物を指し、例えば、分子量が200以下の、メタノール、エタノール、イソプロピルアルコール等のアルコール化合物、モノエタノールアミン、尿素等のアミン化合物、水酸化テトラメチルアンモニム等のテトラアルキルアンモニウム塩、酢酸等のカルボン酸等が挙げられる。 Low-molecular-weight organic substances that easily permeate reverse osmosis membranes refer to organic substances with a molecular weight of 200 or less, such as alcohol compounds with a molecular weight of 200 or less, such as methanol, ethanol, and isopropyl alcohol; amine compounds such as monoethanolamine and urea; tetraalkylammonium salts such as tetramethylammonium hydroxide; and carboxylic acids such as acetic acid.

逆浸透膜においては分子量が低いほど除去率が低下することが知られている。前記低分子の有機物は逆浸透膜処理においても除去率が低いことが広く知られており、例えば、メタノールは10%程度、エタノールは40%程度、尿素は50%程度、酢酸は70%程度、イソプロピルアルコールは80~90%程度の除去率であることが知られている。 It is known that the lower the molecular weight of a substance, the lower the removal rate in reverse osmosis membranes. It is widely known that the removal rate of low-molecular-weight organic matter is low even in reverse osmosis membrane treatment. For example, it is known that the removal rate is approximately 10% for methanol, approximately 40% for ethanol, approximately 50% for urea, approximately 70% for acetic acid, and approximately 80-90% for isopropyl alcohol.

本実施形態に係る分離膜用スライム抑制剤は有機物の含有量が低減されているため、バイオファウリングのリスクを増大させることなく好適に用いることが可能である。また、本実施形態に係る分離膜用スライム抑制剤を用いることによって、有効成分が分離膜に吸着し、透過側に十分な量の有効成分を透過させることができるため、透過水側のスライム抑制効果が得られ、分離膜用スライム抑制剤の被処理水への注入停止後もしばらくの間スライム抑制効果を維持することができる。 The slime inhibitor for separation membranes according to this embodiment has a reduced organic matter content, so it can be used suitably without increasing the risk of biofouling. In addition, by using the slime inhibitor for separation membranes according to this embodiment, the active ingredient is adsorbed to the separation membrane and a sufficient amount of the active ingredient can be transmitted to the permeate side, so that a slime inhibition effect is obtained on the permeate side, and the slime inhibition effect can be maintained for a while even after the injection of the slime inhibitor for separation membranes into the treated water is stopped.

なお、本明細書において、殺菌剤または分離膜用スライム抑制剤が「有機物の含有量が低減されている」とは、従来の有機物を含有するヨウ素系の殺菌剤に比べて有機物の含有量が低減されていればよいが、例えば、殺菌剤中または分離膜用スライム抑制剤中の有機物の含有量がTOCとして1000mg/L以下、好ましくは100mg/L以下、より好ましくは10mg/L以下のことを言う。 In this specification, when a bactericide or slime inhibitor for separation membranes is said to have a "reduced organic matter content," it means that the organic matter content is reduced compared to conventional iodine-based bactericides that contain organic matter. For example, this means that the organic matter content in the bactericide or slime inhibitor for separation membranes is 1000 mg/L or less, preferably 100 mg/L or less, more preferably 10 mg/L or less, as TOC.

<殺菌剤の製造方法>
本実施形態において、水、ヨウ素、アルカリ剤を混合する混合工程を含む方法によって、水、ヨウ素、およびアルカリ剤を含有する殺菌剤を製造することができる。撹拌時間等の観点から、水、アルカリ剤、ヨウ素の順に混合する混合工程を含む方法によって、水、ヨウ素、およびアルカリ剤を含有する殺菌剤を製造することが好ましい。
<Method of producing the fungicide>
In this embodiment, a disinfectant containing water, iodine, and an alkaline agent can be produced by a method including a mixing step of mixing water, iodine, and an alkaline agent. From the viewpoint of stirring time, etc., it is preferable to produce a disinfectant containing water, iodine, and an alkaline agent by a method including a mixing step of mixing water, an alkaline agent, and iodine in this order.

混合工程におけるアルカリ剤に対するヨウ素のモル比は、アルカリ剤(モル)/ヨウ素(モル)=0.89~1.01の範囲であることが好ましく、0.97~1.01の範囲であることがより好ましい。アルカリ剤(モル)/ヨウ素(モル)が0.89未満であると、有効成分を高収率に得ることができない場合や保存安定性が悪化する場合があり、1.01を超えると、ヨウ素が略均一に溶解しない場合やヨウ化物塩またはヨウ素酸塩が析出する場合がある。 The molar ratio of iodine to the alkaline agent in the mixing step is preferably in the range of alkaline agent (moles)/iodine (moles) = 0.89 to 1.01, and more preferably in the range of 0.97 to 1.01. If the alkaline agent (moles)/iodine (moles) is less than 0.89, the active ingredient may not be obtained in high yield or storage stability may deteriorate, and if it exceeds 1.01, iodine may not dissolve substantially uniformly or iodide salts or iodate salts may precipitate.

<殺菌方法>
本実施形態に係る殺菌方法は、上記殺菌剤を用いて殺菌を行う方法である。殺菌対象としては、例えば、水処理に用いられる水等である。
<Sterilization method>
The sterilization method according to the present embodiment is a method of sterilization using the above-mentioned sterilizing agent. The object to be sterilized is, for example, water used in water treatment.

有機物含有量がTOCとして例えば1000mg/L以下に低減された上記殺菌剤を用いることによって、殺菌剤自体による微生物の増殖リスクが極めて低い。 By using the above-mentioned disinfectant whose organic matter content has been reduced to, for example, 1000 mg/L or less as TOC, the risk of microbial proliferation due to the disinfectant itself is extremely low.

