JP7496840B2 - Throttle valve - Google Patents

Throttle valve Download PDF

Info

Publication number
JP7496840B2
JP7496840B2 JP2021575484A JP2021575484A JP7496840B2 JP 7496840 B2 JP7496840 B2 JP 7496840B2 JP 2021575484 A JP2021575484 A JP 2021575484A JP 2021575484 A JP2021575484 A JP 2021575484A JP 7496840 B2 JP7496840 B2 JP 7496840B2
Authority
JP
Japan
Prior art keywords
passage
valve seat
positioning
header
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021575484A
Other languages
Japanese (ja)
Other versions
JP2022541727A (en
Inventor
治国 宋
忠波 馮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Dunan Artificial Environment Co Ltd
Original Assignee
Zhejiang Dunan Artificial Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Dunan Artificial Environment Co Ltd filed Critical Zhejiang Dunan Artificial Environment Co Ltd
Publication of JP2022541727A publication Critical patent/JP2022541727A/en
Application granted granted Critical
Publication of JP7496840B2 publication Critical patent/JP7496840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/52Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • F16K17/22Excess-flow valves actuated by the difference of pressure between two places in the flow line
    • F16K17/24Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member
    • F16K17/28Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only
    • F16K17/30Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only spring-loaded

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)
  • Safety Valves (AREA)

Description

本出願は、2019年07月22日に中国国家知識産権局に提出された、出願番号が201921152976.5であり、発明の名称が「絞り弁」である特許出願の優先権を主張している。 This application claims priority to a patent application filed with the State Intellectual Property Office of the People's Republic of China on July 22, 2019, bearing application number 201921152976.5 and entitled "Throttle Valve."

本出願は、絞り弁の技術分野に関し、具体的には絞り弁に関する。 This application relates to the technical field of throttle valves, and more specifically to throttle valves.

現在、絞り弁の内部の流量が大きいと、絞り弁のスピンドルの変位量が大きいため、絞り部を流れる液体の流量が大きくなり、これにより、コンプレッサシステムのエネルギー効率が低くなる。絞り弁の内部の流量が小さいと、絞り弁のスピンドルの変位量が小さいため、絞り部を流れる液体の流量が小さくなり、これにより、コンプレッサの吸気温度が高くなりすぎ、更には、システム全体の温度が上昇し続けることになる。従来技術の絞り弁は、実際の状況に応じて絞り部の流れ量を合理的に調節することができないため、コンプレッサ全体のエネルギー効率及び容量を効果的に確保することができない。 Currently, when the flow rate inside the throttle valve is large, the displacement of the throttle valve spindle is large, so the flow rate of liquid flowing through the throttle section is large, which results in low energy efficiency of the compressor system. When the flow rate inside the throttle valve is small, the displacement of the throttle valve spindle is small, so the flow rate of liquid flowing through the throttle section is small, which causes the intake temperature of the compressor to become too high, and even causes the temperature of the entire system to continue to rise. The throttle valve of the prior art cannot rationally adjust the flow rate of the throttle section according to actual conditions, so it cannot effectively ensure the energy efficiency and capacity of the entire compressor.

本出願の主な目的は、従来技術における、絞り弁の流量を調節しにくいという技術的問題を解決するための絞り弁を提供することにある。 The main objective of this application is to provide a throttle valve that solves the technical problem of the prior art, that is, the difficulty in adjusting the flow rate of the throttle valve.

上記の目的を達成するために、本出願は、流体通路を有する弁管と、弁管の流体通路内に設けられ、第1通路、絞り通路、及び第2通路を有し、第1通路は、絞り通路を介して第2通路に連通される弁座と、弁座内に移動可能に設けられ、本体部及び突起部を含み、本体部は、第2通路内に設けられ、突起部は、絞り通路の流れ容量を制御するために用いられるスピンドルと、第2通路内に設けられ、第1通路内の液体流量に応じて絞り通路内の液体流量を調節するように、一端がスピンドルに当接され、他端が弁座の少なくとも一部に当接される漸進的ばねと、を含む絞り弁を提供している。 To achieve the above object, the present application provides a throttle valve including: a valve pipe having a fluid passage; a valve seat provided in the fluid passage of the valve pipe and having a first passage, a throttle passage, and a second passage, the first passage being connected to the second passage via the throttle passage; a spindle movably provided in the valve seat and including a body portion and a protrusion, the body portion being provided in the second passage, the protrusion being used to control the flow capacity of the throttle passage; and a progressive spring provided in the second passage, one end of which abuts against the spindle and the other end of which abuts against at least a portion of the valve seat to adjust the liquid flow rate in the throttle passage according to the liquid flow rate in the first passage.

更に、漸進的ばねは、タワーばね又は可変ピッチばねである。 Furthermore, the progressive spring may be a tower spring or a variable pitch spring.

更に、本体部の側面は、位置決め側面及びドレイン面を含み、位置決め側面とドレイン面とは接続され、位置決め側面は、弁座の内壁面に対応し、ドレイン面と弁座の内壁との間には、流体間隙が形成される。 Furthermore, the side surface of the main body portion includes a positioning side surface and a drain surface, the positioning side surface and the drain surface are connected, the positioning side surface corresponds to the inner wall surface of the valve seat, and a fluid gap is formed between the drain surface and the inner wall of the valve seat.

更に、スピンドルは、第1取り付け部を更に含み、第1取り付け部は、本体部の突起部から離れた一端に設けられ、漸進的ばねの一端は、第1取り付け部に取り付けられる。 Furthermore, the spindle further includes a first mounting portion, the first mounting portion being provided at one end of the body portion remote from the protrusion portion, and one end of the progressive spring being attached to the first mounting portion.

更に、絞り弁は、弁座に設けられるヘッダを更に含み、ヘッダは、漸進的ばねのスピンドルから離れた一端に位置し、漸進的ばねの他端は、ヘッダの少なくとも一部に当接され、ヘッダには、第3通路が設けられて、流体通路が第3通路を介して第2通路に連通されるようにする。 The throttle valve further includes a header provided on the valve seat, the header being located at one end of the progressive spring remote from the spindle, the other end of the progressive spring abutting at least a portion of the header, and the header being provided with a third passage such that the fluid passage is connected to the second passage via the third passage.

