JP7493126B2 - Air conditioners - Google Patents

Air conditioners Download PDF

Info

Publication number
JP7493126B2
JP7493126B2 JP2020155993A JP2020155993A JP7493126B2 JP 7493126 B2 JP7493126 B2 JP 7493126B2 JP 2020155993 A JP2020155993 A JP 2020155993A JP 2020155993 A JP2020155993 A JP 2020155993A JP 7493126 B2 JP7493126 B2 JP 7493126B2
Authority
JP
Japan
Prior art keywords
indoor
switching device
heat exchanger
refrigerant
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020155993A
Other languages
Japanese (ja)
Other versions
JP2022049779A (en
Inventor
乙彦 舛谷
峻一 植松
庸浩 金森
富之 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020155993A priority Critical patent/JP7493126B2/en
Publication of JP2022049779A publication Critical patent/JP2022049779A/en
Application granted granted Critical
Publication of JP7493126B2 publication Critical patent/JP7493126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本開示は、圧縮機を熱源とする蓄熱槽と、四方弁と圧縮機の吸入口との間に蓄熱槽への冷媒の流路切り替え装置を備えた空気調和機に関する。 This disclosure relates to an air conditioner that includes a heat storage tank that uses a compressor as a heat source, and a flow switching device for the refrigerant to the heat storage tank between a four-way valve and the compressor intake port.

従来、ヒートポンプ式空気調和機による室内湿度の低下を目的とした冷房運転(以下、除湿運転と呼称)時、室内湿度を低下させる為、室内の熱交換器温度を室内空気の露点温度以下まで低下させ、除湿運転を行っている。しかしながら、室内湿度の低下に伴い、室内温度が過剰に低下した時、快適性を損なうという問題が存在する。 Conventionally, when using a heat pump air conditioner for cooling operation (hereafter referred to as dehumidification operation) aimed at reducing indoor humidity, the indoor heat exchanger temperature is lowered to below the dew point temperature of the indoor air to reduce the indoor humidity, and dehumidification operation is performed. However, when the indoor temperature drops excessively as the indoor humidity decreases, there is a problem in that comfort is reduced.

WO2013/065233WO2013/065233

従来の除湿運転時においても、室内温度が一定の温度を下回った状態を所定の時間継続すると、圧縮機を停止し(以下、サーモオフ運転と呼称)室温の過剰な低下を抑制しているが、目標の室内湿度に到達する前に圧縮機が停止し、室内湿度を低下させることが出来ないことや、圧縮機が停止することで、室内の熱交換器温度が室内空気の露点以上になり、熱交換器に付着している水分が室内空気に再び蒸発し、湿度が上がってしまう現象(以下湿度戻りと呼称)が発生してしまっていた。本開示は、従来技術の有するこれらの問題点を解決する為のものであり、除湿運転時において、除湿運転を維持したまま室内温度の低下を抑制することによって、快適な湿度と温度を維持する運転を行うことができる空気調和機を提供することを目的としている。 Even during conventional dehumidification operation, if the indoor temperature continues to fall below a certain temperature for a specified period of time, the compressor is stopped (hereinafter referred to as thermo-off operation) to prevent excessive drops in room temperature. However, the compressor stops before the target indoor humidity is reached, making it impossible to lower the indoor humidity, or the compressor stops, causing the indoor heat exchanger temperature to exceed the dew point of the indoor air, causing moisture adhering to the heat exchanger to evaporate back into the indoor air, increasing humidity (hereinafter referred to as humidity return). The present disclosure is intended to solve these problems with the prior art, and aims to provide an air conditioner that can maintain a comfortable humidity and temperature during dehumidification operation by suppressing a drop in indoor temperature while maintaining dehumidification operation.

従って、本開示の目的は、上記問題を解決するもので、除湿運転時における快適性を向上させることにある。 Therefore, the purpose of this disclosure is to solve the above problems and improve comfort during dehumidification operation.

