JP7493305B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7493305B2
JP7493305B2 JP2019008920A JP2019008920A JP7493305B2 JP 7493305 B2 JP7493305 B2 JP 7493305B2 JP 2019008920 A JP2019008920 A JP 2019008920A JP 2019008920 A JP2019008920 A JP 2019008920A JP 7493305 B2 JP7493305 B2 JP 7493305B2
Authority
JP
Japan
Prior art keywords
compartment
evaporator
refrigerator
partition wall
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019008920A
Other languages
Japanese (ja)
Other versions
JP2020118345A (en
Inventor
良二 河井
晴樹 額賀
慎一郎 岡留
真申 小川
拳司 伊藤
浩俊 渡邊
正康 津布久
大 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2019008920A priority Critical patent/JP7493305B2/en
Priority to CN201910831139.3A priority patent/CN111473573B/en
Publication of JP2020118345A publication Critical patent/JP2020118345A/en
Application granted granted Critical
Publication of JP7493305B2 publication Critical patent/JP7493305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/065Removing frost by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Refrigerator Housings (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.

本技術分野の背景技術として、例えば国際公開第2018/131157号公報(特許文献1)がある。 For example, WO 2018/131157 (Patent Document 1) is an example of background technology in this technical field.

特許文献1には、周囲の他室よりも高温に設定されて貯蔵物を貯蔵する貯蔵室を備え、前記貯蔵室は、前記貯蔵室を区画する各壁部にそれぞれ真空断熱材を配すことで、真空断熱材による貯蔵室の被覆面積を可能な限り増大する冷蔵庫が開示されている。 Patent Document 1 discloses a refrigerator that includes a storage compartment that is set to a higher temperature than the surrounding compartments to store items, and that has vacuum insulation material disposed on each of the walls that divide the storage compartment, thereby increasing the area of the storage compartment that is covered by the vacuum insulation material as much as possible.

国際公開第2018/131157号公報International Publication No. 2018/131157

特許文献1に記載の構成を採用することによって、周囲の他室よりも高温に設定される貯蔵室への冷熱の流入を防止できる。一方で外部である冷蔵庫の周囲への放熱も防止でき、設定温度に熱効率良く維持できる。しかしながら、冷蔵温度に設定された貯蔵室が、冷凍温度に設定された貯蔵室と隣接するとともに、庫内を冷却する蒸発器を備えた蒸発器室にも隣接する構成を有する冷蔵庫に特許文献1に記載の構成を採用すると、冷蔵庫の使用歳月が経過するにつれて前記冷蔵温度に設定された貯蔵室内が冷え過ぎる、あるいは、結露や着霜が生じるといった不具合が発生する。 By adopting the configuration described in Patent Document 1, it is possible to prevent cold heat from flowing into the storage compartment, which is set to a higher temperature than the surrounding compartments. At the same time, it is possible to prevent heat from being released into the surroundings of the refrigerator, which is the outside, and the set temperature can be maintained with good thermal efficiency. However, if the configuration described in Patent Document 1 is adopted in a refrigerator in which a storage compartment set to a refrigeration temperature is adjacent to a storage compartment set to a freezing temperature and is also adjacent to an evaporator compartment equipped with an evaporator that cools the interior of the refrigerator, problems such as the inside of the storage compartment set to the refrigeration temperature becoming too cold or condensation or frost forming can occur as the refrigerator is used for a long time.

本発明は上記課題に鑑みてなされたものであり、上記構成を有する冷蔵庫において、使用歳月が経過しても冷蔵温度に設定された貯蔵室内が冷え過ぎる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生し難い信頼性が高い冷蔵庫を提供することを目的とする。 The present invention has been made in consideration of the above problems, and aims to provide a highly reliable refrigerator having the above configuration, which is less likely to suffer from problems such as the interior of the storage compartment set at the refrigeration temperature becoming too cold even after many years of use, or condensation or frost forming on the walls of the storage compartment.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、圧縮機と、放熱手段と、減圧手段と、蒸発器とが配管で接続された冷凍サイクルと、冷蔵温度に設定された第一の貯蔵室と、該第一の貯蔵室の上部に、第一の仕切壁を隔てて隣接する冷凍温度に設定された第二の貯蔵室と、前記第一の貯蔵室の下部に、第二の仕切壁を隔てて隣接する冷凍温度に設定された第三の貯蔵室と、前記第一の貯蔵室の後方に、第三の仕切壁を隔てて隣接した、前記蒸発器が収納された蒸発器室と前記蒸発器室内の温度を上昇させることにより前記蒸発器の霜を融解する除霜手段を備えた冷蔵庫において、前記第一の仕切壁と前記第二の仕切壁の主たる断熱手段として夫々真空断熱材を実装し、前記第三の仕切壁の主たる断熱手段として真空断熱材を実装せず、発泡断熱材を実装し、前記第三の仕切壁の最下部前縁は、前記第二の仕切壁に実装された前記真空断熱材の後縁より前方に配置し、前記冷凍温度は、-18℃程度であることを特徴とする。
In order to solve the above problems, for example, the configurations described in the claims are adopted.
The present application includes a number of means for solving the above problems. One example of such a means is a refrigeration cycle in which a compressor , a heat dissipation means, a pressure reduction means, and an evaporator are connected by piping; a first storage chamber set at a refrigeration temperature; a second storage chamber set at a freezing temperature and adjacent to the upper part of the first storage chamber across a first partition wall; a third storage chamber set at a freezing temperature and adjacent to the lower part of the first storage chamber across a second partition wall; and the evaporator adjacent to the rear of the first storage chamber across a third partition wall. The refrigerator is equipped with a housed evaporator chamber and a defrosting means for melting frost on the evaporator by raising the temperature inside the evaporator chamber, characterized in that vacuum insulation material is implemented as the main insulation means for the first partition wall and the second partition wall, and foam insulation material is implemented as the main insulation means for the third partition wall instead of vacuum insulation material , the front edge of the bottom of the third partition wall is positioned forward of the rear edge of the vacuum insulation material implemented in the second partition wall, and the freezing temperature is approximately -18°C.

使用歳月が経過しても冷蔵温度に設定された貯蔵室内が冷え過ぎる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生し難い信頼性が高い冷蔵庫を提供することができる。 It is possible to provide a highly reliable refrigerator that is unlikely to suffer from problems such as the interior of the storage compartment being too cold even after many years of use, even when the interior temperature is set to refrigeration, or condensation or frost forming on the walls of the storage compartment.

実施例に係る冷蔵庫の正面図FIG. 1 is a front view of a refrigerator according to an embodiment; 図1のA-A断面図AA cross-sectional view of FIG. 実施例に係る冷蔵庫の庫内の構成を示す正面図FIG. 1 is a front view showing a configuration of an interior of a refrigerator according to an embodiment; 実施例に係る冷蔵庫の要部を拡大した断面図FIG. 1 is an enlarged cross-sectional view of a main part of a refrigerator according to an embodiment of the present invention. 実施例に係る冷蔵庫の風路構成を表す模式図FIG. 1 is a schematic diagram showing an air passage configuration of a refrigerator according to an embodiment. 実施例に係る冷蔵庫の冷凍サイクル構成を表す概略図FIG. 1 is a schematic diagram showing a refrigeration cycle configuration of a refrigerator according to an embodiment. 実施例に係る冷蔵庫の壁面放熱配管と結露防止配管の配置を表す図FIG. 1 is a diagram showing the arrangement of wall-surface heat radiation piping and condensation prevention piping in a refrigerator according to an embodiment. 実施例に係る冷蔵庫の断熱箱体の構成を表す断面図FIG. 1 is a cross-sectional view showing a configuration of a heat-insulating box of a refrigerator according to an embodiment. 実施例に係る冷蔵庫の真空断熱材の構成を表す図FIG. 1 is a diagram showing the configuration of a vacuum insulation material of a refrigerator according to an embodiment. 実施例に係る冷蔵庫の仕切壁の嵌合部近傍の拡大断面図FIG. 1 is an enlarged cross-sectional view of a fitting portion of a partition wall of a refrigerator according to an embodiment of the present invention; 実施例に係る冷蔵庫の第一切替室の扉と容器を外して正面から見た図FIG. 1 is a front view of a first switching compartment of a refrigerator according to an embodiment with a door and a container removed. 実施例に係る冷蔵庫の第二切替室の扉と容器を外して正面から見た図FIG. 1 is a front view of a second switching compartment of a refrigerator according to an embodiment with a door and a container removed. 実施例に係る冷蔵庫の制御を表すタイムチャートの例An example of a time chart showing control of a refrigerator according to an embodiment.

本発明に関する冷蔵庫の実施例について説明する。図1は実施例に係る冷蔵庫の正面図、図2は図1のA-A断面図である。 An embodiment of a refrigerator according to the present invention will be described. Figure 1 is a front view of a refrigerator according to the embodiment, and Figure 2 is a cross-sectional view taken along the line A-A in Figure 1.

図1に示すように、冷蔵庫1の断熱箱体10は、上方から冷蔵室2、左右に併設された製氷室3と冷凍室4、第一切替室5、第二切替室6の順に貯蔵室を有している。 As shown in FIG. 1, the insulated box 10 of the refrigerator 1 has, from the top, a refrigerator compartment 2, an ice-making compartment 3 and a freezer compartment 4 on the left and right, a first selectable compartment 5, and a second selectable compartment 6, in that order.

冷蔵庫1はそれぞれの貯蔵室の開口を開閉する扉を備えている。これらの扉は、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室扉2a、2bと、製氷室3、冷凍室4、第一切替室5、第二切替室6の開口をそれぞれ開閉する引き出し式の製氷室扉3a、冷凍室扉4a、第一切替室扉5a、第二切替室扉6aである。これら複数の扉の内部材料は主に発泡断熱材であるポリウレタンフォームである。 The refrigerator 1 is equipped with doors that open and close the openings of each storage compartment. These doors are the rotating refrigerator compartment doors 2a and 2b, which are divided into left and right halves and open and close the opening of the refrigerator compartment 2, and the pull-out ice-making compartment door 3a, freezer compartment door 4a, first selectable compartment door 5a, and second selectable compartment door 6a, which open and close the openings of the ice-making compartment 3, freezer compartment 4, first selectable compartment 5, and second selectable compartment 6, respectively. The internal material of these multiple doors is mainly polyurethane foam, which is a foam insulation material.

冷蔵庫1の外形寸法は幅685mm、奥行き738mm、高さ1833mmであり、JISC9801-3:2015に基づく定格内容積は、冷蔵室2が308L、製氷室3が23L、冷凍室4が32L、第一切替室5が104L、第二切替室6が100Lである。また、第一切替室扉5aの上端の高さ位置は780mm、第二切替室扉6aの上端の高さ位置は400mmである。 The external dimensions of the refrigerator 1 are width 685 mm, depth 738 mm, and height 1833 mm, and the rated internal volumes based on JIS C9801-3:2015 are 308 L for the refrigerator compartment 2, 23 L for the ice-making compartment 3, 32 L for the freezer compartment 4, 104 L for the first selectable compartment 5, and 100 L for the second selectable compartment 6. The height position of the top end of the first selectable compartment door 5a is 780 mm, and the height position of the top end of the second selectable compartment door 6a is 400 mm.

このように、扉上端の高さ位置が床面から500mm~1200mmに含まれ、屈まずに作業できる食品の出し入れの負担が小さい貯蔵室と、扉上端の高さ位置が床面から500mm以下となり食品の出し入れの負担がやや大きくなる貯蔵室の双方を切替室とすることで、ユーザーがライフスタイルに合わせて使い易いレイアウトを選ぶことができ、使い勝手の良い冷蔵庫となる。また、冷蔵扉上端の高さ位置が床面から500mm~1200mmに含まれる切替室(第一切替室5)の内容積を、扉上端の高さ位置が床面から500mm以下となる切替室(第二切替室6)の内容積を同等にすることで、ライフスタイルに合わせて食品の出し入れの負担が小さい貯蔵室と、食品の出し入れの負担がやや大きくなる貯蔵室の設定を入れ替えて使えるようになるため、使い勝手の良い冷蔵庫となる。なお、第一切替室と第二切替室の定格内容積の差が10%以下であれば両者は同等とみなせる。 In this way, by using both a storage compartment with the door top at a height between 500mm and 1200mm above the floor, which allows easy access to food without bending over, and a storage compartment with the door top at a height of 500mm or less above the floor, which makes it somewhat more difficult to access food, as switchable compartments, users can choose a layout that suits their lifestyle, resulting in a user-friendly refrigerator. Also, by making the internal volume of the switchable compartment (first switchable compartment 5) with the door top at a height between 500mm and 1200mm above the floor equivalent to the internal volume of the switchable compartment (second switchable compartment 6) with the door top at a height of 500mm or less above the floor, users can switch between the settings of the storage compartment with easy access to food and the storage compartment with somewhat more difficult access to food depending on their lifestyle, resulting in a user-friendly refrigerator. Note that if the difference in the rated internal volume between the first and second switchable compartments is 10% or less, the two can be considered equivalent.

扉2aの庫外側表面には、庫内の温度設定の操作を行う操作部26を設けている。操作部26の高さ位置(床面からの高さ)は、下端が1200mm、上端が1300mmとしている。このように900mm~1500mmの範囲に操作部26を設けることで、屈んだり、見上げたりせずに温度設定等の操作が可能となり、使い勝手の良い冷蔵庫となる。また、扉の庫外側に操作部を設けることで、扉を開けることなくユーザーが温度設定等の操作を行うことができるようにしている。 An operation unit 26 for operating the temperature setting inside the refrigerator is provided on the exterior surface of the door 2a. The height position of the operation unit 26 (height from the floor) is 1200 mm at the bottom and 1300 mm at the top. By providing the operation unit 26 in the range of 900 mm to 1500 mm in this way, temperature setting and other operations can be performed without bending down or looking up, making the refrigerator easy to use. Also, by providing the operation unit on the exterior of the door, the user can perform operations such as temperature setting without opening the door.