更に、ヘッダは、本体部及び第2取り付け部を含み、漸進的ばねの他端は、第2取り付け部に設けられる。 Further, the header includes a body portion and a second mounting portion, and the other end of the progressive spring is provided to the second mounting portion.

更に、弁座は、弁座本体、及び弁座本体から延び出た第1位置決め部を含み、第1位置決め部は、かしめ又は溶接によってヘッダに固定される。 Furthermore, the valve seat includes a valve seat body and a first positioning portion extending from the valve seat body, and the first positioning portion is fixed to the header by crimping or welding.

更に、第1位置決め部は、第1位置決め突起を含み、第1位置決め突起は、フィッティングセグメント及び折り曲げセグメントを有し、フィッティングセグメントと折り曲げセグメントとは接続され、フィッティングセグメントは、弁座本体に設けられ、フィッティングセグメントの少なくとも一部は、ヘッダにフィットしてヘッダを位置決めし、折り曲げセグメントの少なくとも一部は、ヘッダの端部に当接してヘッダを位置決めする。 Furthermore, the first positioning portion includes a first positioning protrusion, the first positioning protrusion has a fitting segment and a bent segment, the fitting segment and the bent segment are connected, the fitting segment is provided on the valve seat body, at least a portion of the fitting segment fits into the header to position the header, and at least a portion of the bent segment abuts against an end of the header to position the header.

更に、弁管には、第2位置決め部が設けられ、第2位置決め部は、弁座の少なくとも一部に当接して、弁座を位置決めするために用いられる。 Furthermore, the valve pipe is provided with a second positioning portion, which abuts against at least a portion of the valve seat and is used to position the valve seat.

更に、第2位置決め部は、第2位置決め突起であり、弁座には、第2位置決め突起に係合される位置決め溝が設けられ、第2位置決め突起は、位置決め溝内に設けられて、弁座を位置決めする。 Furthermore, the second positioning portion is a second positioning protrusion, and the valve seat is provided with a positioning groove that engages with the second positioning protrusion, and the second positioning protrusion is provided within the positioning groove to position the valve seat.

本出願の技術態様を適用して、第2通路内に漸進的ばねを増設し、且つ漸進的ばねの一端をスピンドルに当接させ、漸進的ばねの他端を弁座に当接させる。漸進的ばねの変位量が小さいと、漸進的ばねの弾性率が小さく、漸進的ばねの変位量の増加につれて、漸進的ばねの弾性率が徐々に大きくなる。これにより、漸進的ばね自体のパラメータを制御することによって、第1通路内の流量の大きさに応じて絞り部の流れ量を制御しやすくすることができる。具体的には、漸進的ばねの作用下で、第1通路内の流量が小さいと、スピンドルの位置のずれ量が小さく、この場合、流量の増加につれて、スピンドルの位置のずれ量の変化が速くなって、流れ面積を急速に増加させやすくなる。第1通路内の流量が大きいと、スピンドルのずれ量が大きく、この場合、流量の増加につれて、スピンドルの位置ずれの変化が比較的に緩やかになり、ひいては、ほぼ変わらない状況が生じ、これにより、流量が大きい場合に、流れ面積の増加を制限して、高圧流量を制限することができる。従って、本出願によって提供される技術態様を採用すると、従来技術における、絞り弁の流量を調節しにくいという技術的問題を解決することができる。 By applying the technical aspect of the present application, a progressive spring is added in the second passage, and one end of the progressive spring is abutted against the spindle, and the other end of the progressive spring is abutted against the valve seat. When the displacement of the progressive spring is small, the elastic modulus of the progressive spring is small, and as the displacement of the progressive spring increases, the elastic modulus of the progressive spring gradually increases. This makes it easier to control the flow rate of the throttle section according to the magnitude of the flow rate in the first passage by controlling the parameters of the progressive spring itself. Specifically, under the action of the progressive spring, when the flow rate in the first passage is small, the deviation of the position of the spindle is small, and in this case, as the flow rate increases, the change in the deviation of the position of the spindle becomes faster, making it easier to rapidly increase the flow area. When the flow rate in the first passage is large, the deviation of the spindle is large, and in this case, as the flow rate increases, the change in the deviation of the spindle becomes relatively gradual, and thus a situation occurs where the flow rate remains almost unchanged, so that when the flow rate is large, the increase in the flow area can be limited to limit the high-pressure flow rate. Therefore, by adopting the technical aspects provided by this application, it is possible to solve the technical problem in the prior art of making it difficult to adjust the flow rate of the throttle valve.

本出願の一部を構成する明細書の図面は、本出願に対する更なる理解を提供するためのものであり、本出願の模式的な実施例及びその説明は、本出願を解釈するためのものであり、本出願を不適切に限定するものではない。 The drawings in the specification which form part of this application are intended to provide further understanding of the application, and the schematic examples and their explanations are intended to aid in the interpretation of the application and are not intended to inappropriately limit the application.

本出願の実施例によって提供される絞り弁の構成模式図を示す。1 shows a schematic diagram of a throttle valve provided by an embodiment of the present application. 図1におけるI部分の部分拡大模式図を示す。2 is a partially enlarged schematic diagram of part I in FIG. 1 . 本出願の実施例によって提供される絞り弁の断面図を示す。1 shows a cross-sectional view of a throttle valve provided by an embodiment of the present application. 本出願の実施例によって提供される可変ピッチばねである漸進的ばねの正面図を示す。FIG. 2 shows a front view of a progressive spring, which is a variable pitch spring provided by an embodiment of the present application. 本出願の実施例によって提供される可変ピッチばねである漸進的ばねの上面図を示す。FIG. 2 shows a top view of a progressive spring, which is a variable pitch spring provided by an embodiment of the present application. 本出願の実施例によって提供されるタワーばねである漸進的ばねの正面図を示す。FIG. 1 shows a front view of a progressive spring, which is a tower spring provided by an embodiment of the present application. 本出願の実施例によって提供されるタワーばねである漸進的ばねの上面図を示す。FIG. 2 shows a top view of a progressive spring, which is a tower spring provided by an embodiment of the present application. 本出願の実施例によって提供されるスピンドルの上昇量と絞り部の流れ面積との関係の模式図を示す。FIG. 1 is a schematic diagram showing the relationship between the amount of spindle lift and the flow area of the throttling section provided by an embodiment of the present application. 本出願の実施例によって提供されるスピンドルの上昇量と絞り弁の前後の圧力差との関係の模式図を示す。1 shows a schematic diagram of the relationship between the amount of spindle lift and the pressure difference across a throttle valve provided by an embodiment of the present application.