本開示における空気調和機は、除湿運転時に、圧縮機、四方弁、室外熱交換器、膨張弁、室内熱交換器、四方弁の順に冷媒が流れるように接続した冷凍サイクルと、室内温度を検出する室内温度検出手段と、室内湿度を検出する室内湿度度検出手段と、目標湿度を設定する目標湿度設定手段と、四方弁と圧縮機の吸入口との間に冷媒の流路切り替え装置と、圧縮機を熱源とする蓄熱槽と、冷媒が蓄熱槽と熱交換した後に圧縮機の吸入口へ接続する回路を備えた空気調和機であって、室内湿度検出手段が所定の湿度を下回った状態を所定の時間継続すると、蓄熱槽と熱交換する冷媒回路に流れるように切り替え装置を動作し、冷媒の流れを切り替える制御を行う。 The air conditioner disclosed herein is an air conditioner equipped with a refrigeration cycle connected so that refrigerant flows in the following order during dehumidification operation: compressor, four-way valve, outdoor heat exchanger, expansion valve, indoor heat exchanger, and four-way valve; indoor temperature detection means for detecting indoor temperature; indoor humidity detection means for detecting indoor humidity; target humidity setting means for setting a target humidity; a refrigerant flow path switching device between the four-way valve and the compressor intake port; a heat storage tank using the compressor as a heat source; and a circuit that connects the refrigerant to the compressor intake port after heat exchange with the heat storage tank. When the indoor humidity detection means continues to fall below a predetermined humidity for a predetermined period of time, the switching device is operated so that the refrigerant flows through the refrigerant circuit that exchanges heat with the heat storage tank, and the flow of the refrigerant is switched.

本開示における空気調和機は、切り替え装置で冷媒の流れを切り替え、蓄熱槽と熱交換する回路に冷媒を流すことで、室内熱交換器での熱交換量を減少させることができ、室温の低下を抑制することで、サーモオフ運転になることを防ぎ、除湿運転を継続させることができる。 The air conditioner disclosed herein can reduce the amount of heat exchanged in the indoor heat exchanger by switching the flow of refrigerant with a switching device and passing the refrigerant through a circuit that exchanges heat with the heat storage tank, and by suppressing the drop in room temperature, it can prevent the thermo-off operation and continue dehumidification operation.

本実施の形態にかかる冷媒切り替え装置を備えた空気調和機の冷凍サイクルの構成を示す図FIG. 1 is a diagram showing the configuration of a refrigeration cycle of an air conditioner equipped with a refrigerant switching device according to an embodiment of the present invention. 図1の空気調和機の通常除湿運転動作及び冷媒の流れを示す模式図FIG. 2 is a schematic diagram showing the normal dehumidification operation of the air conditioner of FIG. 1 and the flow of refrigerant; 図1の空気調和機の除湿運転時に切り替え装置を動作し、冷媒流れを切り替えた際の冷媒の流れを示す模式図FIG. 2 is a schematic diagram showing the flow of refrigerant when the switching device is operated during dehumidification operation of the air conditioner of FIG. 1 and the refrigerant flow is switched; 図1の空気調和機の除湿運転時に切り替え装置を動作した際の冷房能力の変化の例を示す図FIG. 2 is a diagram showing an example of a change in cooling capacity when a switching device is operated during dehumidification operation of the air conditioner of FIG. 1 .

