JP7483014B2 - Electronic Expansion Valve - Google Patents

Electronic Expansion Valve Download PDF

Info

Publication number
JP7483014B2
JP7483014B2 JP2022543515A JP2022543515A JP7483014B2 JP 7483014 B2 JP7483014 B2 JP 7483014B2 JP 2022543515 A JP2022543515 A JP 2022543515A JP 2022543515 A JP2022543515 A JP 2022543515A JP 7483014 B2 JP7483014 B2 JP 7483014B2
Authority
JP
Japan
Prior art keywords
valve
nut
electronic expansion
valve needle
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022543515A
Other languages
Japanese (ja)
Other versions
JP2023511556A (en
Inventor
先 讓 魏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sanhua Intelligent Controls Co Ltd
Original Assignee
Zhejiang Sanhua Intelligent Controls Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sanhua Intelligent Controls Co Ltd filed Critical Zhejiang Sanhua Intelligent Controls Co Ltd
Publication of JP2023511556A publication Critical patent/JP2023511556A/en
Application granted granted Critical
Publication of JP7483014B2 publication Critical patent/JP7483014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/02Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle
    • F16K1/04Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle with a cut-off member rigid with the spindle, e.g. main valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/029Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

本出願は2020年05月11日にて中国特許庁に提出され、出願番号が202010392210.5であり、発明名称が「電子膨張弁」である中国特許出願の優先権を主張し、その全ての内容は本出願に結合される。 This application claims priority to a Chinese patent application filed with the China Patent Office on May 11, 2020, bearing application number 202010392210.5 and entitled "Electronic Expansion Valve", the entire contents of which are incorporated herein by reference.

本出願は冷凍制御の技術分野に関して、特に電子膨張弁に関する。 This application relates to the technical field of refrigeration control, and in particular to electronic expansion valves.

冷凍システムは圧縮機、絞り素子、2つの熱交換器及び他の部品を含み、絞り素子は冷媒の絞り調整のための電子膨張弁を採用してもよく、電子膨張弁を使用することで、相対的に正確な制御を実現し、システムのエネルギー効率を向上できる。電子膨張弁の基本的な原理は以下の通り、即ち、ステータコイルによって、所定のパルス電流信号を導入し、電子膨張弁のローターユニットに励磁回転を発生させ、ねじ送り機構変換によって、ローターの回転運動を弁軸の上下移動に変換し、弁軸の頭部の弁体を、弁口に対して近接させ又は離させ、弁口部位の通流面積を変更し、冷媒流量の調整及び開閉機能を実現する。 The refrigeration system includes a compressor, a throttling element, two heat exchangers and other components, and the throttling element may adopt an electronic expansion valve for throttling adjustment of the refrigerant. The use of an electronic expansion valve can realize relatively accurate control and improve the energy efficiency of the system. The basic principle of the electronic expansion valve is as follows: a certain pulse current signal is introduced by the stator coil to generate an excitation rotation in the rotor unit of the electronic expansion valve, and the rotational motion of the rotor is converted into the up and down movement of the valve shaft by the screw feed mechanism conversion, so that the valve body of the head of the valve shaft approaches or moves away from the valve port, changing the flow area of the valve port portion, and achieving the adjustment of the refrigerant flow rate and the opening and closing functions.

本発明の1つの実施例は、ねじ送り機構からの相対的に小さい摩擦抵抗を有する電子膨張弁を提供することを、目的とする。 One embodiment of the present invention aims to provide an electronic expansion valve that has relatively low frictional resistance from the screw feed mechanism.

上記目的を実現するために、本発明の1つの実施形態は以下の技術案を採用し、
電子膨張弁であって、弁座、ナットユニット、弁軸部、弁ニードル、及び磁気ローターユニットを含み、前記弁座は弁口部を含み、前記ナットユニットは前記弁座に固定接続されており、ナット及び接続シートを含み、前記ナットは第1ガイド部、雌ねじ部、及び第2ガイド部を含み、前記第1ガイド部は前記雌ねじ部より、前記弁口部に近接し、前記第2ガイド部は前記雌ねじ部より、前記弁口部から離れ、前記第1ガイド部の内径は前記第2ガイド部の内径より小さく、
前記弁軸部は前記磁気ローターユニットに固定接続されており、前記第2ガイド部に隙間嵌めされる弁軸ガイド部を含み、前記弁軸部は前記ナットに対して前記ナットの軸方向に沿って相対変位可能であり、前記弁軸部は雄ねじ部を含み、前記雄ねじ部と前記雌ねじ部とはねじ送り機構を構成し、前記弁軸部は第1貫通孔部と第2貫通孔部とを含み、前記第1貫通孔部の内径は前記第2貫通孔部の内径より大きく、
前記弁ニードルは、前記第1ガイド部に隙間嵌めされる弁ニードルガイド部を含み、前記弁ニードルは前記ナットに対して、前記ナットの軸方向に沿って相対変位可能であり、前記弁ニードルガイド部の外径は前記第2貫通孔部の内径より大きいことを特徴とする。
In order to achieve the above object, one embodiment of the present invention adopts the following technical solution:
An electronic expansion valve comprising: a valve seat, a nut unit, a valve stem portion, a valve needle, and a magnetic rotor unit, the valve seat comprising a valve orifice portion, the nut unit being fixedly connected to the valve seat and comprising a nut and a connecting seat, the nut comprising a first guide portion, a female thread portion, and a second guide portion, the first guide portion being closer to the valve orifice portion than the female thread portion, the second guide portion being farther from the valve orifice portion than the female thread portion, and an inner diameter of the first guide portion being smaller than an inner diameter of the second guide portion,
the valve stem portion is fixedly connected to the magnetic rotor unit and includes a valve stem guide portion that is clearance-fitted into the second guide portion, the valve stem portion is displaceable relative to the nut along an axial direction of the nut, the valve stem portion includes a male thread portion, and the male thread portion and the female thread portion form a screw feed mechanism, the valve stem portion includes a first through hole portion and a second through hole portion, and an inner diameter of the first through hole portion is larger than an inner diameter of the second through hole portion,
The valve needle includes a valve needle guide portion that is gap-fitted into the first guide portion, the valve needle is displaceable relative to the nut along the axial direction of the nut, and an outer diameter of the valve needle guide portion is larger than an inner diameter of the second through hole portion.