ここで、上記の図面には以下の符号が含まれる。
10 弁管、11 第2位置決め突起、20 弁座、21 弁座本体、22 第1位置決め部、221 フィッティングセグメント、222 折り曲げセグメント、23 位置決め溝、30 スピンドル、31 本体部、311 ドレイン面、32 突起部、33 第1取り付け部、40 漸進的ばね、50 ヘッダ、51 本体部、52 第2取り付け部、53 第3通路。
Here, the above drawings include the following reference numbers:
10 valve pipe, 11 second positioning protrusion, 20 valve seat, 21 valve seat body, 22 first positioning portion, 221 fitting segment, 222 bent segment, 23 positioning groove, 30 spindle, 31 body portion, 311 drain surface, 32 protrusion portion, 33 first mounting portion, 40 progressive spring, 50 header, 51 body portion, 52 second mounting portion, 53 third passage.

なお、矛盾しない限り、本出願における実施例及び実施例における特徴は互いに組み合わせることができる。以下、図面を参照して実施例と併せて本発明を詳細に説明する。 Note that, unless contradictory, the embodiments and features of the embodiments in this application may be combined with each other. The present invention will be described in detail below in conjunction with the embodiments with reference to the drawings.

図1から図9に示すように、本出願の実施例は、弁管10、弁座20、スピンドル30、及び漸進的ばね40を含む絞り弁を提供している。ここで弁管10は、流体通路を有する。弁座20は弁管10の流体通路内に設けられ、弁座20は、第1通路、絞り通路、及び第2通路を有し、第1通路は絞り通路を介して第2通路に連通される。スピンドル30は弁座20内に移動可能に設けられ、本体部31及び突起部32を含み、本体部31は第2通路内に設けられ、突起部32は絞り通路の流れ容量を制御するために用いられ、具体的には、絞り通路の導通又は遮断を制御することを含む。漸進的ばね40は第2通路内に設けられ、第1通路内の液体流量に応じて絞り通路内の液体流量を調節するように、漸進的ばね40の一端がスピンドル30の少なくとも一部に当接され、他端が弁座20に当接される。本実施例における絞り弁は、主にコンプレッサに用いられる。具体的には、本実施例における漸進的ばね40の一端は、スピンドル30の端部に当接される。 1 to 9, an embodiment of the present application provides a throttle valve including a valve pipe 10, a valve seat 20, a spindle 30, and a progressive spring 40. Here, the valve pipe 10 has a fluid passage. The valve seat 20 is provided in the fluid passage of the valve pipe 10, and the valve seat 20 has a first passage, a throttle passage, and a second passage, and the first passage is communicated with the second passage through the throttle passage. The spindle 30 is movably provided in the valve seat 20 and includes a body portion 31 and a protrusion portion 32, the body portion 31 is provided in the second passage, and the protrusion portion 32 is used to control the flow capacity of the throttle passage, specifically, including controlling the conduction or blocking of the throttle passage. The progressive spring 40 is provided in the second passage, and one end of the progressive spring 40 abuts against at least a part of the spindle 30 and the other end abuts against the valve seat 20 so as to adjust the liquid flow rate in the throttle passage according to the liquid flow rate in the first passage. The throttle valve in this embodiment is mainly used in compressors. Specifically, in this embodiment, one end of the progressive spring 40 abuts against the end of the spindle 30.

本実施例によって提供される絞り弁を採用すると、第2通路内に漸進的ばね40が増設されるため、漸進的ばね40の変位量の増加につれて漸進的ばね40の弾性率が増加する。具体的には、漸進的ばね40の変位量が小さいと漸進的ばね40の弾性率が小さく、漸進的ばね40の変位量が大きいと漸進的ばね40の弾性率が大きい。これにより、漸進的ばね40自体のパラメータを調節することによって、第1通路内の流量の大きさに応じて絞り部の流れ量を制御しやすくすることができる。具体的には、漸進的ばね40の作用下で、第1通路内の流量が小さいとスピンドル30の位置のずれ量が小さく、この場合、流量の増加につれて、スピンドル30の位置のずれ量の変化が速くなって、流れ面積を急速に増加させやすくなり、コンプレッサの吸気温度が高くなりすぎるのを防ぎ、更には、コンプレッサの使用寿命を延ばすことができる。第1通路内の流量が大きいとスピンドル30のずれ量が大きく、この場合、流量の増加につれて、スピンドル30の位置ずれの変化が比較的に緩やかになり、ひいてはほぼ変わらない状況が生じ、これにより、流量が大きい場合に、流れ面積の増加を制限して、高圧流量を制限することができ、更にはコンプレッサ全体の効率及び容量を確保している。 When the throttle valve provided by this embodiment is adopted, the progressive spring 40 is added in the second passage, so that the elastic modulus of the progressive spring 40 increases as the displacement of the progressive spring 40 increases. Specifically, when the displacement of the progressive spring 40 is small, the elastic modulus of the progressive spring 40 is small, and when the displacement of the progressive spring 40 is large, the elastic modulus of the progressive spring 40 is large. This makes it easier to control the flow rate of the throttle section according to the magnitude of the flow rate in the first passage by adjusting the parameters of the progressive spring 40 itself. Specifically, under the action of the progressive spring 40, when the flow rate in the first passage is small, the positional deviation of the spindle 30 is small. In this case, as the flow rate increases, the change in the positional deviation of the spindle 30 becomes faster, making it easier to rapidly increase the flow area, preventing the intake temperature of the compressor from becoming too high, and further extending the service life of the compressor. When the flow rate in the first passage is large, the deviation of the spindle 30 is large. In this case, as the flow rate increases, the change in the position deviation of the spindle 30 becomes relatively gradual, and ultimately remains almost unchanged. This limits the increase in the flow area when the flow rate is large, thereby limiting the high-pressure flow rate and ensuring the efficiency and capacity of the entire compressor.