<分離膜のスライム抑制方法>
本実施形態に係る分離膜のスライム抑制方法は、上記殺菌剤を分離膜用スライム抑制剤として用いる方法である。例えば、分離膜を備える膜分離装置の被処理水(例えば、膜分離装置の給水および洗浄水のうちの少なくとも1つ)中に、上記殺菌剤を分離膜用スライム抑制剤として存在させる方法である。
<Method for suppressing slime in separation membrane>
The slime suppression method of the separation membrane according to the present embodiment is a method of using the above-mentioned bactericide as a slime suppression agent for separation membrane.For example, the above-mentioned bactericide is made to exist as a slime suppression agent for separation membrane in the water to be treated (for example, at least one of the feed water and washing water of the membrane separation device) of the membrane separation device that has a separation membrane.

上記分離膜用スライム抑制剤を用いることによって、極めて低い有効成分量であっても分離膜のスライム生成を抑制することができる。また、分離膜への被処理水のpHに関係なく、分離膜のスライム生成を抑制しつつ透過水量の低下を抑制することができる。 By using the slime inhibitor for separation membranes, slime formation in the separation membrane can be suppressed even with an extremely low amount of active ingredient. In addition, regardless of the pH of the water to be treated at the separation membrane, slime formation in the separation membrane can be suppressed while suppressing a decrease in the amount of permeated water.

分離膜としては、逆浸透膜(RO膜)、ナノろ過膜(NF膜)、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、正浸透膜(FO膜)等が挙げられる。これらのうち、特に逆浸透膜(RO膜)やナノろ過膜(NF膜)に、本実施形態に係る分離膜用スライム抑制剤を用いる分離膜のスライム抑制方法を好適に適用することができる。また、逆浸透膜等として昨今主流であるポリアミド系逆浸透膜、ポリアミド系ナノろ過膜等のポリアミド系高分子膜に本実施形態に係る分離膜用スライム抑制剤を用いる分離膜のスライム抑制方法を好適に適用することができる。ポリアミド系逆浸透膜等は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系逆浸透膜等に連続的に接触させると、膜性能の著しい低下が起こる場合がある。しかしながら、本実施形態に係る分離膜用スライム抑制剤を用いる分離膜のスライム抑制方法ではポリアミド系逆浸透膜等においても、このような著しい膜性能の低下が起こりにくい。 Examples of separation membranes include reverse osmosis membranes (RO membranes), nanofiltration membranes (NF membranes), microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes), and forward osmosis membranes (FO membranes). Of these, the slime suppression method for separation membranes using the slime suppressant for separation membranes according to this embodiment can be suitably applied to reverse osmosis membranes (RO membranes) and nanofiltration membranes (NF membranes). In addition, the slime suppression method for separation membranes using the slime suppressant for separation membranes according to this embodiment can be suitably applied to polyamide polymer membranes such as polyamide reverse osmosis membranes and polyamide nanofiltration membranes, which are currently mainstream as reverse osmosis membranes. Polyamide reverse osmosis membranes and the like have relatively low resistance to oxidizing agents, and continuous contact with free chlorine and the like may cause a significant decrease in membrane performance. However, in the slime suppression method for separation membranes using the slime suppressant for separation membranes according to this embodiment, such a significant decrease in membrane performance is unlikely to occur even in polyamide reverse osmosis membranes and the like.

分離膜用スライム抑制剤の被処理水への添加方法としては、本実施形態に係る殺菌剤を連続的に添加する連続添加でもよいし、被処理水中に本実施形態に係る殺菌剤を添加する添加期間と被処理水中に本実施形態に係る殺菌剤を添加しない無添加期間とを設ける間欠添加でもよい。薬品コスト等の観点からは間欠添加が好ましいが、上記殺菌剤を分離膜の被処理水中に連続的に添加すれば、被処理水中に常時、有効成分を含有させることができる。 The method of adding the slime inhibitor for separation membranes to the water to be treated may be continuous addition, in which the bactericide according to this embodiment is added continuously, or intermittent addition, in which an addition period in which the bactericide according to this embodiment is added to the water to be treated and a non-addition period in which the bactericide according to this embodiment is not added to the water to be treated are provided. From the standpoint of chemical costs, etc., intermittent addition is preferable, but if the bactericide is added continuously to the water to be treated of the separation membrane, the active ingredient can be constantly contained in the water to be treated.

本実施形態に係る分離膜用スライム抑制剤は、分離膜への吸着能が高く、分離膜の被処理水中に連続的に添加することによって分離膜に十分な量の有効成分が吸着し、分離膜用スライム抑制剤の添加を停止しても有効成分が徐々に放出される。そのため、トラブルや不具合等によって膜分離装置および分離膜用スライム抑制剤の注入ポンプ等が停止して長時間の水の滞留が発生する場合または分離膜用スライム抑制剤の添加が停止する場合等でも持続的に殺菌効果を得ることができる。また、分離膜に有効成分が吸着することによって、従来の殺菌剤ではバイオフィルムの表面(流路面)から殺菌、洗浄を行っていたのに対して、バイオフィルムの裏面(バイオフィルムと膜との付着面)からの殺菌、洗浄効果が期待できる。 The slime inhibitor for separation membranes according to this embodiment has a high adsorption ability to separation membranes, and by continuously adding it to the water to be treated through the separation membrane, a sufficient amount of the active ingredient is adsorbed to the separation membrane, and even if the addition of the slime inhibitor for separation membranes is stopped, the active ingredient is gradually released. Therefore, even if the membrane separation device and the injection pump for the slime inhibitor for separation membranes are stopped due to a trouble or malfunction, causing water to stagnate for a long time, or if the addition of the slime inhibitor for separation membranes is stopped, a continuous bactericidal effect can be obtained. In addition, by adsorbing the active ingredient to the separation membrane, sterilization and cleaning effects can be expected from the back side of the biofilm (the adhesion surface between the biofilm and the membrane), whereas conventional bactericides sterilize and clean from the surface (flow path surface) of the biofilm.

分離膜への被処理水(例えば、膜分離装置の給水および洗浄水のうちの少なくとも1つ)のpHは、2~12の範囲であることが好ましく、4~9の範囲であることがより好ましい。被処理水のpHが8を超えると有効成分の低下によってスライム抑制効果が低下し、さらに12を超えると十分なスライム抑制効果が得られない場合があり、2未満であると、ヨウ素の結晶が析出し、十分なスライム抑制効果が得られない場合がある。 The pH of the water to be treated (e.g., at least one of the feed water and wash water of the membrane separation device) for the separation membrane is preferably in the range of 2 to 12, and more preferably in the range of 4 to 9. If the pH of the water to be treated exceeds 8, the slime suppression effect decreases due to a decrease in the active ingredients, and if it exceeds 12, a sufficient slime suppression effect may not be obtained, and if it is less than 2, iodine crystals may precipitate, and a sufficient slime suppression effect may not be obtained.