第1の発明は、除湿運転時に、圧縮機、四方弁、室外熱交換器、膨張弁、室内熱交換器、四方弁の順に冷媒が流れるように接続した冷凍サイクルと、室内温度を検出する室内温度検出手段と、室内湿度を検出する室内湿度検出手段と、目標湿度を設定する目標湿度設定手段と、四方弁と圧縮機の吸入口との間に冷媒の流路切り替え装置と、圧縮機を熱源とする蓄熱槽と、冷媒が蓄熱槽と熱交換した後に圧縮機の吸入口へ接続する回路と、を備えた空気調和機であって、室内湿度検出手段が目標湿度近傍の所定の湿度1(例えば、目標湿度+5%)を下回った状態を所定の時間継続すると、冷媒が蓄熱槽と熱交換した後に圧縮機の吸入口へ接続する回路に流れるように、切り替え装置を動作し、冷媒の流れを切り替える制御を行うようにしている。 The first invention is an air conditioner that includes a refrigeration cycle connected so that the refrigerant flows through the compressor, four-way valve, outdoor heat exchanger, expansion valve, indoor heat exchanger, and four-way valve in this order during dehumidification operation; indoor temperature detection means for detecting indoor temperature; indoor humidity detection means for detecting indoor humidity; target humidity setting means for setting a target humidity; a refrigerant flow path switching device between the four-way valve and the compressor suction port; a heat storage tank using the compressor as a heat source; and a circuit that connects the refrigerant to the compressor suction port after heat exchange with the heat storage tank. When the indoor humidity detection means continues to be in a state where it is below a predetermined humidity 1 (e.g., target humidity + 5%) near the target humidity for a predetermined period of time, the switching device is operated to control the flow of the refrigerant to be switched so that the refrigerant exchanges heat with the heat storage tank and then flows into the circuit that connects to the compressor suction port.

このように構成された空気調和機は、切り替え装置で冷媒の流れを切り替えるようにしたことで、冷媒を蓄熱槽と熱交換した後に圧縮機の吸入口へ接続する回路に流すことで、室内熱交換器での熱交換量を減少させることができ、室温の低下を抑制することで、サーモオフ運転になることを防ぎ、除湿運転を継続させることができる。 An air conditioner configured in this manner uses a switching device to switch the flow of refrigerant, so that the refrigerant exchanges heat with the heat storage tank before flowing through a circuit connected to the compressor intake port. This reduces the amount of heat exchanged in the indoor heat exchanger, and by suppressing the drop in room temperature, it prevents the thermo-off operation and allows dehumidification operation to continue.

第2の発明は、除湿運転時に室内温度が所定の温度1(例えば、初期室温-10℃)を下回った状態を所定の時間継続すると、切り替え装置を動作し、冷媒の流れを切り替える制御を行うようにすることで、室温の過剰な低下を抑制することが出来る。 The second invention is such that if the room temperature remains below a predetermined temperature 1 (for example, initial room temperature -10°C) for a predetermined period of time during dehumidification operation, the switching device is operated and the flow of refrigerant is switched, thereby preventing an excessive drop in room temperature.

第3の発明は、除湿運転時に室内湿度が所定の湿度2(例えば、相対湿度70%)を上回った際に、前記切り替え装置を動作させないよう構成されている。 The third invention is configured not to operate the switching device when the indoor humidity exceeds a predetermined humidity 2 (e.g., relative humidity 70%) during dehumidification operation.

第4の発明は、除湿運転時に室内温度が所定の温度2(例えば、初期室温-5℃)を上回った際に、前記切り替え装置を動作させないよう構成されている。 The fourth invention is configured not to operate the switching device when the room temperature exceeds a predetermined temperature 2 (for example, initial room temperature -5°C) during dehumidification operation.

第5の発明は、前記切り替え装置を動作する制御が行われた後、所定の時間(例えば、10分間)行わないことで、過度に切り替え装置が動作することなく切り替え装置の耐久性を確保できる。 The fifth invention is such that after control to operate the switching device is performed, the switching device is not operated for a predetermined time (e.g., 10 minutes), thereby preventing the switching device from operating excessively and ensuring the durability of the switching device.

以下、本実施形態について、図面を用いて具体的に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 The present embodiment will be described in detail below with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanation of already well-known matters or duplicate explanation of substantially the same configuration may be omitted.

なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.

(実施の形態1)
まず、空気調和機の全体構成について図1を参照して説明する。
図1は、本実施形態に係る空気調和機の冷凍サイクルの構成を示す図である。
(Embodiment 1)
First, the overall configuration of the air conditioner will be described with reference to FIG.
FIG. 1 is a diagram showing the configuration of a refrigeration cycle of an air conditioner according to this embodiment.