本実施形態が提供する電子膨張弁において、弁軸部は第1貫通孔部と第2貫通孔部とを含み、弁ニードルガイド部の外径は弁軸部の第2貫通孔部の内径より大きいため、同一仕様の電子膨張弁、例えば、同じローター直径、ハウジング直径、ステータコイル直径及び体積を有する場合、ねじ送り機構の公称直径は弁ニードルガイド部の外径より、わずかに大きければ、実現でき、即ち、ねじ送り機構の公称直径を相対的に小さくしてもよく、これによって、ねじ送り機構からの摩擦抵抗を減少させる。 In the electronic expansion valve provided by this embodiment, the valve shaft portion includes a first through hole portion and a second through hole portion, and the outer diameter of the valve needle guide portion is larger than the inner diameter of the second through hole portion of the valve shaft portion. Therefore, when electronic expansion valves of the same specifications, for example, having the same rotor diameter, housing diameter, stator coil diameter and volume, can have a nominal diameter of the screw feed mechanism that is slightly larger than the outer diameter of the valve needle guide portion, that is, the nominal diameter of the screw feed mechanism can be made relatively smaller, thereby reducing the frictional resistance from the screw feed mechanism.

第1実施形態の電子膨張弁が閉弁状態にある断面模式図である。FIG. 2 is a cross-sectional schematic view of the electronic expansion valve of the first embodiment in a closed state. 第1実施形態の電子膨張弁が開弁状態にある断面模式図である。FIG. 2 is a cross-sectional schematic diagram of the electronic expansion valve of the first embodiment in an open state. 第1実施形態のナットと弁座ユニットとの係合模式図である。5A and 5B are schematic views of engagement between a nut and a valve seat unit in the first embodiment. 第1実施形態の磁気ローターユニットと、弁軸部及び弁ニードルとの係合模式図である。5A to 5C are schematic diagrams illustrating engagement between the magnetic rotor unit of the first embodiment and the valve stem and valve needle. 第2実施形態の電子膨張弁が閉弁状態にある断面模式図である。FIG. 11 is a cross-sectional schematic view of an electronic expansion valve according to a second embodiment in a closed state. 第2実施形態の電子膨張弁が開弁状態にある断面模式図である。FIG. 11 is a cross-sectional schematic view of an electronic expansion valve according to a second embodiment in an open state. 第2実施形態のナットユニットの構成模式図である。FIG. 11 is a schematic diagram of a configuration of a nut unit according to a second embodiment. 第2実施形態の磁気ローターユニットと、弁軸部及び弁ニードルとの係合の局所断面図である。FIG. 11 is a local cross-sectional view of the engagement between the magnetic rotor unit of the second embodiment and the valve stem and valve needle. 第2実施形態のナットユニットの平面図である。FIG. 11 is a plan view of a nut unit according to a second embodiment. 第3実施形態の電子膨張弁が閉弁状態にある断面模式図である。FIG. 11 is a cross-sectional schematic view of the electronic expansion valve of the third embodiment in a closed state. 第3実施形態の電子膨張弁が開弁状態にある断面模式図である。FIG. 11 is a cross-sectional schematic view of an electronic expansion valve according to a third embodiment in an open state. 第3実施形態のナットユニットの構成模式図である。FIG. 13 is a schematic diagram showing the configuration of a nut unit according to a third embodiment. 第3実施形態の弁軸部とストッパ部材との係合構成模式図である。13A and 13B are schematic diagrams illustrating an engagement configuration between a valve stem portion and a stopper member in a third embodiment. 第3実施形態の磁気ローターユニットと、弁軸部、弁ニードル及びストッパ部材との係合構成模式図である。13 is a schematic diagram showing an engagement configuration between a magnetic rotor unit of a third embodiment, a valve stem portion, a valve needle, and a stopper member. FIG. 第4実施形態が提供する接続板の構成模式図である。FIG. 13 is a schematic diagram of a connection plate provided by the fourth embodiment. 第4実施形態が提供する磁気ローターユニットと、弁軸部、弁ニードルなどの部材との係合構成の局所断面図である。FIG. 13 is a local cross-sectional view of an engagement configuration between a magnetic rotor unit provided by a fourth embodiment and components such as a valve stem portion and a valve needle. 第5実施形態の電子膨張弁の全閉状態がストッパ位置にある模式図である。FIG. 13 is a schematic diagram illustrating a fully closed state of the electronic expansion valve of the fifth embodiment when the valve is in a stopper position. 図17におけるI部の拡大図である。FIG. 18 is an enlarged view of part I in FIG. 17 . 図17におけるII部の拡大図である。FIG. 18 is an enlarged view of part II in FIG. 17. 第5実施形態の電子膨張弁がばね力除荷点にある際の断面図である。FIG. 13 is a cross-sectional view of the electronic expansion valve of the fifth embodiment when the spring force is released from the load point. 図20におけるIII部の拡大図である。FIG. 21 is an enlarged view of part III in FIG. 20 . 図20におけるIV部の拡大図である。FIG. 21 is an enlarged view of part IV in FIG. 20 . 第5実施形態の電子膨張弁が開け臨界点にある際の断面図である。FIG. 13 is a cross-sectional view of the electronic expansion valve of the fifth embodiment when the valve is at a critical point in an open state. 図23におけるV部の拡大図である。FIG. 24 is an enlarged view of a V portion in FIG. 23 . 図23におけるVI部の拡大図である。FIG. 24 is an enlarged view of part VI in FIG. 23 . 第5実施形態の電子膨張弁が全開状態にある断面図である。FIG. 13 is a cross-sectional view of the electronic expansion valve of the fifth embodiment in a fully open state. 第6実施形態の電子膨張弁の構成模式図である。FIG. 13 is a schematic diagram of the configuration of an electronic expansion valve according to a sixth embodiment.

当業者が本出願により提供される技術案をよりよく理解するために、以下は、図面及び具体的な実施例を結合して、本出願の技術案をさらに詳しく説明する。 In order to enable those skilled in the art to better understand the technical solution provided by this application, the following further describes the technical solution of this application in detail in combination with drawings and specific examples.