冷蔵室2と、冷凍室4及び製氷室3は断熱仕切壁28によって隔てられている。また、冷凍室4及び製氷室3と、第一切替室5は断熱仕切壁29によって隔てられ、第一切替室5と第二切替室6は断熱仕切壁30によって隔てられている。 The refrigerator compartment 2 is separated from the freezer compartment 4 and the ice-making compartment 3 by an insulated partition wall 28. The freezer compartment 4 and the ice-making compartment 3 are separated from the first switchable compartment 5 by an insulated partition wall 29, and the first switchable compartment 5 and the second switchable compartment 6 are separated by an insulated partition wall 30.

断熱箱体10の天面庫外側の前方と、断熱仕切壁28の前縁には、冷蔵庫1と扉2a、2bを固定するための扉ヒンジ(図示せず)を備えおり、上部の扉ヒンジは扉ヒンジカバー16で覆っている。 The front of the outer top compartment of the insulated box 10 and the front edge of the insulated partition wall 28 are provided with door hinges (not shown) for fixing the refrigerator 1 to the doors 2a and 2b, and the upper door hinges are covered with door hinge covers 16.

製氷室3及び冷凍室4は、基本的に庫内を冷凍温度(0℃未満)の例えば平均的に-18℃程度にした貯蔵室であり、冷蔵室2は庫内を冷蔵温度(0℃以上)の例えば平均的に4℃程度にした貯蔵室である。第一切替室5及び第二切替室6は、操作部26によって冷凍温度もしくは冷蔵温度に設定することができる貯蔵室であり、本実施例の冷蔵庫では、冷蔵温度(平均的に4℃程度に維持)と、冷凍温度(平均的に-18℃程度に維持)の何れかを選択することができる。具体的には、第一切替室5と第二切替室6がともに冷凍温度に設定される「FF」モード、第一切替室5と第二切替室6がそれぞれ冷蔵温度と冷凍温度に設定される「RF」モード、第一切替室5と第二切替室6がそれぞれ冷凍温度と冷蔵温度に設定される「FR」モード、第一切替室5と第二切替室6がともに冷蔵温度に設定される「RR」モードの中から選択することができる。 The ice-making compartment 3 and the freezer compartment 4 are basically storage compartments whose interiors are kept at freezing temperatures (below 0°C), for example, about -18°C on average, and the refrigerator compartment 2 is a storage compartment whose interiors are kept at refrigeration temperatures (above 0°C), for example, about 4°C on average. The first and second switching compartments 5 and 6 are storage compartments whose interiors can be set to freezing temperatures or refrigeration temperatures by the operation unit 26, and in the refrigerator of this embodiment, either the refrigeration temperature (maintained at about 4°C on average) or the freezing temperature (maintained at about -18°C on average) can be selected. Specifically, the mode can be selected from among the "FF" mode in which both the first and second switching compartments 5 and 6 are set to freezing temperatures, the "RF" mode in which the first and second switching compartments 5 and 6 are set to refrigeration temperatures and freezing temperatures, respectively, the "FR" mode in which the first and second switching compartments 5 and 6 are set to freezing temperatures and refrigeration temperatures, respectively, and the "RR" mode in which both the first and second switching compartments 5 and 6 are set to refrigeration temperatures.

図2に示すように、冷蔵庫1は、鋼板製の外箱91と合成樹脂製(本実施例ではABS樹脂)の内箱92
との間に発泡断熱材93(本実施例ではポリウレタンフォーム)を充填して形成される断熱箱体10により、庫外と庫内が隔てられて構成されている。断熱箱体10には発泡断熱材に加えて、発泡断熱材より熱伝導率が低い(断熱性能が高い)真空断熱材25を外箱91と内箱92との間に実装することで、内容積の低下を抑えて断熱性能を高めている。本実施例では、断熱箱体10の背面、下面(底面)及び両側面に真空断熱材25を実装して、冷蔵庫1の断熱性能を高めている。同様に、本実施例の冷蔵庫では、第一切替室扉5a、第二切替室扉6aに真空断熱材25を実装することで、冷蔵庫1の断熱性能を高めている。
As shown in FIG. 2, the refrigerator 1 is made of an outer box 91 made of a steel plate and an inner box 92 made of a synthetic resin (ABS resin in this embodiment).
The inside and outside of the refrigerator are separated by the insulating box 10 formed by filling a foam insulating material 93 (polyurethane foam in this embodiment) between the outer box 91 and the inner box 92. In addition to the foam insulating material, vacuum insulating material 25 having a lower thermal conductivity (higher insulating performance) than the foam insulating material is installed between the outer box 91 and the inner box 92 of the insulating box 10, thereby suppressing a decrease in the internal volume and improving the insulating performance. In this embodiment, the vacuum insulating material 25 is installed on the back surface, lower surface (bottom surface), and both side surfaces of the insulating box 10, thereby improving the insulating performance of the refrigerator 1. Similarly, in the refrigerator of this embodiment, the vacuum insulating material 25 is installed on the first switching compartment door 5a and the second switching compartment door 6a, thereby improving the insulating performance of the refrigerator 1.

冷蔵室扉2a、2bは、庫内側に複数の扉ポケット33a、33b、33cを備えている。また、冷蔵室2内は、棚34a、34b、34c、34dによって複数の貯蔵スペースに区画されている。製氷室扉3a、冷凍室扉4a、第一切替室扉5a、第二切替室扉6aは、それぞれ一体に引き出される製氷室容器3b、冷凍室容器4b、第一切替室容器5b、第二切替室容器6bを備えている。 The refrigerator compartment doors 2a and 2b are provided with multiple door pockets 33a, 33b, and 33c on the inside of the compartment. The refrigerator compartment 2 is also divided into multiple storage spaces by shelves 34a, 34b, 34c, and 34d. The ice-making compartment door 3a, the freezer compartment door 4a, the first switchable compartment door 5a, and the second switchable compartment door 6a are provided with the ice-making compartment container 3b, the freezer compartment container 4b, the first switchable compartment container 5b, and the second switchable compartment container 6b, which are pulled out as a unit, respectively.

冷蔵室2の背部には、第一蒸発器14aが実装された第一蒸発器室8aを備えている。また、第一切替室5及び第二切替室6の略背部には、第二蒸発器14bが実装された第二蒸発器室8bを備えており、第一切替室5及び第二切替室6と、第二蒸発器室8b、後述する第二ファン吐出風路12、冷凍室風路130、第一切替室風路140、第二切替室風路150(図3参照)との間は,断熱仕切壁27によって隔てられている。 The rear of the refrigerator compartment 2 is provided with a first evaporator chamber 8a in which a first evaporator 14a is mounted. In addition, the rear of the first switching compartment 5 and the second switching compartment 6 is provided with a second evaporator chamber 8b in which a second evaporator 14b is mounted. The first switching compartment 5 and the second switching compartment 6 are separated from the second evaporator chamber 8b, the second fan discharge air duct 12 described below, the freezer compartment air duct 130, the first switching compartment air duct 140, and the second switching compartment air duct 150 (see FIG. 3) by a heat-insulating partition wall 27.

なお、断熱仕切壁27は、断熱箱体10、断熱仕切壁29及び断熱仕切壁30とは別体であり、図示しないシール部材(一例として軟質ウレタンフォーム)を介して断熱箱体10、断熱仕切壁29及び断熱仕切壁30と接触するように固定し、着脱可能としている。このように、断熱仕切壁27を別体で形成し着脱可能とすることで、第二蒸発器室8bに収納される第二蒸発器14bや後述する第二ファン9b、第一切替室ダンパ101、第二切替室ダンパ102といった断熱仕切壁27により覆われる部品に不具合が生じた場合に、断熱仕切壁27を外して容易にメンテナンスが行えるようになる。 The insulating partition wall 27 is separate from the insulating box body 10, the insulating partition wall 29, and the insulating partition wall 30, and is fixed so as to come into contact with the insulating box body 10, the insulating partition wall 29, and the insulating partition wall 30 via a sealing member (soft urethane foam as an example) not shown, making it detachable. By forming the insulating partition wall 27 as a separate body and making it detachable in this way, if a malfunction occurs in the parts covered by the insulating partition wall 27, such as the second evaporator 14b stored in the second evaporator chamber 8b, the second fan 9b described below, the first switching chamber damper 101, and the second switching chamber damper 102, the insulating partition wall 27 can be removed to easily perform maintenance.

また、断熱仕切壁27、28の内部には,真空断熱材は実装せずに主たる断熱部材として発泡断熱材であるポリスチレンフォームを実装している。一方、断熱仕切壁29、30の内部には発泡断熱材であるポリスチレンフォームとともに真空断熱材25を実装することで断熱性能を高めている。真空断熱材25は,発泡断熱材より熱伝導率が低い(断熱性能が高い)ので,断熱仕切壁29、30の主たる断熱部材は真空断熱材25となる。なお,断熱仕切壁27、28の内部に用いる発泡断熱材としては,ポリウレタンフォーム,ポリエチレンフォームを用いても良い。 In addition, no vacuum insulation material is installed inside the insulating partition walls 27 and 28, and polystyrene foam, a foam insulation material, is installed as the main insulation material. On the other hand, vacuum insulation material 25 is installed inside the insulating partition walls 29 and 30 together with polystyrene foam, a foam insulation material, to improve insulation performance. Since vacuum insulation material 25 has a lower thermal conductivity (higher insulation performance) than foam insulation material, the main insulation material of the insulating partition walls 29 and 30 is vacuum insulation material 25. Note that polyurethane foam or polyethylene foam may also be used as the foam insulation material used inside the insulating partition walls 27 and 28.

冷蔵室2、冷凍室4、第一切替室5、第二切替室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43、第二切替室温度センサ44を設け、第一蒸発器14aの上部には第一蒸発器温度センサ40a、第二蒸発器14bの上部には第二蒸発器温度センサ40bを設けている。これらのセンサにより、冷蔵室2、冷凍室4、第一切替室5、第二切替室6、第一蒸発器室8a、第一蒸発器14a、第二蒸発器室8b、及び、第二蒸発器14bの温度を検知している。また、冷蔵庫1の天井部の扉ヒンジカバー16の内部には、外気温度センサ37と外気湿度センサ38を設け、外気(庫外空気)の温度と湿度を検知している。その他にも、扉センサ(図示せず)を設けることで、扉2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知している。 The refrigerator compartment 2, freezer compartment 4, first switching compartment 5, and second switching compartment 6 are provided with a refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, a first switching compartment temperature sensor 43, and a second switching compartment temperature sensor 44 on the rear side of the interior of the refrigerator compartment 2, freezer compartment 4, first switching compartment 5, and second switching compartment 6, respectively. A first evaporator temperature sensor 40a is provided on the top of the first evaporator 14a, and a second evaporator temperature sensor 40b is provided on the top of the second evaporator 14b. These sensors detect the temperatures of the refrigerator compartment 2, freezer compartment 4, first switching compartment 5, second switching compartment 6, first evaporator compartment 8a, first evaporator 14a, second evaporator compartment 8b, and second evaporator 14b. In addition, an outside air temperature sensor 37 and an outside air humidity sensor 38 are provided inside the door hinge cover 16 on the ceiling of the refrigerator 1 to detect the temperature and humidity of the outside air (air outside the refrigerator compartment). In addition, a door sensor (not shown) is provided to detect the open/closed state of the doors 2a, 2b, 3a, 4a, 5a, and 6a.

次に図3~図5及び適宜図2を参照しながら庫内の風路構成について説明する。図3(a)は、図1の扉、容器、後述する吐出口形成部材を外した状態の正面図,図3(b)は、図1の扉及び容器を外した状態の正面図である。図4は,図3(b)中に示すB-B断面の要部拡大図である。図5は、実施例に係る冷蔵庫の製氷室3、冷凍室4、第一切替室5及び第二切替室6の冷却空気の風路構造の概略図である。 Next, the air passage configuration inside the refrigerator will be described with reference to Figs. 3 to 5 and, where appropriate, Fig. 2. Fig. 3(a) is a front view of Fig. 1 with the door, container, and outlet forming member described later removed, and Fig. 3(b) is a front view of Fig. 1 with the door and container removed. Fig. 4 is an enlarged view of the main part of the cross section B-B shown in Fig. 3(b). Fig. 5 is a schematic diagram of the air passage structure for cooling air in the ice making compartment 3, freezer compartment 4, first switchable compartment 5, and second switchable compartment 6 of the refrigerator according to the embodiment.

