JP7498446B2 - Planned power generation and storage control method, and planned power generation and storage control device - Google Patents

Planned power generation and storage control method, and planned power generation and storage control device Download PDF

Info

Publication number
JP7498446B2
JP7498446B2 JP2020004059A JP2020004059A JP7498446B2 JP 7498446 B2 JP7498446 B2 JP 7498446B2 JP 2020004059 A JP2020004059 A JP 2020004059A JP 2020004059 A JP2020004059 A JP 2020004059A JP 7498446 B2 JP7498446 B2 JP 7498446B2
Authority
JP
Japan
Prior art keywords
section
amount
vehicle
power
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020004059A
Other languages
Japanese (ja)
Other versions
JP2021112081A (en
Inventor
清水庄一
吉用茂
稲葉均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AC TECHNOLOGIES CORPORATION
SANICS COMPANY
Original Assignee
AC TECHNOLOGIES CORPORATION
SANICS COMPANY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AC TECHNOLOGIES CORPORATION, SANICS COMPANY filed Critical AC TECHNOLOGIES CORPORATION
Priority to JP2020004059A priority Critical patent/JP7498446B2/en
Publication of JP2021112081A publication Critical patent/JP2021112081A/en
Application granted granted Critical
Publication of JP7498446B2 publication Critical patent/JP7498446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明はエンジン発電機で二次電池を充電し、その二次電池によってモーターを駆動して走行するレンジエクステンダーEV(Range Extended-Electrical Vehicle)車両に搭載する計画発電蓄電制御技術に関する。 The present invention relates to planned power generation and storage control technology to be installed in range extended-electrical vehicles (EVs), which use an engine generator to charge a secondary battery and then drive a motor using the secondary battery.

二次電池駆動によるEV車両は二酸化炭素(CO2)の排出がないクリーン交通機関として注目されている。第一の理由は内燃機関で走行する車両と異なり、二次電池に蓄積された電力でモーターを駆動して走行するので、CO2排出がなく静かであり乗り心地も優れていることによる。第二の理由として燃料代を含む維持費はディーゼルエンジン等の車両に比べて安いことから導入する利点は大きいと考えられている。 EV vehicles powered by secondary batteries are attracting attention as a clean form of transportation that does not emit carbon dioxide (CO2). The first reason is that, unlike vehicles that run on internal combustion engines, they run by driving the motor with electricity stored in secondary batteries, so they do not emit CO2, are quiet, and have a comfortable ride. The second reason is that maintenance costs, including fuel costs, are cheaper than vehicles with diesel engines, etc., so there are thought to be great advantages to introducing them.

しかし、現状のEV車両の一種であるEVバスの価格は高価な二次電池を大量に搭載する必要があるために、同席数のディーゼルエンジンのバスと比較して初期投資が数倍と高価となり、なかなかその導入が進んでいない。また、EVトラックにおいては、大量の二次電池のスペースがトラックの搭載積載量を減少させてしまう等、使い勝手が悪い等の理由により普及が遅れている。 However, the current price of EV buses, one type of EV vehicle, is several times higher than that of diesel-engine buses with the same number of seats because they require a large number of expensive secondary batteries to be installed, and as a result, their adoption has been slow. In addition, the space required for the large number of secondary batteries reduces the truck's load capacity, making them inconvenient to use, and this has slowed the spread of EV trucks.

この解決策としてシリーズハイブリッド方式が乗用車には適用されている。一般的にはこの技術は既存のエンジンを発電機として使用し、小容量の二次電池を搭載し、ほとんど常にエンジンを駆動して二次電池に充電し、その二次電池の電力でモーターを駆動させて車両を動かすものである。 To solve this problem, the series hybrid system is applied to passenger cars. Generally, this technology uses the existing engine as a generator, is equipped with a small capacity secondary battery, runs the engine almost constantly to charge the secondary battery, and uses the power from the secondary battery to drive the motor to move the vehicle.

しかし、バスやトラック等の商用車に適用しようとすると、急な上り坂等で要する過大な瞬時電力を供給する必要があるため、大型発電機と大量の二次電池が必要となる。その結果スペースが取られ、バスでは座席数の削減、トラックでは貨物積載量が制限されるため、商用車のシリーズハイブリッド化はなかなか進まない。 However, when trying to apply this technology to commercial vehicles such as buses and trucks, a large generator and a large number of secondary batteries are required to supply the excessively large instantaneous power required when going up steep slopes, etc. This takes up space, reducing the number of seats in buses and limiting the cargo capacity of trucks, making it difficult to make commercial vehicles series hybrid.

それに対して、本技術のレンジエクステンダーEV(RE_EV)車両は地理情報システム(GIS)とGNSS(Global Navigation Satellite System/全地球測位衛星システム)を活用する事で走行ルート上の位置情報や高度差等の路面情報を収集し、さらにこれまでの走行時に蓄積した走行データを用いる事で、走行前に発電計画(走行計画)の策定を行っている。このように走行前にその日の走行計画に立てる事で、必要な発電量を事前に計算出来るので、適切な発電及び充電が行える事から発電機と二次電池の小型化が可能となる。そして、走行開始後は、走行途中で逐次得られる走行データに基づいて走行計画を修正しながら走行する事で計画に沿った走行を行う。 In response to this, the range extender EV (RE_EV) vehicle based on this technology utilizes a geographic information system (GIS) and a global navigation satellite system (GNSS) to collect road surface information such as location information and altitude differences along the driving route, and further uses driving data accumulated during previous driving to formulate a power generation plan (driving plan) before driving. By formulating a driving plan for the day in this way before driving, the required amount of power generation can be calculated in advance, allowing for appropriate power generation and charging, making it possible to reduce the size of the generator and secondary battery. Then, after starting to drive, the vehicle drives according to the plan by revising the driving plan based on driving data obtained successively during the drive.

このように本レンジエクステンダー車両は、二次電池の充電量が少なくなった場合にのみエンジンを駆動させて二次電池に充電する。通常はエンジンを駆動せずに二次電池のみでモーター駆動を行うので、EV車両の様に走行中での電欠の心配がなく、EV車両の課題であった走行距離の制限を撤廃する事が可能となり、非常に使い勝手の良い車両となり得る。さらに本レンジエクステンダーEV車両は走行時間の多くの割合は二次電池によるモーターで走るので、通常のエンジン駆動車両に比較して二酸化炭素の排出が大幅に少ないクリーンな交通機関であり、さらに内燃機関からのエンジン音は限定的であり、その結果、かなりの走行時間において静かで乗り心地も優れている。そして燃料代を含む維持費はディーゼルエンジンの車両に比べて安いことから導入する利点は大きいと考えられて来た。 In this way, this range extender vehicle only runs the engine to charge the secondary battery when the charge level of the secondary battery becomes low. Normally, the engine is not running and the motor is only powered by the secondary battery, so there is no need to worry about running out of power while driving, as with EV vehicles, and it is possible to eliminate the driving distance limit that has been an issue with EV vehicles, making it a very user-friendly vehicle. Furthermore, since this range extender EV vehicle runs on the motor powered by the secondary battery for a large proportion of the driving time, it is a clean means of transportation that emits significantly less carbon dioxide than normal engine-driven vehicles, and the engine noise from the internal combustion engine is limited, resulting in a quiet and comfortable ride for a considerable amount of driving time. And since maintenance costs, including fuel costs, are cheaper than diesel engine vehicles, it has been thought that there are great advantages to introducing it.

提案者は以前にこのようなレンジエクステンダー技術を公共交通システムの主要車両の1つであるバスに応用した特許提案(特願2017-204209)と計画発電蓄電制御技術を搭載した大型トラック等の商用車を想定したレンジエクステンダー車両の構成方法についても(特願2018-194138)として特許提案済である。 The proposer has previously proposed a patent application of this range extender technology to buses, one of the main vehicles in public transportation systems (Patent Application No. 2017-204209), as well as a method for configuring a range extender vehicle for commercial vehicles such as large trucks equipped with planned power generation and storage control technology (Patent Application No. 2018-194138).

本提案は、エンジン発電機で二次電池を充電しその二次電池によってモーターを駆動して走行する計画発電蓄電制御技術の詳細な制御方法についてである。なお、エンジンは以下の記述では小型のディーゼルエンジンを想定しているが、それに限ったものではなく、ガソリンエンジンでも燃料発電機(所謂燃料電池)等でも構わない。 This proposal concerns a detailed control method for planned power generation and storage control technology that uses an engine generator to charge a secondary battery, which then drives a motor to run the vehicle. Note that in the following description, the engine is assumed to be a small diesel engine, but this is not limited to this, and it could also be a gasoline engine or a fuel-powered generator (a so-called fuel cell), etc.

本提案と同様な先行技術として、地図情報やGPS情報、及び電池の残容量を検知して車両に搭載した発電機の駆動を制御するとした“電気自動車ナビゲーションシステム(特開平8-240435)がある。この提案はそれまでのハイブリッド自動車は電池容量が少なくなった時点で車両に搭載した発電機を駆動させることで無公害地域でも排気ガスを出してしまう課題に対して、無公害地域に近接してかつ電池残量が少ない場合には発電機を駆動して充電をしておき、無公害地域では発電機を停止して排気ガスを出さないようにできるナビゲーションシステムを活用した技術である。これにより無公害地域では出来るだけ排気ガスを防止できるということを主張している。しかし、本提案の予測発電充電制御技術を用いたエクステンダーEV車両は、発電量を抑制するためのモデリングや制御方法を駆使する事で発電機の小型化と適度な二次電池量の使用が可能となり積載量に影響を与えないので、トラックやバス等の所謂商用車においてもシリーズハイブリッド技術を活用可能にするものである。 A similar prior art to this proposal is the "Electric Vehicle Navigation System (JP Patent Publication 8-240435)" which detects map information, GPS information, and remaining battery capacity to control the operation of the onboard generator. This proposal addresses the issue of hybrid vehicles emitting exhaust gases even in pollution-free areas by operating the onboard generator when the battery capacity becomes low, by utilizing a navigation system that operates the generator to charge the vehicle when the battery capacity is low and when the vehicle is close to a pollution-free area, and stops the generator in the pollution-free area to prevent exhaust gases. It is claimed that this will prevent exhaust gases as much as possible in pollution-free areas. However, the extender EV vehicle using the proposed predictive power generation and charging control technology makes it possible to miniaturize the generator and use an appropriate amount of secondary battery by making full use of modeling and control methods to suppress the amount of power generation, and does not affect the load capacity, making it possible to utilize series hybrid technology even in so-called commercial vehicles such as trucks and buses.

特開平8-240435JP 8-240435 A

本発明によって解決しようとする課題は、通常のRE_EV商用車両では走行中の種々の事象(急な登坂や長いトンネル等)でも走行出来るように発電電力の大きなエンジン発電機と大量な2次電池を搭載する必要がある。このため、車両の重量が重くなり電費の悪化を招くと共に、それらの機器によって車両内のスペースが占められトラックでは積載量が、バスでは乗車人数の削減を招いていた。 The problem that this invention aims to solve is that ordinary RE_EV commercial vehicles need to be equipped with a large-capacity engine generator and a large number of secondary batteries to be able to run through various obstacles while driving (such as steep hills and long tunnels). This not only makes the vehicle heavier, leading to poorer power consumption, but also means that these devices take up space inside the vehicle, reducing the payload of trucks and the number of passengers that can be carried by buses.