本発明の実施形態に係る殺菌剤を分離膜用スライム抑制剤として適用可能な水処理装置の一例の概略を図1に示す。 Figure 1 shows an overview of an example of a water treatment device in which the bactericide according to an embodiment of the present invention can be used as a slime inhibitor for separation membranes.

図1に示す水処理装置1は、分離膜を備える膜分離装置の一例として、逆浸透膜処理装置12を備える。水処理装置1は、被処理水を貯留するための被処理水槽10を備えてもよい。 The water treatment device 1 shown in FIG. 1 includes a reverse osmosis membrane treatment device 12 as an example of a membrane separation device equipped with a separation membrane. The water treatment device 1 may also include a water tank 10 for storing water to be treated.

水処理装置1において、被処理水槽10の入口には、被処理水配管14が接続されている。被処理水槽10の出口と、逆浸透膜処理装置12の入口とは、被処理水供給配管16により接続されている。逆浸透膜処理装置12の透過水出口には、透過水配管18が接続され、濃縮水出口には、濃縮水配管20が接続されている。被処理水槽10および被処理水供給配管16のうちの少なくとも1つには、スライム抑制剤添加配管22またはスライム抑制剤添加配管24が接続されている。 In the water treatment device 1, a treated water pipe 14 is connected to the inlet of the treated water tank 10. The outlet of the treated water tank 10 and the inlet of the reverse osmosis membrane treatment device 12 are connected by a treated water supply pipe 16. A permeated water pipe 18 is connected to the permeated water outlet of the reverse osmosis membrane treatment device 12, and a concentrated water pipe 20 is connected to the concentrated water outlet. A slime inhibitor addition pipe 22 or a slime inhibitor addition pipe 24 is connected to at least one of the treated water tank 10 and the treated water supply pipe 16.

水処理装置1において、被処理水は、被処理水配管14を通して、必要に応じて被処理水槽10に送液され、貯留される。被処理水槽10において、被処理水中にスライム抑制剤添加配管22を通して上記分離膜用スライム抑制剤が添加され、分離膜用スライム抑制剤を存在させる(スライム抑制剤添加工程)。分離膜用スライム抑制剤は、被処理水配管14において添加されてもよいし、図1に示すようにスライム抑制剤添加配管24を通して被処理水供給配管16において添加されてもよい。 In the water treatment device 1, the water to be treated is sent to the water to be treated tank 10 through the water to be treated pipe 14 as necessary and stored there. In the water to be treated tank 10, the slime inhibitor for the separation membrane is added to the water to be treated through the slime inhibitor addition pipe 22 to cause the slime inhibitor for the separation membrane to be present (slime inhibitor addition process). The slime inhibitor for the separation membrane may be added in the water to be treated pipe 14, or may be added in the water to be treated supply pipe 16 through the slime inhibitor addition pipe 24 as shown in FIG. 1.

上記分離膜用スライム抑制剤を存在させたスライム抑制剤含有水は、被処理水供給配管16を通して、逆浸透膜処理装置12に供給され、逆浸透膜処理装置12において、逆浸透膜処理が行われる(逆浸透膜処理工程)。逆浸透膜処理で得られた透過水は、処理水として透過水配管18を通して排出され、濃縮水は濃縮水配管20を通して排出される。 The slime inhibitor-containing water containing the slime inhibitor for separation membrane is supplied to the reverse osmosis membrane treatment device 12 through the treated water supply pipe 16, where reverse osmosis membrane treatment is carried out (reverse osmosis membrane treatment process). The permeated water obtained by the reverse osmosis membrane treatment is discharged as treated water through the permeated water pipe 18, and the concentrated water is discharged through the concentrated water pipe 20.

水処理装置1において、逆浸透膜処理装置12の他に、全塩素濃度測定装置、ポンプ、安全フィルタ、流量測定装置、圧力測定装置、温度測定装置、酸化還元電位(ORP)測定装置、残留塩素測定装置、電気伝導度測定装置、pH測定装置、エネルギー回収装置等を必要に応じて備えてもよい。 In addition to the reverse osmosis membrane treatment device 12, the water treatment device 1 may also include a total chlorine concentration measuring device, a pump, a safety filter, a flow rate measuring device, a pressure measuring device, a temperature measuring device, an oxidation-reduction potential (ORP) measuring device, a residual chlorine measuring device, an electrical conductivity measuring device, a pH measuring device, an energy recovery device, and the like, as necessary.

水処理装置1の前処理(前処理工程)として、pH調整、生物処理、凝集処理、凝集沈殿処理、加圧浮上処理、ろ過処理、膜分離処理、活性炭処理、オゾン処理、紫外線照射処理、軟化処理、脱炭酸処理等の生物学的、物理的または化学的な前処理のうちの少なくとも1つの処理を行う装置を備え、それらの生物学的、物理的または化学的な前処理のうちの少なくとも1つの処理を行ってもよい。 As a pretreatment (pretreatment step) for the water treatment device 1, a device may be provided that performs at least one of the following biological, physical, or chemical pretreatment processes: pH adjustment, biological treatment, coagulation treatment, coagulation sedimentation treatment, pressure flotation treatment, filtration treatment, membrane separation treatment, activated carbon treatment, ozone treatment, ultraviolet irradiation treatment, softening treatment, decarbonation treatment, etc., and at least one of these biological, physical, or chemical pretreatment processes may be performed.