本実施形態に係る空気調和機の冷凍サイクルは、室外機1と室内機2が、接続配管30a、30bによって接続されることで構成されている。室外機1は、圧縮機3と、四方弁4と、膨張弁5と、室外熱交換器6と、プロペラファン7と、を備えている。室内機2は、室内熱交換器8と、貫流ファン9と、を備えている。 The refrigeration cycle of the air conditioner according to this embodiment is configured by connecting an outdoor unit 1 and an indoor unit 2 with connecting pipes 30a and 30b. The outdoor unit 1 includes a compressor 3, a four-way valve 4, an expansion valve 5, an outdoor heat exchanger 6, and a propeller fan 7. The indoor unit 2 includes an indoor heat exchanger 8 and a cross-flow fan 9.

室内熱交換器8は、貫流ファン9により室内機2の内部に吸込まれた室内空気と、室内熱交換器8の内部を流れる冷媒との間で熱交換を行う。室内熱交換器8における室内空気と冷媒との熱交換により、冷房時には熱交換により冷却された空気が室内に吹き出される一方、暖房時には熱交換により暖められた空気が室内に吹き出される。 The indoor heat exchanger 8 exchanges heat between the indoor air drawn into the indoor unit 2 by the cross-flow fan 9 and the refrigerant flowing inside the indoor heat exchanger 8. Due to the heat exchange between the indoor air and the refrigerant in the indoor heat exchanger 8, air cooled by the heat exchange is blown out into the room during cooling, while air warmed by the heat exchange is blown out into the room during heating.

なお、圧縮機3、四方弁4、膨張弁5、プロペラファン7、貫流ファン9、流路切り替え装置20等は制御装置(例えばマイコン)に電気的に接続され、制御装置により制御されて動作を行う。 The compressor 3, four-way valve 4, expansion valve 5, propeller fan 7, cross-flow fan 9, flow path switching device 20, etc. are electrically connected to a control device (e.g., a microcomputer) and operate under the control of the control device.

上記構成の本実施の形態にかかる冷凍サイクル装置において、各部品の相互の接続関係と機能を、除湿運転時を例にとり冷媒の流れと共に説明する。 The connections and functions of each part in the refrigeration cycle device of this embodiment configured as above will be explained together with the flow of refrigerant using the dehumidification operation as an example.

除湿運転の場合には、圧縮機3で圧縮された高圧のガス状冷媒は、四方弁4を通って室外熱交換器6に流れ、外気に放熱することで凝縮し、高圧の液状冷媒となる。液状冷媒は、膨張弁5の作用で減圧され、低温低圧の気液二相状態となり、接続配管30aを通じて室内機2へ流れる。室内機2に入った冷媒は、室内熱交換器8で室内空気の熱を吸熱することで蒸発する。
室内熱交換器8で蒸発した冷媒は、接続配管30bを通じて、室外機1へ戻り、四方弁4を通って再び圧縮機3で圧縮される。
In the case of dehumidification operation, the high-pressure gaseous refrigerant compressed by the compressor 3 flows through the four-way valve 4 to the outdoor heat exchanger 6, where it condenses by releasing heat to the outside air, becoming a high-pressure liquid refrigerant. The liquid refrigerant is decompressed by the action of the expansion valve 5, becomes a low-temperature, low-pressure gas-liquid two-phase state, and flows to the indoor unit 2 through the connecting pipe 30a. The refrigerant that has entered the indoor unit 2 evaporates by absorbing heat from the indoor air in the indoor heat exchanger 8.
The refrigerant evaporated in the indoor heat exchanger 8 returns to the outdoor unit 1 through the connecting pipe 30b, passes through the four-way valve 4, and is compressed again by the compressor 3.