図4から図7に示すように、本実施例において、漸進的ばね40はタワーばね又は可変ピッチばねであってよい。具体的には、本実施例におけるタワーばねはステップばねを指し、可変ピッチばねは可変螺旋ピッチばねを指す。具体的には、タワーばね又は可変ピッチばねの作用下で、タワーばね又は可変ピッチばねの変位量が小さいとタワーばね又は可変ピッチばねの弾性率が小さいため、流量が小さい場合に、流れ面積を急速に増加させやすい。タワーばね又は可変ピッチばねの変位量が大きいとタワーばね又は可変ピッチばねの弾性率が大きく、この場合、タワーばね又は可変ピッチばねの変位量の変化に対する流量の変化の影響が極めて小さく、ひいては、流量が増加しても、変位量がほとんど変わらない状況が生じて、高圧流量を制限することができる。 As shown in Figures 4 to 7, in this embodiment, the progressive spring 40 may be a tower spring or a variable pitch spring. Specifically, the tower spring in this embodiment refers to a step spring, and the variable pitch spring refers to a variable helical pitch spring. Specifically, under the action of the tower spring or variable pitch spring, when the displacement amount of the tower spring or variable pitch spring is small, the elastic modulus of the tower spring or variable pitch spring is small, so that when the flow rate is small, the flow area is likely to increase rapidly. When the displacement amount of the tower spring or variable pitch spring is large, the elastic modulus of the tower spring or variable pitch spring is large, in this case, the influence of the change in the displacement amount of the tower spring or variable pitch spring on the change in the flow rate is extremely small, and even if the flow rate increases, a situation occurs in which the displacement amount remains almost unchanged, so that the high pressure flow rate can be restricted.

具体的には、タワーばね又は可変ピッチばねは、スピンドル30の上昇量(変位量)と絞り部の絞り面積との関係を変えることができ、低圧力差において製品の流量が小さすぎる、コンプレッサの吸気温度が高すぎる、システム全体の温度が上昇し続けるという問題を減らすと同時に、高圧力差において製品の流量が大きすぎる、システムのエネルギー効率が低い、という問題を改善することができる。 Specifically, the tower spring or variable pitch spring can change the relationship between the amount of rise (displacement) of the spindle 30 and the throttling area of the throttling section, reducing the problems of the product flow rate being too small at low pressure differentials, the compressor intake temperature being too high, and the temperature of the entire system continuing to rise, while at the same time improving the problems of the product flow rate being too large at high pressure differentials and the energy efficiency of the system being low.

同時に、タワーばね又は可変ピッチばねは、スピンドル30の上昇量(変位変化量)と弁の前後の圧力差との関係を変えることもでき、低圧力差において製品の流量が小さすぎる、コンプレッサの吸気温度が高すぎる、システム全体の温度が上昇し続ける、という問題を減らすと同時に、高圧力差において製品の流量が大きすぎる、システムのエネルギー効率が低い、という問題を改善することができる。 At the same time, the tower spring or variable pitch spring can change the relationship between the amount of lift (displacement change) of the spindle 30 and the pressure difference before and after the valve, reducing the problems of the product flow rate being too small at low pressure differences, the compressor intake temperature being too high, and the temperature of the entire system continuing to rise, while at the same time improving the problems of the product flow rate being too large at high pressure differences and the energy efficiency of the system being low.

本実施例において、本体部31の側面は位置決め側面及びドレイン面311を含み、位置決め側面とドレイン面311とは接続され、位置決め側面は、弁座20の内壁面に対応することによって、位置決め側面を介して、スピンドル30を第2通路内で移動するように案内しやすくする。本実施例における本体部31の横断面積は第2通路の横断面積よりも小さく、具体的には、ドレイン面311と弁座20の内壁との間に流体間隙が形成されて、絞り通路内の液体が流体間隙を経由して流出するようにする。具体的には、本実施例におけるドレイン面311は、内側凹面又は平面であってよい。 In this embodiment, the side of the body 31 includes a positioning side and a drain surface 311, the positioning side and the drain surface 311 are connected, and the positioning side corresponds to the inner wall surface of the valve seat 20, thereby guiding the spindle 30 to move in the second passage through the positioning side. The cross-sectional area of the body 31 in this embodiment is smaller than the cross-sectional area of the second passage, specifically, a fluid gap is formed between the drain surface 311 and the inner wall of the valve seat 20, so that the liquid in the throttle passage flows out through the fluid gap. Specifically, the drain surface 311 in this embodiment may be an inner concave surface or a flat surface.

具体的には、本実施例におけるスピンドル30は第1取り付け部33を更に含み、第1取り付け部33は本体部31の突起部32から離れた一端に設けられ、漸進的ばね40の一端は第1取り付け部33に取り付けられる。このような設定を採用すると、漸進的ばね40の一端を本体部31の端部に当接させて、漸進的ばね40を位置決めしやすくすることができる。具体的には、本実施例における第1取り付け部33は、第1取り付け突起又は第1取り付け溝であってよく、第1取り付け部33が第1取り付け突起である場合、漸進的ばね40の一端は、第1取り付け突起上に嵌合され、第1取り付け部33が第1取り付け溝である場合、漸進的ばね40の一端は、第1取り付け溝内に設けられ、第1取り付け溝によって漸進的ばね40の一端が取り付けられて、漸進的ばね40を位置決めする。 Specifically, the spindle 30 in this embodiment further includes a first mounting portion 33, which is provided at one end of the main body portion 31 away from the protrusion portion 32, and one end of the incremental spring 40 is attached to the first mounting portion 33. By adopting such a setting, one end of the incremental spring 40 can be abutted against the end of the main body portion 31, making it easier to position the incremental spring 40. Specifically, the first mounting portion 33 in this embodiment may be a first mounting protrusion or a first mounting groove, and when the first mounting portion 33 is the first mounting protrusion, one end of the incremental spring 40 is fitted onto the first mounting protrusion, and when the first mounting portion 33 is the first mounting groove, one end of the incremental spring 40 is provided in the first mounting groove, and one end of the incremental spring 40 is attached by the first mounting groove to position the incremental spring 40.