これらの問題を鑑みて、本提案によれば走行路での発電時期を予測して計画的に発電及び蓄電を行う事により小型のエンジン発電装置と適度な電池量の搭載によって車両重量の軽減と車両内スペースの犠牲を最小限に抑制する事が出来る。以下に走行路の種々の事象を考慮した計画発電蓄電制御技術について記す。 In consideration of these problems, this proposal predicts when power will be generated on the road and generates and stores electricity in a planned manner, allowing for the installation of a small engine generator and an appropriate amount of battery power, thereby reducing vehicle weight and minimizing the loss of space inside the vehicle. Below is a description of the planned power generation and storage control technology that takes into account various phenomena on the road.

制御方式の具体例として走行路に種々の事象(坂道、トンネル、病院区域等)があるため、エンジンの起動停止を計画的に行う必要がある。例えば、病院や学校区域が存在する地域ではエンジン音や排気ガスを極力抑制する事が求められる。また、急な登坂ではエンジンの発電力が登坂走行によって消費する電力よりも少ない場合は蓄電出来ずに逆に蓄電量が減少してしまい、最悪の場合は蓄電量が底をつくいわゆる電欠を起こす恐れがある。これらの走行条件を加味して走行計画(SOCチャート)を作成する必要がある。次に、走行路に存在する種々の事象について記す。 As a specific example of a control method, various phenomena that occur on the driving route (slope, tunnels, hospital areas, etc.) require the engine to be started and stopped in a planned manner. For example, in areas with hospitals and school districts, it is necessary to suppress engine noise and exhaust gas as much as possible. Also, on steep slopes, if the engine's generating power is less than the power consumed by driving uphill, electricity cannot be stored and the amount of stored electricity decreases, and in the worst case scenario, the stored electricity may run out and the vehicle may run out of power. It is necessary to create a driving plan (SOC chart) taking these driving conditions into account. Next, we will describe various phenomena that occur on the driving route.

1.平地走行区間
走行中に発電すれば電池の蓄電量は増加する。
2.登坂走行区間
坂の斜度によっては発電しても電池の蓄電量は減少する事があるので、坂の途中で電池の蓄電下限値にならないように発電時期と発電時間を決めて、坂の頂上で蓄電電力の下限値になるように制御する(発電機の発電電力と坂を登る時に必要な登坂電力の大小により発電時期及び期間は異なる)。
3.静音区間走行
静音区域を走行中は蓄電量が下限値になってもエンジンを起動は抑制されるので、前もって発電し蓄電しておき、静音区間が終了した時点で蓄電量が下限値になるように制御する。
.4下坂区間走行
下坂区域を走行する事によって回生電力が見込めるので、下坂前の走行中で 発電機を駆動している場合は下坂区域の開始地点で蓄電量が下限値になるように制御する。
5.目的地区間(最終区間)走行
目的地まで平地走行の場合であり、目的地に到達した時に蓄電量が下限値に なるように制御するがたとえ下限値以上であっても良い。
ここで、区間とはその前の区間の終了地点から自己の区間の最終地点までの範囲と定義し、区域とはそれぞれの事象のみの領域と定義する。例えば、登坂区間とは、その前の区間の終了地点からしばらくは平坦走行路があるとした場合に、登坂が開始した地点から登坂が終了した地点までを区域と呼び、区域を含んだ全体走行路を言う。
1. If electricity is generated while driving on flat ground, the amount of stored electricity in the battery will increase.
2. Uphill driving section Depending on the gradient of the hill, the amount of stored power in the battery may decrease even if power is generated. Therefore, the timing and duration of power generation are determined so that the battery's stored power does not reach the lower limit halfway up the hill, and the stored power is controlled so that it reaches the lower limit at the top of the hill (the timing and duration of power generation differ depending on the power generated by the generator and the magnitude of the climbing power needed when climbing the hill).
3. Driving in a quiet zone When driving in a quiet zone, the engine is prevented from starting even if the stored battery level reaches the lower limit. Therefore, electricity is generated and stored in advance so that the stored battery level reaches the lower limit when the quiet zone ends.
.4 Driving through downhill sections: Since regenerative power can be expected by driving through downhill sections, if the generator is running while driving before going downhill, the amount of stored electricity is controlled so that it is at the lower limit at the start of the downhill section.
5. Destination section (final section) Driving This is the case when driving on flat ground to the destination. The amount of stored electricity is controlled to be the lower limit when the destination is reached, but it is acceptable for the amount to be above the lower limit.
Here, a section is defined as the range from the end point of the previous section to the end point of the current section, and a zone is defined as the area of each event only. For example, if there is a flat road for a while from the end point of the previous section, an uphill section is called a zone from the point where the uphill starts to the point where it ends, and refers to the entire road including the zone.

SOCチャートの作成方針は、蓄電量を消費する静音区域や登坂区域等の事象がある場合は、その事象が終了した時点で蓄電量が下限値となるように制御を行い、蓄電量が増加する下坂区域等の事象の時はその事象が開始する時点で蓄電量が下限値となるように制御する。 The policy for creating an SOC chart is that when there is an event such as a quiet area or an uphill area that consumes stored power, the stored power is controlled so that the minimum value is reached when the event ends, and when there is an event such as a downhill area that increases stored power, the stored power is controlled so that the minimum value is reached when the event begins.

次にSOCチャートを作成する手順について記す。
まず走行前のSOCチャート作成は以下の手順を用いる。
1.地図に走行ルートを入力する。
2.入力された走行ルート上に存在する各事象(静音区間、登坂区間等)を抽出して、各事象を含む小区間を設定する。
3.出発地から目的地までのルート上に各事象を含む各区間を開始地点から終了地点まで配置する。
4.各事象毎に必要な電池の蓄電量を見積もり各区間毎のSOCチャートを作成後に全ルートのSOCチャートを構築する。
―事象の走行途中で蓄電量が下限値となる箇所があるか。
―考慮すべき箇所は、(1)静音区域を走破するに必要な蓄電量があるか、(2)登坂走行時に発電量と走行消費量の大小関係はどうか。
5.4の箇所がある場合は全走行路において蓄電量が下限値以下とならないように走行計画(SOCチャート)を再構築する。
次に走行中のSOCチャートの再構築手順について記す。
6.走行単位(距離/時間)毎にGIS及びGNSSから現在位置を確認する。
7.その時点での走行データ(SOC、電費等)を収集する。
8.出発から現在地点までのSOCチャートを作成する。
9.走行前に構築したSOCチャートからの変化分を抽出する。
10.変化分が許容値以下になる様に現時点から目的地までのSOCチャートを再構築する。
11.6~10の操作を繰り返しながら目的地まで走行する。
Next, we will describe the steps for creating a SOC chart.
First, use the following procedure to create a SOC chart before driving.
1. Input the route on the map.
2. Each event (such as a quiet section or an uphill section) that exists on the input driving route is extracted, and a small section that includes each event is set.
3. Place each section including each event from its start point to its end point on the route from the departure point to the destination.
4. Estimate the amount of battery charge required for each event, create an SOC chart for each section, and then create an SOC chart for the entire route.
- Is there any point during the event where the amount of stored electricity reaches a lower limit?
-Things to consider are: (1) whether there is enough stored power to travel through quiet areas, and (2) what the relationship is between the amount of power generated and the amount of power consumed when traveling uphill.
5. If there are any locations as described in 4, reconstruct the driving plan (SOC chart) so that the amount of stored electricity does not fall below the lower limit on any part of the driving route.
Next, we will describe the procedure for reconstructing the SOC chart while driving.
6. Check the current position using GIS and GNSS for each travel unit (distance/time).
7. Collect driving data (SOC, power consumption, etc.) at that time.
8. Create a SOC chart from the starting point to the current location.
9. Extract the changes from the SOC chart created before driving.
10. Reconstruct the SOC chart from the current time to the destination so that the change is within the tolerance.
11. Repeat steps 6 to 10 to drive to your destination.

次に図を用いながら各事象毎の発電機の制御方法を示す。以下の定数は図面の説明のために用いた数式に使用している。
・L : 距離(Length)
- 単位[km]----- Lgen: 発電機(generator)が発電状態時の走行距離、LG: 目的地(Goal)までの走行距離、LU:登坂地点(Up)までの走行距離、 LD: 下坂地点(Down)までの走行距離、LQ:静音区域(Quiet)までの走行距離、etc
・T: 時間(Time)
- 単位[h or hour]----- Tgen: 発電機(generator)の駆動時間、TD:下坂地点(Down)までの走行時間、etc
・V: 速度(Velocity)
- 単位[km/h]------ VR:走行路上の平均速度
・P: 電力量(Power of Electricity)
- 単位[KWh]------- Prun: 区間を走行(run)するに必要な電力量、Psoc:電池(SOC)に蓄電されている初期の電力量、 Pgen: 走行しながら発電(generate)した時の発電量(蓄電量)、Pup: 発電しながら登坂走行(Up)した時の発電量、 Psoh: 電池の蓄電上限値(High limit of SOC)、Psol:電池の蓄電下限値(Low limit of SOC)
・PG:発電機の電力(Power of Generator)
- 単位[kW], etc
・PR:平坦路走行時に必要な消費電力(Power for Run):走行電費(CR)と関係あり
- 単位[KW]、etc
・PU: 登坂走行時に必要な消費電力(Power for Up):登坂電費(CU)との関係あり
- 単位[KW]、etc
・PGR: 平坦路走行時に発電機が発電時の電力(PG)から走行に必要な消費電力(PR)を引いた電池に充電可能な蓄電電力
- 単位[KW]-------(PG - PR):電池に充電可能な蓄電電力
・PGU: 登坂路走行時に発電機が発電時の電力(PG)から登坂走行に必要な消費電力(PU)を引いた電池に充電可能な蓄電電力
- 単位[KW]-------(PG - PU):電池に充電可能な蓄電電力(PG < PU の場合は電池への蓄電ではなく電池走行となる)
・C: 電費(Consumption of electricity)
- 単位[km/KWh]------- CR: 平坦路を走行時の平均電費、CU: 登坂路を走行時の平均電費、etc
Next, the control method of the generator for each event will be described with reference to the figures. The following constants are used in the formulas used to explain the drawings.
・L: Distance (Length)
- Unit [km]----- Lgen: Distance traveled when the generator is generating electricity, LG: Distance traveled to the destination, LU: Distance traveled to the uphill point, LD: Distance traveled to the downhill point, LQ: Distance traveled to the quiet area, etc.
・T: Time
- Unit [h or hour]-----Tgen: Generator operating time, TD: Travel time to the Downhill point, etc.
・V: Velocity
- Unit [km/h]------VR: Average speed on the road
・P: Power of Electricity
- Unit [KWh] ------- Prun: Amount of power required to run the section, Psoc: Initial amount of power stored in the battery (SOC), Pgen: Amount of power generated while running (generating), Pup: Amount of power generated while running uphill (Up), Psoh: Battery's upper limit of SOC, Psol: Battery's lower limit of SOC
PG: Power of Generator
- Units [kW], etc.
・PR: Power consumption required when driving on flat roads (Power for Run): Related to running cost (CR)
- Units [KW], etc.
・PU: Power consumption required when driving uphill (Power for Up): related to power consumption for climbing (CU)
- Units [KW], etc.
・PGR: The stored power that can be charged to the battery when the generator is generating power (PG) while driving on flat roads minus the power consumption required for driving (PR)
- Unit [KW]------(PG - PR): Storage power that can be charged to the battery
・PGU: The stored power that can be charged to the battery when the generator is generating power (PG) while driving uphill minus the power consumption (PU) required for driving uphill.
- Unit [KW]------(PG - PU): Power that can be stored in the battery (if PG < PU, the vehicle will run on the battery instead of storing power in the battery)
・C: Consumption of electricity
- Unit [km/KWh] ------- CR: Average electricity consumption when driving on a flat road, CU: Average electricity consumption when driving on an uphill road, etc.