流路切り替え装置20は、一方が四方弁4と第5配管15で接続され、もう一方が第6配管16に接続され、さらにもう一方が第7配管17に接続されている。前述した制御装置を用いて流路切り替え装置20の開閉を制御することにより、四方弁4から第6配管16を通じて圧縮機3の吸入口へ流れる冷媒の経路と、四方弁4から第7配管17を通じて蓄熱槽21と熱交換する熱交換配管18を経て圧縮機3の吸入口へ流れる冷媒の経路とを、相互に切り替えることができる。 One end of the flow path switching device 20 is connected to the four-way valve 4 via the fifth pipe 15, the other end is connected to the sixth pipe 16, and the other end is connected to the seventh pipe 17. By controlling the opening and closing of the flow path switching device 20 using the control device described above, it is possible to switch between the path of the refrigerant flowing from the four-way valve 4 through the sixth pipe 16 to the suction port of the compressor 3 and the path of the refrigerant flowing from the four-way valve 4 through the seventh pipe 17 to the suction port of the compressor 3 via the heat exchange pipe 18 that exchanges heat with the heat storage tank 21.

次に、空気調和機の通常除湿時の動作及び冷媒の流れを、図2の模式図を参照しながら説明する。図中、実線矢印は除湿運転での冷媒の流れを示している。 Next, the operation of the air conditioner during normal dehumidification and the flow of refrigerant will be explained with reference to the schematic diagram in Figure 2. In the figure, the solid arrows indicate the flow of refrigerant during dehumidification operation.

通常除湿運転時には、四方弁4は第0配管10と第1配管11を連通させるように開閉制御され、流路切り替え装置20は第5配管15と第6配管16を連通させるように開閉制御される。この制御によれば、第7配管17や、蓄熱槽21と熱交換する熱交換配管18には冷媒が流れない。 During normal dehumidification operation, the four-way valve 4 is controlled to open and close so as to connect the 0th pipe 10 and the 1st pipe 11, and the flow path switching device 20 is controlled to open and close so as to connect the 5th pipe 15 and the 6th pipe 16. With this control, the refrigerant does not flow through the 7th pipe 17 or the heat exchange pipe 18 that exchanges heat with the heat storage tank 21.

圧縮機3の吐出口から吐出された冷媒は、上述したように四方弁4から第1配管11を通って室外熱交換器6に至る。室外熱交換器12で室外空気と熱交換して凝縮した冷媒は、室外熱交換器6を出て、第2配管12を通り膨張弁5に至る。膨張弁5で減圧した冷媒は、第3配管13を通って室内熱交換器8に至る。室内熱交換器8で室内空気と熱交換して蒸発した冷媒は、第4配管14を通って四方弁4に至った後、流路切り替え装置20を通り、第6配管16を介して圧縮機3の吸入口へと戻る。 The refrigerant discharged from the discharge port of the compressor 3 passes through the four-way valve 4 and the first pipe 11 to the outdoor heat exchanger 6 as described above. The refrigerant condensed by heat exchange with outdoor air in the outdoor heat exchanger 12 leaves the outdoor heat exchanger 6 and passes through the second pipe 12 to the expansion valve 5. The refrigerant decompressed by the expansion valve 5 passes through the third pipe 13 to the indoor heat exchanger 8. The refrigerant evaporated by heat exchange with indoor air in the indoor heat exchanger 8 passes through the fourth pipe 14 to the four-way valve 4, then passes through the flow path switching device 20 and returns to the suction port of the compressor 3 via the sixth pipe 16.