図3(a)に示すように、第一蒸発器14aの上方には第一ファン9aを備えている。第一ファン9aにより送り出される冷却空気は,冷蔵室風路110、冷蔵室吐出口110aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。ここで、第一ファン9aの形態は、遠心ファンであるターボファン(後向きファン)であり、回転速度は高速(1600min-1)と低速(1000min-1)に制御可能となっている。冷蔵室2に送風された空気は冷蔵室戻り口110b(図2参照)及び冷蔵室戻り口110cから第一蒸発器室8aへと戻り、再び第一蒸発器14aと熱交換する。冷蔵室戻り口110b及び110cには後述する第一排水管の最小径よりも隙間が小さいスリット(図示せず)を設け、排水口(図示せず)及び第一排水管での食品のつまりを防止している。 As shown in FIG. 3(a), a first fan 9a is provided above the first evaporator 14a. The cooling air sent out by the first fan 9a is sent to the refrigerator compartment 2 through the refrigerator compartment air duct 110 and the refrigerator compartment outlet 110a, and cools the inside of the refrigerator compartment 2. The first fan 9a is a turbofan (backward fan) that is a centrifugal fan, and the rotation speed can be controlled to a high speed (1600 min -1 ) or a low speed (1000 min -1 ). The air sent to the refrigerator compartment 2 returns to the first evaporator chamber 8a from the refrigerator compartment return port 110b (see FIG. 2) and the refrigerator compartment return port 110c, and exchanges heat with the first evaporator 14a again. The refrigerator compartment return ports 110b and 110c are provided with slits (not shown) with a gap smaller than the minimum diameter of the first drain pipe described later, to prevent food from clogging the drain port (not shown) and the first drain pipe.

冷蔵室2の冷蔵室吐出口110aは冷蔵室2の上部に設けており、本実施例では最上段の棚34aと二段目の棚34bの上方に空気が吐出するように設けている。また、冷蔵室戻り口110cは冷蔵室2の棚34cと棚34dの間に形成される空間の背部に設け、冷蔵室戻り口110bは冷蔵室2の棚34dと断熱仕切壁28の間に形成される空間の略背面に設けている。 The refrigerator compartment discharge port 110a of the refrigerator compartment 2 is provided at the top of the refrigerator compartment 2, and in this embodiment, it is provided so that air is discharged above the top shelf 34a and the second shelf 34b. In addition, the refrigerator compartment return port 110c is provided at the back of the space formed between shelves 34c and 34d of the refrigerator compartment 2, and the refrigerator compartment return port 110b is provided at approximately the back of the space formed between shelf 34d of the refrigerator compartment 2 and the heat-insulating partition wall 28.

図3(b)に示すように、冷蔵室2内の棚34dの上部には、容器35が備えられており、容器35内部は、冷却空気が直接送風されない間接冷却空間となっている。これにより、食品の乾燥が抑制され、野菜等の乾燥に弱い食品の収納に適した収納スペースとなる。 As shown in FIG. 3(b), a container 35 is provided on top of shelf 34d in refrigerator compartment 2, and the inside of container 35 is an indirect cooling space to which cooling air is not directly blown. This prevents food from drying out, making the storage space suitable for storing foods that are sensitive to drying, such as vegetables.

なお、内箱92と容器35の左壁間や、仕切壁35bと容器35の右壁間などの容器35とその他の壁面との間には約8mmの隙間を設けており、容器35の出し入を容易にしている。同様に、容器35に取手35aを設けることで、出し入れを容易にしている。 In addition, there is a gap of approximately 8 mm between the container 35 and other walls, such as between the inner box 92 and the left wall of the container 35, and between the partition wall 35b and the right wall of the container 35, to make it easier to insert and remove the container 35. Similarly, a handle 35a is provided on the container 35 to make it easier to insert and remove it.

図3(b)に示すように、冷蔵室2内の、断熱仕切壁28の上部には、内部が-1℃程度に維持される容器36が備えられており、容器36の前方は蓋体36aにより開閉可能となっている。蓋体36aの外周にはパッキン(図示せず)が備えられており、蓋体36aを閉鎖状態とした場合、パッキンにより蓋体36aと容器36が隙間なく接触し、密閉される構造となっている。また、容器36の背部には、容器36内の空気を吸引するポンプ(図示せず)が備えられており、蓋体36aが閉鎖された状態でポンプを駆動することで、容器36内の気圧が約0.8気圧に減圧されるようにしている。これにより容器36内は、蓋体36aにより冷却空気が直接送風されなくなるとともに、減圧環境となるので、食品の乾燥と酸化を抑制する収納スペースとなる。 As shown in FIG. 3(b), a container 36, whose inside temperature is maintained at about -1°C, is provided above the insulating partition wall 28 in the refrigerator compartment 2, and the front of the container 36 can be opened and closed by a lid 36a. A gasket (not shown) is provided on the outer periphery of the lid 36a, and when the lid 36a is closed, the gasket brings the lid 36a and the container 36 into contact with no gaps, creating a sealed structure. In addition, a pump (not shown) is provided on the back of the container 36 to suck air from inside the container 36, and by driving the pump with the lid 36a closed, the air pressure inside the container 36 is reduced to about 0.8 atm. As a result, the lid 36a prevents cooling air from being blown directly into the container 36, and the container 36 becomes a reduced-pressure environment, making it a storage space that suppresses the drying and oxidation of food.

図3(a)に示すように本実施例の冷蔵庫は,第一切替室5及び第二切替室6への送風遮断手段として、第一切替室ダンパ101、第二切替室ダンパ102を備えている。第一切替室ダンパ101は第一切替室5の背部に実装され、第二切替室ダンパ102は第二切替室6の背部に実装されている。ここで、第一切替室ダンパ101の開口面積は6300mm(幅180mm×高さ35mm)、第二切替室ダンパ102の開口面積は5200mm(幅80mm×高さ65mm)である。 3(a), the refrigerator of this embodiment is provided with a first selectable compartment damper 101 and a second selectable compartment damper 102 as means for blocking airflow to the first selectable compartment 5 and the second selectable compartment 6. The first selectable compartment damper 101 is mounted on the rear part of the first selectable compartment 5, and the second selectable compartment damper 102 is mounted on the rear part of the second selectable compartment 6. Here, the opening area of the first selectable compartment damper 101 is 6300 mm2 (width 180 mm x height 35 mm), and the opening area of the second selectable compartment damper 102 is 5200 mm2 (width 80 mm x height 65 mm).

図2に示すように、第二蒸発器14bは第一切替室5、第二切替室6、及び断熱仕切壁30の略背部の第二蒸発器室8b内に設けてある。第二蒸発器14bの上方には第二ファン9bを備えている。第二ファン9bは、遠心ファンであるターボファン(後向きファン)であり、回転速度は高速(1800min-1)と低速(1200min-1)に制御可能となっている。製氷室3及び冷凍室4を冷却した空気は、冷凍室戻り口120cより冷凍室戻り風路120dを介して、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。 As shown in Fig. 2, the second evaporator 14b is provided in the second evaporator chamber 8b, which is located approximately behind the first switching chamber 5, the second switching chamber 6, and the heat insulating partition wall 30. A second fan 9b is provided above the second evaporator 14b. The second fan 9b is a turbofan (rearward-facing fan) that is a centrifugal fan, and its rotation speed can be controlled to a high speed (1800 min -1 ) or a low speed (1200 min -1 ). The air that has cooled the ice making chamber 3 and the freezer chamber 4 returns to the second evaporator chamber 8b from the freezer chamber return port 120c through the freezer chamber return air duct 120d, and exchanges heat with the second evaporator 14b again.

図4に示すように、第二切替室6は,背面上部に第二切替室戻り口112bを備えている。第二切替室戻り口112bから流入した空気は、第二切替室戻り口112bから下方に延伸する第二切替室戻り風路112cを流れ,第二切替室戻り口112bより高さ位置が低く形成された第二蒸発器室流入口112dに至り、第二蒸発器室8bに流れ込む。このように第二切替室戻り口112bから第二蒸発器室流入口112dに至る間に、下方に延伸する風路(第二切替室戻り風路112c)を備えることで、第二ファン9bが停止した際に、第二蒸発器室8b内の低温空気が第二切替室6内に逆流し難くなる。これにより,特に第二切替室6が冷蔵温度に設定された際に、第二切替室6が冷え過ぎるといった事態が生じ難い冷蔵庫とすることができる。なお,第二切替室戻り口112bから第二蒸発器室流入口112dに至る間に,下方に延伸する風路があれば良いので,第二切替室戻り口112bから流入した空気が,上方に向けて流れた後に,下方に延伸する風路を流れるように構成することもできる。 As shown in FIG. 4, the second switching chamber 6 is provided with a second switching chamber return port 112b at the upper part of the back surface. The air flowing in from the second switching chamber return port 112b flows through the second switching chamber return air duct 112c extending downward from the second switching chamber return port 112b, reaches the second evaporator chamber inlet 112d formed at a lower height than the second switching chamber return port 112b, and flows into the second evaporator chamber 8b. By providing an air duct (second switching chamber return air duct 112c) extending downward between the second switching chamber return port 112b and the second evaporator chamber inlet 112d in this way, when the second fan 9b is stopped, the low-temperature air in the second evaporator chamber 8b is less likely to flow back into the second switching chamber 6. This makes it possible to provide a refrigerator in which the second switching chamber 6 is less likely to become too cold, especially when the second switching chamber 6 is set to a refrigeration temperature. In addition, since there is only a need for an air passage extending downward between the second switching chamber return port 112b and the second evaporator chamber inlet port 112d, the air flowing in from the second switching chamber return port 112b can be configured to flow upward and then through the air passage extending downward.

図5に示すように、第二蒸発器14bと熱交換して低温になった空気は、第二ファン9bを駆動することにより、第一切替室ダンパ101、第二切替室ダンパ102の開閉状態に依らず第二ファン吐出風路12、冷凍室風路130、冷凍室吐出口120a、120bを介して製氷室3及び冷凍室4に送られ、製氷室3の製氷皿内の水、容器3b内の氷、冷凍室4内の容器4bに収納された食品等を冷却する。製氷室3及び冷凍室4を冷却した空気は、冷凍室戻り口120cより冷凍室戻り風路120dを介して、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。 As shown in FIG. 5, the air that has been cooled by heat exchange with the second evaporator 14b is sent to the ice making chamber 3 and the freezer chamber 4 via the second fan discharge air duct 12, the freezer chamber air duct 130, and the freezer chamber discharge ports 120a and 120b by driving the second fan 9b, regardless of the opening and closing states of the first switching chamber damper 101 and the second switching chamber damper 102, and cools the water in the ice tray of the ice making chamber 3, the ice in the container 3b, and the food stored in the container 4b in the freezer chamber 4. The air that has cooled the ice making chamber 3 and the freezer chamber 4 returns to the second evaporator chamber 8b via the freezer chamber return port 120c and the freezer chamber return air duct 120d, and exchanges heat with the second evaporator 14b again.

次に,第一切替室ダンパ101が開放状態に制御されている場合は、第二ファン9bにより昇圧された空気は、第二ファン吐出風路12、第一切替室風路140、第一切替室ダンパ101、吐出口形成部材111(図3参照)に備えられた第一切替室吐出口111aを介して、第一切替室5に設けた第一切替室容器5b内に送られて、第一切替室容器5b内の食品を冷却する。第一切替室5を冷却した空気は、第一切替室戻り口111b、冷凍室戻り風路120dを流れて、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。 Next, when the first switching chamber damper 101 is controlled to the open state, the air pressurized by the second fan 9b is sent through the second fan discharge air duct 12, the first switching chamber air duct 140, the first switching chamber damper 101, and the first switching chamber discharge port 111a provided in the discharge port forming member 111 (see FIG. 3) into the first switching chamber container 5b provided in the first switching chamber 5, and cools the food in the first switching chamber container 5b. The air that has cooled the first switching chamber 5 flows through the first switching chamber return port 111b and the freezer chamber return air duct 120d, returns to the second evaporator chamber 8b, and exchanges heat with the second evaporator 14b again.

また,第二切替室ダンパ102が開放状態に制御されている場合は、第二ファン9bにより昇圧された空気は、第二ファン吐出風路12、第二切替室風路150、第二切替室ダンパ102、吐出口形成部材112(図3参照)に備えられた第二切替室吐出口112aを介して、第二切替室6に設けた第二切替室容器6b内に送られて、第二切替室容器6b内の食品を冷却する。第二切替室6を冷却した空気は、第二切替室戻り口112b、第二切替室戻り風路112cを流れて、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。なお、低温の蒸発器が収納される蒸発器室(本実施例では第二蒸発器室8b)、蒸発器と熱交換して低温になった空気が流れる風路(本実施例では、第二ファン吐出風路12、冷凍室風路130、第一切替室風路140、第二切替室風路150)、冷凍温度に維持される貯蔵室(本実施例では製氷室3、冷凍室4、冷凍温度に設定された場合の第一切替室5、冷凍温度に設定された場合の第二切替室6)、冷凍温度に維持される貯蔵室からの戻り風路(本実施例では、冷凍室戻り風路120d、冷凍温度に設定された場合の第二切替室戻り風路112c)は、冷凍温度になる空間であるため、以下では冷凍温度空間と呼ぶ。 In addition, when the second switching chamber damper 102 is controlled to the open state, the air pressurized by the second fan 9b is sent through the second fan discharge air duct 12, the second switching chamber air duct 150, the second switching chamber damper 102, and the second switching chamber discharge port 112a provided in the discharge port forming member 112 (see FIG. 3) into the second switching chamber container 6b provided in the second switching chamber 6, and cools the food in the second switching chamber container 6b. The air that has cooled the second switching chamber 6 flows through the second switching chamber return port 112b and the second switching chamber return air duct 112c, returns to the second evaporator chamber 8b, and exchanges heat with the second evaporator 14b again. In addition, the evaporator chamber (second evaporator chamber 8b in this embodiment) in which the low-temperature evaporator is housed, the air passages through which the air that has been cooled by heat exchange with the evaporator flows (second fan discharge air passage 12, freezer air passage 130, first switching room air passage 140, second switching room air passage 150 in this embodiment), the storage chambers that are maintained at freezing temperature (ice-making chamber 3, freezer chamber 4 in this embodiment, first switching room 5 when set to freezing temperature, second switching room 6 when set to freezing temperature), and the return air passages from the storage chambers that are maintained at freezing temperature (freezer chamber return air passage 120d in this embodiment, second switching room return air passage 112c when set to freezing temperature) are spaces that are at freezing temperature, and are therefore referred to as freezing temperature spaces below.