また、水処理装置1の後処理(後処理工程)として、再生型イオン交換処理装置、電気式脱塩処理装置(EDI)、非再生型イオン交換樹脂装置、脱気膜処理装置、紫外線殺菌処理装置、紫外線酸化処理装置、微粒子除去処理装置、加熱装置、限外ろ過装置、逆浸透膜処理装置等の後処理のうちの少なくとも1つの処理を行う装置を備え、それらの後処理のうちの少なくとも1つの処理を行ってもよい。 In addition, as a post-treatment (post-treatment process) of the water treatment device 1, a device that performs at least one of the following post-treatments may be provided: a regenerative ion exchange treatment device, an electrical demineralization treatment device (EDI), a non-regenerative ion exchange resin device, a degassing membrane treatment device, an ultraviolet sterilization treatment device, an ultraviolet oxidation treatment device, a fine particle removal treatment device, a heating device, an ultrafiltration device, a reverse osmosis membrane treatment device, etc., and at least one of these post-treatments may be performed.

水処理装置1は、特に、排水回収への適用、例えば、電子産業排水、食品製造排水、飲料水製造排水、化学工場排水、メッキ工場排水等の回収への適用や、純水製造への適用、海水淡水化への適用等が考えられる。電子産業排水には低分子有機物が含まれることが多く、例えば電子産業排水を回収するフローとして、例えば、生物処理装置と膜処理装置とを備える生物処理システムの後段に、逆浸透膜を用いる水処理方法を適用する、逆浸透膜処理装置12を備える水処理装置1を有するフローが考えられる。 The water treatment device 1 can be particularly used for wastewater recovery, for example, recovery of wastewater from the electronics industry, food manufacturing, drinking water production, chemical plants, plating plants, etc., for pure water production, and for seawater desalination. Electronics industry wastewater often contains low molecular weight organic matter, and a possible flow for recovering electronics industry wastewater is a flow having a water treatment device 1 equipped with a reverse osmosis membrane treatment device 12 that applies a water treatment method using a reverse osmosis membrane in the downstream of a biological treatment system equipped with a biological treatment device and a membrane treatment device.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

[殺菌剤の調製]
<実施例1~3>
上記式(1),(3)の反応式を元に考えられるヨウ素の溶解可能量を明らかにし、保存安定性の良否を明らかにするために、表1に示す配合量で、ヨウ素(I)、水酸化カリウム(48%KOH水)、水を混合した。これにより、ヨウ素(I)、水酸化カリウム(KOH)、水を混合することによって、ヨウ素(I)とヨウ化カリウム(KI)とヨウ素酸カリウム(KIO)とアルカリ(KOH)と水(HO)とを含む製剤が得られる。結果を表1に示す。なお、実施例1のIO 含有量は2.5質量%、実施例2のIO 含有量は3.6質量%、実施例3のIO 含有量は3.6質量%である。
[Preparation of disinfectant]
<Examples 1 to 3>
In order to clarify the possible soluble amount of iodine based on the reaction formulas (1) and (3) above and to clarify the quality of storage stability, iodine (I 2 ), potassium hydroxide (48% KOH water), and water were mixed in the amounts shown in Table 1. By mixing iodine (I 2 ), potassium hydroxide (KOH), and water, a preparation containing iodine (I 2 ), potassium iodide (KI), potassium iodate (KIO 3 ), alkali (KOH), and water (H 2 O) is obtained. The results are shown in Table 1. The IO 3 -content of Example 1 is 2.5% by mass, the IO 3 -content of Example 2 is 3.6% by mass, and the IO 3 -content of Example 3 is 3.6% by mass.

「全塩素」は、上記DPD法に従って、HACH社の多項目水質分析計DR/3900を用いて測定した。有機物含有量(TOC)は、GE Analytical InstrumentsのSievers900型TOC分析装置を用いて測定した。 "Total chlorine" was measured using a HACH multi-parameter water quality analyzer DR/3900 according to the DPD method described above. Total organic matter (TOC) was measured using a GE Analytical Instruments Sievers 900 TOC analyzer.

Figure 0007498580000002
Figure 0007498580000002

実施例1ではI/KOH=0.89として製剤し、実施例2ではI/KOH=0.97として製剤した。実施例1,2ではヨウ素が溶解し、略均一な製剤が得られた。実施例3では実施例1,2よりもヨウ素の濃度を上げて製剤を実施した。実施例3ではI/KOH=1.01として製剤した。実施例3ではヨウ素が溶解し、略均一な製剤が得られた。実施例1に対して実施例2の方がI/KOHの比率が大きく、実施例2に対して実施例3の方がI/KOHの比率が大きくなっており、溶解可能量が増えていることがわかる。これは、式(3)によって生成する三ヨウ化物(I )が高濃度条件下では多ヨウ化物(I ,I ,I )となることが要因であると考えられる。 In Example 1, the formulation was performed at I 2 /KOH = 0.89, and in Example 2, the formulation was performed at I 2 /KOH = 0.97. In Examples 1 and 2, iodine was dissolved, and a substantially uniform formulation was obtained. In Example 3, the iodine concentration was increased compared to Examples 1 and 2. In Example 3, the formulation was performed at I 2 /KOH = 1.01. In Example 3, iodine was dissolved, and a substantially uniform formulation was obtained. It can be seen that the ratio of I 2 /KOH is larger in Example 2 than in Example 1, and the ratio of I 2 /KOH is larger in Example 3 than in Example 2, and the soluble amount is increased. This is considered to be due to the fact that triiodide (I 3 - ) generated by formula (3) becomes polyiodide (I 5 - , I 7 - , I 9 - ) under high concentration conditions.

また、実施例1~3の製剤はいずれもTOCが10mg/L未満であり、従来技術のヨウ素系の殺菌剤に比べて、有機物の含有量が大幅に低減された。 In addition, the TOC of all the formulations in Examples 1 to 3 was less than 10 mg/L, and the organic matter content was significantly reduced compared to conventional iodine-based disinfectants.

実施例1,2,3の製剤の保存安定性試験を実施した。結果を表1に示す。 A storage stability test was conducted on the formulations of Examples 1, 2, and 3. The results are shown in Table 1.