次に、空気調和機の冷房時に流路切り替え装置20を動作した場合の動作及び冷媒の流れを、図3の模式図を参照しながら説明する。図中、実線矢印は流路を切り替えた際の運転での冷媒の流れを示している。
上述した通常除湿運転中には、室内温度検出手段によって検出された温度が一定温度近傍になると、圧縮機3の回転数を低下させ、室内熱交換器14での熱交換量を減少させることで室内温度が過剰に低下することを抑制するように制御が行われる。しかしながら、従来の機種では、熱交換量の下限値が圧縮機3の容積や許容回転数、室内熱交換器8のサイズに依存しており、熱交換量の下限値が室内の負荷よりも高い場合があった。このような場合、従来の機種では、除湿運転を継続できず、サーモオフ運転に移行し、室内温度が下がりすぎるのを防止していた為、目標設定湿度まで室内湿度を下げることが出来ないことや、湿度戻りが発生してしまっていた。
Next, the operation and flow of the refrigerant when the flow path switching device 20 is operated during cooling of the air conditioner will be described with reference to the schematic diagram of Fig. 3. In the figure, the solid arrows indicate the flow of the refrigerant during operation when the flow path is switched.
During the above-mentioned normal dehumidification operation, when the temperature detected by the indoor temperature detection means approaches a certain temperature, the rotation speed of the compressor 3 is reduced, and the amount of heat exchange in the indoor heat exchanger 14 is reduced to prevent the indoor temperature from dropping excessively. However, in conventional models, the lower limit of the amount of heat exchange depends on the volume and allowable rotation speed of the compressor 3 and the size of the indoor heat exchanger 8, and there are cases where the lower limit of the amount of heat exchange is higher than the load in the room. In such cases, conventional models cannot continue the dehumidification operation and switch to thermo-off operation to prevent the indoor temperature from dropping too much, so that the indoor humidity cannot be reduced to the target humidity setting, or humidity returns.

そこで、上述した通常除湿運転時において、室内湿度が一定の温度を下回った状態を所定の時間継続すると、圧縮機3を停止させずに、流路切り替え装置20を動作させ、冷媒の流路の切り替えを行う。 Therefore, during the normal dehumidification operation described above, if the indoor humidity remains below a certain temperature for a specified period of time, the flow path switching device 20 is operated to switch the refrigerant flow path without stopping the compressor 3.

流路切り替え運転時には、四方弁4および流路切り替え装置20は第5配管15と第7配管17を連通させるように開閉制御される。この制御によれば、第6配管16には冷媒が流れない。 During flow path switching operation, the four-way valve 4 and the flow path switching device 20 are controlled to open and close so as to connect the fifth pipe 15 and the seventh pipe 17. This control prevents refrigerant from flowing through the sixth pipe 16.

圧縮機3の吐出口から吐出された冷媒は、上述したように四方弁4から第1配管11を通って室外熱交換器6に至る。室外熱交換器6で室外空気と熱交換して凝縮した冷媒は、室外熱交換器6を出て、第2配管12を通り膨張弁5に至る。膨張弁5で減圧した冷媒は、第3配管13を通って室内熱交換器8に至る。室内熱交換器8で室内空気と熱交換して蒸発した冷媒は、第4配管14を通って四方弁4に至った後、流路切り替え装置20を通り、第7配管17および蓄熱槽21と熱交換する熱交換配管18を通り、圧縮機3の吸入口へと戻る。 The refrigerant discharged from the discharge port of the compressor 3 passes through the four-way valve 4 and the first pipe 11 to the outdoor heat exchanger 6 as described above. The refrigerant condensed by heat exchange with the outdoor air in the outdoor heat exchanger 6 leaves the outdoor heat exchanger 6 and passes through the second pipe 12 to the expansion valve 5. The refrigerant decompressed by the expansion valve 5 passes through the third pipe 13 to the indoor heat exchanger 8. The refrigerant evaporated by heat exchange with the indoor air in the indoor heat exchanger 8 passes through the fourth pipe 14 to the four-way valve 4, then passes through the flow path switching device 20, the seventh pipe 17 and the heat exchange pipe 18 that exchanges heat with the heat storage tank 21, and returns to the suction port of the compressor 3.

このように熱交換配管18を冷媒が通ることで、冷媒が蓄熱槽21と熱交換することによって、室内熱交換器8で熱交換される熱一部が蓄熱槽で熱交換されると共に、圧縮機3に吸入される冷媒の密度が低下し、冷媒の循環量が低下することで、従来に対し室内熱交換器8での熱交換量を減少させることができる。 In this way, as the refrigerant passes through the heat exchange pipe 18, the refrigerant exchanges heat with the heat storage tank 21, and some of the heat exchanged in the indoor heat exchanger 8 is exchanged in the heat storage tank. At the same time, the density of the refrigerant drawn into the compressor 3 decreases, and the amount of refrigerant circulating decreases, making it possible to reduce the amount of heat exchanged in the indoor heat exchanger 8 compared to the conventional method.