図6は、実施例に係る冷蔵庫の冷凍サイクルの構成を表す図である。本実施例の冷蔵庫では、圧縮機24、冷媒の放熱を行う放熱手段としての庫外放熱器50a、壁面放熱配管50b(外箱91と内箱92の間の領域の外箱91の内面に配置)、断熱仕切壁28、29、30の前面部及び断熱箱体10の前縁部近傍への結露を抑制する結露防止配管50c(断熱仕切壁28、29、30の内面に配置)、冷媒を減圧する減圧手段である第一キャピラリチューブ53aと第二キャピラリチューブ53b、冷媒と庫内の空気を熱交換することで庫内の熱を吸熱する第一蒸発器14aと第二蒸発器14bを備えている。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒の圧縮機24への流入を抑制する気液分離器54a、54b、冷媒流路を制御する冷媒制御弁52、逆止弁56、冷媒流を接続する冷媒合流部55を備えており、これらを冷媒配管で接続して冷凍サイクルを構成している。冷媒は可燃性冷媒のイソブタンである。 6 is a diagram showing the configuration of the refrigeration cycle of the refrigerator according to the embodiment. The refrigerator according to the embodiment includes a compressor 24, an external radiator 50a as a heat dissipation means for dissipating heat from the refrigerant, a wall surface heat dissipation pipe 50b (arranged on the inner surface of the outer box 91 in the region between the outer box 91 and the inner box 92), a condensation prevention pipe 50c (arranged on the inner surface of the insulating partition walls 28, 29, 30) for suppressing condensation near the front portion of the insulating partition walls 28, 29, 30 and the front edge portion of the insulating box body 10, a first capillary tube 53a and a second capillary tube 53b as a decompression means for decompressing the refrigerant, and a first evaporator 14a and a second evaporator 14b for absorbing heat in the refrigerator by exchanging heat between the refrigerant and the air in the refrigerator. It also includes a dryer 51 that removes moisture in the refrigeration cycle, gas-liquid separators 54a and 54b that suppress the inflow of liquid refrigerant into the compressor 24, a refrigerant control valve 52 that controls the refrigerant flow path, a check valve 56, and a refrigerant junction 55 that connects the refrigerant flows, all of which are connected by refrigerant piping to form the refrigeration cycle. The refrigerant is isobutane, a flammable refrigerant.

冷媒制御弁52は、流出口52a、52bを備えており、流出口52aを開放し、流出口52bを閉鎖した「状態1」、流出口52aを閉鎖し、流出口52bを開放した「状態2」、流出口52aと流出口52bの何れも閉鎖した「状態3」、流出口52aと流出口52bの何れも開放した「状態4」の4つの状態に切換え可能な弁である。なお、圧縮機24の回転速度は高速(2500min-1)、中速(1500min-1)、低速(1000min-1)の3段階に制御可能となっている。 The refrigerant control valve 52 has outlets 52a and 52b, and is a valve that can be switched between four states: "State 1" in which the outlet 52a is open and the outlet 52b is closed, "State 2" in which the outlet 52a is closed and the outlet 52b is open, "State 3" in which both the outlets 52a and 52b are closed, and "State 4" in which both the outlets 52a and 52b are open. The rotation speed of the compressor 24 can be controlled to three stages: high speed (2500 min -1 ), medium speed (1500 min -1 ), and low speed (1000 min -1 ).

次に本実施例の冷蔵庫の冷媒の流れについて説明する。圧縮機24から吐出した高温高圧冷媒は、庫外放熱器50a、壁面放熱配管50b、結露防止配管50c、ドライヤ51の順に流れ、冷媒制御弁52に至る。冷媒制御弁52の流出口52aは冷媒配管を介して第一キャピラリチューブ53aと接続され、流出口52bは冷媒配管を介して第二キャピラリチューブ53bと接続されている。 Next, the flow of refrigerant in the refrigerator of this embodiment will be described. The high-temperature, high-pressure refrigerant discharged from the compressor 24 flows through the external radiator 50a, the wall surface heat radiation pipe 50b, the condensation prevention pipe 50c, and the dryer 51 in that order, and reaches the refrigerant control valve 52. The outlet 52a of the refrigerant control valve 52 is connected to the first capillary tube 53a via the refrigerant pipe, and the outlet 52b is connected to the second capillary tube 53b via the refrigerant pipe.

第一蒸発器14aにより冷蔵室2を冷却する場合は、冷媒制御弁52を、流出口52a側に冷媒が流れる「状態1」に制御する。流出口52aから流出した冷媒は、第一キャピラリチューブ53aにより減圧されて低温低圧となり、第一蒸発器14aに入り庫内空気と熱交換した後に、気液分離機54a、第一キャピラリチューブ53a内の冷媒と熱交換する熱交換部57a、冷媒合流部55を流れ、圧縮機24に戻る。 When the first evaporator 14a is used to cool the refrigerator compartment 2, the refrigerant control valve 52 is controlled to "state 1" in which the refrigerant flows through the outlet 52a. The refrigerant flowing out of the outlet 52a is decompressed by the first capillary tube 53a to a low temperature and low pressure, enters the first evaporator 14a and exchanges heat with the air inside the refrigerator, then flows through the gas-liquid separator 54a, the heat exchange section 57a which exchanges heat with the refrigerant in the first capillary tube 53a, the refrigerant junction section 55, and returns to the compressor 24.

第二蒸発器14bにより製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却する場合は、冷媒制御弁52を、流出口52b側に冷媒が流れる「状態2」に制御する。流出口52bから流出した冷媒は、第二キャピラリチューブ53bにより減圧されて低温低圧となり、第二蒸発器14bに入り庫内空気と熱交換した後に、気液分離機54b、第二キャピラリチューブ53b内の冷媒と熱交換する熱交換部57b、逆止弁56、冷媒合流部55の順に流れ、圧縮機24に戻る。逆止弁56は冷媒合流部55から第二蒸発器14b側に向かう流れを阻止するように配設している。 When the second evaporator 14b is used to cool the ice-making compartment 3, the freezer compartment 4, the first switching compartment 5, and the second switching compartment 6, the refrigerant control valve 52 is controlled to "state 2" in which the refrigerant flows to the outlet 52b side. The refrigerant flowing out from the outlet 52b is decompressed by the second capillary tube 53b to a low temperature and low pressure, enters the second evaporator 14b and exchanges heat with the air inside the compartment, then flows through the gas-liquid separator 54b, the heat exchange section 57b that exchanges heat with the refrigerant in the second capillary tube 53b, the check valve 56, and the refrigerant junction 55, in that order, and returns to the compressor 24. The check valve 56 is arranged to block the flow from the refrigerant junction 55 toward the second evaporator 14b.

図7は、実施例に係る冷蔵庫の壁面放熱配管50bと、結露防止配管50cの配置を示す図である。断熱箱体10の背面側下部に設けられた機械室39内には、庫外放熱器50a(図6参照)が設置されており、庫外放熱器50aの出口配管は、壁面放熱配管50bに接続される(機械室39内の構成は図7中に図示せず)。図7中に示すように、断熱箱体10の左壁、天井壁、右壁には壁面放熱配管50b(図7中に示すA点からB点に至る配管)が配設されている。また、断熱箱体10の前面側には、断熱仕切壁28、29、30の前面部及び断熱箱体10の前縁部近傍への結露を抑制する結露防止配管50c(図7中に示すD点からE点に至る配管)が配設されている。 Figure 7 is a diagram showing the arrangement of the wall surface heat dissipation pipe 50b and the condensation prevention pipe 50c of the refrigerator according to the embodiment. An external radiator 50a (see Figure 6) is installed in the machine room 39 provided at the bottom of the back side of the thermal insulation box 10, and the outlet pipe of the external radiator 50a is connected to the wall surface heat dissipation pipe 50b (the configuration inside the machine room 39 is not shown in Figure 7). As shown in Figure 7, the wall surface heat dissipation pipe 50b (piping from point A to point B shown in Figure 7) is arranged on the left wall, ceiling wall, and right wall of the thermal insulation box 10. In addition, the front side of the thermal insulation box 10 is provided with the condensation prevention pipe 50c (piping from point D to point E shown in Figure 7) that suppresses condensation on the front parts of the thermal insulation partition walls 28, 29, and 30 and near the front edge of the thermal insulation box 10.

冷媒は、断熱箱体10の左壁後方下部のA点から壁面放熱配管50bに入り、断熱箱体10の左壁、天井壁、右壁の順に流れて、B点で断熱箱体10の右壁から機械室39に入る。続いてC点から再び断熱箱体10内に入り、結露防止配管50cの始点となるD点に至る(C点からD点は接続配管)。D点から断熱箱体10の前縁、断熱仕切壁30、断熱仕切壁29、断熱仕切壁28を流れて、E点に至る。さらに右壁の下部を流れてF点において再び機械室39に入り、機械室内に設置されるドライヤ51(図6参照)に至る。 The refrigerant enters the wall heat dissipation pipe 50b at point A at the rear lower left wall of the insulated box 10, flows through the left wall, ceiling wall, and right wall of the insulated box 10, and enters the machine room 39 from the right wall of the insulated box 10 at point B. It then re-enters the insulated box 10 at point C and reaches point D, which is the start point of the condensation prevention pipe 50c (points C and D are connecting pipes). From point D, it flows through the front edge of the insulated box 10, the insulated partition wall 30, the insulated partition wall 29, and the insulated partition wall 28, and reaches point E. It then flows through the lower part of the right wall and re-enters the machine room 39 at point F, and reaches the dryer 51 (see Figure 6) installed inside the machine room.

図8は、実施例に係る冷蔵庫の断熱箱体10の左壁の構成を示す水平断面図である。断熱箱体10は、外箱91(厚さ0.45mmの鋼板)と内箱92(厚さ0.9mmのABS樹脂)と、その間に充填されたポリウレタンフォーム93、及び、外箱91側に設置された真空断熱材25から構成されている。真空断熱材25には溝25aが形成されており、溝25aと外箱91の間に形成される領域に、上下に亘って壁面放熱配管50bが配設されている。壁面放熱配管50bは図示しない金属テープ(アルミニウムテープ)により、外箱91に固定されており、真空断熱材25は図示しない接着剤によって外箱91に固定されている。外箱91は金属(鋼板)であるため熱伝導率が高く,また,金属テープで固定されていることから,壁面放熱配管50bの熱は外箱91に良好に伝導されるとともに,外箱91に固定されている真空断熱材25の表面にも良好に伝導される。すなわち,壁面放熱配管50bは,真空断熱材25と熱的に略接触した状態となる。なお、断熱箱体10の右壁も上述の左壁と略左右対称の構成となっている。 Figure 8 is a horizontal cross-sectional view showing the configuration of the left wall of the heat-insulating box 10 of the refrigerator according to the embodiment. The heat-insulating box 10 is composed of an outer box 91 (steel plate with a thickness of 0.45 mm), an inner box 92 (ABS resin with a thickness of 0.9 mm), polyurethane foam 93 filled between them, and a vacuum insulation material 25 installed on the outer box 91 side. A groove 25a is formed in the vacuum insulation material 25, and a wall surface heat dissipation pipe 50b is arranged from top to bottom in the area formed between the groove 25a and the outer box 91. The wall surface heat dissipation pipe 50b is fixed to the outer box 91 by metal tape (aluminum tape) not shown, and the vacuum insulation material 25 is fixed to the outer box 91 by adhesive not shown. Since the outer box 91 is made of metal (steel plate), it has a high thermal conductivity, and since it is fixed with metal tape, the heat of the wall surface heat dissipation pipe 50b is well conducted to the outer box 91 and also to the surface of the vacuum insulation material 25 fixed to the outer box 91. That is, the wall surface heat dissipation pipe 50b is in approximate thermal contact with the vacuum insulation material 25. The right wall of the insulation box 10 is also configured approximately symmetrically to the left wall described above.

図9は、実施例に係る冷蔵庫の真空断熱材25の構成を示す図である。真空断熱材25はガスバリア性を備えた外包材72と、外包材72の内部に芯材70と吸着剤71を封入した状態で、外包材72の内部のガスを排出し、端部72aを熱溶着することで形成された断熱部材である。外包材72の端部72aは図9に示すように折り返して図示しないテープで固定することで,芯材70の形状に略一致した断熱部材とすることができる。外包材72は,少なくとも一層は金属を含むガスバリア層(金属箔層または金属蒸着層)を備えたラミネートフィルムである。具体的な構成の一例として,外包材72を4層ラミネートフィルムとし、最も外側の第一層は表面保護層として、ポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の樹脂フィルムを用い、第二層には、第1ガスバリア層として、アルミニウム蒸着付きのポリエチレンテレフタレートフィルム、第三層には、第2ガスバリア層として、アルミニウム蒸着付きのエチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、又はアルミ箔とし、最も内側の第四層は、熱溶着層として、未延伸タイプのポリエチレン、ポリプロピレン等の樹脂フィルムとすることができる。 Figure 9 is a diagram showing the configuration of the vacuum insulation material 25 of the refrigerator according to the embodiment. The vacuum insulation material 25 is an insulating member formed by discharging gas from the outer packaging material 72 and heat-welding the end 72a while the core material 70 and adsorbent 71 are enclosed inside the outer packaging material 72, as shown in Figure 9. The end 72a of the outer packaging material 72 can be folded back as shown in Figure 9 and fixed with tape (not shown) to form an insulating member that roughly matches the shape of the core material 70. The outer packaging material 72 is a laminate film with at least one gas barrier layer (metal foil layer or metal vapor deposition layer) containing metal. As an example of a specific configuration, the outer packaging material 72 can be a four-layer laminate film, with the outermost first layer being a surface protection layer made of a resin film such as polypropylene, polyamide, or polyethylene terephthalate, the second layer being a polyethylene terephthalate film with aluminum deposition as a first gas barrier layer, the third layer being an ethylene vinyl alcohol copolymer resin film with aluminum deposition or a biaxially oriented polyvinyl alcohol resin film with aluminum deposition or aluminum foil as a second gas barrier layer, and the innermost fourth layer being a heat-sealed layer made of a resin film such as unstretched polyethylene or polypropylene.