図1は平地走行の場合である。なお斜めの実線と破線はSOCの様子を示している。
図1-1は電池の蓄電量が下限値の場合である。
・Prun1: 発電区間の走行に必要な走行電力量[KWh]
・Prun2: 残りの走行に必要な走行電力量[KWh]
・Pgen=Prun1+Prun2: 発電機による発電電力量[KWh]であり走行に必要な全走行電力量に等しい
・PG: 発電機の発電電力[KW]
・PR: 走行時の走行消費電力[KW]
・PGR: 発電しながら走行する時の電池の蓄電に使える電力(PG-PR)
以下の様に制御する。
・電費から算出した必要な走行電力は走行距離(LG)を平均電費(CR)で割った値: Pgen=LG/CR
・発電機を動作させる期間: Tgen=Pgen/PGR
Tgen=(LG/CR)x(1/PGR)=(LG/CR)x(1/(PG-PR))
・平均速度をVRとするとLGまでの走行時間(TG): TG=LG/VR
=>発電時間(Tgen)が走行時間(TG)より短ければ走行可能(PG>PRなので成り立つ)
=>PG=PRの時は、走行中は常時発電をする事になる
図1-2は電池に蓄電されているが走行途中で発電が必要な場合である。
・Psoc: 電池に蓄電されている電力量[KWh]
・Pgen=Prun1+Prun2-Psoc : 必要な発電電力量(Pgen)は走行電力量であり(Prun1+Prun2)から蓄電量(Psoc)を引いた値
以下の様に制御する。
・電費から算出した必要な走行電力は走行距離(LG)を平均電費(CR)で割った値: Pgen=LG/CR
・発電機を動作させる期間: Tgen=Pgen/PGR
・よって、Tgen=(LG/CR - Psoc)x(1/PGR)=(LG/CR-Psoc)x(1/(PG-PR))
・平均速度をVRとするとLGまでの走行時間(TG): TG=LG/VR
=>蓄電量(Psoc)が多いほど発電時間(Tgen)は短縮できる
図1-3は蓄電量が走行に必要な電力量よりも多い場合である。
・Psoc: 電池に蓄電されている電力量[KWh]
以下の様に制御する。
・走行電力量(Prun1+Prun2)と蓄電量(Psoc)を比較
=> Psoc > Prun1+Prun2であり蓄電量でその区間(LG)の走行可能(LG地点で蓄電量は余る)
Figure 1 shows the case of driving on flat ground. The diagonal solid and dashed lines show the state of SOC.
FIG. 1-1 shows the case where the battery charge is at the lower limit.
・Prun1: Amount of power required to run in the generating section [KWh]
・Prun2: Amount of energy required for remaining driving [KWh]
・Pgen=Prun1+Prun2: The amount of power generated by the generator [KWh], which is equal to the total amount of power required for driving.
・PG: Generator power output [KW]
・PR: Power consumption during driving [KW]
・PGR: Power that can be used to store electricity in the battery while driving (PG-PR)
It is controlled as follows:
・The required driving power calculated from the power consumption is calculated by dividing the driving distance (LG) by the average power consumption (CR): Pgen=LG/CR
・Period for operating the generator: Tgen=Pgen/PGR
Tgen = (LG/CR) x (1/PGR) = (LG/CR) x (1/(PG-PR))
・If the average speed is VR, the travel time to LG (TG): TG=LG/VR
=> If the power generation time (Tgen) is shorter than the running time (TG), the vehicle can run (PG>PR, so this is true)
=> When PG=PR, power will be generated continuously while driving.
Figure 1-2 shows a case where electricity is stored in the battery but power generation is required during driving.
・Psoc: Amount of power stored in the battery [KWh]
・Pgen=Prun1+Prun2-Psoc: The required amount of generated power (Pgen) is the amount of power required for driving, calculated by subtracting the amount of stored power (Psoc) from (Prun1+Prun2).
It is controlled as follows:
・The required driving power calculated from the power consumption is calculated by dividing the driving distance (LG) by the average power consumption (CR): Pgen=LG/CR
・Period for operating the generator: Tgen=Pgen/PGR
Therefore, Tgen = (LG/CR - Psoc) x (1/PGR) = (LG/CR-Psoc) x (1/(PG-PR))
・If the average speed is VR, the travel time to LG (TG): TG=LG/VR
=> The more stored power (Psoc), the shorter the power generation time (Tgen) can be. Figure 1-3 shows the case where the amount of stored power is greater than the amount of power required for driving.
・Psoc: Amount of power stored in the battery [KWh]
It is controlled as follows:
・Compare the amount of electricity used for driving (Prun1+Prun2) and the amount of electricity stored (Psoc)
=> Psoc > Prun1 + Prun2, and the section (LG) can be driven with the stored energy (there is excess energy at the LG point)

図2は静音区域(病院などの医療区域、学校などの学園区域、トンネルなど)の場合である。
図2-1は電池の蓄電量が下限値の場合である。
・Prun1: 発電区間の走行に必要な走行電力量[KWh]
・Prun2: 静音区域を含めた残りの走行に必要な走行電力量[KWh]
・Pgen=Prun1+Prun2: 走行に必要な発電機による発電電力量[KWh]
・PG: 発電機の発電電力[KW]
・PR: 走行時の走行消費電力[KW]
・PGR=PG-PR : 発電しながら走行する時の電池の蓄電に使える正味の電力[KW]
以下の様に制御する。
・電費から算出した必要な走行電力は走行距離(LG)を平均電費(CR)で割った値: Pgen=LG/CR
・発電機を動作させる期間: Tgen=Pgen/PGR
Tgen=(LG/CR)x(1/PGR)=(LG/CR)x(1/(PG-PR))
・平均速度をVRとすると発電機が駆動して走行する距離(Lgen)の値: Lgen=Tgen x VR
=>発電機を駆動させて走行する距離(Lgen)が静音区域の開始地点(LQ)より小さい場合は問題なし
=>Lgen > LQ の場合は前区間から蓄電量を見直す、それが不可の時は(a)発電機の発電電力を増加させる、 (b)速度を緩和するか停止して蓄電する、(c)静音区域でも発電して走行する
図2-2は電池に蓄電されているが走行途中で発電が必要な場合である。
・Psoc: 電池に蓄電されている電力量[KWh]
・Pgen=Prun1+Prun2-Psoc : 発電電力量(Pgen)は走行電力量(Prun1+Prun2)から蓄電量(Psoc)を引いた値
以下の様に制御する。
・電費から算出した必要な走行電力は走行距離(LG)を平均電費(CR)で割った値: Pgen=LG/CR
・発電機を動作させる期間: Tgen=Pgen/PGR
・よって、Tgen=(LG/CR - Psoc)x(1/PGR)=(LG/CR-Psoc)x(1/(PG-PR))
・平均速度をVRとすると発電機が駆動して走行する距離(Lgen)の値: Lgen=Tgen x VR
=>発電機を駆動させて走行する距離(Lgen)が静音区域の開始地点(LQ)より小さい場合は問題なし
=>Lgen > LQ の場合は前区間から蓄電量を見直す、それが不可の時は(a)発電機の発電電力を増加させる、 (b)速度を緩和するか停止して蓄電する、(c)静音区域でも発電して走行する
図2-3は蓄電量が走行に必要な電力量よりも多い場合である。
・Psoc: 電池に蓄電されている電力量[KWh]
以下の様に制御する。
・走行電力量(Prun1+Prun2)と蓄電量(Psoc)を比較
=> Psoc > Prun1+Prun2 であり蓄電量で走行可能(静音区間の出口でも蓄電量は残る)
FIG. 2 shows the case of a quiet area (medical area such as a hospital, an academic area such as a school, a tunnel, etc.).
Figure 2-1 shows the case where the battery charge is at the lower limit.
・Prun1: Amount of power required to run in the generating section [KWh]
・Prun2: Amount of energy required for the remaining run, including quiet zones [KWh]
・Pgen=Prun1+Prun2: Amount of power generated by the generator required for running [KWh]
・PG: Generator power output [KW]
・PR: Power consumption during driving [KW]
・PGR=PG-PR: Net power that can be used to store electricity in the battery while driving while generating electricity [KW]
It is controlled as follows:
・The required driving power calculated from the power consumption is calculated by dividing the driving distance (LG) by the average power consumption (CR): Pgen=LG/CR
・Period for operating the generator: Tgen=Pgen/PGR
Tgen = (LG/CR) x (1/PGR) = (LG/CR) x (1/(PG-PR))
・If the average speed is VR, the distance traveled by the generator (Lgen) is: Lgen=Tgen x VR
=> There is no problem if the distance traveled while driving the generator (Lgen) is less than the start point of the quiet zone (LQ).
=>If Lgen > LQ, review the amount of stored energy from the previous section. If this is not possible, (a) increase the power generated by the generator, (b) reduce speed or stop the train to store energy, or (c) generate electricity and continue traveling even in quiet areas.
Figure 2-2 shows a case where electricity is stored in the battery but power generation is required during driving.
・Psoc: Amount of power stored in the battery [KWh]
・Pgen=Prun1+Prun2-Psoc: The amount of generated power (Pgen) is the value obtained by subtracting the amount of stored power (Psoc) from the amount of driving power (Prun1+Prun2).
It is controlled as follows:
・The required driving power calculated from the power consumption is calculated by dividing the driving distance (LG) by the average power consumption (CR): Pgen=LG/CR
・Period for operating the generator: Tgen=Pgen/PGR
Therefore, Tgen = (LG/CR - Psoc) x (1/PGR) = (LG/CR-Psoc) x (1/(PG-PR))
・If the average speed is VR, the distance traveled by the generator (Lgen) is: Lgen=Tgen x VR
=> There is no problem if the distance traveled while driving the generator (Lgen) is less than the start point of the quiet zone (LQ).
=>If Lgen > LQ, review the amount of stored energy from the previous section. If this is not possible, (a) increase the power generated by the generator, (b) reduce speed or stop the train to store energy, or (c) generate electricity and continue traveling even in quiet areas.
Figure 2-3 shows the case where the amount of stored electricity is greater than the amount of electricity required for driving.
・Psoc: Amount of power stored in the battery [KWh]
It is controlled as follows:
・Compare the amount of electricity used for driving (Prun1+Prun2) and the amount of electricity stored (Psoc)
=> Psoc > Prun1+Prun2, so the vehicle can run on the stored power (there is still some power remaining even at the exit of the quiet section)