実施例1の製剤の室温(25℃)保管30日後の有効成分保持率は71%であり、50℃保管30日後の有効成分保持率は67%であり、安定性はやや劣っていた。実施例2の製剤の室温(25℃)保管30日後の有効成分保持率は97%、60日後の有効成分保持率は97%であり、50℃保管30日後の有効成分保持率は89%、60日後の有効成分保持率は85%であり、高い安定性を維持していた。実施例3の製剤の室温(25℃)保管30日後の有効成分保持率は100%、60日後の有効成分保持率は100%であり、50℃保管30日後の有効成分保持率は99%、60日後の有効成分保持率は99%であり、非常に高い安定性を維持していた。実施例1の全塩素は0.25質量%であり、実施例2の全塩素は2.4質量%であり、実施例3の全塩素は3.2質量%であった。本実施例による殺菌剤は、全塩素濃度が高くなるにつれて安定性が増すことが考えられる。 The active ingredient retention rate of the formulation of Example 1 after 30 days of storage at room temperature (25°C) was 71%, and the active ingredient retention rate of the formulation of Example 1 after 30 days of storage at 50°C was 67%, and the stability was slightly inferior. The active ingredient retention rate of the formulation of Example 2 after 30 days of storage at room temperature (25°C) was 97%, and the active ingredient retention rate of the formulation of Example 2 after 60 days of storage was 97%, and the active ingredient retention rate of the formulation of Example 2 after 30 days of storage at room temperature (25°C) was 89%, and the active ingredient retention rate of the formulation of Example 3 after 30 days of storage at room temperature (25°C) was 100%, and the active ingredient retention rate of the formulation of Example 3 after 60 days of storage was 100%, and the active ingredient retention rate of the formulation of Example 3 after 30 days of storage at room temperature (25°C) was 99%, and the active ingredient retention rate of the formulation of Example 3 after 60 days of storage at 50°C was 99%, and the active ingredient retention rate of the formulation of Example 3 after 60 days of storage was 99%, and the active ingredient retention rate of the formulation of Example 3 after 30 days of storage at room temperature (25°C) was 99%, and the active ingredient retention rate of the formulation of Example 3 after 60 days of storage ... It is believed that the disinfectant of this embodiment becomes more stable as the total chlorine concentration increases.

また、得られた殺菌剤に対して酸を用いてpHを調整すると微量の場合はヨウ化物イオンがIになることによって有効成分が増えるが、過剰に添加した場合、ヨウ素が析出することがあり、極めて過剰に添加した場合、ヨウ素ガスが発生する可能性がある。アルカリを用いてpHを調整すると有効成分が低下し、保存安定性も悪化する可能性がある。 In addition, when the pH of the obtained disinfectant is adjusted using an acid, the amount of active ingredient increases when a small amount of the acid is used, as the iodide ion becomes I2 , but when an excessive amount is added, iodine may precipitate, and when an extremely excessive amount is added, iodine gas may be generated. When the pH is adjusted using an alkali, the amount of active ingredient decreases and the storage stability may also deteriorate.

<実施例3、比較例1,2>
有効成分の収率を明らかにするために表2に示す配合量でヨウ素(I)、水酸化カリウム(KOH)、水を混合した。
<Example 3, Comparative Examples 1 and 2>
In order to clarify the yield of the active ingredient, iodine (I 2 ), potassium hydroxide (KOH), and water were mixed in the amounts shown in Table 2.

実施例3、比較例1,2では48%KOHを10.3質量%とし、比較例1ではI/KOH=0.33として製剤し、比較例2ではI/KOH=0.5として製剤し、実施例3ではI/KOH=1.01として製剤した。結果を表2に示す。なお、全ヨウ素は、上記DPD法に従って、HACH社の多項目水質分析計DR/3900を用いて測定した「全塩素」から「全ヨウ素」に換算した値を用いた。 In Example 3 and Comparative Examples 1 and 2, 48% KOH was used at 10.3 mass%, in Comparative Example 1, I2 /KOH = 0.33 was used, in Comparative Example 2, I2 /KOH = 0.5 was used, and in Example 3, I2 /KOH = 1.01 was used. The results are shown in Table 2. For total iodine, the value converted from "total chlorine" measured using a HACH multi-item water quality analyzer DR/3900 according to the above DPD method was used.

Figure 0007498580000003
Figure 0007498580000003

比較例1ではヨウ素が溶解し、全ヨウ素0.017質量%の無色透明の略均一な製剤が得られ、全ヨウ素収率は0.23%であった。比較例2ではヨウ素が溶解し、全ヨウ素0.039質量%の橙色の略均一な製剤が得られ、全ヨウ素収率は0.35%であった。実施例3ではヨウ素が溶解し、全ヨウ素11.4質量%の黒色の略均一な製剤が得られ、全ヨウ素収率は53%であった。比較例1では上記式(1)のモル当量通りのIとKOHのmol比(I/KOH=0.33)で製剤を実施したが全ヨウ素収率は低く、比較例2では上記式(1)のIとKOHのmol比に対してIを過剰に配合させ、I/KOH=0.5として製剤を実施したが全ヨウ素収率は依然低かった。実施例3では上記式(1)のIとKOHのmol比に対してIをより過剰に配合させた結果、高い全ヨウ素収率を得られることが明らかとなった。 In Comparative Example 1, iodine was dissolved, and a colorless, transparent, and substantially uniform formulation with a total iodine content of 0.017% by mass was obtained, and the total iodine yield was 0.23%. In Comparative Example 2, iodine was dissolved, and a substantially uniform orange formulation with a total iodine content of 0.039% by mass was obtained, and the total iodine yield was 0.35%. In Example 3, iodine was dissolved, and a substantially uniform black formulation with a total iodine content of 11.4% by mass was obtained, and the total iodine yield was 53%. In Comparative Example 1, the formulation was carried out at a molar ratio of I 2 to KOH (I 2 /KOH=0.33) according to the molar equivalent of the above formula (1), but the total iodine yield was low. In Comparative Example 2, I 2 was excessively mixed with respect to the molar ratio of I 2 to KOH in the above formula (1), and the formulation was carried out at I 2 /KOH=0.5, but the total iodine yield was still low. In Example 3, it was revealed that a high total iodine yield could be obtained by blending I2 in an excess amount relative to the molar ratio of I2 to KOH in the above formula (1).