図10は第一切替室扉5aと容器5bを外した状態で第一切替室5を前方から見た図である。図10中に破線で示すように,本実施例の冷蔵庫は,第一切替室5の底面、すなわち、断熱仕切壁30の上面30aには、第一切替室5の下方からの加熱手段となる第一切替室第一ヒータ301を備え,第一切替室5の背面、すなわち、断熱仕切壁27の前面27aには第一切替室5の後方からの加熱手段となる第一切替室第二ヒータ302を備えている。さらに、第一切替室5の左面と右面、すなわち、内箱92の左面92aと右面92bには、第一切替室5の左側方からの加熱手段となる第一切替室第三ヒータ303と、第一切替室5の右側方からの加熱手段となる第一切替室第四ヒータ304を備えている。第一切替室第一ヒータ301,第一切替室第二ヒータ302,第一切替室第三ヒータ303及び第一切替室第四ヒータ304は,図示しない配線により互いに並列に接続された電気ヒータであり,全てが同時に通電される。以下では,第一切替室5の加熱手段となるヒータ(第一切替室第一ヒータ301,第一切替室第二ヒータ302,第一切替室第三ヒータ303,第一切替室第四ヒータ304)の総称を,第一切替室ヒータ300とする。 10 is a view of the first switching compartment 5 from the front with the first switching compartment door 5a and the container 5b removed. As shown by the dashed line in FIG. 10, the refrigerator of this embodiment is provided with a first switching compartment first heater 301, which serves as a heating means from below the first switching compartment 5, on the bottom surface of the first switching compartment 5, i.e., the upper surface 30a of the insulating partition wall 30, and a first switching compartment second heater 302, which serves as a heating means from the rear of the first switching compartment 5, on the rear surface of the first switching compartment 5, i.e., the front surface 27a of the insulating partition wall 27. Furthermore, the left and right surfaces of the first switching compartment 5, i.e., the left surface 92a and the right surface 92b of the inner box 92, are provided with a first switching compartment third heater 303, which serves as a heating means from the left side of the first switching compartment 5, and a first switching compartment fourth heater 304, which serves as a heating means from the right side of the first switching compartment 5. The first switching chamber first heater 301, the first switching chamber second heater 302, the first switching chamber third heater 303, and the first switching chamber fourth heater 304 are electric heaters connected in parallel to each other by wiring (not shown), and all are energized at the same time. In the following, the heaters that serve as the heating means for the first switching chamber 5 (the first switching chamber first heater 301, the first switching chamber second heater 302, the first switching chamber third heater 303, and the first switching chamber fourth heater 304) are collectively referred to as the first switching chamber heater 300.

第一切替室ヒータ300は図示しない発熱線(一例としてシリコンコードヒータ)とアルミニウム箔を両面粘着テープの一面で固定し、両面粘着テープの他面を加熱面に貼付可能としたアルミ箔ヒータである。第一切替室第一ヒータ301,第一切替室第二ヒータ302,第一切替室第三ヒータ303,第一切替室第四ヒータ304の有効加熱面積(アルミニウム箔面積)は、それぞれ4500mm、3000mm、1000mm、1000mmであり、ヒータ容量は,それぞれ11.3W、11.4W、3.0W、3.0Wである。なお、断熱仕切壁30及び断熱仕切壁27は、表面が図示しない厚さ1.5mmの樹脂部材(本実施例ではポリプロピレン)により覆われており、第一切替室第一ヒータ301及び第一切替室第二ヒータ302は、それぞれ断熱仕切壁30及び断熱仕切壁27の樹脂部材の内側(内表面)に貼付されている。また、第一切替室第三ヒータ303及び第一切替室第四ヒータ304は、何れも内箱92(ABS樹脂)の内表面(庫外側表面)に貼付されている。図10に示すとおり,第一切替室5を加熱する第一切替室ヒータ300が配設される位置は,第一切替室扉5aと容器5bを外すことで解体作業を伴わずにユーザーが触れることが可能な,貯蔵室の内壁面となる。そこで,上記のように第一切替室ヒータ300と第一切替室5の間に樹脂部材(断熱仕切壁27及び断熱仕切壁30の表面樹脂部材または内箱92)を介在させるように配設することで,ユーザーが清掃等のために第一切替室扉5aと容器5bを外して庫内壁面(断熱仕切壁27,断熱仕切壁30,内箱92の表面)に触れても,ヒータが破損するといった事態が生じない信頼性の高い冷蔵庫としている。 The first switching chamber heater 300 is an aluminum foil heater in which a heating wire (not shown, for example, a silicon cord heater) and aluminum foil are fixed with one side of a double-sided adhesive tape, and the other side of the double-sided adhesive tape can be attached to a heating surface. The effective heating areas (aluminum foil areas) of the first switching chamber first heater 301, the first switching chamber second heater 302, the first switching chamber third heater 303, and the first switching chamber fourth heater 304 are 4500 mm2 , 3000 mm2 , 1000 mm2 , and 1000 mm2 , respectively, and the heater capacities are 11.3 W, 11.4 W, 3.0 W, and 3.0 W, respectively. The surfaces of the heat insulating partition wall 30 and the heat insulating partition wall 27 are covered with a resin member (polypropylene in this embodiment) having a thickness of 1.5 mm (not shown), and the first heater 301 of the first switching compartment and the second heater 302 of the first switching compartment are attached to the inside (inner surface) of the resin member of the heat insulating partition wall 30 and the heat insulating partition wall 27, respectively. The third heater 303 of the first switching compartment and the fourth heater 304 of the first switching compartment are both attached to the inner surface (outer surface) of the inner box 92 (ABS resin). As shown in FIG. 10, the position where the first switching compartment heater 300 for heating the first switching compartment 5 is disposed is the inner wall surface of the storage compartment that can be touched by the user without disassembly work by removing the first switching compartment door 5a and the container 5b. Therefore, by arranging a resin member (the surface resin members of the insulating partition wall 27 and the insulating partition wall 30, or the inner box 92) between the first switchable chamber heater 300 and the first switchable chamber 5 as described above, even if a user removes the first switchable chamber door 5a and the container 5b for cleaning, etc. and touches the interior wall surface (the surface of the insulating partition wall 27, the insulating partition wall 30, or the inner box 92), the heater will not be damaged, making for a highly reliable refrigerator.

図11は,第二切替室扉6aと容器6bを外した状態で第二切替室6を前方から見た図である。図11中に破線で示すように,本実施例の冷蔵庫は,第二切替室6の背面を形成する内箱92cには、第二切替室6の後方からの加熱手段となる第二切替室第一ヒータ401を備えている。また,断熱仕切壁30の下面30bには、第二切替室6の上方からの加熱手段となる第二切替室第二ヒータ402を備えている。第二切替室第一ヒータ401,第二切替室第二ヒータ402は図示しない配線により互いに並列に接続されており,同時に通電される。以下では,第二切替室6の加熱手段となるヒータ(第二切替室第一ヒータ401,第二切替室第二ヒータ402)の総称を,第二切替室ヒータ400とする。 11 is a view of the second switching compartment 6 from the front with the second switching compartment door 6a and the container 6b removed. As shown by the dashed line in FIG. 11, in the refrigerator of this embodiment, the inner box 92c forming the back surface of the second switching compartment 6 is provided with a second switching compartment first heater 401, which serves as a heating means from the rear of the second switching compartment 6. In addition, the lower surface 30b of the insulating partition wall 30 is provided with a second switching compartment second heater 402, which serves as a heating means from above the second switching compartment 6. The second switching compartment first heater 401 and the second switching compartment second heater 402 are connected in parallel with each other by wiring (not shown) and are energized simultaneously. In the following, the heaters (second switching compartment first heater 401 and second switching compartment second heater 402) which serve as heating means for the second switching compartment 6 are collectively referred to as the second switching compartment heater 400.

第二切替室ヒータ400は,図示しない発熱線(一例としてシリコンコードヒータ)とアルミニウム箔を両面粘着テープの一面で固定し、両面粘着テープの他面を加熱面に貼付可能としたアルミ箔ヒータである。第二切替室第一ヒータ401,第二切替室第二ヒータ402の有効加熱面積(アルミニウム箔面積)は、それぞれ2000mm、4000mmであり、ヒータ容量は,それぞれ10.9W、4.0Wである。第二切替室第一ヒータ401は,内箱92(ABS樹脂)の内表面(庫外側表面)に貼付されており,第二切替室第二ヒータ402は,断熱仕切壁30の樹脂部材内側(内表面)に貼付されている。 The second switchable compartment heater 400 is an aluminum foil heater in which a heating wire (not shown, for example, a silicon cord heater) and aluminum foil are fixed with one side of a double-sided adhesive tape, and the other side of the double-sided adhesive tape can be attached to a heating surface. The effective heating areas (aluminum foil areas) of the second switchable compartment first heater 401 and the second switchable compartment second heater 402 are 2000 mm2 and 4000 mm2, respectively, and their heater capacities are 10.9 W and 4.0 W, respectively. The second switchable compartment first heater 401 is attached to the inner surface (outside surface) of the inner box 92 (ABS resin), and the second switchable compartment second heater 402 is attached to the inside (inner surface) of the resin member of the heat-insulating partition wall 30.

図12は,図2における断熱仕切壁30の後端近傍の嵌合部の構成を表す要部拡大断面図である。図12に示すように、断熱仕切壁30の内部には真空断熱材25が実装されている。また、断熱仕切壁30の上面30aを形成する樹脂部材の内面には第一切替室第一ヒータ301、断熱仕切壁30の下面30bを形成する樹脂部材の内面には第二切替室第二ヒータ402がそれぞれ貼付されている。このように断熱仕切壁の内部に真空断熱材とともに加熱手段(ヒータ)を実装する場合には、加熱手段(ヒータ)を真空断熱材に貼付せずに、外周形成部材に貼付することで、ヒータ加熱時の膨張作用に起因する劣化が生じ難くなり,信頼性が高い冷蔵庫となる。また,断熱仕切壁30の後部は、断熱仕切壁27の凹部27aに嵌め込むことで固定されており,断熱仕切壁30に実装された真空断熱材25の後端は、断熱仕切壁27の凹部27aの前縁27bより寸法L(本実施例ではL=30mm)だけ後方に位置するように実装されている。 12 is an enlarged cross-sectional view of a main part showing the configuration of the fitting portion near the rear end of the heat-insulating partition wall 30 in FIG. 2. As shown in FIG. 12, a vacuum insulation material 25 is installed inside the heat-insulating partition wall 30. A first heater 301 for the first switching chamber is attached to the inner surface of the resin member forming the upper surface 30a of the heat-insulating partition wall 30, and a second heater 402 for the second switching chamber is attached to the inner surface of the resin member forming the lower surface 30b of the heat-insulating partition wall 30. When a heating means (heater) is installed inside the heat-insulating partition wall in this way together with the vacuum insulation material, by attaching the heating means (heater) to the outer periphery forming member rather than to the vacuum insulation material, deterioration caused by the expansion action when the heater is heated is less likely to occur, resulting in a highly reliable refrigerator. In addition, the rear of the insulating partition wall 30 is fixed by fitting it into the recess 27a of the insulating partition wall 27, and the rear end of the vacuum insulation material 25 mounted on the insulating partition wall 30 is mounted so as to be located a distance L (in this embodiment, L = 30 mm) behind the front edge 27b of the recess 27a of the insulating partition wall 27.

冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。また、制御基板31は、外気温度センサ37、外気湿度センサ38、冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43、第二切替室温度センサ44、第一蒸発器温度センサ40a、第二蒸発器温度センサ40b等と電気配線(図示せず)で接続されている。制御基板31では、各センサの出力値や操作部26の設定、ROMに予め記録されたプログラム等を基に、後述する圧縮機24や第一ファン9a、第二ファン9bのON/OFFや回転速度制御、第一切替室ダンパ101、第二切替室ダンパ102の開閉制御、第一切替室ヒータ300,第二切替室ヒータ400,後述する除霜ヒータ21の通電制御,冷媒制御弁52の流路切替制御を行っている。 At the top of the refrigerator 1, a control board 31 is arranged, which is equipped with a CPU, memory such as ROM and RAM, and an interface circuit, which are part of the control device. The control board 31 is also connected to an outside air temperature sensor 37, an outside air humidity sensor 38, a refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, a first switching compartment temperature sensor 43, a second switching compartment temperature sensor 44, a first evaporator temperature sensor 40a, a second evaporator temperature sensor 40b, and the like, by electrical wiring (not shown). The control board 31 controls the ON/OFF and rotation speed of the compressor 24, the first fan 9a, and the second fan 9b, which will be described later, the opening and closing of the first switching compartment damper 101 and the second switching compartment damper 102, the energization control of the first switching compartment heater 300, the second switching compartment heater 400, and the defrost heater 21, which will be described later, and the flow path switching control of the refrigerant control valve 52, based on the output values of each sensor, the settings of the operation unit 26, and programs previously recorded in the ROM.