本実施例において、絞り弁はヘッダ50を更に含み、ヘッダ50は弁座20に設けられ、漸進的ばね40のスピンドル30から離れた一端に位置し、漸進的ばね40の他端はヘッダ50の少なくとも一部に当接されて、漸進的ばね40を位置決めしやすくする。ヘッダ50には第3通路53が設けられて、流体通路が第3通路53を介して第2通路に連通されるようにする。本実施例において、第3通路53をヘッダ50の中部に設けて、第2通路と流体通路とがより良く連通されるようにしてもよい。 In this embodiment, the throttle valve further includes a header 50, which is provided on the valve seat 20 and located at one end of the progressive spring 40 away from the spindle 30, and the other end of the progressive spring 40 abuts at least a portion of the header 50 to facilitate positioning of the progressive spring 40. A third passage 53 is provided in the header 50 so that the fluid passage is connected to the second passage via the third passage 53. In this embodiment, the third passage 53 may be provided in the middle of the header 50 to better connect the second passage and the fluid passage.

具体的には、本実施例におけるヘッダ50は本体部51及び第2取り付け部52を含み、漸進的ばね40の他端は第2取り付け部52に設けられる。具体的には、第2取り付け部52は、第2取り付け突起又は第2取り付け溝であってよく、第2取り付け部52が第2取り付け突起である場合、漸進的ばね40の他端は、第2取り付け突起上に嵌合され、第2取り付け部52が第2取り付け溝である場合、漸進的ばね40の他端は、第2取り付け溝内に設けられ、第2取り付け溝によって漸進的ばね40の他端が取り付けられて、漸進的ばね40を位置決めする。このような設定を採用すると、漸進的ばね40の他端を本体部51に当接させて、漸進的ばね40をより良く位置決めしやすくすることができることによって、漸進的ばね40をヘッダ50とスピンドル30との間で安定して変形させることができる。 Specifically, the header 50 in this embodiment includes a body portion 51 and a second mounting portion 52, and the other end of the progressive spring 40 is provided on the second mounting portion 52. Specifically, the second mounting portion 52 may be a second mounting protrusion or a second mounting groove. When the second mounting portion 52 is the second mounting protrusion, the other end of the progressive spring 40 is fitted onto the second mounting protrusion, and when the second mounting portion 52 is the second mounting groove, the other end of the progressive spring 40 is provided in the second mounting groove, and the other end of the progressive spring 40 is attached by the second mounting groove to position the progressive spring 40. By adopting such a setting, the other end of the progressive spring 40 can be abutted against the body portion 51 to make it easier to position the progressive spring 40, thereby allowing the progressive spring 40 to be stably deformed between the header 50 and the spindle 30.

弁座20は、弁座本体21、及び弁座本体21から延び出た第1位置決め部22を含み、第1位置決め部22は弁座本体21の上端に設けられて、ヘッダ50を位置決めする。第1位置決め部22は、かしめ、溶接、又はねじ接続によってヘッダ50に固定される。具体的には、本実施例における第1位置決め部22は、弁座本体21の端部に設けられる。 The valve seat 20 includes a valve seat body 21 and a first positioning portion 22 extending from the valve seat body 21. The first positioning portion 22 is provided at the upper end of the valve seat body 21 to position the header 50. The first positioning portion 22 is fixed to the header 50 by crimping, welding, or a screw connection. Specifically, in this embodiment, the first positioning portion 22 is provided at the end of the valve seat body 21.

第1位置決め部22は第1位置決め突起を含み、第1位置決め突起はフィッティングセグメント221及び折り曲げセグメント222を有し、フィッティングセグメント221と折り曲げセグメント222とは接続され、フィッティングセグメント221は弁座本体21に設けられる。フィッティングセグメント221の少なくとも一部はヘッダ50にフィットしてヘッダ50を位置決めし、フィッティングセグメント221と弁座本体21の端部とは位置決め段差を形成し、ヘッダ50は、この位置決め段差に挟まって設けられ、折り曲げセグメント222の少なくとも一部は、ヘッダ50の端部に当接してヘッダ50を位置決めする。このような設定を採用すると、フィッティングセグメント221及び折り曲げセグメント222によって、ヘッダ50を安定して位置決めすることができ、使用過程において、ヘッダ50の位置にずれが生じることを防ぎ、構造全体の安定性を高めている。 The first positioning portion 22 includes a first positioning protrusion, which has a fitting segment 221 and a bent segment 222, and the fitting segment 221 and the bent segment 222 are connected, and the fitting segment 221 is provided on the valve seat body 21. At least a part of the fitting segment 221 fits into the header 50 to position the header 50, and the fitting segment 221 and the end of the valve seat body 21 form a positioning step, the header 50 is provided between the positioning step, and at least a part of the bent segment 222 abuts against the end of the header 50 to position the header 50. By adopting such a setting, the fitting segment 221 and the bent segment 222 can stably position the header 50, preventing the position of the header 50 from shifting during use and improving the stability of the entire structure.

使用過程において、弁座20に位置ずれが生じることを防ぐために、本実施例では弁管10に第2位置決め部を設ける。第2位置決め部は、弁座20が弁管10に安定して設けられるように、弁座20の少なくとも一部に当接して、弁座20を位置決めするために用いられる。 In order to prevent the valve seat 20 from shifting position during use, in this embodiment, a second positioning portion is provided on the valve pipe 10. The second positioning portion is used to abut against at least a portion of the valve seat 20 and position the valve seat 20 so that the valve seat 20 is stably installed on the valve pipe 10.