第1実施形態
図1~図4を参照し、図1は第1の実施例の電子膨張弁の閉弁状態の構成模式図であり、図2は第1の実施例の電子膨張弁の閉弁状態の構成模式図であり、図3は第1の実施例の弁座部材の構成模式図であり、図4は第1実施例のローター及びスクリュー弁ニードルユニットの構成模式図である。
First Embodiment With reference to FIGS. 1 to 4, FIG. 1 is a schematic diagram of the electronic expansion valve of the first embodiment in a closed state, FIG. 2 is a schematic diagram of the electronic expansion valve of the first embodiment in a closed state, FIG. 3 is a schematic diagram of the valve seat member of the first embodiment, and FIG. 4 is a schematic diagram of the rotor and screw valve needle unit of the first embodiment.

図1に示すように、電子膨張弁は弁ボディ部材とコイル部材40とを含み、弁ボディ部材は弁座11、接続部材50、及びハウジング30を含み、弁座11は金属に対して切削加工を行うことで形成され、弁座11の上方側には接続部材50が設けられ、接続部材50は溶接の方式で弁座11に固定接続されるとともに、ハウジング30に固定接続され、具体的に溶接の方式を利用してもよい。ハウジング30は薄肉部品から製造され、大体、一端が開口した円筒状を呈し、その開口の一端は弁座11に密封溶接される。弁座11及び接続部材50は、弁座11の上側の外縁に段差部を配置し、接続部材50を弁座11の上方から装着することで、両者の組み合わせ及び位置決めを便利にする。同様、接続部材50の上側の外縁に段差部を配置することで、ハウジング30との組み合わせ及び位置決めを便利にして、このように、溶接操作の実施には便利である。即ち、弁座11は接続部材50によってハウジングに接続され、弁座11の上方には、以下に説明する磁気ローターユニット、ナットユニットなどの部品を収容するためのキャビティが形成される。 As shown in FIG. 1, the electronic expansion valve includes a valve body member and a coil member 40, and the valve body member includes a valve seat 11, a connecting member 50, and a housing 30. The valve seat 11 is formed by cutting a metal, and a connecting member 50 is provided on the upper side of the valve seat 11. The connecting member 50 is fixedly connected to the valve seat 11 by welding, and is also fixedly connected to the housing 30, and may be specifically welded. The housing 30 is made of a thin-walled part and generally has a cylindrical shape with an open end, and one end of the opening is hermetically welded to the valve seat 11. The valve seat 11 and the connecting member 50 are provided with a step on the outer edge of the upper side of the valve seat 11, and the connecting member 50 is attached from above the valve seat 11, making it easy to assemble and position the two. Similarly, the connecting member 50 is provided with a step on the outer edge of the upper side of the connecting member 50, making it easy to assemble and position the connecting member 50 with the housing 30, and thus easy to perform the welding operation. That is, the valve seat 11 is connected to the housing by a connecting member 50, and a cavity is formed above the valve seat 11 to accommodate components such as the magnetic rotor unit and nut unit described below.

弁座11は弁口部113、第1接続口部111、及び第2接続口部112を含み、第1接続口部111及び第2接続口部112はいずれもシステムの冷媒通路に接続され、弁口部113には弁口113aが設けられている。本実施例において、第1接続口部111には第1接続管10bが固定接続され、第2接続口部112には第2接続管10cが固定接続され、冷媒は第1接続管10bから流入して弁口113aを通過した後、第2接続管10cから流出してもよいし、第2接続管10cから流入して弁口113aを通過した後、第1接続管10bから流出してもよい。 The valve seat 11 includes a valve port portion 113, a first connection port portion 111, and a second connection port portion 112. The first connection port portion 111 and the second connection port portion 112 are all connected to the refrigerant passage of the system, and the valve port portion 113 is provided with a valve port 113a. In this embodiment, the first connection port portion 111 is fixedly connected to the first connection tube 10b, and the second connection port portion 112 is fixedly connected to the second connection tube 10c. The refrigerant may flow in from the first connection tube 10b, pass through the valve port 113a, and then flow out from the second connection tube 10c, or may flow in from the second connection tube 10c, pass through the valve port 113a, and then flow out from the first connection tube 10b.

電子膨張弁は、弁座11に固定接続されるナットユニット12を含む。具体的に、弁座11の上端には開口が設けられ、ナットユニット12は上から下へ、弁座11に装着される。ナットユニット12は、固定接続されるナット121と接続シート122とを含む。具体的な実施形態として、接続シート122は金属板からプレスされることで形成され、ナット121は非金属材料、例えばエンジニアリングプラスチックを採用して、接続シート122をインサートとして、射出成形される。ナット121は、弁座11に圧入されるように装着され、接続シート122と弁座11とは溶接されるように、固定接続される。ナットの材料に対して、PPS改質樹脂、PEEK改質樹脂、又はPTFE改質樹脂などを採用してもよい。 The electronic expansion valve includes a nut unit 12 fixedly connected to the valve seat 11. Specifically, an opening is provided at the upper end of the valve seat 11, and the nut unit 12 is attached to the valve seat 11 from top to bottom. The nut unit 12 includes a nut 121 and a connection sheet 122 that are fixedly connected. In a specific embodiment, the connection sheet 122 is formed by pressing a metal plate, and the nut 121 is made of a non-metallic material, such as engineering plastic, and is injection molded with the connection sheet 122 as an insert. The nut 121 is attached by being pressed into the valve seat 11, and the connection sheet 122 and the valve seat 11 are fixedly connected by being welded. The material of the nut may be PPS modified resin, PEEK modified resin, PTFE modified resin, or the like.