続いて本実施例の冷蔵庫の第一蒸発器14a及び第二蒸発器14bの除霜運転について説明する。第一蒸発器14aについては、圧縮機24駆動状態で冷媒制御弁52を流出口52bに流れる「状態2」に制御した状態、または、圧縮機24停止状態の何れかの状態に制御することで第一蒸発器14aに冷媒を流さない状態として、第一ファン9aを駆動して冷蔵室2からの戻り空気によって第一蒸発器14aを加熱して除霜を行う。第一蒸発器14aの除霜時に発生した除霜水は、第一蒸発器室8aの下部に設けた樋23a(図2参照)から、図示しない第一排水管を介して機械室39に設けた図示しない第一蒸発皿に排出され、圧縮機24からの放熱や、機械室39に設置された図示しない機械室ファンによる通風等の作用により蒸発する。このように第一蒸発器14aの除霜は、ヒータを用いず、第一ファン9aの駆動によって行うため省エネルギー性能が高い冷蔵庫となる。また、霜の水分の一部は除霜によって冷蔵室2に還元されるため、冷蔵室2をより高湿に保つことができる。 Next, the defrosting operation of the first evaporator 14a and the second evaporator 14b of the refrigerator of this embodiment will be described. The first evaporator 14a is defrosted by driving the first fan 9a and heating the first evaporator 14a with the return air from the refrigerator compartment 2 through the gutter 23a (see FIG. 2) provided at the bottom of the first evaporator compartment 8a via the first drain pipe (not shown) and discharging the defrosted water through the action of the heat radiation from the compressor 24 and the ventilation by the machine compartment fan (not shown) installed in the machine compartment 39. In this way, the defrosting of the first evaporator 14a is performed by driving the first fan 9a without using a heater, resulting in a refrigerator with high energy saving performance. In addition, some of the moisture in the frost is returned to the refrigerator compartment 2 by defrosting, allowing the refrigerator compartment 2 to be kept at a higher humidity level.

一方、第二蒸発器14bについては、圧縮機24が停止した状態で、第二蒸発器14bの下部に備えられた加熱手段である除霜ヒータ21(図2参照)に通電することによって除霜を行う。除霜ヒータ21は、例えば50W~200Wの電気ヒータを採用すれば良く、本実施例では150Wのラジアントヒータとしている。第二蒸発器14bの除霜時に発生した除霜水は第二蒸発器室8bの下部の樋23b(図2参照)から第二排水管26(図2参照)を介して圧縮機24の上部に設けた第二蒸発皿32(図2参照)に排出され、圧縮機24からの放熱や、図示しない機械室ファンによる通風等の作用により蒸発する。 On the other hand, with the second evaporator 14b in a state where the compressor 24 is stopped, defrosting is performed by passing electricity through the defrost heater 21 (see FIG. 2), which is a heating means provided at the bottom of the second evaporator 14b. The defrost heater 21 may be, for example, an electric heater of 50 W to 200 W, and in this embodiment, a 150 W radiant heater is used. The defrost water generated during defrosting of the second evaporator 14b is discharged from the gutter 23b (see FIG. 2) at the bottom of the second evaporator chamber 8b through the second drain pipe 26 (see FIG. 2) to the second evaporator dish 32 (see FIG. 2) provided at the top of the compressor 24, and evaporates due to the action of heat radiation from the compressor 24 and ventilation by a machine room fan (not shown).

図13は実施例に係る冷蔵庫を、JISC9801-3:2015に則って16℃、相対湿度55%の環境に設置し、第一切替室5を冷蔵温度、第二切替室6を冷凍温度(「RF」モード)に設定した場合の第二蒸発器14bの除霜運転を表すタイムチャートである。なお,以下の説明では,冷蔵室2,製氷室3及び冷凍室4の状態については説明を省略する。 Figure 13 is a time chart showing the defrosting operation of the second evaporator 14b when the refrigerator according to the embodiment is installed in an environment of 16°C and 55% relative humidity in accordance with JIS C9801-3:2015, and the first selectable compartment 5 is set to refrigeration temperature and the second selectable compartment 6 is set to freezing temperature ("RF" mode). In the following explanation, the states of the refrigerator compartment 2, ice-making compartment 3, and freezer compartment 4 will not be described.

本実施例の冷蔵庫は,圧縮機24の積算駆動時間が所定時間(本十知れの冷蔵庫では24時間)に到達した場合に第二蒸発器14bに霜が成長したと判定され,第二蒸発器14bの除霜待機状態となる。図13においては,tにおいて,圧縮機24の積算駆動時間が所定時間(24時間)に到達し,第二蒸発器14bの除霜待機状態に移行している。tにおける制御状態は,圧縮機24が低速で駆動(ON),冷媒制御弁52が状態2,第二ファン9bが低速で駆動(ON),第一切替室ダンパ101が開放,第二切替室ダンパ102が閉鎖,第一切替室ヒータ300が通電(ON),第二切替室ヒータ400が非通電(OFF),除霜ヒータ21が非通電(OFF)の状態で,第二蒸発器14bと熱交換した冷却空気を第二切替室6に供給して冷却している。この状態では,冷凍温度に設定された第二切替室6の温度が低下する。このように圧縮機24が駆動状態で,第二蒸発器14bに冷媒が供給されることで,庫内を冷却している状態を,第二蒸発器運転と呼ぶ。 In the refrigerator of this embodiment, when the accumulated driving time of the compressor 24 reaches a predetermined time (24 hours in the refrigerator of this embodiment), it is determined that frost has grown on the second evaporator 14b, and the second evaporator 14b enters a defrost standby state. In Fig. 13, at t0 , the accumulated driving time of the compressor 24 reaches a predetermined time (24 hours), and the second evaporator 14b enters a defrost standby state. In the control state at t0 , the compressor 24 is driven at low speed (ON), the refrigerant control valve 52 is in state 2, the second fan 9b is driven at low speed (ON), the first switching chamber damper 101 is open, the second switching chamber damper 102 is closed, the first switching chamber heater 300 is energized (ON), the second switching chamber heater 400 is not energized (OFF), and the defrost heater 21 is not energized (OFF), and the cooling air that has exchanged heat with the second evaporator 14b is supplied to the second switching chamber 6 for cooling. In this state, the temperature of the second selectable chamber 6, which is set to the freezing temperature, drops. This state in which the compressor 24 is driven and the refrigerant is supplied to the second evaporator 14b to cool the interior of the refrigerator is called second evaporator operation.

本実施例の冷蔵庫では,第二蒸発器14bの除霜待機状態に移行後,第二蒸発器運転が所定時間(本実施例の冷蔵庫では15分)継続される。第二蒸発器運転が所定時間実施されると,続いて除霜ヒータ21が通電状態となる第二蒸発器除霜運転が開始される。図13では,tにおいて,圧縮機24が停止(OFF),冷媒制御弁52が状態3,第二ファン9bが停止(OFF),第一切替室ダンパ101が閉鎖,第二切替室ダンパ102が閉鎖,第一切替室ヒータ300が非通電(OFF),第二切替室ヒータ400が非通電(OFF),除霜ヒータ21が通電(ON)状態となり,第二蒸発器除霜運転が開始している。第二蒸発器除霜運転が開始すると,除霜ヒータ21の加熱作用により,第二蒸発器14bの温度が上昇する。このとき,第一切替室5と蒸発器室6を隔てる断熱仕切壁27の蒸発器室側の表面温度(断熱仕切壁27温度)も除霜ヒータ21の加熱作用により上昇する。また,第二切替室6の温度は冷却が停止された状態となるために上昇する。なお,圧縮機24の積算駆動時間が除霜待機状態に移行する所定時間に到達した際に,第一蒸発器14aに冷媒が供給されることで庫内を冷却している状態(第一蒸発器運転),または,第一蒸発器14aと第二蒸発器14bの何れにも冷媒が供給されていない状態(冷却停止)の何れかであった場合には,次の第二蒸発器運転が開始した時点から除霜待機状態に移行する。 In the refrigerator of this embodiment, after the second evaporator 14b is shifted to a defrost standby state, the second evaporator operation continues for a predetermined time (15 minutes in the refrigerator of this embodiment). After the second evaporator operation is performed for the predetermined time, the second evaporator defrost operation is started in which the defrost heater 21 is energized. In FIG. 13, at t1 , the compressor 24 is stopped (OFF), the refrigerant control valve 52 is in state 3, the second fan 9b is stopped (OFF), the first switching chamber damper 101 is closed, the second switching chamber damper 102 is closed, the first switching chamber heater 300 is not energized (OFF), the second switching chamber heater 400 is not energized (OFF), and the defrost heater 21 is energized (ON), and the second evaporator defrost operation is started. When the second evaporator defrost operation is started, the temperature of the second evaporator 14b rises due to the heating effect of the defrost heater 21. At this time, the surface temperature of the heat insulating partition wall 27 on the evaporator compartment side that separates the first switchable compartment 5 and the evaporator compartment 6 (the heat insulating partition wall 27 temperature) also rises due to the heating action of the defrost heater 21. The temperature of the second switchable compartment 6 also rises because cooling is stopped. When the integrated drive time of the compressor 24 reaches the predetermined time for transition to the defrost standby state, if the inside of the refrigerator is cooled by supplying refrigerant to the first evaporator 14a (first evaporator operation) or if no refrigerant is supplied to either the first evaporator 14a or the second evaporator 14b (cooling stopped), the state transitions to the defrost standby state from the point when the next second evaporator operation starts.

本実施例の冷蔵庫では,第二蒸発器除霜運転開始後に,第二蒸発器温度センサ40bの検知温度が所定温度(本実施例の冷蔵庫では0.5℃)に到達した場合,冷媒制御弁52が状態3から状態2に切替えられる。図13では,tにおいて,冷媒制御弁52が状態2に切替られている。これにより,冷媒制御弁52が状態3となることで放熱手段(庫外放熱器50a、壁面放熱配管50b、結露防止配管50c)側に留まっていた冷媒が,第二蒸発器14b内に流入する。このとき第二蒸発器14bが加熱される(温度上昇が加速される)ので,より確実な除霜を行うことができる。 In the refrigerator of this embodiment, when the temperature detected by the second evaporator temperature sensor 40b reaches a predetermined temperature (0.5° C. in the refrigerator of this embodiment) after the second evaporator defrosting operation starts, the refrigerant control valve 52 is switched from state 3 to state 2. In FIG. 13 , at t2 , the refrigerant control valve 52 is switched to state 2. As a result, the refrigerant control valve 52 goes to state 3, and the refrigerant that has remained on the heat dissipation means (external radiator 50a, wall surface heat dissipation piping 50b, and condensation prevention piping 50c) side flows into the second evaporator 14b. At this time, the second evaporator 14b is heated (the temperature rise is accelerated), so that more reliable defrosting can be performed.

本実施例の冷蔵庫では,第二蒸発器温度センサ40bの検知温度が0℃より高い除霜終了温度(本実施例の冷蔵庫では8℃)に到達した場合に,除霜ヒータ21への通電が停止され,第二蒸発器除霜運転が終了される。その後,所定時間(本実施例の冷蔵庫では5分間)の冷却開始遅延状態(オフタイム)を経て,第二蒸発器運転が開始される。図13では,tにおいて第二蒸発器温度センサ40bの検知温度が除霜終了温度(8℃)に到達し,除霜ヒータ21への通電が停止され(OFF),除霜運転が終了している。続いてtまでのオフタイムを経て,圧縮機24が中速で駆動(ON),冷媒制御弁52が状態2,第二ファン9bが高速で駆動(ON),第一切替室ダンパ101が閉鎖,第二切替室ダンパ102が開放,第一切替室ヒータ300が通電(ON),第二切替室ヒータ400が非通電(OFF),除霜ヒータ21が非通電(OFF)状態の第二蒸発器運転が開始されている。これにより,第二切替室6,第二蒸発器14b,断熱仕切壁27の各温度が低下している。このとき,断熱仕切壁27の温度は,0℃より低い冷凍温度から,0℃より高い冷蔵温度にまで上昇している。また,断熱仕切壁27の最高到達温度は,第二蒸発器温度14bの最高到達温度よりも高くなっている。 In the refrigerator of this embodiment, when the temperature detected by the second evaporator temperature sensor 40b reaches a defrost end temperature higher than 0°C (8°C in the refrigerator of this embodiment), power supply to the defrost heater 21 is stopped and the second evaporator defrost operation is terminated. After that, after a cooling start delay state (off time) of a predetermined time (5 minutes in the refrigerator of this embodiment), the second evaporator operation is started. In Fig. 13, at t3 , the temperature detected by the second evaporator temperature sensor 40b reaches the defrost end temperature (8°C), power supply to the defrost heater 21 is stopped (OFF), and the defrost operation is terminated. Then, after an off time up to t4 , the compressor 24 is driven at medium speed (ON), the refrigerant control valve 52 is in state 2, the second fan 9b is driven at high speed (ON), the first switching chamber damper 101 is closed, the second switching chamber damper 102 is open, the first switching chamber heater 300 is energized (ON), the second switching chamber heater 400 is deenergized (OFF), and the defrost heater 21 is deenergized (OFF), and the second evaporator operation is started. As a result, the temperatures of the second switching chamber 6, the second evaporator 14b, and the heat insulating partition wall 27 are lowered. At this time, the temperature of the heat insulating partition wall 27 is raised from a freezing temperature lower than 0°C to a refrigeration temperature higher than 0°C. Also, the maximum temperature of the heat insulating partition wall 27 is higher than the maximum temperature of the second evaporator 14b.