<実施例4,5>
アルカリ剤の検討のために表3に示す配合量でヨウ素(I)、水酸化ナトリウム(NaOH)、水を混合した。
<Examples 4 and 5>
To study the alkaline agent, iodine (I 2 ), sodium hydroxide (NaOH), and water were mixed in the amounts shown in Table 3.

実施例4では実施例3における各材料の配合比率(質量%)と揃え、水酸化カリウムを水酸化ナトリウム(NaOH)に変えて製剤し、実施例5では、実施例3におけるIとKOHのモル比を揃えて、水酸化カリウムを水酸化ナトリウムに変えて製剤した。結果を表3に示す。 In Example 4, the compounding ratio (mass%) of each material in Example 3 was the same as that in Example 3, but potassium hydroxide was replaced with sodium hydroxide (NaOH), and in Example 5, the molar ratio of I2 and KOH in Example 3 was the same as that in Example 3, but potassium hydroxide was replaced with sodium hydroxide. The results are shown in Table 3.

Figure 0007498580000004
Figure 0007498580000004

実施例4,5ともに溶け残りがわずかに生じた。これらの結果より、アルカリ剤としてはKOHが好ましいことがわかる。 In both Examples 4 and 5, a small amount of the solution remained undissolved. These results show that KOH is the preferred alkaline agent.

[殺菌力の比較試験]
<実施例6、比較例3,4>
・試験水:相模原井水(脱塩素処理)にブイヨンを添加し、菌数10(CFU/mL)となるように培養した
・水温:25℃(室温管理)
・pH:7.0
・薬剤:比較例3では、クロロスルファミン酸(下記の方法で調製)を用いて全塩素濃度を1.0mg/Lに調整し、比較例4では、安定化次亜臭素酸組成物(下記の方法で調製)を用いて、全塩素濃度を0.25mg/Lに調整し、実施例6では実施例3で調製した殺菌剤を用いて全塩素濃度を0.05mg/Lに調整した。
[Comparative test of bactericidal activity]
<Example 6, Comparative Examples 3 and 4>
Test water: Sagamihara well water (dechlorinated) with bouillon added and cultured to a bacterial count of 10 7 (CFU/mL) Water temperature: 25°C (room temperature controlled)
pH: 7.0
Chemicals: In Comparative Example 3, the total chlorine concentration was adjusted to 1.0 mg/L using chlorosulfamic acid (prepared by the method described below), in Comparative Example 4, the total chlorine concentration was adjusted to 0.25 mg/L using a stabilized hypobromous acid composition (prepared by the method described below), and in Example 6, the total chlorine concentration was adjusted to 0.05 mg/L using the disinfectant prepared in Example 3.

[クロロスルファミン酸の調製]
12%次亜塩素酸ナトリウム水溶液:50質量%、スルファミン酸:10質量%、水酸化ナトリウム:10質量%、水:残分を混合して、組成物を調製した。組成物のpHは14、全塩素濃度は6質量%であった。
[Preparation of chlorosulfamic acid]
A composition was prepared by mixing 50% by mass of 12% aqueous sodium hypochlorite solution, 10% by mass of sulfamic acid, 10% by mass of sodium hydroxide, and the remainder of water. The pH of the composition was 14, and the total chlorine concentration was 6% by mass.

[安定化次亜臭素酸組成物の調製]
窒素雰囲気下で、液体臭素:16.9質量%(wt%)、スルファミン酸:10.7質量%、水酸化ナトリウム:12.9質量%、水酸化カリウム:3.94質量%、水:残分を混合して、安定化次亜臭素酸組成物を調製した。安定化次亜臭素酸組成物のpHは14、全塩素濃度は7.5質量%であった。全塩素濃度は、HACH社の多項目水質分析計DR/3900を用いて測定した。安定化次亜臭素酸組成物の詳細な調製方法は以下の通りである。
[Preparation of stabilized hypobromous acid composition]
Under a nitrogen atmosphere, liquid bromine: 16.9 mass% (wt%), sulfamic acid: 10.7 mass%, sodium hydroxide: 12.9 mass%, potassium hydroxide: 3.94 mass%, water: the remainder were mixed to prepare a stabilized hypobromous acid composition. The pH of the stabilized hypobromous acid composition was 14, and the total chlorine concentration was 7.5 mass%. The total chlorine concentration was measured using a multi-item water quality analyzer DR/3900 manufactured by HACH. The detailed preparation method of the stabilized hypobromous acid composition is as follows.

反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0~15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する質量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO-02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。 1436g of water and 361g of sodium hydroxide were added and mixed into a 2L four-necked flask sealed with continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel was maintained at 1%, and then 300g of sulfamic acid was added and mixed. After that, 473g of liquid bromine was added while maintaining cooling so that the temperature of the reaction liquid was 0-15°C, and further 230g of 48% potassium hydroxide solution was added, and the target stabilized hypobromous acid composition was obtained, which has a mass ratio of 10.7% sulfamic acid, 16.9% bromine, and an equivalent ratio of sulfamic acid to bromine of 1.04 in terms of the total amount of the composition. The pH of the resulting solution was 14 when measured by the glass electrode method. The bromine content of the resulting solution was 16.9% when measured by a method in which bromine was converted to iodine with potassium iodide and then redox titrated with sodium thiosulfate, which was 100.0% of the theoretical content (16.9%). In addition, the oxygen concentration in the reaction vessel during the bromine reaction was measured using an oxygen monitor JKO-02 LJDII manufactured by JIKO Co., Ltd. The bromate concentration was less than 5 mg/kg.

なお、pHの測定は、以下の条件で行った。
電極タイプ:ガラス電極式
pH測定計:東亜ディーケーケー社製、HM-42X型
電極の校正:関東化学社製フタル酸塩pH(4.01)標準液(第2種)、中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の3点校正で行った
測定温度:25℃
測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
The pH was measured under the following conditions.
Electrode type: Glass electrode pH meter: HM-42X type, manufactured by DKK-TOA Electrode calibration: Three-point calibration was performed using Kanto Chemical's phthalate pH (4.01) standard solution (type 2), neutral phosphate pH (6.86) standard solution (type 2), and borate pH (9.18) standard solution (type 2) Measurement temperature: 25°C
Measurement value: Immerse the electrode in the measurement solution, and the value after stabilization is the measurement value, which is the average of three measurements.