ナット121はその軸方向に沿って貫通する貫通孔を有し、当該貫通孔の内側壁には、雌ねじ部12bが設けられ、該当雌ねじ部12bは、以下に説明する弁軸部22の外縁部に設けられた雄ねじ部22cと、ねじ送り機構を形成するために用いられる。ナットの内側壁には第1ガイド部12aが設けられ、第1ガイド部12aは雌ねじ部12bの下方に設けられ、弁ニードル21に、円周方向のガイド・センタリング作用を提供できる。ここに記載される下方とは、第1ガイド部12aが雌ねじ部12bより弁口部113に近接することを指す。弁ニードル21は弁ニードルガイド部21bを含み、即ち、第1ガイド部12aと弁ニードルガイド部21bとは小さな隙間嵌めであり、弁軸部22によって、弁ニードル21はナットの第1ガイド部12aに沿って、回転又は上下変位することができる。ここで、第1ガイド部12は、ナットの内側壁に設けられる1つの部位を指し、弁ニードルガイド部21bは、弁ニードルの外縁部に設けられる1つの部位を指す。ナットの内側壁の相対的な上部には、弁軸部22に円周方向のガイド・センタリング作用を提供できる第2ガイド部12cが設けられる。弁軸部22の外縁部には弁軸ガイド部22bが設けられ、弁軸ガイド部22bと第2ガイド部12cとは小さな隙間嵌めであり、磁気ローターユニットによって、弁軸部22は第2ガイド部12cに沿って回転又は上下変位することができる。第2ガイド部12cの内径はナット第1ガイド部12aの内径より大きく、このように、弁軸部22の雄ねじ部22cは上に運動し、雌ねじ部12bからだんだん離脱している時、第2ガイド部12cに干渉されることない。ここで、以上に記載の第1ガイド部12a、第2ガイド部12cはいずれもナット貫通孔の内壁の一部であり、ナット外縁部の形状及び接続シート122のナット外縁部での配置位置は、第1ガイド部12a及び第2ガイド部12cの配置に影響を与えない。 The nut 121 has a through hole penetrating along its axial direction, and the inner wall of the through hole is provided with a female thread portion 12b, which is used to form a screw feed mechanism together with a male thread portion 22c provided on the outer edge of the valve shaft portion 22 described below. The inner wall of the nut is provided with a first guide portion 12a, which is provided below the female thread portion 12b and can provide the valve needle 21 with a circumferential guide and centering action. The "below" described here means that the first guide portion 12a is closer to the valve port portion 113 than the female thread portion 12b. The valve needle 21 includes a valve needle guide portion 21b, that is, the first guide portion 12a and the valve needle guide portion 21b are a small clearance fit, and the valve shaft portion 22 allows the valve needle 21 to rotate or displace up and down along the first guide portion 12a of the nut. Here, the first guide portion 12 refers to a portion provided on the inner wall of the nut, and the valve needle guide portion 21b refers to a portion provided on the outer edge of the valve needle. The second guide portion 12c is provided at a relatively upper portion of the inner wall of the nut, which can provide the valve stem portion 22 with a circumferential guide and centering function. The valve stem portion 22 is provided at the outer edge of the valve stem portion 22 with a valve stem guide portion 22b, and the valve stem guide portion 22b and the second guide portion 12c are fitted with a small clearance, and the valve stem portion 22 can rotate or move up and down along the second guide portion 12c by the magnetic rotor unit. The inner diameter of the second guide portion 12c is larger than the inner diameter of the nut first guide portion 12a, so that the male thread portion 22c of the valve stem portion 22 moves upward and gradually disengages from the female thread portion 12b without being interfered with by the second guide portion 12c. Here, the first guide portion 12a and the second guide portion 12c described above are both part of the inner wall of the nut through hole, and the shape of the outer edge of the nut and the position of the connection sheet 122 on the outer edge of the nut do not affect the arrangement of the first guide portion 12a and the second guide portion 12c.

ナット121の天井部の外縁には固定ストッパ部12dが設けられ、固定ストッパ部12dの少なくとも一部はナット121の上端面から突出し、言い換えると、固定ストッパ部12dの少なくとも一部は、軸方向でナットの環状基体から突出しており、径方向で環状基体から突出してもよいし、突出しないように配置されてもよい。固定ストッパ部12dは磁気ローターユニットに設けられる可動ストッパ部20aと係合し、磁気ローターユニットに対するストッパを実現する。即ち、本実施形態において、磁気ローター部材は軸方向で変位でき、ナットユニット12は弁座11に固定接続されるため、磁気ローターユニットはストロークの最も下端まで下に移動した場合、可動ストッパ部20aは固定ストッパ部12dに当接され、磁気ローターユニットは継続的に回動できず、磁気ローター部材の、下向きの運動のストロークを制御できる。 A fixed stopper portion 12d is provided on the outer edge of the ceiling portion of the nut 121, and at least a part of the fixed stopper portion 12d protrudes from the upper end surface of the nut 121. In other words, at least a part of the fixed stopper portion 12d protrudes from the annular base of the nut in the axial direction, and may be arranged so as not to protrude from the annular base in the radial direction. The fixed stopper portion 12d engages with the movable stopper portion 20a provided on the magnetic rotor unit to realize a stopper for the magnetic rotor unit. That is, in this embodiment, since the magnetic rotor member can be displaced in the axial direction and the nut unit 12 is fixedly connected to the valve seat 11, when the magnetic rotor unit moves down to the lowest end of the stroke, the movable stopper portion 20a abuts against the fixed stopper portion 12d, and the magnetic rotor unit cannot rotate continuously, and the downward movement stroke of the magnetic rotor member can be controlled.

磁気ローターユニット27は電磁コイルの電磁力を感知して回動し、円周方向で磁極を有する磁気ローター271、及び磁気ローター271に固定接続され又は一体配置された接続板272を含み、接続板272は金属、例えば粉末冶金材料から製造され、具体的に、接続板272をインサートとし、磁気ローター271を射出成形する。接続板272は弁軸部22に固定接続されており、具体的に、弁軸部22の上端外縁部にあるローター固定部22aは、接続板272の内縁部と係合するとともに、溶接によって固定される。磁気ローターユニットは可動ストッパ部20aを含み、具体的な実施形態として、可動ストッパ部20aは接続板272により一体で製造され、即ち、可動ストッパ部20aは接続板272の一部としてもよい。 The magnetic rotor unit 27 senses the electromagnetic force of the electromagnetic coil to rotate, and includes a magnetic rotor 271 having magnetic poles in the circumferential direction, and a connecting plate 272 fixedly connected to or integrally arranged with the magnetic rotor 271. The connecting plate 272 is made of metal, such as a powder metallurgical material, and specifically, the magnetic rotor 271 is injection molded with the connecting plate 272 as an insert. The connecting plate 272 is fixedly connected to the valve shaft portion 22, and specifically, the rotor fixing portion 22a at the upper outer edge of the valve shaft portion 22 engages with the inner edge of the connecting plate 272 and is fixed by welding. The magnetic rotor unit includes a movable stopper portion 20a, and in a specific embodiment, the movable stopper portion 20a is integrally manufactured with the connecting plate 272, that is, the movable stopper portion 20a may be a part of the connecting plate 272.