なお第一切替室5の温度は,第一切替室温度センサ43の表面温度,あるいは,第一切替室5の容器5b内部の温度,第二切替室6の温度は,第二切替室温度センサ44の表面温度,あるいは,第二切替室5の容器6b内部の温度,第二蒸発器14bの温度は,第二蒸発器温度センサ40bの表面温度,あるいは,第二蒸発器14bの最上部近傍の配管温度,断熱仕切壁27の温度は,断熱仕切壁27の第二蒸発器室8b側の蒸発器14b前方投影面内の表面温度を測定することにより,上記制御動作が正しく行われているかを確認することができる。 The temperature of the first switching chamber 5 can be confirmed by measuring the surface temperature of the first switching chamber temperature sensor 43 or the temperature inside the container 5b of the first switching chamber 5, the temperature of the second switching chamber 6 can be confirmed by measuring the surface temperature of the second switching chamber temperature sensor 44 or the temperature inside the container 6b of the second switching chamber 5, the temperature of the second evaporator 14b can be confirmed by measuring the surface temperature of the second evaporator temperature sensor 40b or the temperature of the piping near the top of the second evaporator 14b, and the temperature of the insulating partition wall 27 can be confirmed by measuring the surface temperature of the front projection surface of the evaporator 14b on the second evaporator chamber 8b side of the insulating partition wall 27.

以上で、本実施例の冷蔵庫の構成と、制御方法の説明をしたが、次に、本実施形態の冷蔵庫の奏する効果について説明する。 Above, we have explained the configuration and control method of the refrigerator of this embodiment. Next, we will explain the effects of the refrigerator of this embodiment.

本実施例の冷蔵庫は、冷蔵温度に設定された第一の貯蔵室(冷蔵温度に設定された第一切替室5)と、第一切替室の上部に、第一の仕切壁(断熱仕切壁29)を隔てて隣接する冷凍温度に設定された第二の貯蔵室(製氷室3,冷凍室4)と、前記第一の貯蔵室の下部に、第二の仕切壁(断熱仕切壁30)を隔てて隣接する冷凍温度に設定された第三の貯蔵室(冷凍温度に設定された第二切替室6)と、前記第一の貯蔵室の後方に、第三の仕切壁(断熱仕切壁27)を隔てて隣接した蒸発器室(第二蒸発器室8b)を備え、前記第一の仕切壁と前記第二の仕切壁の主たる断熱手段として夫々真空断熱材(真空断熱材25)を実装し、前記第三の仕切壁の主たる断熱手段として真空断熱材を実装せず、発泡断熱材を実装している。これにより信頼性が高い冷蔵庫となる。理由を以下で説明する。 The refrigerator of this embodiment includes a first storage compartment (first switching compartment 5) set to a refrigeration temperature, a second storage compartment (ice-making compartment 3, freezer compartment 4) set to a freezing temperature, which is adjacent to the upper part of the first switching compartment and separated by a first partition wall (insulating partition wall 29), a third storage compartment (second switching compartment 6) set to a freezing temperature, which is adjacent to the lower part of the first storage compartment and separated by a second partition wall (insulating partition wall 30), and an evaporator compartment (second evaporator compartment 8b) adjacent to the rear of the first storage compartment and separated by a third partition wall (insulating partition wall 27). Vacuum insulation material (vacuum insulation material 25) is implemented as the main insulation means for the first partition wall and the second partition wall, respectively, and foam insulation material is implemented as the main insulation means for the third partition wall, rather than vacuum insulation material. This results in a highly reliable refrigerator. The reason for this is explained below.

本実施例の冷蔵庫では,第一切替室5を冷蔵設定,第二切替室6を冷凍設定とした場合,第一切替室5は,3つの面が冷凍温度空間と隣接することで特に低温になりやすい貯蔵室となる。冷凍温度空間からの冷却作用により貯蔵室が冷えすぎた場合,貯蔵室内が所望の温度に維持できなくなる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生することがある。従って,冷え過ぎを抑制するためには,冷蔵温度に設定された貯蔵室と冷凍温度空間とを隔てる仕切壁の断熱性能を向上させるために真空断熱材を実装することが有効となる。真空断熱材は樹脂材料を含むガスバリア性外包材の内部のガスを排出、すなわち減圧することにより断熱性能を高める断熱部材となるため,真空断熱材の内外には大きな差圧(大気圧と同等の差圧)が生じている。したがって,外包材のガスバリア性が低下するとガス侵入によって差圧が解消に向かい断熱性能が低下(劣化)する。一般に,樹脂材料は高温状態と低温状態が繰り返される熱サイクルにより劣化が促進される。従って,除霜運転による高温状態と,冷却運転による低温状態が定期的に繰り返される蒸発器室と冷蔵温度の貯蔵室を隔てる仕切壁に,内部を減圧することにで形成される真空断熱材を実装すると,蒸発器室の温度変動によって仕切壁の断熱性能が長期的には低下しやすくなる。一方で,貯蔵室間の仕切壁は,互いに所望の温度に維持されるため温度は比較的安定する。 In the refrigerator of this embodiment, when the first switching compartment 5 is set to refrigeration and the second switching compartment 6 is set to freezing, the first switching compartment 5 becomes a storage compartment that is particularly prone to low temperatures because three sides of it are adjacent to the freezing temperature space. If the storage compartment becomes too cold due to the cooling effect from the freezing temperature space, the interior of the storage compartment may not be able to be maintained at the desired temperature, or condensation or frost may form on the walls of the storage compartment. Therefore, in order to prevent overcooling, it is effective to implement a vacuum insulation material to improve the insulation performance of the partition wall separating the storage compartment set to the refrigeration temperature from the freezing temperature space. The vacuum insulation material is an insulation member that enhances insulation performance by exhausting gas inside the gas barrier outer packaging material containing a resin material, i.e., by reducing the pressure, a large pressure difference (a pressure difference equivalent to atmospheric pressure) occurs between the inside and outside of the vacuum insulation material. Therefore, if the gas barrier property of the outer packaging material decreases, the pressure difference will be eliminated due to gas intrusion, and the insulation performance will decrease (deteriorate). In general, the deterioration of resin materials is accelerated by a thermal cycle in which high temperature and low temperature states are repeated. Therefore, if vacuum insulation formed by reducing the internal pressure is installed in the partition wall separating the evaporator chamber, where high temperatures caused by defrosting operation and low temperatures caused by cooling operation are periodically repeated, from the storage chamber, which is kept at refrigerated temperature, the insulation performance of the partition wall is likely to decrease over the long term due to temperature fluctuations in the evaporator chamber. On the other hand, the temperature of the partition wall between the storage chambers is relatively stable, since both are maintained at the desired temperature.

そこで,本実施例の冷蔵庫では,3つの面が冷凍温度空間と隣接することで特に低温になりやすい貯蔵室(冷蔵温度に設定された第一切替室5)と冷凍温度空間を区画する仕切壁のうち,所望の温度に維持される冷凍温度の貯蔵室との間の仕切壁(仕切壁29及び仕切壁30)には,断熱性能を向上させて冷え過ぎを抑制するための真空断熱材を実装し,除霜運転と冷却運転が繰り返される蒸発器室(第二蒸発器室8b)との間を隔てる仕切壁(仕切壁27)には真空断熱材を実装せずに,減圧によらない断熱手段である発泡断熱材を実装することで,使用歳月が経過しても冷蔵温度に設定された貯蔵室内が冷え過ぎる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生し難い信頼性が高い冷蔵庫としている。 In the refrigerator of this embodiment, among the partition walls that separate the storage compartment (first switchable compartment 5 set to refrigeration temperature), which is particularly prone to low temperatures due to three sides adjacent to the freezing temperature space, from the freezing temperature space, the partition walls (partition walls 29 and 30) between the storage compartment, whose freezing temperature is maintained at a desired temperature, are equipped with vacuum insulation material to improve insulation performance and prevent overcooling, and the partition wall (partition wall 27) separating the storage compartment from the evaporator compartment (second evaporator compartment 8b), where defrosting and cooling operations are repeated, is not equipped with vacuum insulation material, but is equipped with foam insulation, which is an insulation method that does not rely on reduced pressure. This makes it a highly reliable refrigerator that is less likely to suffer from problems such as the inside of the storage compartment set to refrigeration temperature becoming too cold even after many years of use, or condensation or frost forming on the walls of the storage compartment.

また,本実施例の冷蔵庫では,仕切壁27の最下部前縁を,仕切壁30に実装された真空断熱材25の後縁より前方に配置している。真空断熱材25の周縁部は,金属を含むガスバリア層を介した伝熱により熱を伝えやすく断熱性能が低くなる。そこで,上記構成を採用することにより,断熱仕切壁27の断熱作用により,真空断熱材25の後縁近傍の金属を含むガスバリア層を介した熱移動が低減されるので,冷蔵温度に設定された貯蔵室(冷蔵温度に設定された第一切替室5)と,冷凍温度に設定された貯蔵室との間の熱移動により冷蔵温度に設定された貯蔵室が冷え過ぎる,あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生し難い冷蔵庫となる。 In addition, in the refrigerator of this embodiment, the front edge of the bottom of the partition wall 27 is located forward of the rear edge of the vacuum insulation material 25 mounted on the partition wall 30. The peripheral portion of the vacuum insulation material 25 is prone to heat transfer through the gas barrier layer containing metal, resulting in low insulation performance. Therefore, by adopting the above configuration, the heat transfer through the gas barrier layer containing metal near the rear edge of the vacuum insulation material 25 is reduced due to the insulating effect of the insulating partition wall 27, so that the refrigerator is less likely to suffer from problems such as the storage compartment set to the refrigeration temperature (the first switching compartment 5 set to the refrigeration temperature) becoming too cold due to heat transfer between the storage compartment set to the refrigeration temperature and the storage compartment set to the freezing temperature, or condensation or frost forming on the walls inside the storage compartment.

本実施例の冷蔵庫は,冷蔵温度に設定された貯蔵室(冷蔵温度に設定された第一切替室5)と蒸発器室(蒸発器室8b)との間を隔てる真空断熱材を備えない仕切壁(仕切壁27)に,加熱手段(第一切替室第二ヒータ302)を備えている。これにより,特に低温となる蒸発器室からの熱伝導によって冷蔵温度に設定された貯蔵室の温度が過度に低下したり,貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生する虞が高いと判断される場合に適宜加熱を行うことができるので,信頼性が高い冷蔵庫となる。 The refrigerator of this embodiment is provided with a heating means (first switchable chamber second heater 302) in a partition wall (partition wall 27) that does not have a vacuum insulation material and separates the storage chamber set to the refrigeration temperature (first switchable chamber 5 set to the refrigeration temperature) from the evaporator chamber (evaporator chamber 8b). This allows appropriate heating when it is determined that there is a high risk of problems occurring, such as the temperature of the storage chamber set to the refrigeration temperature dropping excessively due to heat conduction from the evaporator chamber, which is particularly low, or condensation or frost forming on the walls of the storage chamber, resulting in a highly reliable refrigerator.

本実施例の冷蔵庫は,冷蔵温度に設定された貯蔵室(冷蔵温度に設定された第一切替室5)と,冷凍温度に設定された貯蔵室(冷凍温度に設定された第二切替室6)との間を隔てる仕切壁(仕切壁30)に,加熱手段(第一切替室第二ヒータ301)を備えている。これにより,冷凍温度に設定された貯蔵室からの熱伝導によって,冷蔵温度に設定された貯蔵室の温度が過度に低下したり,貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生する虞が高いと判断される場合に適宜加熱を行うことができるので,信頼性が高い冷蔵庫となる。 The refrigerator of this embodiment is provided with a heating means (first switchable chamber second heater 301) in a partition wall (partition wall 30) that separates a storage chamber set to a refrigeration temperature (first switchable chamber 5 set to a refrigeration temperature) from a storage chamber set to a freezing temperature (second switchable chamber 6 set to a freezing temperature). This allows heating to be performed appropriately when it is determined that there is a high risk of problems occurring, such as the temperature of the storage chamber set to a refrigeration temperature dropping excessively due to heat conduction from the storage chamber set to a freezing temperature, or condensation or frost forming on the walls of the storage chamber, resulting in a highly reliable refrigerator.

本実施例の冷蔵庫は,隣接する2つの貯蔵室が冷凍温度と冷蔵温度に設定可能な切替室(第一切替室5及び第二切替室6)であり,2つの切替室の間を隔てる仕切壁(断熱仕切壁30)に,真空断熱材25を実装し,真空断熱材25の両面に加熱手段(第一切替室第一ヒータ301及び第二切替室第二ヒータ402)を備えている。これにより信頼性が高い冷蔵庫となる。理由を以下で説明する。 The refrigerator of this embodiment has two adjacent storage compartments that are switchable compartments (first switchable compartment 5 and second switchable compartment 6) that can be set to freezing temperature and refrigeration temperature, and vacuum insulation material 25 is installed in the partition wall (insulated partition wall 30) that separates the two switchable compartments, and heating means (first heater 301 for the first switchable compartment and second heater 402 for the second switchable compartment) are provided on both sides of the vacuum insulation material 25. This makes the refrigerator highly reliable. The reason for this is explained below.