熱交換量を減少させることができるので、従来ではサーモオフ運転をしていた負荷の領域であっても、サーモオフ運転に入ることなく、除湿運転を継続させることによって、室内温度の低下を抑制しながら、快適な湿度を維持する運転を行うことができる Because the amount of heat exchange can be reduced, even in load areas where thermo-off operation would normally be performed, the dehumidification operation can be continued without switching to thermo-off operation, allowing the indoor temperature to remain constant while maintaining a comfortable humidity level.

本発明は、室内の空調を行う空気調和機等に適用することができる。 The present invention can be applied to air conditioners and other devices that provide indoor air conditioning.

1 室外機
2 室内機
3 圧縮機
4 四方弁
5 膨張弁
6 室外熱交換器
7 プロペラファン
8 室内熱交換器
9 貫流ファン
10 第0配管
11 第1配管
12 第2配管
13 第3配管
14 第4配管
15 第5配管
16 第6配管
17 第7配管
18 熱交換配管
20 流路切り替え装置
21 蓄熱槽
30a,30b 接続配管
Reference Signs List 1 Outdoor unit 2 Indoor unit 3 Compressor 4 Four-way valve 5 Expansion valve 6 Outdoor heat exchanger 7 Propeller fan 8 Indoor heat exchanger 9 Cross-flow fan 10 0th pipe 11 1st pipe 12 2nd pipe 13 3rd pipe 14 4th pipe 15 5th pipe 16 6th pipe 17 7th pipe 18 Heat exchange pipe 20 Flow path switching device 21 Heat storage tanks 30a, 30b Connection pipe

Claims (5)

圧縮機と、前記圧縮機に接続された四方弁と、前記四方弁と接続された室外熱交換器と、前記室外熱交換器と接続された膨張弁と、前記膨張弁と接続された室内熱交換器と、前記室内熱交換器と接続された前記四方弁と、前記圧縮機の吸入管と前記四方弁との間に設けられた冷媒の流路切り替え装置と、前記圧縮機が発生する熱を熱源とする蓄熱槽と、前記蓄熱槽と冷媒が熱交換する熱交換回路と、前記流路切り替え装置から前記熱交換回路を経由して前記圧縮機の吸入口へ接続する回路と、室内温度を検出する室内温度検出手段と、室内湿度を検出する室内湿度検出手段と、目標湿度を設定する目標湿度設定手段とを備えた空気調和機であって、除湿運転時に室内湿度検出手段で検出した室内湿度が目標湿度1を下回った状態を所定の時間継続すると、前記熱交換回路に流れるように前記流路切り替え装置を動作させ、冷媒の流路を切り替える制御を行うことを特徴とする空気調和機。 an indoor heat exchanger connected to the indoor heat exchanger; an expansion valve connected to the outdoor heat exchanger; an indoor heat exchanger connected to the expansion valve; the four-way valve connected to the indoor heat exchanger; a refrigerant flow path switching device provided between a suction pipe of the compressor and the four-way valve; a heat storage tank using heat generated by the compressor as a heat source; a heat exchange circuit in which refrigerant exchanges heat with the heat storage tank; a circuit connecting the flow path switching device to a suction port of the compressor via the heat exchange circuit; indoor temperature detection means for detecting an indoor temperature; indoor humidity detection means for detecting an indoor humidity; and target humidity setting means for setting a target humidity, 除湿運転時に前記室内温度検出手段で検出した室内温度が所定の温度1を下回った状態を所定の時間継続すると、前記切り替え装置を動作させることを特徴とする、請求項1に記載の空気調和機。 The air conditioner according to claim 1, characterized in that the switching device is operated when the indoor temperature detected by the indoor temperature detection means during dehumidification operation continues to be below a predetermined temperature 1 for a predetermined period of time. 除湿運転時に室内湿度検出手段で検出した室内湿度が所定の湿度2を上回った際に、前記切り替え装置を動作させないことを特徴とする、請求項1又は2に記載の空気調和機。 The air conditioner according to claim 1 or 2, characterized in that the switching device is not operated when the indoor humidity detected by the indoor humidity detection means during dehumidification operation exceeds a predetermined humidity 2. 除湿運転時に前記室内温度検出手段で検出した室内温度が所定の温度2を上回った際に、前記切り替え装置を動作させないことを特徴とする、請求項1 から3のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, characterized in that the switching device is not operated when the indoor temperature detected by the indoor temperature detection means during dehumidification operation exceeds a predetermined temperature 2. 前記切り替え装置を動作する制御が行われた後、所定の時間は同制御を行わないことを特徴とする、請求項1から4のいずれか1項に記載の空気調和機。 An air conditioner according to any one of claims 1 to 4, characterized in that after control to operate the switching device is performed, the same control is not performed for a predetermined time.
JP2020155993A 2020-09-17 2020-09-17 Air conditioners Active JP7493126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020155993A JP7493126B2 (en) 2020-09-17 2020-09-17 Air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020155993A JP7493126B2 (en) 2020-09-17 2020-09-17 Air conditioners