初期菌数10(CFU/mL)の培養液に対して薬剤を添加して菌数を10分後、3時間後、6時間後に測定した。菌数は、サンアイバイオチェッカーTTC(三愛石油製)を用いて測定した。結果を表4に示す。 The drug was added to a culture solution with an initial bacterial count of 10 7 (CFU/mL), and the bacterial count was measured 10 minutes, 3 hours, and 6 hours later. The bacterial count was measured using a Sanai Biochecker TTC (manufactured by Sanai Oil Co., Ltd.). The results are shown in Table 4.

Figure 0007498580000005
Figure 0007498580000005

比較例3に示す通り、クロロスルファミン酸を用いた場合、6時間以内に有意な殺菌効果が得られなかった。比較例4に示す通り、安定化次亜臭素酸組成物を用いた場合、10分後に10(CFU/mL)に減少し、3時間後には10(CFU/mL)未満に減少した。実施例6で示す通り、ヨウ素系の殺菌剤を用いた場合、10分後に菌数は10(CFU/mL)未満に減少した。ヨウ素系の殺菌剤を用いることによって、クロロスルファミン酸の20分の1、安定化次亜臭素酸組成物の5分の1の全塩素濃度でそれぞれに対して同等以上の殺菌効果が得られることが明らかとなった。また、薬剤添加から10分後の殺菌効果が高く、本実施例による殺菌剤は即効性が高いことも明らかとなった。 As shown in Comparative Example 3, when chlorosulfamic acid was used, no significant bactericidal effect was obtained within 6 hours. As shown in Comparative Example 4, when the stabilized hypobromous acid composition was used, the number of bacteria decreased to 10 3 (CFU/mL) after 10 minutes, and decreased to less than 10 3 (CFU/mL) after 3 hours. As shown in Example 6, when an iodine-based bactericide was used, the number of bacteria decreased to less than 10 3 (CFU/mL) after 10 minutes. It was revealed that by using an iodine-based bactericide, a bactericidal effect equal to or greater than that of chlorosulfamic acid and a total chlorine concentration equal to or less than that of the stabilized hypobromous acid composition were obtained at a total chlorine concentration of 1/20 that of chlorosulfamic acid and 1/5 that of the stabilized hypobromous acid composition, respectively. It was also revealed that the bactericidal effect was high 10 minutes after the addition of the agent, and the bactericide according to this embodiment has a high immediate effect.

[スライム抑制効果の検討]
<実施例7、比較例5>
以下の条件で、実施例3で調製した殺菌剤のスライム抑制効果を検討した。結果を図2に示す。図2には、実際に測定した通水差圧(kPa)から初期の通水差圧(kPa)を差し引いた値の経時変化を示す。
(試験条件)
・試験装置:RO膜エレメント試験装置
・運転圧力:0.75MPa
・給水:相模原井水(脱塩素処理、酢酸を1ppm添加、有機物含有量0.55mg/L)
・薬剤:実施例7では実施例3で調製した殺菌剤をスライム抑制剤として用いた。比較例5では殺菌剤を添加せず。
[Study of slime suppression effect]
<Example 7, Comparative Example 5>
The slime suppression effect of the bactericide prepared in Example 3 was examined under the following conditions. The results are shown in Figure 2. Figure 2 shows the change over time of the value obtained by subtracting the initial water flow differential pressure (kPa) from the actually measured water flow differential pressure (kPa).
(Test condition)
・Test equipment: RO membrane element test equipment ・Operating pressure: 0.75 MPa
Supply water: Sagamihara well water (dechlorinated, acetic acid added at 1 ppm, organic matter content 0.55 mg/L)
Chemicals: In Example 7, the bactericide prepared in Example 3 was used as a slime inhibitor. In Comparative Example 5, no bactericide was added.

逆浸透膜の被処理水に酢酸を1ppm添加し、バイオファウリングを促進した試験を実施した。比較例5では殺菌剤を添加しなかったため、約80時間で差圧が上昇し、バイオフィルム形成によるファウリングが生じた。実施例7では殺菌剤を逆浸透膜の給水に全塩素濃度で0.05mg/L(全ヨウ素濃度で0.17mg/L)となるように添加したところ、差圧の上昇はほとんど無く、バイオフィルム形成を効果的に抑制したことがわかる。実施例7では極めて低い濃度でスライム抑制効果を示したため、コスト低減効果が期待できる。 A test was conducted in which 1 ppm of acetic acid was added to the water to be treated by the reverse osmosis membrane to promote biofouling. In Comparative Example 5, no bactericide was added, so the differential pressure rose in about 80 hours, and fouling due to biofilm formation occurred. In Example 7, a bactericide was added to the feed water for the reverse osmosis membrane so that the total chlorine concentration was 0.05 mg/L (total iodine concentration was 0.17 mg/L), and it can be seen that there was almost no increase in the differential pressure, effectively suppressing biofilm formation. In Example 7, the slime suppression effect was observed at an extremely low concentration, so a cost reduction effect can be expected.

以上のように、実施例の通り、有機物の含有量が低減されたヨウ素系の殺菌剤が得られた。実施例の殺菌剤は、分離膜用スライム抑制剤としても適用可能であった。 As described above, an iodine-based disinfectant with a reduced organic matter content was obtained as in the examples. The disinfectant in the examples was also applicable as a slime inhibitor for separation membranes.

1 水処理装置、10 被処理水槽、12 逆浸透膜処理装置、14 被処理水配管、16 被処理水供給配管、18 透過水配管、20 濃縮水配管、22,24 スライム抑制剤添加配管。 1 Water treatment device, 10 Water tank to be treated, 12 Reverse osmosis membrane treatment device, 14 Water to be treated pipe, 16 Water to be treated supply pipe, 18 Permeate pipe, 20 Concentrated water pipe, 22, 24 Slime inhibitor addition pipe.