ユーザーが一方の切替室を冷蔵温度,他方の貯蔵室を冷凍温度に設定して使用する場合には,冷蔵温度に設定された切替室が冷凍温度に設定された切替室からの熱伝導により冷えすぎることを抑制するために,2つの切替室の間を隔てる仕切壁に真空断熱材25を実装することが有効となる。一方で,2つの切替室の間を隔てる仕切壁の面のうち,冷蔵温度に設定された切替室側の面は低温になることで,結露や着霜が発生する虞がある。真空断熱材が実装された仕切壁は断熱性能が高いため,一方の面を加熱しても他方の面に熱が伝わりにくく加熱量が不足するという事態を招くことがあるため,2つの切替室の間を隔てる仕切壁(断熱仕切壁30)に真空断熱材25を実装し,さらに断熱仕切壁30の両面に加熱手段(第一切替室第一ヒータ301及び第二切替室第二ヒータ402)を備えることで,ユーザーが何れの設定を選択しても,仕切壁の表面に結露や着霜が発生する虞が高いと判断される場合に,何れの面も良好に適宜加熱を行うことができるので信頼性が高い冷蔵庫となる。
以上で、実施例を説明したが、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば,本実施例の冷蔵庫は、冷蔵室冷却用の第一蒸発器と、製氷室、冷凍室、第一切替室、第二切替室の冷却用に第二蒸発器を備えているが、単一の蒸発器で全貯蔵室を冷却する方式の冷蔵庫に本発明の構成を適用しても良い。また,加熱手段として,放熱手段の一部の配管を活用しても良い。すなわち、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
When a user sets one of the selectable compartments to a refrigeration temperature and the other storage compartment to a freezing temperature, it is effective to install a vacuum insulation material 25 on the partition wall separating the two selectable compartments in order to prevent the selectable compartment set to the refrigeration temperature from becoming too cold due to heat conduction from the selectable compartment set to the freezing temperature. However, of the surfaces of the partition wall separating the two selectable compartments, the surface on the side of the selectable compartment set to the refrigeration temperature may become cold, which may cause condensation or frost. Because partition walls equipped with vacuum insulation material have high insulating performance, heating one side may not transfer heat easily to the other side, resulting in insufficient heating. Therefore, by installing vacuum insulation material 25 in the partition wall (insulated partition wall 30) separating the two switchable compartments and further providing heating means (first heater 301 for the first switchable compartment and second heater 402 for the second switchable compartment) on both sides of the insulated partition wall 30, regardless of which setting the user selects, when it is determined that there is a high risk of condensation or frost forming on the surface of the partition wall, both sides can be heated appropriately and satisfactorily, resulting in a highly reliable refrigerator.
Although the embodiment has been described above, the present invention is not limited to the above-described embodiment, and various modified examples are included. For example, the refrigerator of the present embodiment is provided with a first evaporator for cooling the refrigerator compartment, and a second evaporator for cooling the ice-making compartment, the freezer compartment, the first selectable compartment, and the second selectable compartment, but the configuration of the present invention may be applied to a refrigerator that cools all storage compartments with a single evaporator. Also, a part of the piping of the heat dissipation means may be utilized as a heating means. That is, the above-described embodiment has been described in detail to easily explain the present invention, and is not necessarily limited to one having all the described configurations. Also, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration.

1 冷蔵庫
2 冷蔵室
3 製氷室
4 冷凍室
5 第一切替室
6 第二切替室
8a 第一蒸発器室
8b 第二蒸発器室
9a 第一ファン
9b 第二ファン
10 断熱箱体
14a 第一蒸発器
14b 第二蒸発器
16 ヒンジカバー
21 除霜ヒータ(加熱手段)
23a、23b 樋
24 圧縮機
25 真空断熱材
27、28、29、30 断熱仕切壁
31 制御基板
39 機械室
40a 第一蒸発器温度センサ
40b 第二蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 第二切替室温度センサ
44 第二切替室温度センサ
50a 庫外放熱器(放熱手段)
50b 壁面放熱配管(放熱手段)
50c 結露防止配管(放熱手段)
52 冷媒制御弁(冷媒制御手段)
53a 第一キャピラリチューブ(減圧手段)
53b 第二キャピラリチューブ(減圧手段)
54a、54b 気液分離器
56 逆止弁
57a、57b 熱交換部
91 外箱
92 内箱
101 第一切替室ダンパ(送風遮断手段)
102 第二切替室ダンパ(送風遮断手段)
300 第一切替室ヒータ (加熱手段)
400 第二切替室ヒータ (加熱手段)
Reference Signs List 1 Refrigerator 2 Refrigeration compartment 3 Ice making compartment 4 Freezer compartment 5 First switching compartment 6 Second switching compartment 8a First evaporator compartment 8b Second evaporator compartment 9a First fan 9b Second fan 10 Insulated box 14a First evaporator 14b Second evaporator 16 Hinge cover 21 Defrost heater (heating means)
23a, 23b Gutter 24 Compressor 25 Vacuum insulation material 27, 28, 29, 30 Heat-insulating partition wall 31 Control board 39 Machine room 40a First evaporator temperature sensor 40b Second evaporator temperature sensor 41 Refrigerator room temperature sensor 42 Freezer room temperature sensor 43 Second switchable room temperature sensor 44 Second switchable room temperature sensor 50a External radiator (heat dissipation means)
50b Wall surface heat dissipation piping (heat dissipation means)
50c Condensation prevention piping (heat dissipation means)
52 Refrigerant control valve (refrigerant control means)
53a First capillary tube (pressure reducing means)
53b Second capillary tube (pressure reducing means)
54a, 54b Gas-liquid separator 56 Check valve 57a, 57b Heat exchange unit 91 Outer box 92 Inner box 101 First switching chamber damper (air blowing cutoff means)
102 Second switching chamber damper (air blowing cut-off means)
300 First switching chamber heater (heating means)
400 Second switching chamber heater (heating means)

Claims (4)

圧縮機と、放熱手段と、減圧手段と、蒸発器とが配管で接続された冷凍サイクルと、冷蔵温度に設定された第一の貯蔵室と、該第一の貯蔵室の上部に、第一の仕切壁を隔てて隣接する冷凍温度に設定された第二の貯蔵室と、前記第一の貯蔵室の下部に、第二の仕切壁を隔てて隣接する冷凍温度に設定された第三の貯蔵室と、前記第一の貯蔵室の後方に、第三の仕切壁を隔てて隣接した、前記蒸発器が収納された蒸発器室と、前記蒸発器室内の温度を上昇させることにより前記蒸発器の霜を融解する除霜手段を備えた冷蔵庫において、
前記第一の仕切壁と前記第二の仕切壁の主たる断熱手段として夫々真空断熱材を実装し、
前記第三の仕切壁の主たる断熱手段として真空断熱材を実装せず、発泡断熱材を実装し、
前記第三の仕切壁の最下部前縁は、前記第二の仕切壁に実装された前記真空断熱材の後縁より前方に配置し、
前記冷凍温度は、-18℃程度であることを特徴とする冷蔵庫。
A refrigerator comprising: a refrigeration cycle in which a compressor, a heat dissipation means, a pressure reducing means, and an evaporator are connected by piping; a first storage chamber set at a refrigeration temperature; a second storage chamber set at a freezing temperature and adjacent to an upper part of the first storage chamber across a first partition wall; a third storage chamber set at a freezing temperature and adjacent to a lower part of the first storage chamber across a second partition wall; an evaporator chamber in which the evaporator is housed and adjacent to the rear of the first storage chamber across a third partition wall; and defrosting means for melting frost on the evaporator by raising a temperature inside the evaporator chamber,
The first partition wall and the second partition wall are each provided with a vacuum insulation material as a main insulation means;
The third partition wall is provided with a foam insulation material instead of a vacuum insulation material as a main insulation means;
The lowermost front edge of the third partition wall is disposed forward of the rear edge of the vacuum insulation material mounted on the second partition wall;
The freezing temperature of the refrigerator is about -18°C.
前記第三の仕切壁の前面に加熱手段を備えたことを特徴とする請求項1に記載の冷蔵庫。 2. The refrigerator according to claim 1, further comprising a heating means provided on a front surface of said third partition wall. 前記第二の仕切壁の上面に加熱手段を備えたことを特徴とする請求項1または請求項の何れか一項に記載の冷蔵庫。 3. The refrigerator according to claim 1 , further comprising a heating means provided on an upper surface of the second partition wall. 前記第一の貯蔵室の両側面には、主たる断熱材として夫々真空断熱材を実装したことを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, characterized in that vacuum insulation material is installed on both sides of the first storage compartment as the main insulation material.
JP2019008920A 2019-01-23 2019-01-23 refrigerator Active JP7493305B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019008920A JP7493305B2 (en) 2019-01-23 2019-01-23 refrigerator
CN201910831139.3A CN111473573B (en) 2019-01-23 2019-09-04 Refrigerator with a door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008920A JP7493305B2 (en) 2019-01-23 2019-01-23 refrigerator

Publications (2)

Publication Number Publication Date
JP2020118345A JP2020118345A (en) 2020-08-06
JP7493305B2 true JP7493305B2 (en) 2024-05-31

Family

ID=71744927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008920A Active JP7493305B2 (en) 2019-01-23 2019-01-23 refrigerator

Country Status (2)

Country Link
JP (1) JP7493305B2 (en)
CN (1) CN111473573B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259302A1 (en) * 2021-06-07 2022-12-15 三菱電機株式会社 Refrigeration cycle device and refrigerator
US11906239B2 (en) * 2022-04-25 2024-02-20 Haier Us Appliance Solutions, Inc. Systems for heat leak prevention in refrigerator appliances

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113825A (en) 2005-10-19 2007-05-10 Toshiba Corp Refrigerator
JP2012242072A (en) 2011-05-24 2012-12-10 Mitsubishi Electric Corp Refrigerator
JP2015135227A (en) 2013-12-20 2015-07-27 パナソニックIpマネジメント株式会社 refrigerator
WO2018131157A1 (en) 2017-01-16 2018-07-19 三菱電機株式会社 Refrigerator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329482A (en) * 2005-05-24 2006-12-07 Toshiba Corp Refrigerator
JP4488966B2 (en) * 2005-06-28 2010-06-23 株式会社東芝 refrigerator
JP2008014509A (en) * 2006-07-03 2008-01-24 Matsushita Electric Ind Co Ltd Refrigerator
US9217601B2 (en) * 2009-12-22 2015-12-22 Lg Electronics Inc. Refrigerator with a convertible compartment
JP6091825B2 (en) * 2012-09-25 2017-03-08 東芝ライフスタイル株式会社 refrigerator
CN102878750A (en) * 2012-10-23 2013-01-16 合肥美的荣事达电冰箱有限公司 Refrigerator
CN103604275B (en) * 2013-12-04 2016-08-24 合肥美的电冰箱有限公司 Refrigerator
CN103925759B (en) * 2014-04-08 2016-09-07 上海交通大学 Wide warm area temperature control thermostat for thermophysical property measurement
JP6398076B2 (en) * 2014-07-01 2018-10-03 パナソニックIpマネジメント株式会社 refrigerator
JP2018025323A (en) * 2016-08-09 2018-02-15 日立アプライアンス株式会社 refrigerator
CN106813440B (en) * 2015-11-27 2019-10-29 日立环球生活方案株式会社 Refrigerator
JP6594267B2 (en) * 2016-07-13 2019-10-23 三菱電機株式会社 refrigerator
CN106642951B (en) * 2016-11-30 2020-06-26 青岛海尔特种电冰柜有限公司 Top-transparent heat-preservation cabinet body, refrigeration equipment and cabinet body assembling method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113825A (en) 2005-10-19 2007-05-10 Toshiba Corp Refrigerator
JP2012242072A (en) 2011-05-24 2012-12-10 Mitsubishi Electric Corp Refrigerator
JP2015135227A (en) 2013-12-20 2015-07-27 パナソニックIpマネジメント株式会社 refrigerator
WO2018131157A1 (en) 2017-01-16 2018-07-19 三菱電機株式会社 Refrigerator

Also Published As

Publication number Publication date
JP2020118345A (en) 2020-08-06
CN111473573A (en) 2020-07-31
CN111473573B (en) 2021-12-28

Similar Documents

Publication Publication Date Title
JP5017340B2 (en) refrigerator
JP4848332B2 (en) refrigerator
JP7493305B2 (en) refrigerator
JP2020101301A (en) refrigerator
CN111351300A (en) Refrigerator with a door
JP2020063881A (en) refrigerator
JP2019138481A (en) refrigerator
JP6638107B1 (en) refrigerator
JP7372186B2 (en) refrigerator
JP2020034207A (en) refrigerator
JP2019138514A (en) refrigerator
JP7191715B2 (en) refrigerator
JP7388987B2 (en) refrigerator
JP6975699B2 (en) refrigerator
JP6847063B2 (en) refrigerator
JP2020139645A (en) refrigerator
JP6963044B2 (en) refrigerator
JP7312148B2 (en) refrigerator
JP7369520B2 (en) refrigerator
JP7254227B2 (en) refrigerator
CN111473574B (en) Refrigerator with a door
JP6934433B2 (en) refrigerator
JP6883531B2 (en) refrigerator
CN109708378B (en) Refrigerator with a door
JP7454458B2 (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230404

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230413

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230418

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240521

R150 Certificate of patent or registration of utility model

Ref document number: 7493305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150