具体的には、本実施例における第2位置決め部は第2位置決め突起11であり、弁座20には第2位置決め突起11に係合される位置決め溝23が設けられる。第2位置決め突起11が位置決め溝23内に設けられて、弁座20を位置決めすることで、弁座20を弁管10に安定して設けることができる。他の実施例において、第2位置決め部は雌ねじ構造であり、弁座20には雌ねじに係合される雄ねじ構造が設けられ、雌雄ねじの互いの係合によって固定及び取り付けを行って、同様の効果を得てもよい。 Specifically, in this embodiment, the second positioning portion is the second positioning protrusion 11, and the valve seat 20 is provided with a positioning groove 23 that engages with the second positioning protrusion 11. The second positioning protrusion 11 is provided within the positioning groove 23 to position the valve seat 20, thereby enabling the valve seat 20 to be stably provided on the valve pipe 10. In other embodiments, the second positioning portion is a female thread structure, and the valve seat 20 is provided with a male thread structure that engages with the female thread, and fixing and attachment are performed by mutual engagement of the female and male threads, thereby achieving a similar effect.

図8において、Lはスピンドル30の上昇量(変位変化量)を表し、Sは絞り通路の流れ面積を表す。図8に示すように、スピンドル30の上昇量が小さいと、流れ面積が急速に増加して、吸気温度が高すぎてコンプレッサの使用寿命に影響を与えることを防ぐ。スピンドル30の上昇量が大きいと、流れ面積の変化が比較的に緩やかになって、流れ面積の増加を制限し、更には、高圧流量を制限して、機械全体のエネルギー効率及び容量を確保している。 In Figure 8, L represents the amount of rise (displacement change) of the spindle 30, and S represents the flow area of the throttle passage. As shown in Figure 8, when the amount of rise of the spindle 30 is small, the flow area increases rapidly, preventing the intake temperature from becoming too high and affecting the compressor's service life. When the amount of rise of the spindle 30 is large, the change in the flow area becomes relatively gradual, limiting the increase in the flow area and further limiting the high-pressure flow rate, thereby ensuring the energy efficiency and capacity of the entire machine.

図9において、Lはスピンドル30の上昇量(変位変化量)を表し、Pは絞り弁の前後の圧力差を表す。図9に示すように、スピンドル30の上昇量が小さいと、弁の前後の圧力差の変化が速くなって、流れ面積を増加させやすくなり、流量が小さくなりすぎる状況を防ぎ、スピンドル30の上昇量が大きいと、弁の前後の圧力差の変化が緩やかになる。 In Figure 9, L represents the amount of rise (amount of displacement change) of the spindle 30, and P represents the pressure difference before and after the throttle valve. As shown in Figure 9, when the amount of rise of the spindle 30 is small, the pressure difference before and after the valve changes quickly, making it easier to increase the flow area and preventing a situation in which the flow rate becomes too small, and when the amount of rise of the spindle 30 is large, the pressure difference before and after the valve changes more slowly.

以上の説明から、本出願の上述した実施例は、漸進的ばね40によって、絞り部の流量の大きさを制御しやすくすることができ、吸気温度が高くなりすぎるのを防ぎ、コンプレッサの使用寿命を延ばしており、高圧流量を制限して、機械全体のエネルギー効率及び容量を確保しており、構造が簡単で信頼性があるという技術効果を実現していることが分かる。 From the above explanation, it can be seen that the above-mentioned embodiment of the present application realizes the technical effects of using the progressive spring 40 to easily control the amount of flow at the throttling section, preventing the intake temperature from becoming too high and extending the service life of the compressor, limiting the high-pressure flow rate to ensure the energy efficiency and capacity of the entire machine, and being simple in structure and reliable.

上述したものは、本出願の好ましい実施例にすぎず、本出願を制限するためのものではなく、当業者にとって本出願は様々な変更及び変化が可能である。本出願の精神及び原則の範囲内でなされたいかなる修正、同等の置換、改良等は、何れも本出願の保護範囲内に含まれるべきである。 The above is merely a preferred embodiment of the present application, and is not intended to limit the present application. Various modifications and variations of the present application are possible for those skilled in the art. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present application should be included within the scope of protection of the present application.

Claims (9)