Claims (7)

水、ヨウ素、ヨウ化カリウム、およびヨウ素酸カリウムを含有し、pHが7を超え12以下の範囲であることを特徴とする殺菌剤。 A disinfectant containing water, iodine, potassium iodide, and potassium iodate, and having a pH in the range of more than 7 and less than or equal to 12. 請求項1に記載の殺菌剤であって、
有機物含有量が、TOCとして1000mg/L以下であることを特徴とする殺菌剤。
The disinfectant according to claim 1,
A disinfectant characterized in that the organic matter content is 1000 mg/L or less as calculated as TOC.
請求項1または2に記載の殺菌剤であって、
全塩素が、0.1質量%以上であることを特徴とする殺菌剤。
The disinfectant according to claim 1 or 2,
A disinfectant characterized in that the total chlorine content is 0.1 mass% or more.
請求項1~3のいずれか1項に記載の殺菌剤の製造方法であって、
水、水酸化カリウム、ヨウ素の順に混合する混合工程を含むことを特徴とする殺菌剤の製造方法。
A method for producing the fungicide according to any one of claims 1 to 3, comprising the steps of:
A method for producing a disinfectant, comprising a mixing step of mixing water, potassium hydroxide, and iodine in that order.
請求項1~3のいずれか1項に記載の殺菌剤を用いる(ただし、ヒトへの使用を除く)ことを特徴とする殺菌方法。 A method for sterilization, comprising using the germicide according to any one of claims 1 to 3 (excluding use on humans) . 請求項1~3のいずれか1項に記載の殺菌剤を含むことを特徴とする分離膜用スライム抑制剤。 A slime inhibitor for separation membranes, comprising the bactericide according to any one of claims 1 to 3. 分離膜を備える膜分離装置の被処理水中に、請求項6に記載の分離膜用スライム抑制剤を存在させることを特徴とする分離膜のスライム抑制方法。 A method for suppressing slime in a separation membrane, comprising the step of: making the slime suppressant for separation membranes described in claim 6 present in the water to be treated in a membrane separation device equipped with a separation membrane.
JP2020053012A 2020-03-24 2020-03-24 Disinfectant, method for producing disinfectant, disinfection method, slime inhibitor for separation membrane, and method for inhibiting slime in separation membrane Active JP7498580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020053012A JP7498580B2 (en) 2020-03-24 2020-03-24 Disinfectant, method for producing disinfectant, disinfection method, slime inhibitor for separation membrane, and method for inhibiting slime in separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053012A JP7498580B2 (en) 2020-03-24 2020-03-24 Disinfectant, method for producing disinfectant, disinfection method, slime inhibitor for separation membrane, and method for inhibiting slime in separation membrane

Publications (2)

Publication Number Publication Date
JP2021151966A JP2021151966A (en) 2021-09-30
JP7498580B2 true JP7498580B2 (en) 2024-06-12

Family

ID=77887199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053012A Active JP7498580B2 (en) 2020-03-24 2020-03-24 Disinfectant, method for producing disinfectant, disinfection method, slime inhibitor for separation membrane, and method for inhibiting slime in separation membrane

Country Status (1)

Country Link
JP (1) JP7498580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023183453A (en) * 2022-06-16 2023-12-28 オルガノ株式会社 Water treatment method, water treatment device, slime inhibitor, and cleaning method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516142A (en) 1996-08-22 2000-12-05 アイオソリューシヨンズ インコーポレイテッド How to disinfect water using iodine seeds
JP2015062889A (en) 2013-08-28 2015-04-09 オルガノ株式会社 Method for inhibiting slime in separation membrane, slime inhibition agent composition for separation membrane, and method for producing slime inhibition agent composition for separation membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516142A (en) 1996-08-22 2000-12-05 アイオソリューシヨンズ インコーポレイテッド How to disinfect water using iodine seeds
JP2015062889A (en) 2013-08-28 2015-04-09 オルガノ株式会社 Method for inhibiting slime in separation membrane, slime inhibition agent composition for separation membrane, and method for producing slime inhibition agent composition for separation membrane

Also Published As

Publication number Publication date
JP2021151966A (en) 2021-09-30

Similar Documents

Publication Publication Date Title
TWI597235B (en) Production method of hypobromous acid stabilized composition, hypobromous acid stabilized composition, and slime inhibition method of separation membrane
JP6534524B2 (en) Filtration treatment system and filtration treatment method
US10118131B2 (en) Method for preventing microbial growth on a filtration membrane
JP6533056B2 (en) Filtration treatment system and filtration treatment method
TWI651123B (en) Separation film adhesion inhibition method
KR20160085860A (en) Composition and method for biofouling inhibition of membrane separation device
WO2021192583A1 (en) Water recovery system and water recovery method
JP7498580B2 (en) Disinfectant, method for producing disinfectant, disinfection method, slime inhibitor for separation membrane, and method for inhibiting slime in separation membrane
JP5635596B2 (en) Halogenated amide biocidal compounds and methods of treating aqueous systems from near neutral to high pH
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
JP6970516B2 (en) Water treatment method using reverse osmosis membrane
JP6630562B2 (en) Slime suppression method for separation membrane
TW201827347A (en) Water treatment method and water treatment device using reverse osmosis membrane
JP2016155071A (en) Sterilization method for separation membrane
JP7333865B2 (en) Water treatment method and water treatment equipment
JP7250612B2 (en) Water-based sterilization method and water-based nitrosamine compound removal method
JP6682401B2 (en) Water treatment method using reverse osmosis membrane
WO2020136963A1 (en) Sterilization method for water system, method of removing nitrosamine compound from water system and drinking water production method
JP5281465B2 (en) Bactericidal algicide composition, water-based bactericidal algicide method, and method for producing bactericidal algicide composition
JP7492873B2 (en) Water recovery method and water recovery device
WO2018037582A1 (en) Water processing method using reverse-osmosis membrane
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
JP2019076864A (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
WO2024048154A1 (en) Method for producing slime-suppressing auxiliary agent for reverse osmosis membrane, slime-suppressing auxiliary agent for reverse osmosis membrane, and water treatment method
JP2018069124A (en) Water treatment apparatus and method using reverse osmosis membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240531

R150 Certificate of patent or registration of utility model

Ref document number: 7498580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150