Publications (2)

Publication Number Publication Date
JP2022049779A JP2022049779A (en) 2022-03-30
JP7493126B2 true JP7493126B2 (en) 2024-05-31

Family

ID=80854132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020155993A Active JP7493126B2 (en) 2020-09-17 2020-09-17 Air conditioners

Country Status (1)

Country Link
JP (1) JP7493126B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140298855A1 (en) 2011-10-25 2014-10-09 Lg Electronics Inc. Regenerative air-conditioning apparatus
WO2015166541A1 (en) 2014-04-28 2015-11-05 三菱電機株式会社 Outdoor unit
JP2016099021A (en) 2014-11-19 2016-05-30 パナソニックIpマネジメント株式会社 Air conditioner
JP2018065419A (en) 2016-10-18 2018-04-26 本田技研工業株式会社 Air conditioner for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140298855A1 (en) 2011-10-25 2014-10-09 Lg Electronics Inc. Regenerative air-conditioning apparatus
WO2015166541A1 (en) 2014-04-28 2015-11-05 三菱電機株式会社 Outdoor unit
JP2016099021A (en) 2014-11-19 2016-05-30 パナソニックIpマネジメント株式会社 Air conditioner
JP2018065419A (en) 2016-10-18 2018-04-26 本田技研工業株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
JP2022049779A (en) 2022-03-30

Similar Documents

Publication Publication Date Title
AU2014219807B2 (en) Air-conditioning apparatus
AU2014219806B2 (en) Air-conditioning apparatus
JP4785508B2 (en) Air conditioner
KR102436706B1 (en) Method for controlling multi-type air conditioner
JP2013002749A (en) Air conditioning device
WO2008069265A1 (en) Air-conditioner
JP2016020784A (en) Air conditioning device
JP2005291553A (en) Multiple air conditioner
KR102491228B1 (en) Air Conditioning system
JP7493126B2 (en) Air conditioners
JP3723824B2 (en) Air conditioner
JPWO2018008130A1 (en) Air conditioner
JP6404539B2 (en) Air conditioner
KR20210113153A (en) air conditioner
JP2020128858A (en) Air conditioner
JP7398617B2 (en) air conditioner
CN221035981U (en) Multi-split air conditioning system
JP7406124B2 (en) air conditioner
JP7484660B2 (en) Air Conditioning Equipment
WO2024106481A1 (en) Refrigeration system
WO2022234860A1 (en) Air-conditioning device
JP2005291558A (en) Air conditioner
JP2005291555A (en) Air conditioner
JP2022037288A (en) Air conditioner
JP3268967B2 (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240422

R150 Certificate of patent or registration of utility model

Ref document number: 7493126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150