図3は下坂の場合である。
図3-1は電池の蓄電量が下限値の場合である。
・Prun1: 発電区間の走行に必要な走行電力量[KWh]
・Prun2: 下坂区域の開始地点までの残りの走行に必要な走行電力量[KWh]
・Pgen=Prun1+Prun2: 走行に必要な発電機による発電電力量[KWh]
・PG: 発電機の発電電力[KW]
・PR: 走行時の走行消費電力[KW]
・PGR=PG-PR : 発電しながら走行する時の電池の蓄電に使える電力[KW]
以下の様に制御する。
・電費から算出した必要な走行電力は走行距離(LD)を平均電費(CR)で割った値: Pgen=LD/CR
・発電機を動作させる期間: Tgen=Pgen/PGR
・よって、Tgen=(LD/CR)x(1/PGR)=(LD/CR)x(1/(PG-PR))
・平均速度をVRとするとLDまでの走行時間(TG): TD=LD/VR
=>発電時間(Tgen)が走行時間(TD)より短ければ走行可能(通常は短い)
=>PG=PRの場合はLDの開始時点まで走行中は発電をする事になる
図3-2は電池に蓄電されているが走行途中で発電が必要な場合である。
・Psoc: 電池に蓄電されている電力量[KWh]
・Pgen=Prun1+Prun2-Psoc : 発電電力量(Pgen)は走行電力量(Prun1+Prun2)から蓄電量(Psoc)を引いた値
以下の様に制御する。
・電費から算出した必要な走行電力は走行距離(LG)を平均電費(CR)で割った値: Pgen=LG/CR
・発電機を動作させる期間: Tgen=Pgen/PGR
・よって、Tgen=(LD/CR - Psoc)x(1/PGR)=(LD/CR-Psoc)x(1/(PG-PR))
・平均速度をVRとするとLDまでの走行時間(TG): TD=LD/VR
=>発電時間(Tgen)が走行時間(TD)より短ければ走行可能(通常は短い)
=>PG=PRの場合はLDの開始時点まで走行中は発電をする事になる
図3-3は蓄電量が走行に必要な電力量よりも多い場合である。
・Psoc: 電池に蓄電されている電力量[KWh]
以下の様に制御する。
・走行電力量(Prun1+Prun2)と蓄電量(Psoc)を比較
=> Psoc > Prun1+Prun2 であり蓄電量だけで走行可能(下坂区域の開始地点でも蓄電量は残る)
FIG. 3 shows the case of a downward slope.
FIG. 3-1 shows the case where the battery charge is at the lower limit.
・Prun1: Amount of power required to run in the generating section [KWh]
・Prun2: The amount of energy required for the remaining drive to the start of the downhill section [KWh]
・Pgen=Prun1+Prun2: Amount of power generated by the generator required for running [KWh]
・PG: Generator power output [KW]
・PR: Power consumption during driving [KW]
・PGR=PG-PR: Power that can be used to store electricity in the battery while driving while generating electricity [KW]
It is controlled as follows:
・The required driving power calculated from the power consumption is calculated by dividing the driving distance (LD) by the average power consumption (CR): Pgen=LD/CR
・Period for operating the generator: Tgen=Pgen/PGR
Therefore, Tgen = (LD/CR) x (1/PGR) = (LD/CR) x (1/(PG-PR))
・If the average speed is VR, the travel time to LD (TG): TD=LD/VR
=> If the power generation time (Tgen) is shorter than the driving time (TD), the vehicle can run (usually it is short).
In the case of =>PG=PR, electricity will be generated while driving up to the start of LD. Figure 3-2 shows a case where electricity is stored in the battery but electricity generation is required during driving.
・Psoc: Amount of power stored in the battery [KWh]
・Pgen=Prun1+Prun2-Psoc: The amount of generated power (Pgen) is the value obtained by subtracting the amount of stored power (Psoc) from the amount of driving power (Prun1+Prun2).
It is controlled as follows:
・The required driving power calculated from the power consumption is calculated by dividing the driving distance (LG) by the average power consumption (CR): Pgen=LG/CR
・Period for operating the generator: Tgen=Pgen/PGR
Therefore, Tgen = (LD/CR - Psoc) x (1/PGR) = (LD/CR-Psoc) x (1/(PG-PR))
・If the average speed is VR, the travel time to LD (TG): TD=LD/VR
=> If the power generation time (Tgen) is shorter than the driving time (TD), the vehicle can run (usually it is short).
=> In the case of PG=PR, power will be generated while driving until the start of LD. Figure 3-3 shows the case where the amount of stored power is greater than the amount of power required for driving.
・Psoc: Amount of power stored in the battery [KWh]
It is controlled as follows:
・Compare the amount of electricity used for driving (Prun1+Prun2) and the amount of electricity stored (Psoc)
=> Psoc > Prun1+Prun2, so the car can run on the stored power alone (there is still some power remaining at the start of the downhill section)

図4は登坂の場合である。
図4-1は電池の蓄電量が下限値の場合である。
・Prun1: 発電区間の走行に必要な走行電力量[KWh]
・Prun2: 発電区間から登山区域の間の走行に必要な電力量[KWh]
・Pup: 登坂区域の走行に必要な電力量[KWh]
・Pgen=Prun1+Prun2 +Pup: 発電機による発電電力量[KWh]であり走行に必要な全走行電力量に等しい
・Prem: 全体の必要発電量から登坂開始地点までの必要発電量を引いた登坂路を走行するに必要な発電量(Remain)
・PG: 発電機の発電電力[KW]
・PR: 平坦路走行時の走行消費電力[KW]
・PU: 登坂路走行時の走行消費電力[KW]
・PGR=PG-PR : 平坦路を発電しながら走行する時の電池の蓄電に使える電力[KW]
・PGU=PG-PU : 登坂路を発電しながら走行する時の電池の蓄電に使える電力[KW]
以下の様に制御する。
・必要な走行電力は、登坂開始までの平坦走行距離(LU)を平均電費(CR)で割った値(Pgen1=LU/CR)と、登坂区域(LG-LU)を登坂電費(CU)で割った値の Pgen2=(LG-LU)/CU)を加えた電力量(Pgen=Pgen1+Pgen2) となる。
Pgen = Pgen1+Pgen2 = Prun1+Prun2+Pup = (LU/CR) + (LG-LU)/CU
(1) PR > PU(平坦路走行での発電電力(PR)は登坂時の走行消費電力(PU)より大 きい場合)
・平坦路走行の時に発電機が動作する時間(Tgen)は必要電力量(Pgen)を発電電力(PGR)で割った値
Tgen = Pgen/PGR = ((LU/CR) + (LG-LU)/CU)/(PG-PR)
・LUまでに走行する走行時間
TU = LU/VR
・TgenとTUを比較してTgen < TUならば登坂区域を走行する前に発電機を停止出来て後は電池走行で登坂が可能
・Tgen > TUの場合は発電しながら登坂走行が必要
・登坂開始時点で必要な残りの発電電力(Prem)は、LUまでの走行に消費した電力量をPgenから引いた値(Pupに等しい)
Prem = Pgen - (LU/VR)(PG-PR) =((LU/CR) + (LG-LU)/CU) - (LU/VR)(PG-PR)
・Premで登坂を発電しながら走行する距離はPremを登坂電費(CU)で掛けた値
Lrem = Prem x CU
・Premで登坂を発電しながら走行する時の発電時間はLremをVRで割った値
Trem = Lrem/VR
・PR >PUなので蓄電しながら登坂走行し登頂前に発電機は停止となる
(2) PR< PU(以下の場合があり得る)
・もしLremが登坂全走行路(LG-LU)よりも小さい場合は、登坂走行での発電電力量が登頂までに必要な電力量よりも少ないため、前区間から蓄電量を見直す、それが不可の時は(a)発電機の発電電力を増加させる、 (b)速度を緩和するか停止して蓄電する事が必要となる
図4-2は電池に蓄電されているが走行途中で発電が必要な場合である
・Psoc: 電池に蓄電されている電力量[KWh]
・Pgen=Prun1+Prun2+Pup -Psoc : 発電電力量(Pgen)は走行電力量(Prun1+Prun2+Pup)から蓄電量(Psoc)を引いた値
以下の様に制御する。
・必要な走行電力は、登坂開始までの走行距離(LU)を平均電費(CR)で割った値(Pgen1=LU/CR)と、登坂区域(LG-LU)を登坂電費(CU)で割った値(Pgen2=(LG-LU)/CU)を加えた電力量からPsocを引いた量となる
Pgen = Pgen1+Pgen2-Psoc = Prun1+Prun2+Pup-Psoc = (LU/CR) + ((LG-LU)/CU )-Psoc
(1) PR > PU(平坦路走行での発電電力(PR)は登坂時の走行消費電力(PU)より大 きい場合)
・平坦路走行の時に発電機が動作する時間(Tgen)は必要電力量(Pgen)を発電電 力(PGR)で割った値
Tgen = Pgen/PGR = ((LU/CR) + ((LG-LU)/CU) - Psoc)/(PG-PR)
・LUまでに走行する走行時間
TU = LU/VR
・TgenとTUを比較してTgen < TUならば登坂区域を走行する前に発電機を停止出来て後は電池走行で登坂が可能
・Tgen > TUの場合は発電しながら登坂走行が必要
・登坂開始時点で必要な残りの発電電力(Prem)は、LUまでの走行に消費した電力量をPgenから引いた値(Pupに等しい)
Prem = Pgen - (LU/VR)(PG-PR) =((LU/CR) + ((LG-LU)/CU) - Psoc) - (LU/VR)(PG-PR)
・Premで登坂を発電しながら走行する距離はPremを登坂電費(CU)で掛けた値
Lrem = Prem x CU
・Premで登坂を発電しながら走行する時の発電時間はLremをVRで割った値
Trem = Lrem/VR
・PR >PUなので蓄電しながら登坂走行し登頂前に発電機は停止となる
(2) PR< PU(以下の場合があり得る)
・もしLremが登坂全走行路(LG-LU)よりも小さい場合は、登坂走行での発電電力量が登頂までに必要な電力量よりも少ないため、前区間から蓄電量を見直す、それが不可の時は(a)発電機の発電電力を増加させる、 (b)速度を緩和するか停止して蓄電する事が必要となる
図4-3は蓄電量が走行に必要な電力量よりも多い場合である。
・Psoc: 電池に蓄電されている電力量[KWh]
・Pgen=Prun1+Prun2-Psoc : 発電電力量(Pgen)は走行電力量(Prun1+Prun2)から蓄電量(Psoc)を引いた値
以下の様に制御する。
・走行電力量(Prun1+Prun2)と蓄電量(Psoc)を比較
=> Psoc > Prun1+Prun2 なので電池の蓄電量で走行可能(登頂時点でも蓄電量は残る)
FIG. 4 shows the case of going uphill.
FIG. 4-1 shows the case where the battery charge is at the lower limit.
・Prun1: Amount of power required to run in the generating section [KWh]
・Prun2: Amount of electricity required to travel between the power generation section and the mountain climbing section [KWh]
・Pup: Amount of power required to travel uphill [KWh]
・Pgen=Prun1+Prun2+Pup: The amount of power generated by the generator [KWh], which is equal to the total amount of power required for driving.
・Prem: The amount of power generation required to travel uphill (remain) minus the amount of power generation required to reach the start of the climb from the total amount of power generation required
・PG: Generator power output [KW]
・PR: Power consumption when driving on flat roads [KW]
・PU: Power consumption when traveling uphill [KW]
・PGR=PG-PR: Power that can be used to store electricity in the battery while generating electricity while driving on a flat road [KW]
・PGU=PG-PU: Power that can be used to store electricity in the battery when driving uphill [KW]
It is controlled as follows:
The required driving power is calculated by dividing the flat driving distance up to the start of the climb (LU) by the average power consumption (CR) (Pgen1=LU/CR) and the climbing section (LG-LU) by the climbing power consumption (CU) (Pgen2=(LG-LU)/CU) (Pgen=Pgen1+Pgen2).
Pgen = Pgen1+Pgen2 = Prun1+Prun2+Pup = (LU/CR) + (LG-LU)/CU
(1) PR > PU (When the power generated while driving on a flat road (PR) is greater than the power consumed while driving uphill (PU))
・The time the generator operates when driving on a flat road (Tgen) is the required amount of power (Pgen) divided by the generated power (PGR).
Tgen = Pgen/PGR = ((LU/CR) + (LG-LU)/CU)/(PG-PR)
・Travel time to LU
TU = LU/VR
・Comparing Tgen and TU, if Tgen < TU, the generator can be stopped before traveling on an uphill section, and the vehicle can then continue climbing on battery power.
・If Tgen > TU, the vehicle needs to drive uphill while generating electricity.
The remaining power required at the start of the climb (Prem) is the value obtained by subtracting the amount of power consumed to travel up to LU from Pgen (equal to Pup).
Prem = Pgen - (LU/VR)(PG-PR) = ((LU/CR) + (LG-LU)/CU) - (LU/VR)(PG-PR)
・The distance traveled while generating electricity while climbing a hill using Prem is the value obtained by multiplying Prem by the hill climbing electricity cost (CU)
Lrem = Prem x CU
・The power generation time when driving uphill with Prem is Lrem divided by VR
Trem = Lrem/VR
・PR>PU, so the generator will stop before reaching the top while storing electricity while climbing.
(2) PR < PU (the following cases are possible):
If Lrem is smaller than the entire uphill travel distance (LG-LU), the amount of power generated during the uphill travel is less than the amount of power required to reach the summit, so the amount of stored power must be reviewed from the previous section. If this is not possible, (a) increase the power generated by the generator, or (b) reduce the speed or stop the vehicle to store power.
Figure 4-2 shows the case where electricity is stored in the battery but power generation is required during driving. Psoc: Amount of electricity stored in the battery [KWh]
・Pgen=Prun1+Prun2+Pup -Psoc: The amount of generated power (Pgen) is the value obtained by subtracting the amount of stored power (Psoc) from the amount of driving power (Prun1+Prun2+Pup).
It is controlled as follows:
The required driving power is calculated by subtracting Psoc from the sum of the distance traveled up to the start of the climb (LU) divided by the average power consumption (CR) (Pgen1=LU/CR) and the climbing section (LG-LU) divided by the climbing power consumption (CU) (Pgen2=(LG-LU)/CU).
Pgen = Pgen1+Pgen2-Psoc = Prun1+Prun2+Pup-Psoc = (LU/CR) + ((LG-LU)/CU)-Psoc
(1) PR > PU (When the power generated while driving on a flat road (PR) is greater than the power consumed while driving uphill (PU))
・The time the generator operates when driving on a flat road (Tgen) is the required amount of power (Pgen) divided by the generated power (PGR).
Tgen = Pgen/PGR = ((LU/CR) + ((LG-LU)/CU) - Psoc)/(PG-PR)
・Travel time to LU
TU = LU/VR
・Comparing Tgen and TU, if Tgen < TU, the generator can be stopped before traveling on an uphill section, and the vehicle can then continue climbing on battery power.
・If Tgen > TU, the vehicle needs to drive uphill while generating electricity.
The remaining power required at the start of the climb (Prem) is the value obtained by subtracting the amount of power consumed to travel up to LU from Pgen (equal to Pup).
Prem = Pgen - (LU/VR)(PG-PR) = ((LU/CR) + ((LG-LU)/CU) - Psoc) - (LU/VR)(PG-PR)
・The distance traveled while generating electricity while climbing a hill using Prem is the value obtained by multiplying Prem by the hill climbing electricity cost (CU)
Lrem = Prem x CU
・The power generation time when driving uphill with Prem is Lrem divided by VR
Trem = Lrem/VR
・PR>PU, so the generator will stop before reaching the top while storing electricity while climbing.
(2) PR < PU (the following cases are possible):
If Lrem is smaller than the entire uphill travel distance (LG-LU), the amount of power generated during the uphill travel is less than the amount of power required to reach the summit, so the amount of stored power must be reviewed from the previous section. If this is not possible, (a) increase the power generated by the generator, or (b) reduce the speed or stop the vehicle to store power.
Figure 4-3 shows the case where the amount of stored electricity is greater than the amount of electricity required for driving.
・Psoc: Amount of power stored in the battery [KWh]
・Pgen=Prun1+Prun2-Psoc: The amount of generated power (Pgen) is the value obtained by subtracting the amount of stored power (Psoc) from the amount of driving power (Prun1+Prun2).
It is controlled as follows:
・Compare the amount of electricity used for driving (Prun1+Prun2) and the amount of electricity stored (Psoc)
=> Psoc > Prun1+Prun2, so the car can run on the battery's remaining charge (there is still some charge left at the summit)