絞り弁であって、
流体通路を有する弁管(10)と、
前記弁管(10)の流体通路内に設けられ、第1通路、絞り通路、及び第2通路を有する弁座(20)であって、前記第1通路が前記絞り通路を介して前記第2通路に連通されている弁座(20)と、
前記弁座(20)内に移動可能に設けられ、本体部(31)及び突起部(32)を含むスピンドル(30)であって、前記本体部(31)が前記第2通路内に設けられ、前記突起部(32)が前記絞り通路の流れ容量を制御するために用いられるスピンドル(30)と、
前記第2通路内に設けられ、前記第1通路内の液体流量に応じて前記絞り通路内の液体流量を調節するように、一端が前記スピンドル(30)に当接され、他端が前記弁座(20)の少なくとも一部に当接された漸進的ばね(40)と、
を含み、
前記絞り弁は、前記弁座(20)に設けられているヘッダ(50)を更に含み、
前記ヘッダ(50)は、前記漸進的ばね(40)の前記スピンドル(30)から離れた一端に位置し、前記漸進的ばね(40)の他端は、前記ヘッダ(50)の少なくとも一部に当接され、
前記ヘッダ(50)には、第3通路(53)が設けられて、前記流体通路が前記第3通路(53)を介して前記第2通路に連通されており、
前記弁座(20)は、弁座本体(21)、及び弁座本体(21)から延び出た第1位置決め部(22)を含み、
前記第1位置決め部(22)は、前記ヘッダ(50)を位置決めするように前記弁座(20)の内部へ向けて曲げられた部分を備えた第1位置決め突起を含む、
絞り弁。
A throttle valve,
A valve pipe (10) having a fluid passage;
a valve seat (20) provided in a fluid passage of the valve pipe (10), the valve seat having a first passage, a throttle passage, and a second passage, the first passage being in communication with the second passage via the throttle passage;
a spindle (30) movably disposed within the valve seat (20), the spindle including a body portion (31) and a protrusion portion (32), the body portion (31) being disposed within the second passage, the protrusion portion (32) being used to control the flow capacity of the throttle passage;
a progressive spring (40) provided in the second passage, one end of which is in contact with the spindle (30) and the other end of which is in contact with at least a portion of the valve seat (20) so as to adjust the liquid flow rate in the throttle passage in response to the liquid flow rate in the first passage;
Including,
The throttle valve further includes a header (50) disposed on the valve seat (20);
the header (50) is located at one end of the progressive spring (40) away from the spindle (30), and the other end of the progressive spring (40) abuts against at least a portion of the header (50);
The header (50) is provided with a third passage (53), and the fluid passage is communicated with the second passage via the third passage (53).
The valve seat (20) includes a valve seat body (21) and a first positioning portion (22) extending from the valve seat body (21),
The first positioning portion (22) includes a first positioning protrusion having a portion bent toward the inside of the valve seat (20) so as to position the header (50).
Throttle valve.
前記漸進的ばね(40)は、タワーばね又は可変ピッチばねである、請求項1に記載の絞り弁。 The throttle valve of claim 1, wherein the progressive spring (40) is a tower spring or a variable pitch spring. 前記本体部(31)の側面は、位置決め側面及びドレイン面(311)を含み、前記位置決め側面は、前記弁座(20)の内壁面に対応し、前記ドレイン面(311)と前記弁座(20)の内壁との間には、流体間隙が形成されている、請求項1に記載の絞り弁。 The throttle valve according to claim 1, wherein the side of the body portion (31) includes a positioning side and a drain surface (311), the positioning side corresponds to the inner wall surface of the valve seat (20), and a fluid gap is formed between the drain surface (311) and the inner wall of the valve seat (20). 前記スピンドル(30)は第1取り付け部(33)を更に含み、前記第1取り付け部(33)は、前記本体部(31)の前記突起部(32)から離れた一端に設けられ、前記漸進的ばね(40)の一端は、前記第1取り付け部(33)に取り付けられている、請求項1に記載の絞り弁。 The throttle valve of claim 1, wherein the spindle (30) further includes a first mounting portion (33), the first mounting portion (33) is provided at one end of the body portion (31) remote from the protrusion portion (32), and one end of the progressive spring (40) is attached to the first mounting portion (33). 前記ヘッダ(50)は、本体部(51)及び第2取り付け部(52)を含み、前記漸進的ばね(40)の他端は、前記第2取り付け部(52)に設けられている、請求項1に記載の絞り弁。 The throttle valve of claim 1, wherein the header (50) includes a body portion (51) and a second mounting portion (52), and the other end of the progressive spring (40) is provided on the second mounting portion (52). 記第1位置決め部(22)は、かしめ又は溶接によって前記ヘッダ(50)に固定されている、請求項1に記載の絞り弁。 The throttle valve of claim 1, wherein the first positioning portion (22) is fixed to the header (50) by crimping or welding. 記第1位置決め突起は、フィッティングセグメント(221)及び折り曲げセグメント(222)を有し、前記フィッティングセグメント(221)と前記折り曲げセグメント(222)とは接続されており、前記フィッティングセグメント(221)は、前記弁座本体(21)に設けられており、前記フィッティングセグメント(221)の少なくとも一部は、前記ヘッダ(50)にフィットして前記ヘッダ(50)を位置決めし、前記折り曲げセグメント(222)の少なくとも一部は、前記ヘッダ(50)の端部に当接して前記ヘッダ(50)を位置決めする、請求項6に記載の絞り弁。 7. The throttle valve according to claim 6, wherein the first positioning projection has a fitting segment (221) and a bent segment (222), the fitting segment (221) and the bent segment (222) are connected, the fitting segment (221) is provided on the valve seat body (21), at least a portion of the fitting segment (221) fits into the header (50) to position the header (50), and at least a portion of the bent segment (222) abuts against an end of the header (50) to position the header (50). 前記弁管(10)には、第2位置決め部が設けられており、前記第2位置決め部は、前記弁座(20)の少なくとも一部に当接して、前記弁座(20)を位置決めするために用いられる、請求項1に記載の絞り弁。 The throttle valve according to claim 1, wherein the valve pipe (10) is provided with a second positioning portion, and the second positioning portion is used to position the valve seat (20) by abutting at least a portion of the valve seat (20). 前記第2位置決め部は、第2位置決め突起(11)であり、前記弁座(20)には、前記第2位置決め突起(11)に係合される位置決め溝(23)が設けられており、前記第2位置決め突起(11)は、前記位置決め溝(23)内に設けられて、前記弁座(20)を位置決めする、請求項8に記載の絞り弁。 The throttle valve according to claim 8, wherein the second positioning portion is a second positioning protrusion (11), the valve seat (20) is provided with a positioning groove (23) that engages with the second positioning protrusion (11), and the second positioning protrusion (11) is provided within the positioning groove (23) to position the valve seat (20).
JP2021575484A 2019-07-22 2020-05-12 Throttle valve Active JP7496840B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201921152976.5 2019-07-22
CN201921152976.5U CN210637523U (en) 2019-07-22 2019-07-22 Throttle valve
PCT/CN2020/089880 WO2021012751A1 (en) 2019-07-22 2020-05-12 Throttle valve

Publications (2)

Publication Number Publication Date
JP2022541727A JP2022541727A (en) 2022-09-27
JP7496840B2 true JP7496840B2 (en) 2024-06-07

Family

ID=70794490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021575484A Active JP7496840B2 (en) 2019-07-22 2020-05-12 Throttle valve

Country Status (4)

Country Link
JP (1) JP7496840B2 (en)
KR (1) KR20220032090A (en)
CN (1) CN210637523U (en)
WO (1) WO2021012751A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210637523U (en) * 2019-07-22 2020-05-29 浙江盾安禾田金属有限公司 Throttle valve