弁軸部22は略中空筒状を呈する部材であり、大径部221と小径部222とを含む。大径部221の外縁部の一部は、磁気ローターユニット27の接続板272に固定接続されるためのローター固定部22aを形成し、両者の接続方式は、溶接固定、又は圧着固定などの固定方式を採用してもよい。大径部221の他の外縁部の一部は、ナットの第2ガイド部12cに小さな隙間嵌めされるための弁軸ガイド部22bを形成し、ガイドを実現する。即ち、ローターが回動している過程で、ナット第2ガイド部12cによって、弁軸部22に円周方向のガイド・センタリング作用を提供する。図1に示すように、ローター固定部22aは弁軸ガイド部22bの相対的な上方に位置し、弁軸ガイド部22bは大体、磁気ローター271により囲まれた空間内に位置する。小径部222の外縁部には雄ねじ部22cが設けられ、雄ねじ部22cは、ナットに設けられる雌ねじ部12bと、ねじ送り機構を形成するために用いられる。弁軸部22は第1貫通孔部22e及び第2貫通孔部22dを含み、第1貫通孔部22eは大体、大径部221の内孔部分に対応し、第2貫通孔部22dは大体、小径部222の内孔部分に対応し、このように、第1貫通孔部22eの内径は第2貫通孔部22dの内径より大きく、第1貫通孔部22eと第2貫通孔部22dの間に弁軸段差部22fが形成される。ねじ送り機構の公称直径は第1貫通孔部22eの内径より小さく、且つ弁ニードルガイド部21cの外径よりわずかに大きい。ここに記載の「わずかに大きい」は、弁ニードルが上に運動する場合、雌ねじ部12bにより阻害、又は干渉されないとよいことを指す。 The valve stem 22 is a member having a substantially hollow cylindrical shape, and includes a large diameter portion 221 and a small diameter portion 222. A part of the outer edge of the large diameter portion 221 forms the rotor fixing portion 22a for fixed connection to the connection plate 272 of the magnetic rotor unit 27, and the connection method between the two may be a fixing method such as welding or crimping. Another part of the outer edge of the large diameter portion 221 forms the valve stem guide portion 22b for a small clearance fit into the second guide portion 12c of the nut, thereby realizing the guide. That is, during the rotor rotation, the nut second guide portion 12c provides the valve stem 22 with a circumferential guide and centering action. As shown in FIG. 1, the rotor fixing portion 22a is located relatively above the valve stem guide portion 22b, and the valve stem guide portion 22b is located approximately within the space surrounded by the magnetic rotor 271. The outer edge of the small diameter portion 222 is provided with a male thread portion 22c, which is used to form a screw feed mechanism together with the female thread portion 12b provided on the nut. The valve shaft portion 22 includes a first through hole portion 22e and a second through hole portion 22d, where the first through hole portion 22e roughly corresponds to the inner hole portion of the large diameter portion 221, and the second through hole portion 22d roughly corresponds to the inner hole portion of the small diameter portion 222, and thus the inner diameter of the first through hole portion 22e is larger than the inner diameter of the second through hole portion 22d, and a valve shaft step portion 22f is formed between the first through hole portion 22e and the second through hole portion 22d. The nominal diameter of the screw feed mechanism is smaller than the inner diameter of the first through hole portion 22e and slightly larger than the outer diameter of the valve needle guide portion 21c. The term "slightly larger" used here means that the valve needle should not be hindered or interfered with by the female thread portion 12b when moving upward.

ブッシュ25は弁軸部22に固定接続されており、略中空の筒状を呈して、その少なくとも一部の外縁は第1貫通孔部22eの少なくとも一部の内縁と係合する。このように、弁軸部22の大径部221とブッシュ25とは1つの空間を形成し、圧縮ばね24は当該空間内に位置し、圧縮ばね24の外径が小径部222の内径より大きい。圧縮ばね24の上端部はブッシュ25の底端部に当接され、ここに記載の当接は、直接的な当接であってもよいし、間接的な当接であってもよく、例えば、圧縮ばね24とブッシュ25との間に間接的な当接を実現するためのガスケットを配置する。圧縮ばね24の他端はワッシャ部23に当接される。ワッシャ部23は、その一端が圧縮ばね24に当接され、他端が以下に説明する弁ニードル21に当接される。圧縮ばね24の最大の外径が第2貫通孔部22dの内径より大きい。このように、同一仕様の電子膨張弁、例えば、同じローター直径、ハウジング直径、ステータコイル直径及び体積を有する場合、圧縮ばねの直径を相対的に大きくしてもよく、これによって、ばね力を大きくし、電子膨張弁が全閉状態にある際の耐逆圧の能力を向上させる。 The bush 25 is fixedly connected to the valve shaft portion 22 and has a generally hollow cylindrical shape, with at least a portion of its outer edge engaging with at least a portion of the inner edge of the first through hole portion 22e. In this way, the large diameter portion 221 of the valve shaft portion 22 and the bush 25 form a space, the compression spring 24 is located in the space, and the outer diameter of the compression spring 24 is larger than the inner diameter of the small diameter portion 222. The upper end of the compression spring 24 abuts against the bottom end of the bush 25, and the abutment described here may be direct abutment or indirect abutment. For example, a gasket is disposed between the compression spring 24 and the bush 25 to achieve indirect abutment. The other end of the compression spring 24 abuts against the washer portion 23. One end of the washer portion 23 abuts against the compression spring 24, and the other end abuts against the valve needle 21 described below. The maximum outer diameter of the compression spring 24 is larger than the inner diameter of the second through hole portion 22d. In this way, when electronic expansion valves have the same specifications, for example, the same rotor diameter, housing diameter, stator coil diameter, and volume, the diameter of the compression spring may be relatively large, thereby increasing the spring force and improving the back pressure resistance capability when the electronic expansion valve is in a fully closed state.