上記の記述において登坂に必要な電力量は坂道の電費として計算し、下坂は回生電力量として考慮したが、垂直方法の電力量は位置エネルギーとしても計算も出来る。この場合は、車両の重量(m)、重力加速度(g)、標高(h)とすると位置エネルギーはmghであり単位はジュール(J)なのでこれを電力量(KWh)に換算する事で、坂道でも平地走行での電費に位置エネルギーを加算する事で坂道走行の消費電力量が導ける。 In the above description, the amount of power required to go uphill was calculated as the power consumption for going uphill, and the amount of power required for going downhill was considered as the amount of regenerative power, but the amount of power required for the vertical method can also be calculated as potential energy. In this case, if the vehicle weight (m), gravitational acceleration (g), and altitude (h) are used, the potential energy is mgh, and the unit is joules (J), so by converting this to power energy (KWh), the amount of power consumed when driving uphill can be derived by adding the potential energy to the power consumption when driving on flat ground, even when driving uphill.

次に走行路全体のSOCチャート作成方法について記す。作成に当たっては以下の順番に行う。
1.各事象の区間毎に出発地点から配置する。
-各事象はまず開始地点において蓄電量が下限値(Psol)となるように設定し、さらに終了地点でも下限値になる様に作成する(静音区間等では下限値以下になる場合もあり得る)。
-下坂事象のみ回生電力のため終了地点では下限値(Psol)とはならない。
2.出発地点では電池の蓄電量は満充電(Psoh)にされているとする。
3.2の蓄電電力が下限値(Psol)となる地点までを初期充電区間(第1区間)とする。
4.2の蓄電電力が下限値(Psol)に達する前に別の事象が配置されている場合はその事象の区間を含んで下限値(Psol)となった地点までを1区間と考える。
5.4の区間でも下限値(Psol)とならない場合は次の事象も含めた区間までを含めて1区間と考える(次の区間も同様)。
6.前区間の終了地点で蓄電電力が下限値(Psol)にならない例えば下坂の場合は次の区間ではまずその蓄電電力を使い切る
7.SOCチャート作成に当たっては初期充電区間から次に続く区間を見通して、各区間の終了地点が下限値(Psol)以下となる最後の区間を探し、その下限値以下の値を下限値(Psol)になるように修正する作業を後段の区間から前段に向かってSOCチャートを順次修正する(図5-1から図5-3にて詳細に説明する)。
8.目的地区間の終了地点で下限値(Psol)となるように調整できるのが望ましいが蓄電電力が余っていてもOKとする
Next, we will explain how to create an SOC chart for the entire road. The procedure for creating the chart is as follows:
1. Place each event section from the starting point.
- Each event is first set so that the amount of stored power is the lower limit (Psol) at the start point, and is also created so that the end point is also the lower limit (it is possible that the amount may be below the lower limit in quiet sections, etc.).
- Only the downhill event does not reach the lower limit (Psol) at the end point due to regenerative power.
2. Assume that the battery is fully charged (Psoh) at the starting point.
The section up to the point where the stored power in 3.2 reaches the lower limit (Psol) is defined as an initial charging section (first section).
4. If another event occurs before the stored power in 2 reaches the lower limit (Psol), the period including that event up to the point where the lower limit (Psol) is reached is considered as one period.
If the lower limit (Psol) is not reached even in the section 5.4, the section including the next event is considered to be one section (similarly for the next section).
6. The stored power does not reach the lower limit (Psol) at the end of the previous section. For example, if you are driving downhill, you must first use up the stored power in the next section.
7. When creating the SOC chart, look from the initial charging section to the following sections, find the last section where the end point of each section is below the lower limit (Psol), and correct the value below the lower limit so that it becomes the lower limit (Psol), repeating this process from the latter section to the former section (details will be explained in Figures 5-1 to 5-3).
8. It is desirable to adjust the power consumption to the lower limit (Psol) at the end of the destination section, but it is OK if there is excess stored power.