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310314A (en) 2001-04-10 2002-10-23 Hitachi Metals Ltd Excessive flow-preventing valve
JP2005098482A (en) 2003-09-23 2005-04-14 Hyundai Motor Co Ltd Check valve
JP2009074656A (en) 2007-09-21 2009-04-09 Miura Co Ltd Constant flow rate valve with checking function
US20130019955A1 (en) 2011-07-19 2013-01-24 Bagagli Riccardo Differential pressure valve with reduced spring-surge and method for reducing spring surge
JP2013124713A (en) 2011-12-14 2013-06-24 Seiko Epson Corp Valve unit, liquid injection unit, liquid injection device, and method for manufacturing valve unit
CN103591340A (en) 2012-10-18 2014-02-19 北京熊川阀门制造有限公司 One-way valve
JP2014040791A (en) 2012-08-22 2014-03-06 Aisan Ind Co Ltd Flow rate control valve
WO2015159491A1 (en) 2014-04-17 2015-10-22 株式会社鷺宮製作所 Throttle device, and refrigeration cycle system including same
JP2015206413A (en) 2014-04-21 2015-11-19 株式会社鷺宮製作所 throttle device
JP2015218948A (en) 2014-05-16 2015-12-07 株式会社鷺宮製作所 Throttle device and refrigeration cycle system
JP2016223622A (en) 2015-06-03 2016-12-28 株式会社鷺宮製作所 Throttle device and refrigeration cycle system including the same
CN208311567U (en) 2018-04-28 2019-01-01 郭怀宝 A kind of throttling spool formula check valve
CN109826969A (en) 2019-04-03 2019-05-31 郭怀宝 The adjustable valve of the amount of restriction of a kind of pair of fluid
CN209012449U (en) 2018-08-17 2019-06-21 浙江盾安禾田金属有限公司 Throttle valve and air-conditioning system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144918A (en) * 1995-11-20 1997-06-03 Matsushita Electric Ind Co Ltd Valve
US7225830B1 (en) * 2005-02-09 2007-06-05 Kershaw Charles H Fluid control valve
CN204436923U (en) * 2015-01-31 2015-07-01 于春玲 A kind of mechanical throttle
JP2016156397A (en) * 2015-02-23 2016-09-01 アドバンス電気工業株式会社 Valve energization structure of fluid control valve
JP6709408B2 (en) * 2016-03-02 2020-06-17 株式会社テージーケー Control valve
CN205745625U (en) * 2016-05-10 2016-11-30 浙江三花股份有限公司 Electric expansion valve
CN105972233A (en) * 2016-07-20 2016-09-28 珠海格力电器股份有限公司 Expansion valve, refrigerant circulation system and air conditioner
CN210637523U (en) * 2019-07-22 2020-05-29 浙江盾安禾田金属有限公司 Throttle valve

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310314A (en) 2001-04-10 2002-10-23 Hitachi Metals Ltd Excessive flow-preventing valve
JP2005098482A (en) 2003-09-23 2005-04-14 Hyundai Motor Co Ltd Check valve
JP2009074656A (en) 2007-09-21 2009-04-09 Miura Co Ltd Constant flow rate valve with checking function
US20130019955A1 (en) 2011-07-19 2013-01-24 Bagagli Riccardo Differential pressure valve with reduced spring-surge and method for reducing spring surge
JP2013124713A (en) 2011-12-14 2013-06-24 Seiko Epson Corp Valve unit, liquid injection unit, liquid injection device, and method for manufacturing valve unit
JP2014040791A (en) 2012-08-22 2014-03-06 Aisan Ind Co Ltd Flow rate control valve
CN103591340A (en) 2012-10-18 2014-02-19 北京熊川阀门制造有限公司 One-way valve
WO2015159491A1 (en) 2014-04-17 2015-10-22 株式会社鷺宮製作所 Throttle device, and refrigeration cycle system including same
JP2015206413A (en) 2014-04-21 2015-11-19 株式会社鷺宮製作所 throttle device
JP2015218948A (en) 2014-05-16 2015-12-07 株式会社鷺宮製作所 Throttle device and refrigeration cycle system
JP2016223622A (en) 2015-06-03 2016-12-28 株式会社鷺宮製作所 Throttle device and refrigeration cycle system including the same
CN208311567U (en) 2018-04-28 2019-01-01 郭怀宝 A kind of throttling spool formula check valve
CN209012449U (en) 2018-08-17 2019-06-21 浙江盾安禾田金属有限公司 Throttle valve and air-conditioning system
CN109826969A (en) 2019-04-03 2019-05-31 郭怀宝 The adjustable valve of the amount of restriction of a kind of pair of fluid

Also Published As

Publication number Publication date
JP2022541727A (en) 2022-09-27
WO2021012751A1 (en) 2021-01-28
CN210637523U (en) 2020-05-29
KR20220032090A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
KR101017283B1 (en) Flow control valve
KR101956090B1 (en) Trunnion-type ball valve
RU2531075C2 (en) Redundant seal of conjugate metal surfaces for shared use with internal valves
US7331359B2 (en) Valve with bi-loading seal
JP7496840B2 (en) Throttle valve
PT2256391E (en) Pressure management control valve assembly
JP7355937B2 (en) electronic expansion valve
WO2020135396A1 (en) Flow control valve
CN110513521B (en) Flow stabilizing valve and water heater comprising same
JP6522023B2 (en) Motorized valve
US20240068574A1 (en) Electric valve
KR101772204B1 (en) Ball valve for preventing wheel rotation
CN103080619A (en) Face sealing annular valve for a fluid-working machine
CN105972237A (en) Parallel slide gate valve
US11353898B2 (en) Flow limiter for regulators
US20180320791A1 (en) A control valve
JP4738065B2 (en) 1-turn electric valve
US20160109027A1 (en) Valve seat and valve disc with cascaded geometries
KR20130121988A (en) Valve assembly
CN102007332B (en) Regulator for high purity substances
CN220227934U (en) Improved one-way throttle valve
CN216975876U (en) Sleeve type double-valve-element assembly and main and auxiliary road independently-adjusted three-way valve comprising same
CN219712404U (en) Control assembly in pipeline control valve
CN219755404U (en) Improved pipeline control valve
CN217333176U (en) Vapour-liquid two-phase flow self-adjusting liquid level control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240528

R150 Certificate of patent or registration of utility model

Ref document number: 7496840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150