弁ニードル21は、ブッシュ25、弁軸部22及びナット12によって共同で限定された中心通路に、貫通するように配置され、圧縮ばね24は弁ニードル21の外縁部の一部の周辺に外嵌される。弁ニードル21全体は棒状を呈し、複数段の異なる外径を有し、図1~図5を基準として、弁ニードル21の最も底端は針先調整部21aであり、針先調整部21aの形状は、弁口部の形状及び電子膨張弁の必要な流量調整曲線に関連し、異なる必要に応じて異なる配置をしてもよく、本出願は針先調整部21aの具体的な形状を限定していない。弁ニードル21は、ナットの第1ガイド部12aに小隙間嵌めされための弁ニードルガイド部21bを含み、磁気ローターの回動過程で、ナットの第1ガイド部12aは、弁ニードル21に円周方向のガイド・センタリング作用を提供する。弁ニードル21は、ガスケット23に当接されるためのガスケット当接部21eを含み、これによって、ガスケット23が弁ニードルに当接された後、弁ニードルの中心軸線方向に沿って下に変位することがない。具体的な実施例として、図4に示すように、弁ニードル21の弁ニードルガイド部の上方には、それぞれ第1軸状部21c及び第2軸状部21dが設けられ、第1軸状部21cの外径は第2軸状部21dの外径より大きいとともに、弁ニードルの、弁ニードルガイド部での外径より小さい。このように、第1軸状部21cと第2軸状部21dの間には1つの階段が形成され、当該階段はガスケット当接部21eの1つの具体的な実施例としてもよく、即ち、ガスケット当接部21eは第1軸状部21cの天井部に形成される。ガスケット23の下端面はガスケット当接部21eに当接され、本実施形態において、ガスケット23の数は2つであり、下側にあるガスケット23はガスケット当接部21eに当接され、上側にあるガスケット23の上部には圧縮ばね24が取り付けられ、即ち、圧縮ばね24の下端はガスケット23に当接され、圧縮ばね24の上端はブッシュ25の底端に当接される。ガスケット23、圧縮ばね24はいずれも弁軸部22の大径部とブッシュ25によって限定された空間内に収容される。 The valve needle 21 is disposed in a penetrating manner in the central passage jointly defined by the bush 25, the valve shaft portion 22 and the nut 12, and the compression spring 24 is fitted around a part of the outer edge of the valve needle 21. The entire valve needle 21 is rod-shaped and has different outer diameters in multiple stages. Based on Figs. 1 to 5, the bottom end of the valve needle 21 is the needle tip adjustment portion 21a, and the shape of the needle tip adjustment portion 21a is related to the shape of the valve orifice and the required flow rate adjustment curve of the electronic expansion valve, and may be arranged in different ways according to different needs. The present application does not limit the specific shape of the needle tip adjustment portion 21a. The valve needle 21 includes a valve needle guide portion 21b for small clearance fit into the first guide portion 12a of the nut, and during the rotation of the magnetic rotor, the first guide portion 12a of the nut provides the valve needle 21 with a circumferential guide and centering action. The valve needle 21 includes a gasket abutment portion 21e for abutting against the gasket 23, so that the gasket 23 will not be displaced downward along the central axis of the valve needle after abutting against the valve needle. As a specific example, as shown in Fig. 4, a first shaft-shaped portion 21c and a second shaft-shaped portion 21d are provided above the valve needle guide portion of the valve needle 21, and the outer diameter of the first shaft-shaped portion 21c is larger than that of the second shaft-shaped portion 21d and smaller than that of the valve needle at the valve needle guide portion. In this way, a step is formed between the first shaft-shaped portion 21c and the second shaft-shaped portion 21d, which can be a specific example of the gasket abutment portion 21e, that is, the gasket abutment portion 21e is formed on the ceiling portion of the first shaft-shaped portion 21c. The lower end surface of the gasket 23 abuts against the gasket abutment portion 21e. In this embodiment, there are two gaskets 23, and the lower gasket 23 abuts against the gasket abutment portion 21e. A compression spring 24 is attached to the upper part of the upper gasket 23. That is, the lower end of the compression spring 24 abuts against the gasket 23, and the upper end of the compression spring 24 abuts against the bottom end of the bush 25. Both the gasket 23 and the compression spring 24 are housed in the space defined by the large diameter portion of the valve shaft portion 22 and the bush 25.

具体的に、組み立てる場合、弁ニードル21は図4の下方から上向きに弁軸部22の中心貫通孔に挿着され、これによって、第1軸状部は弁軸部小径部222の貫通孔内に穿設され、互いに運動でき、第2軸状部21dは、ブッシュ25の中心貫通孔に穿設されるとともに、ブッシュ25の上端面から突き抜ける。第2軸状部21dの上端部には外嵌されるように、弁ニードルスリーブ26が固定され、弁ニードルスリーブ26の外径はブッシュ25の内径より大きいため、弁ニードル21は弁ニードルスリーブ26によって制限され、弁ニードル21は、弁ニードルスリーブ26に固定接続された後、ブッシュ25及び弁軸部22の中心貫通孔から下に脱出することなくなる。弁ニードル21と磁気ローターユニット27との間はフローティング接続を形成し、弁ニードル21は弁軸部22に対して上に運動すると、軸方向で、圧縮ばね24をさらに圧縮でき、限定された範囲内で、弁ニードル21と弁軸部22とは相対移動できる。弁ニードルの第1軸状部21cと弁軸部22の第2貫通孔部22dとは隙間嵌めであり、第2軸状部21dとブッシュ25の中心貫通孔とも隙間嵌めであるため、弁ニードル21は弁軸部22に対しても、円周方向に沿って相対回動できる。 Specifically, when assembled, the valve needle 21 is inserted into the central through-hole of the valve shaft 22 from the bottom up in FIG. 4, so that the first shaft-shaped portion is drilled into the through-hole of the valve shaft small diameter portion 222 and can move relative to each other, and the second shaft-shaped portion 21d is drilled into the central through-hole of the bush 25 and passes through the upper end surface of the bush 25. The valve needle sleeve 26 is fixed to the upper end of the second shaft-shaped portion 21d so as to be fitted externally, and since the outer diameter of the valve needle sleeve 26 is larger than the inner diameter of the bush 25, the valve needle 21 is restricted by the valve needle sleeve 26, and the valve needle 21 will not escape downward from the central through-hole of the bush 25 and the valve shaft 22 after being fixedly connected to the valve needle sleeve 26. A floating connection is formed between the valve needle 21 and the magnetic rotor unit 27. When the valve needle 21 moves upward relative to the valve shaft portion 22, the compression spring 24 can be further compressed in the axial direction, and the valve needle 21 and the valve shaft portion 22 can move relative to each other within a limited range. The first shaft portion 21c of the valve needle and the second through hole portion 22d of the valve shaft portion 22 are a clearance fit, and the second shaft portion 21d is also a clearance fit with the central through hole of the bush 25, so the valve needle 21 can also rotate relative to the valve shaft portion 22 in the circumferential direction.