次に走行路の具体的なSOCチャートの作成手順を図5に示す。図5-1は各事象をその区間毎に走行開始から目的地まで配置したものである。なお縦軸は電池の蓄電量(SOC)であり、横軸は走行速度が一定とした場合は距離又は時間である。以下に手順を記す。
・第1区間では走行前に電池に満充電(Psoh)とした後に電池走行(1D)を行い最後に蓄電量の下限値(Psol)となる(満充電とならない場合もあり得る)
・第2区間の静音区間においては静音区域では発電機を停止するため、その後は電池走行(2D)となり区間の終了地点では蓄電量の下限値(Psol)以下となる
・第3区間の登坂区域では登坂に必要な走行消費電力(PU)が走行電力(PG)よりも大きいため発電していても蓄電量は低下(3D)し、終了地点では蓄電量の下限値(Psol)以下となる
・第4区間の下坂区域では回生電力が蓄電(4Ub)されるため下坂が終了した時点 で電池に蓄電されている
・第5区間の平地区間では目的地に向かう平坦路なので目的地で電池の蓄電量が下限値(Psol)となるように発電時間を調整する
図5-2では図5-1で蓄電池電力が下限値以下になる区間を調整して、走行路全体で蓄電電力が下限値あるいは下限値以上となるように調整する手順を示す。
・図5-2は図5-1の調整前のSOCチャートにおいて静音区間と登坂区間及び第5区間(目的地区間)の調整方法を示している
・第5区間の開始地点では第4区間の回生電力があるので、まずその電力を使用してから不足分を発電して目的地で電池の蓄電量を下限値とする
・第3区間の終了地点で蓄電量を下限値(Psol)まで引き上げるために、その区間のSOCチャートを不足分の電力量(A)だけ上方にシフト(3U', 3D')を行う
・第2区間では登坂区間の不足分(A)と静音区間での不足分(B)をシフト(2U', 2D')したSOCチャートとなる
・第1区間では静音区間での不足分(A+B)を補うために電池走行(1Da')の途中から発電(1U')を移行する
・このようにSOCチャートは図5-1のようにまず各事象を各区間毎に配置し、その後に電池の下限電力量(Psol)以下になる部分を、後ろの区間から前の区分に各区間の終了地点で下限値(Psol)以下とならないように順次調整を行う
図5-3では出来るだけ発電開始回数を抑制する方法を示している。
・図5-2では第1区間では電池走行(1Da')の途中から発電(1U')に切り替え、再び電池走行(1Db')を行い第2区間の発電開始(2U')に接続している
・それに対して、図5-3では発電走行(1U'')を図のように行うことで第2区間の発電開始(2U')に繋げる事が出来るので発電開始動作を1回減らす事が可能となる
・発電機の開始する時はエンジンの回転数が安定するまでに時間が必要などから出来るだけ発電開始回数を減らすことが望ましい
Next, the specific procedure for creating an SOC chart for a driving route is shown in Figure 5. Figure 5-1 shows each event arranged for each section from the start of the drive to the destination. The vertical axis is the battery charge (SOC), and the horizontal axis is distance or time when the driving speed is constant. The procedure is as follows:
In the first section, the battery is fully charged (Psoh) before driving, then the vehicle is driven on battery power (1D), and finally the battery reaches the lower limit (Psol) of the charge (it may not be fully charged).
・In the quiet section of the second section, the generator is stopped in the quiet area, so the vehicle then runs on battery power (2D) and the battery level falls below the lower limit (Psol) at the end of the section.
In the uphill section of the third section, the power consumption (PU) required for climbing is greater than the power required for driving (PG), so even though power is being generated, the amount of stored electricity decreases (3D), and at the end point it falls below the lower limit of the amount of stored electricity (Psol).
- In the downhill section of the 4th section, regenerative power is stored (4Ub), so it is stored in the battery when the downhill section ends. - In the flat section of the 5th section, the road is flat towards the destination, so the power generation time is adjusted so that the battery charge is at the lower limit (Psol) at the destination. Figure 5-2 shows the procedure for adjusting the sections in Figure 5-1 where the battery power falls below the lower limit, and adjusting the battery charge to be at or above the lower limit over the entire route.
・Figure 5-2 shows the adjustment method for the quiet section, the uphill section, and the 5th section (destination section) in the SOC chart before adjustment in Figure 5-1.
At the start of the fifth section, there is regenerative power from the fourth section, so that power is used first, and then the shortfall is generated to bring the battery charge to the lower limit at the destination.
・In order to raise the amount of stored energy to the lower limit (Psol) at the end of the third section, the SOC chart for that section is shifted upward by the amount of energy shortage (A) (3U', 3D').
In the second section, the SOC chart is created by shifting (2U', 2D') the shortage in the uphill section (A) and the shortage in the quiet section (B).
In the first section, power generation (1U') is started halfway through battery driving (1Da') to make up for the shortage (A+B) in the quiet section.
In this way, the SOC chart first arranges each event in each section as shown in Figure 5-1, and then adjusts the parts that are below the lower limit of the battery power (Psol) from the latter section to the former section in sequence so that they do not fall below the lower limit (Psol) at the end of each section.
Figure 5-3 shows a method for minimizing the number of times power generation starts.
・In Figure 5-2, in the first section, the vehicle switches from battery driving (1Da') to power generation (1U') halfway through, then resumes battery driving (1Db') and connects to the start of power generation in the second section (2U'). ・In contrast, in Figure 5-3, power generation driving (1U'') can be performed as shown in the figure, which can then be connected to the start of power generation in the second section (2U'), making it possible to reduce the number of power generation start operations by one. ・When starting the generator, it takes time for the engine speed to stabilize, so it is desirable to reduce the number of times power generation is started as much as possible.

次に第一区間の初期充電区間が他の事象と重なる場合の考え方を記す。
図6-1は初期充電区間が静音区域と重なった場合であり以下に対応を示す。
・図6-1は初期充電区間の電池走行(D1)が下限値(Psol)に達する前に静音区域に入り、静音区域の途中で下限値(Psol)となる場合である。
・静音区域で下限値(Psol)になった後で発電(U1)する事は避けなければならないので、静音区域が始まるところで発電(U2)が終了するように調整をする。
図6-2は初期充電区間が下坂区域と重なった場合であり以下の様になる。
・図6-2は初期充電区間の電池走行(D1)が下限値(Psol)に達する前に下坂区域に入る場合である。
・下坂区域での回生電力(U1)のため下坂区域ではSOCチャートが折れ曲
グラフ(U2)となる(U2とU1の平行部分は限りなく近い)
図6-3は初期充電区間が登坂区域と重なった第一の場合であり以下に対応を示す。
・図6-3は初期充電区間の電池走行(D1)による区間が下限値(Psol)に達する前に登坂区域に入る場合である。
・走行電力(PG)が登坂消費走行電力(PU)より大きい場合は、登坂区域の途中
で発電(U1)を行なう事で走行が出来る。
図6-4は初期充電区間が登坂区域と重なった第二の場合であり以下に対応を示す。
・図6-4は初期充電区間の電池走行(D1)による区間が下限値(Psol)に達する前に登坂区域に入る第二の場合である。
・走行電力(PG)が登坂消費走行電力(PU)より小さいので登坂区域で発電を
行なっても蓄電量は減少する(D2)。
・登坂区域に入る前に蓄電(U1)して登坂区域に入っても発電(D3)を継続し終了地 点で下限値(Psol)となるように調整を行う。
図7は発電中に蓄電電力が電池の上限値に達した場合の対応について示す。
・図7は発電過程で蓄電電力量が電池の上限値(Psoh)を超える場合である。
・対処方法は2つあり、1つは上限値(Psoh)で発電を停止した後に再び発電(U2)を行ない、以後は電池走行(D1)をして下限値(Psol)に達したら再び発電(U3)を行なう方法。
・他の方法は上限値(Psoh)で発電を停止した後は電池走行(D2)を行い下限値(Psol)に到達した後で発電(U4) を行なう方法。
Next, the considerations when the initial charging section of the first section overlaps with another event will be described.
Figure 6-1 shows the case where the initial charging section overlaps with the quiet section, and the response is as follows:
Figure 6-1 shows a case where the battery travel (D1) in the initial charging section enters the quiet zone before reaching the lower limit (Psol) and then reaches the lower limit (Psol) halfway through the quiet zone.
- Since it must be avoided to generate power (U1) after the lower limit (Psol) is reached in the quiet zone, adjustments are made so that power generation (U2) ends when the quiet zone begins.
Figure 6-2 shows the case where the initial charging section overlaps with the downhill section, as shown below.
Figure 6-2 shows the case where the battery driving (D1) in the initial charging section enters the downhill section before reaching the lower limit (Psol).
・The SOC chart is bent in the downhill area due to regenerative power (U1) in the downhill area.
The graph is (U2) (the parallel parts of U2 and U1 are very close)
FIG. 6-3 shows the first case where the initial charging section overlaps with an uphill section, and the response is as follows.
Figure 6-3 shows a case where the battery-powered driving section (D1) in the initial charging section enters an uphill section before reaching the lower limit (Psol).
・If the driving power (PG) is greater than the climbing driving power consumption (PU),
The vehicle can run by generating electricity (U1).
FIG. 6-4 shows the second case where the initial charging section overlaps with an uphill section, and the response is as follows.
FIG. 6-4 shows the second case where the battery-powered driving section (D1) in the initial charging section enters an uphill section before reaching the lower limit (Psol).
・The running power (PG) is smaller than the climbing power consumption (PU), so power is generated in the climbing area.
Even if you do this, the amount of stored electricity will decrease (D2).
- Electricity is stored (U1) before entering the uphill section, and power generation (D3) continues even after entering the uphill section, and adjustments are made so that the lower limit (Psol) is reached at the end point.
FIG. 7 shows how to respond when the stored power reaches the upper limit of the battery during power generation.
Figure 7 shows the case where the amount of stored energy during power generation exceeds the battery's upper limit (Psoh).
There are two ways to deal with this. One is to stop power generation when the upper limit (Psoh) is reached, then generate power again (U2), and thereafter run the vehicle on battery power (D1). When the lower limit (Psol) is reached, generate power again (U3).
Another method is to stop power generation at the upper limit (Psoh), then run on battery power (D2), and start power generation (U4) after reaching the lower limit (Psol).

図8-1と図8-2に記した走行路全体の走行計画(SOCチャート)のフローチャートを示す。
図8-1はその日に走行する走行路を地図上から選択して、走行路中に存在する事象を抽出し、事象を含む小区間のSOCチャート作成後に走行路に配置した全小区間で、各小区間の終了地点で蓄電量が下限値以下になる場合はSOCチャートを調整する工程の全体フローチャートである。
図8-2は配置した小区間の最後の区間から順次前の区間に戻りながらSOCチャートを調整するための図8-1内で使用するサブルーチンのフローチャートである。まず、(A)最終区間(目的地区間)を除く各区間の終了地点での蓄電量が下限値の許容値以内に入っているかを確認し、(B)YESの場合は最終区間の終了地点の蓄電量が下限値の許容値以内或いはそれ以上であるならば走行路全体のSOCチャートの調整は必要なくサブルーチンから抜ける。
(A)でNOの場合は、(C)最終区間の終了地点の蓄電量が下限値以下の場合はその値が下限値の許容値以内になるようにその区間のSOCチャートをシフトする。(D)次に1つ前の区間に移動する。(E)その区間が第一区間の初期充電区間かを判断して、(F)YESの場合は後の区間の開始地点での電力量(SOC値)に等しくするために電池走行の途中から発電を開始するようにSOCチャートを変更しサブルーチンから抜ける。
(E)でNOの場合は、(G)その区間の終了地点の蓄電量は下限値の許容値以内かを判断しYESの場合は(D)に戻る。(D),(E),(G)のループを繰り返すことで最終的には(F)の区間に移行しサブルーチンから抜ける。
(G)でNOの場合は(H)その区間の終了地点の蓄電量が下限値の許容値以下かを判断しNOの場合は下限値以上なので、(I)1つ後の区間の開始地点の蓄電量をその前の区間の終了値の蓄電量に一致するように調整をして(D)に戻る。
(H)でYESの場合は(J)その区間の終了地点の蓄電量が下限値の値となるようにその区間のSOCチャートをシフトする。(K)では(J)での調整後にその区間の開始地点での電力量が変化した場合は、1つ前の区間の終了区間の蓄電量をその変化に一致するように区間のSOCチャートを調整して(D)に戻る。このループを繰り返すことで最終的に(E)の第一区間に戻りサブルーチンから抜ける。
The flowchart of the driving plan (SOC chart) for the entire route is shown in Figure 8-1 and Figure 8-2.
Figure 8-1 is an overall flowchart of the process of selecting the route to be traveled that day from a map, extracting events that exist along the route, creating an SOC chart for the small section containing the event, and then adjusting the SOC chart for all small sections placed on the route if the storage level falls below the lower limit at the end of each small section.
Figure 8-2 is a flowchart of the subroutine used in Figure 8-1 to adjust the SOC chart from the last section of the arranged small sections back to the previous sections in sequence. First, (A) check whether the stored battery level at the end of each section except the final section (destination section) is within the lower limit tolerance, and (B) if the answer is YES, and the stored battery level at the end of the final section is within or above the lower limit tolerance, there is no need to adjust the SOC chart for the entire route, and the subroutine is exited.
If the answer is NO in (A), (C) if the amount of charge at the end of the final section is below the lower limit, the SOC chart for that section is shifted so that the value is within the lower limit tolerance. (D) Next, move to the previous section. (E) Determine whether that section is the initial charging section of the first section, and (F) if the answer is YES, change the SOC chart so that power generation begins halfway through battery driving to make it equal to the amount of power (SOC value) at the start of the later section, and then exit from the subroutine.
If the answer is NO at (E), (G) checks whether the charge at the end of that section is within the lower limit tolerance, and if the answer is YES, returns to (D). By repeating the loop of (D), (E), and (G), the process finally moves to section (F) and exits the subroutine.
If the answer is NO at (G), then (H) judges whether the stored energy amount at the end point of that section is below the lower limit allowable value. If the answer is NO, then it is above the lower limit, so (I) adjusts the stored energy amount at the start point of the next section so that it matches the stored energy amount at the end of the previous section, and then returns to (D).
If the answer is YES in (H), (J) shifts the SOC chart for that section so that the amount of stored power at the end of that section is the lower limit. In (K), if the amount of power at the start of the section has changed after the adjustment in (J), the SOC chart for the section is adjusted so that the amount of stored power at the end of the previous section matches that change, and then the process returns to (D). By repeating this loop, the process finally returns to the first section in (E) and exits the subroutine.

本発明は、発電機で電池に充電し、その充電された電力でよりモーターを駆動する事によって走行するレンジエクステンダー車両の効率走行方法に関わり、走行前に地図情報から走行ルート上に存在する学校や病院領域等の静音区間、登坂や下坂などの各事象を抽出し、それら個々の事象を含む小区間を設定し、走行開始区間から目的地区間まで連続して個々の小区間を配置し調整する事で走行ルート全体での電池の蓄電及び電力量の使用を最適に行えるアルゴリズムについてである。 This invention relates to an efficient driving method for range extender vehicles, which run by charging the battery with a generator and then driving the motor with the charged electricity. It is an algorithm that extracts various phenomena on the driving route, such as quiet sections around schools and hospitals, as well as uphill and downhill sections, from map information before driving, sets up small sections that include each of these phenomena, and arranges and adjusts each small section continuously from the driving start section to the destination section to optimize battery storage and power usage over the entire driving route.

平地区間を走行の場合であり電池の蓄電量が下限値の場合When driving on flat areas and the battery charge is at its lower limit 電池に蓄電されているが走行途中で発電が必要な場合When electricity is stored in the battery but power generation is required during driving 蓄電量が走行に必要な電力量よりも多い場合When the amount of stored electricity is greater than the amount of electricity required for driving 静音区間を走行の場合であり電池の蓄電量が下限値の場合When driving in a quiet section and the battery charge is at the lower limit 電池に蓄電されているが走行途中で発電が必要な場合When electricity is stored in the battery but power generation is required during driving 蓄電量が走行に必要な電力量よりも多い場合When the amount of stored electricity is greater than the amount of electricity required for driving 下坂区間を走行の場合であり電池の蓄電量が下限値の場合When driving on a downhill section and the battery charge is at its lower limit 電池に蓄電されているが走行途中で発電が必要な場合When electricity is stored in the battery but power generation is required during driving 蓄電量が走行に必要な電力量よりも多い場合When the amount of stored electricity is greater than the amount of electricity required for driving 登坂区間を走行の場合であり電池の蓄電量が下限値の場合When driving on an uphill section and the battery charge is at its lower limit 電池に蓄電されているが走行途中で発電が必要な場合When electricity is stored in the battery but power generation is required during driving 蓄電量が走行に必要な電力量よりも多い場合When the amount of stored electricity is greater than the amount of electricity required for driving 各事象をその区間毎に走行開始から目的地まで配置した様子であり、調整前のSOCチャートThis is the SOC chart before adjustment, showing how each event is arranged from the start of the trip to the destination. 各事象をその区間毎に走行開始から目的地まで配置した様子であり、調整後のSOCチャートThis is the adjusted SOC chart, with each event arranged for each section from the start of the trip to the destination. 発電開始回数を抑制する方法の一例An example of a method to reduce the number of times power generation starts 初期充電区間が静音区域と重なった場合If the initial charging area overlaps with a quiet area 初期充電区間が下坂区域と重なった場合If the initial charging section overlaps with a downhill section 初期充電区間が登坂区域と重なった第1場合Case 1: The initial charging section overlaps with an uphill section 初期充電区間が登坂区域と重なった第2場合Case 2: The initial charging section overlaps with an uphill section 発電中に蓄電電力が電池の上限値に達した場合When the stored power reaches the battery's upper limit during power generation 走行前に作成した走行路全体の主フローチャートA main flow chart of the entire route created before the trip 主フローチャートの中のサブルーチンフローチャートとその時のSOCチャート概要図Subroutine flowcharts in the main flowchart and their corresponding SOC charts

Claims (13)

エンジン発電機と二次電池とモーターを搭載し、前記発電機で前記二次電池を充電しながら走行する発電走行と、充電された前記二次電池によって前記モーターを駆動して走行する電池走行を行う車両を対象とし、その走行ルートを事象の小区分からなる区間に分割して出発地点から目的地点まで順番に配置するステップであって
当該事象は、前記車両の走行路が、平地、登坂、下坂、あるいは前記発電機の停止が望まれる区域のいずれかであることを表し、前記事象毎の区間のうち、前記車両が走行開始する最初の第1区間を初期充電区間とし、目的地を含む区間を目的地区間とし該第1区間において該車両の該二次電池が外部充電によって充電され、前記初期充電区間と前記目的地区間の間における任意の区間の開始地点そのすぐ前の区間の事象の終了地点と一致させるステップと、
前記事象毎の区間の各区間毎に、その区間の走行開始地点では前記二次電池の蓄電量を下限値に設定し、その区間の走行終了地点で該蓄電量が再び該下限値となるように、前記車両の該区間における前記発電走行と前記電池走行のそれぞれのタイミングを計画して前記二次電池の蓄電量(SOC)の変化を表すSOCチャートを作成するステップと、
前記各区間における前記走行開始地点において前記二次電池の蓄電量を下限値に設定して前記発電走行を行い、その後に該SOCチャートに従って前記電池走行に切り替えた時に当該区間の前記走行終了地点において前記蓄電量が該下限値の許容値よりも少なくなる場合は、前記走行終了地点の前記蓄電量が該下限値となるように当該区間の前記SOCチャート全体を上方に移動して該計画を修正するステップと、
を備える事を特徴とする計画発電蓄電制御方法
A step of dividing a travel route of a vehicle equipped with an engine generator, a secondary battery, and a motor, which travels in a power generation travel mode in which the secondary battery is charged by the generator and travels in a battery travel mode in which the motor is driven by the charged secondary battery, into sections each consisting of a small section for each event, and arranging the sections in order from a starting point to a destination point,
the event indicates that the road on which the vehicle is traveling is flat, uphill, downhill, or in an area in which it is desired to stop the generator; among the sections for each event, a first section where the vehicle starts traveling is designated as an initial charging section, and a section including a destination is designated as a destination section; in the first section, the secondary battery of the vehicle is charged by external charging; and a start point of any section between the initial charging section and the destination section is made to coincide with an end point of the event in the section immediately preceding it;
creating an SOC chart showing a change in the amount of charge (SOC) of the secondary battery by planning the timing of the power generation running and the battery running of the vehicle in each section of the event-specific section so that the amount of charge stored in the secondary battery is set to a lower limit value at a travel start point of the section and the amount of charge stored in the secondary battery is set to the lower limit value again at a travel end point of the section;
a step of setting the amount of stored power in the secondary battery to a lower limit value at the travel start point in each of the sections and performing the power generation travel, and then, when switching to the battery travel in accordance with the SOC chart, if the amount of stored power at the travel end point of the section becomes less than an allowable value of the lower limit, correcting the plan by moving the entire SOC chart of the section upward so that the amount of stored power at the travel end point becomes the lower limit;
A planned power generation and storage control method comprising :
前記初期充電区間前記外部充電による前記車両の前記二次電池への充電を行った地点を走行開始地点とし、前記車両の走行中に当該車両の前記二次電池の蓄電量が前記下限値の前記許容値以内に達した地点を前記初期充電区間の終了地点とする事を特徴とする、請求項1に記載の計画発電蓄電制御方法
2. The method for controlling planned power generation and storage according to claim 1 , wherein in the initial charging section, a point where the secondary battery of the vehicle is charged by the external charging is set as a starting point of the driving, and a point where the amount of stored power in the secondary battery of the vehicle reaches within the allowable value of the lower limit while the vehicle is traveling is set as an end point of the initial charging section.
前記車両が搭載する前記発電機の停止が望まれる区域ではその区域の開始地点では当該発電機を停止して当該車両を走行させる事を特徴とする、請求項1に記載の計画発電蓄電制御方法
2. The method for controlling planned power generation and storage according to claim 1, characterized in that, in an area where it is desired to stop the generator mounted on the vehicle , the generator is stopped at the start point of the area and the vehicle is allowed to run .
前記目的地区間を除く各区間の走行終了地点において、前記車両の前記二次電池の蓄電量が前記下限値以上の場合は、その直後の区間の走行開始地点の当該二次電池の蓄電量を、その直前の区間の終了地点の蓄電量と等しくなるように前記SOCチャートを修正することを特徴とする、請求項1に記載の計画発電蓄電制御方法
2. The method for controlling planned power generation and storage according to claim 1, characterized in that, when the amount of stored power in the secondary battery of the vehicle is equal to or greater than the lower limit at the end point of each section except for the destination section , the SOC chart is corrected so that the amount of stored power in the secondary battery at the start point of the section immediately following that section is equal to the amount of stored power at the end point of the section immediately preceding that .
前記事象毎の区間内における前記発電機の発電による蓄電量が前記車両の前記二次電池の前記上限値に達する場合は、当該車両が当該発電を停止して電池走行に切り替えるように前記SOCチャートを修正することを特徴とする、請求項1に記載の計画発電蓄電制御方法
2. The method for controlling planned power generation and storage according to claim 1, characterized in that, when the amount of power stored by the generator within the section for each event reaches the upper limit value of the secondary battery of the vehicle , the SOC chart is corrected so that the vehicle stops the generator and switches to battery running.
前記SOCチャートを修正することにより走行開始地点の前記車両の前記二次電池の蓄電量が下限値よりも上方に修正された場合は、その直前の区間は、当該車両は電池走行の途中から発電走行に切り替えて、当該区間の走行終了地点での前記蓄電量が、その直後の区間の走行開始地点で前記蓄電量と等しくなるように前記SOCチャートを修正する事を特徴とした、請求項4に記載の計画発電蓄電制御方法
5. The method for controlling planned power generation and storage according to claim 4 , characterized in that , when the amount of stored power in the secondary battery of the vehicle at the start point of travel is revised to be higher than a lower limit value by correcting the SOC chart , the vehicle switches from battery travel to power generation travel in the middle of the section immediately preceding the revised SOC chart, and the SOC chart is revised so that the amount of stored power at the end point of travel in that section is equal to the amount of stored power at the start point of travel in the section immediately preceding the revised SOC chart .
前記SOCチャートの修正を目的地区間から順次前の区間に戻りながら行う事で、前記車両の走行前に、当該車両の走行路全体の前記SOCチャートを作成する事を特徴とする、請求項4~6の何れか一項に記載の計画発電蓄電制御方法
The method for controlling planned power generation and storage according to any one of claims 4 to 6, characterized in that the SOC chart is corrected by returning sequentially from the destination section back to previous sections, thereby creating the SOC chart for the entire road along which the vehicle is to travel before the vehicle travels.
前記車両の走行開始後は各単位距離毎、若しくは単位時間毎に、当該車両の走行ルート上の場所を地理情報システム(GIS全地球測位衛星システム(GNSSで把握し、当該場所における車両前記二次電池の蓄電量と、当該車両の走行開始前に作成し前記SOCチャートからの当該場所で前記蓄電量との差異を計算し、その結果を用いて当該車両の走行ルート上の場所から目的地までの当該SOCチャートを、当該車両の走行前に作成した当該SOCチャートとの誤差が許容値以内に入る様に修正することを特徴とした、請求項7に記載の計画発電蓄電制御方法
8. The method for controlling planned power generation and storage according to claim 7 , further comprising: determining, for each unit distance or each unit time after the vehicle starts traveling, a location on the vehicle 's route for each unit distance or each unit time using a geographic information system ( GIS ) and a global positioning satellite system ( GNSS ) , calculating a difference between the amount of stored power in the secondary battery of the vehicle at that location and the amount of stored power at that location based on the SOC chart created before the vehicle starts traveling, and using the result of the calculation , correcting the SOC chart from the location on the vehicle's route to the destination so that an error with the SOC chart created before the vehicle started traveling falls within an allowable value .
前記車両が、前記事象毎の区間の走行に必要な電力量を、当該区間の走行距離と当該車両の電費から求め、当該車両が搭載する発電機の発電量から当該車両の走行に必要な走行消費電力を引いた当該車両が搭載する二次電池に蓄電可能な電力量の逆数を当該区間の先の区間の走行距離に乗算する事で、前記発電機の発電時間を求める事を特徴とした、請求項1に記載の計画発電蓄電制御方法
2. The planned power generation and storage control method according to claim 1, characterized in that the amount of power required for the vehicle to travel in the section for each event is calculated from the travel distance of the section and the electric power consumption of the vehicle , and the power generation time of the generator is calculated by multiplying the reciprocal of the amount of power that can be stored in a secondary battery mounted on the vehicle , which is obtained by subtracting the travel power consumption required for the vehicle to travel from the power generation amount of the generator mounted on the vehicle , by the travel distance of the section beyond the section .
前記車両が搭載する発電機での発電に必要な発電量は、当該車両の走行距離を、当該車両の電費で割り算する事で求める事を特徴とした、請求項9に記載の計画発電蓄電制御方法
10. The method for controlling planned power generation and storage according to claim 9, wherein the amount of power generation required for generating electricity by the generator mounted on the vehicle is calculated by dividing a travel distance of the vehicle by an electricity consumption of the vehicle .
前記SOCチャートは、登坂走行区間では坂の途中で前記二次電池の蓄電量が下限値にならないように発電時期と発電時間を決めて坂の頂上で前記蓄電量の下限値になるように前記発電機を制御し、下坂走行区間では下坂前の走行中で前記発電機を駆動している場合は下坂走行区間の走行開始地点で前記蓄電量が下限値になるように前記発電機を制御する事を特徴とした、請求項10に記載の計画発電蓄電制御方法
11. The planned power generation and storage control method according to claim 10, wherein the SOC chart controls the generator in an uphill driving section so that the amount of stored power in the secondary battery does not reach the lower limit midway up the slope by determining a power generation timing and a power generation time, and controls the generator so that the amount of stored power reaches the lower limit at the top of the slope, and controls the generator in a downhill driving section so that the amount of stored power reaches the lower limit at a start point of the downhill driving section when the generator is driven during driving before descending the slope .
前記車両の垂直方向の移動に必要な、当該車両に搭載した前記モーターを駆動する為の電力量は位置エネルギーから求める事を特徴とした、請求項10に記載の計画発電蓄電制御方法
11. The method for controlling planned power generation and storage according to claim 10, wherein an amount of electric power required for driving the motor mounted on the vehicle to move the vehicle in the vertical direction is calculated from potential energy.
エンジン発電機と二次電池とモーターを搭載し、前記発電機で前記二次電池を充電しながら走行する発電走行と、充電された前記二次電池によって前記モーターを駆動して走行する電池走行を行う車両を対象とし、その走行ルートを事象毎の小区分からなる区間に分割して出発地点から目的地点まで順番に配置する手段であって、A vehicle is equipped with an engine generator, a secondary battery, and a motor, and is capable of generating electricity while charging the secondary battery with the generator, and of running on battery power while driving the motor with the charged secondary battery, and the vehicle is configured to divide the travel route into sections each consisting of a small section for each event, and to arrange the sections in order from a starting point to a destination point,
当該事象は、前記車両の走行路が、平地、登坂、下坂、あるいは前記発電機の停止が望まれる区域のいずれかであることを表し、前記事象毎の区間のうち、前記車両が走行開始する最初の第1区間を初期充電区間とし、目的地を含む区間を目的地区間とし、該第1区間において該車両の該二次電池が外部充電によって充電され、前記初期充電区間と前記目的地区間の間における任意の区間の開始地点をそのすぐ前の区間の事象の終了地点と一致させる手段と、the event indicates that the road on which the vehicle is traveling is flat, uphill, downhill, or in an area where it is desired to stop the generator, and among the sections for each event, a first section where the vehicle starts traveling is designated as an initial charging section, and a section including a destination is designated as a destination section, the secondary battery of the vehicle is charged by external charging in the first section, and a means for matching the start point of any section between the initial charging section and the destination section with the end point of the event in the section immediately preceding it;
前記事象毎の区間の各区間毎に、その区間の走行開始地点では前記二次電池の蓄電量を下限値に設定し、その区間の走行終了地点で該蓄電量が再び該下限値となるように、前記車両の該区間における前記発電走行と前記電池走行のそれぞれのタイミングを計画して前記二次電池の蓄電量(SOC)の変化を表すSOCチャートを作成する手段と、a means for creating an SOC chart showing a change in the amount of charge (SOC) of the secondary battery by planning the timing of the power generation running and the battery running of the vehicle in each section of the section for each event, so that the amount of charge stored in the secondary battery is set to a lower limit value at a travel start point of the section and the amount of charge stored in the secondary battery is set to the lower limit value again at a travel end point of the section;
前記各区間における前記走行開始地点において前記二次電池の蓄電量を下限値に設定して前記発電走行を行い、その後に該SOCチャートに従って前記電池走行に切り替えた時に当該区間の前記走行終了地点において前記蓄電量が該下限値の許容値よりも少なくなる場合は、前記走行終了地点の前記蓄電量が該下限値となるように当該区間の前記SOCチャート全体を上方に移動して該計画を修正する手段と、a means for setting the amount of stored power in the secondary battery to a lower limit value at the travel start point in each of the sections and performing the power generation travel, and then, when switching to the battery travel in accordance with the SOC chart, if the amount of stored power at the travel end point in the section becomes less than an allowable value of the lower limit, correcting the plan by moving the entire SOC chart for the section upward so that the amount of stored power at the travel end point becomes the lower limit;
を備える事を特徴とする計画発電蓄電制御装置。A planned power generation and storage control device comprising:
JP2020004059A 2020-01-15 2020-01-15 Planned power generation and storage control method, and planned power generation and storage control device Active JP7498446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004059A JP7498446B2 (en) 2020-01-15 2020-01-15 Planned power generation and storage control method, and planned power generation and storage control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020004059A JP7498446B2 (en) 2020-01-15 2020-01-15 Planned power generation and storage control method, and planned power generation and storage control device