ここで、本実施形態において、外観から見れば、針先調整部21a以外、弁ニードル21は大体、3段階型軸状構成に分割され、弁ニードルガイド部21bが位置する弁ニードル段の外径が最も大きく、第1軸状部21cが位置する弁ニードル段の外径がわずかに小さく、第2軸状部21dが位置する弁ニードル段の外径が最も小さく、ところが、これは加工を便利にする具体的な実施例のみであり、これに基づき、いろんな等価の構成変形又は置換を行ってもよい。例えば、弁ニードルガイド部21bについて、ナットが弁座に対して固定されるため、弁ニードルは軸方向で上下に変位でき、即ち、弁ニードルはナットに対して上下に移動できるとともに、一定のストロークを有しており、本実施例の図面に示される、外径が最大である弁ニードルの外縁全体をいずれも弁ニードルガイド部とするように要求していなく、当該ストローク内で、弁ニードルの外縁には、ナットの第1ガイド部12aとガイド作用を形成するための、滑らかな弁ニードルガイド部21bが設けられるように保証すればよく、言い換えると、弁ニードルガイド部21bに対応する弁ニードル段の相対的な上部又は相対的な下部の外縁に凹溝などの非平坦の構成を配置してもよく、弁ニードルのストロークで、ナットの第1ガイド部12aと係合し、ガイド作用を実現するための1段の弁ニードルガイド部21bが常に存在すると保証すればよい。また、第1軸状部21c及び第2軸状部21dは、等径の円柱軸状構成に限定されず、例えば、第1軸状部21c又は第2軸状部21dにはもう1つの軸状階段が設けられてもよく、これらの等価の技術特徴変更は、明らかに本出願の保護範囲にも属する。 Here, in this embodiment, from the outside, apart from the needle tip adjustment portion 21a, the valve needle 21 is roughly divided into a three-stage axial structure, with the outer diameter of the valve needle stage where the valve needle guide portion 21b is located being the largest, the outer diameter of the valve needle stage where the first axial portion 21c is located being slightly smaller, and the outer diameter of the valve needle stage where the second axial portion 21d is located being the smallest. However, this is only a specific example for convenience of processing, and various equivalent configuration modifications or substitutions may be made based on this. For example, with regard to the valve needle guide portion 21b, since the nut is fixed against the valve seat, the valve needle can be displaced up and down in the axial direction, that is, the valve needle can move up and down relative to the nut and has a certain stroke. It is not required that the entire outer edge of the valve needle with the largest outer diameter shown in the drawings of this embodiment be used as the valve needle guide portion. It is only required to ensure that within this stroke, the outer edge of the valve needle is provided with a smooth valve needle guide portion 21b to form a guiding effect with the first guide portion 12a of the nut. In other words, a non-flat structure such as a groove may be disposed on the outer edge of the relatively upper or lower part of the valve needle stage corresponding to the valve needle guide portion 21b, and it is only required to ensure that during the stroke of the valve needle, there is always a one-stage valve needle guide portion 21b to engage with the first guide portion 12a of the nut and realize a guiding effect. Furthermore, the first shaft-shaped portion 21c and the second shaft-shaped portion 21d are not limited to a cylindrical shaft-shaped configuration of equal diameter; for example, the first shaft-shaped portion 21c or the second shaft-shaped portion 21d may be provided with another shaft-shaped step, and these equivalent technical feature modifications are clearly within the scope of protection of this application.

また、本明細書に記載の弁ニードルガイド部、第1軸状部、第2軸状部はいずれも本技術案に果たす作用に応じて命名され、弁ニードルは図4の3段軸状部を組み合わせて形成されるように、機械的に理解され、又は限定されるべきではない。又は、弁ニードル21は段階的な組立形態で製造され、例えば、隣接する2段の間でねじ接続又は溶接を実施する方式を採用する。実際には、以上のように、図示の構成は加工を便利にする実施例のみである。 Furthermore, the valve needle guide portion, the first shaft portion, and the second shaft portion described in this specification are all named according to the functions they perform in the technical solution, and the valve needle should not be mechanically understood or limited to being formed by combining the three-stage shaft portion in FIG. 4. Alternatively, the valve needle 21 may be manufactured in a staged assembly form, for example, by adopting a method of threading or welding between two adjacent stages. In fact, as described above, the illustrated configuration is only an example that makes processing easier.

本実施形態が提供する弁ニードル構成において、第2軸状部、第1軸状部及び弁ニードルガイド部が位置する弁ニードル段の外径が順に漸増し、製造は相対的に便利であり、同軸性は相対的によく、第2軸状部と、弁軸部及びブッシュとは、圧縮ばねを収容するための空間になるように取り囲むことができ、これによって、圧縮ばねの外径は弁ニードルガイド部の外径サイズに制約されず、同一仕様の電子膨張弁、例えば、同じローター直径、ハウジング直径、ステータコイル直径及び体積を有する場合、弁口通径を直接的に大きくして、より大きな口径流量調整の電子膨張弁を取得する。 In the valve needle configuration provided by this embodiment, the outer diameter of the valve needle stage where the second shaft-shaped portion, the first shaft-shaped portion and the valve needle guide portion are located increases gradually in sequence, which is relatively convenient to manufacture and has relatively good coaxiality. The second shaft-shaped portion, the valve shaft portion and the bushing can be surrounded to form a space for accommodating the compression spring, so that the outer diameter of the compression spring is not restricted by the outer diameter size of the valve needle guide portion. When the electronic expansion valve has the same specifications, for example, the same rotor diameter, housing diameter, stator coil diameter and volume, the valve orifice diameter can be directly increased to obtain an electronic expansion valve with a larger aperture and flow rate adjustment.