Publications (2)

Publication Number Publication Date
JP2021112081A JP2021112081A (en) 2021-08-02
JP7498446B2 true JP7498446B2 (en) 2024-06-12

Family

ID=77060412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004059A Active JP7498446B2 (en) 2020-01-15 2020-01-15 Planned power generation and storage control method, and planned power generation and storage control device

Country Status (1)

Country Link
JP (1) JP7498446B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084712A1 (en) * 2022-10-21 2024-04-25 エーシーテクノロジーズ株式会社 Planned electric power generation and storage control technology using soc chart

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009310A (en) 2001-06-25 2003-01-10 Nissan Motor Co Ltd Hybrid vehicle controller
JP2009029154A (en) 2007-07-24 2009-02-12 Toyota Motor Corp Control device for hybrid vehicle
JP2010125868A (en) 2008-11-25 2010-06-10 Denso Corp Charge and discharge planning device
JP2010264791A (en) 2009-05-12 2010-11-25 Toyota Central R&D Labs Inc Driving control device and program for hybrid vehicle
JP2012123637A (en) 2010-12-08 2012-06-28 Sharp Corp Charge controller, control method of charge controller, charge/discharge controller, control method of charge/discharge controller, control program, and recording medium
JP2016165918A (en) 2015-03-09 2016-09-15 トヨタ自動車株式会社 Hybrid vehicle
JP2019077257A (en) 2017-10-23 2019-05-23 エーシーテクノロジーズ株式会社 Method for operating range extender ev bus using route adaptive power generation control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3386530B2 (en) * 1993-10-04 2003-03-17 株式会社エクォス・リサーチ Hybrid vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009310A (en) 2001-06-25 2003-01-10 Nissan Motor Co Ltd Hybrid vehicle controller
JP2009029154A (en) 2007-07-24 2009-02-12 Toyota Motor Corp Control device for hybrid vehicle
JP2010125868A (en) 2008-11-25 2010-06-10 Denso Corp Charge and discharge planning device
JP2010264791A (en) 2009-05-12 2010-11-25 Toyota Central R&D Labs Inc Driving control device and program for hybrid vehicle
JP2012123637A (en) 2010-12-08 2012-06-28 Sharp Corp Charge controller, control method of charge controller, charge/discharge controller, control method of charge/discharge controller, control program, and recording medium
JP2016165918A (en) 2015-03-09 2016-09-15 トヨタ自動車株式会社 Hybrid vehicle
JP2019077257A (en) 2017-10-23 2019-05-23 エーシーテクノロジーズ株式会社 Method for operating range extender ev bus using route adaptive power generation control

Also Published As

Publication number Publication date
JP2021112081A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US11142088B2 (en) Vehicle control system and method
CN101678779B (en) Hybrid energy power management system and method
US9545915B2 (en) Electric vehicle and method of battery set-point control
JP7408063B2 (en) Predictive power generation charging control method for range extender vehicles
JP6758025B2 (en) Control system for hybrid vehicles with a high degree of hybridization
US8401779B2 (en) SEG (smart energy gateway) for optimized energy flow control
EP1256476B1 (en) Hybrid electric vehicle energy management
US7360615B2 (en) Predictive energy management system for hybrid electric vehicles
US8374740B2 (en) Self-learning satellite navigation assisted hybrid vehicle controls system
US8190318B2 (en) Power management systems and methods in a hybrid vehicle
CN101687506B (en) Hybrid energy power management system and method
US10829104B2 (en) Hybrid vehicle control system
US20170320481A1 (en) A hybrid vehicle and a method for energy management of a hybrid vehicle
WO2012174009A2 (en) System and method for controlling and powering a vehicle
Rodriguez et al. Fuzzy logic-model predictive control energy management strategy for a dual-mode locomotive
JP4761785B2 (en) Vehicle operation plan creation device
JP2000324609A (en) Controlling device for hybrid vehicle
US20220242391A1 (en) System and method for managing vehicle operations
JP2003070102A (en) Controller for hybrid vehicle
JP7498446B2 (en) Planned power generation and storage control method, and planned power generation and storage control device
Majumder et al. Zero emission transportation system
CA3102835A1 (en) Control system and method for a vehicle system
CN115279644A (en) Control system and method for vehicle system
WO2024084712A1 (en) Planned electric power generation and storage control technology using soc chart
US20230304809A1 (en) Power management of industrial electric vehicles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240521