弁ニードルスリーブ26の外周には戻しバネ28が外嵌され、戻しバネ28の下端はブッシュ25又は弁軸部22の上端面に当接され、具体的な当接位置は、ブッシュ25と弁軸部22との相対的な位置関係、及び戻しバネ28の直径に応じて決定されてもよい。図4に示すように、ブッシュ25と弁軸部22との先端は揃え、又は基本的に揃えるように配置され、この場合、戻しバネ28は弁軸部22に当接されるように配置されてもよく、ブッシュ25に当接されるように配置されてもよく、又は弁軸部22及びブッシュ25に同時に当接されるように配置されてもよい。戻しバネ28の高さは弁ニードルスリーブ26とハウジング30の間の距離より大きいため、戻しバネ28は弁ニードルスリーブ26の外周から脱落することがない。 The return spring 28 is fitted around the outer periphery of the valve needle sleeve 26, and the lower end of the return spring 28 abuts against the upper end surface of the bush 25 or the valve stem 22. The specific abutment position may be determined according to the relative positional relationship between the bush 25 and the valve stem 22 and the diameter of the return spring 28. As shown in FIG. 4, the tips of the bush 25 and the valve stem 22 are aligned or essentially aligned. In this case, the return spring 28 may be arranged to abut against the valve stem 22, may be arranged to abut against the bush 25, or may be arranged to abut against the valve stem 22 and the bush 25 simultaneously. The height of the return spring 28 is greater than the distance between the valve needle sleeve 26 and the housing 30, so that the return spring 28 will not fall off the outer periphery of the valve needle sleeve 26.

電子膨張弁のコイル40は駆動パルス信号を受信し、周期的に変化する磁場を生成し、磁気ローター27は励起されて回動し、弁軸部22は接続板272に固定接続されるため、磁気ローター27と同期回動し、弁軸部とナットとの間のねじ送り機構によって、磁気ローター27が回転運動を行うと同時に、軸方向で移動でき、弁ニードル21を軸方向に移動させ、弁ニードル21の針先調整部21aを、弁口113aに対して近接させ、又は離させ、電子膨張弁流量の線形開閉調整機能を実現する。図1に示すように、針先調整部21aは弁口部113に当接されるまで下向きに移動された場合、即ち、針先調整部21aはそのストロークの最も下端にある場合、電子膨張弁は全閉状態にある。針先調整部21aは、弁口部113から離れた位置にある場合、電子膨張弁は開け状態にあり、図2は、電子膨張弁が約80%開度にある断面図である。磁気ローターユニット27は図2の状態から、弁軸部の雄ねじ部22cが上にナット12の雌ねじ部12bから脱出するまで、開弁方向に向いて、継続的に上に回転した場合、戻しバネ28の上端はハウジング30の頂壁に既に当接され、戻しバネ28は圧縮された状態にある。この際、弁軸部22とナット12の間のねじ送り機構は既に互いに離脱したため、磁気ローターユニット27は継続的に上に移動することがない。閉弁動作を行う必要がある場合、磁気ローターユニット27は回転すると同時に、戻しバネ28の下向きのばね力を受け、これによって、弁軸部22の雄ねじ部22cとナットの雌ねじ部12bとを再びねじ噛合させるように促進し、ねじ送り機構を改めて組み合わせるように確保する。 The coil 40 of the electronic expansion valve receives the driving pulse signal, generates a periodically changing magnetic field, and the magnetic rotor 27 is excited to rotate. The valve shaft 22 is fixedly connected to the connecting plate 272, so that it rotates synchronously with the magnetic rotor 27. The screw feed mechanism between the valve shaft and the nut allows the magnetic rotor 27 to move in the axial direction while rotating, moving the valve needle 21 in the axial direction, and moving the needle tip adjustment part 21a of the valve needle 21 closer to or farther from the valve port 113a, thereby realizing the linear opening and closing adjustment function of the electronic expansion valve flow rate. As shown in FIG. 1, when the needle tip adjustment part 21a is moved downward until it abuts against the valve port 113, that is, when the needle tip adjustment part 21a is at the lowest end of its stroke, the electronic expansion valve is in a fully closed state. When the needle tip adjustment part 21a is in a position away from the valve port 113, the electronic expansion valve is in an open state, and FIG. 2 is a cross-sectional view of the electronic expansion valve at about 80% opening. When the magnetic rotor unit 27 continues to rotate upward from the state shown in FIG. 2 in the valve opening direction until the male threaded portion 22c of the valve stem escapes upward from the female threaded portion 12b of the nut 12, the upper end of the return spring 28 has already abutted against the top wall of the housing 30, and the return spring 28 is in a compressed state. At this time, the screw feed mechanism between the valve stem 22 and the nut 12 has already disengaged from each other, so the magnetic rotor unit 27 does not continue to move upward. When it is necessary to perform a valve closing operation, the magnetic rotor unit 27 receives the downward spring force of the return spring 28 at the same time as rotating, which promotes the male threaded portion 22c of the valve stem 22 and the female threaded portion 12b of the nut to be screw-engaged again, ensuring that the screw feed mechanism is reassembled.

本実施形態が提供する電子膨張弁において、弁軸部は第1貫通孔部と第2貫通孔部とを含み、弁ニードルガイド部21bの外径が第1軸状部21cの外径より大きく、第1軸状部21cと第2貫通孔部22dとは隙間嵌めであるため、弁ニードルガイド部21bの外径が、第2貫通孔部22cの内径よりも大きく、第2貫通孔部22cの内径はねじ送り機構の内径に対応する。従って、弁ニードルガイド部21bの外径が弁軸部22の第2貫通孔部22dの内径より大きいため、同じ仕様の電子膨張弁、例えば、同じローター直径、ハウジング直径、ステータコイル直径及び体積を有する場合、ねじ送り機構の公称直径が、弁ニードルガイド部21bの外径よりわずかに大きいと実現でき、即ち、ねじ送り機構の公称直径を相対的に小さくしてもよく、これによって、ねじ送り機構からの摩擦抵抗を減少させる。 In the electronic expansion valve provided by this embodiment, the valve shaft portion includes a first through hole portion and a second through hole portion, and the outer diameter of the valve needle guide portion 21b is larger than the outer diameter of the first shaft portion 21c, and the first shaft portion 21c and the second through hole portion 22d are a clearance fit, so that the outer diameter of the valve needle guide portion 21b is larger than the inner diameter of the second through hole portion 22c, and the inner diameter of the second through hole portion 22c corresponds to the inner diameter of the screw feed mechanism. Therefore, since the outer diameter of the valve needle guide portion 21b is larger than the inner diameter of the second through hole portion 22d of the valve shaft portion 22, when the electronic expansion valve has the same specifications, for example, the same rotor diameter, housing diameter, stator coil diameter and volume, the nominal diameter of the screw feed mechanism can be slightly larger than the outer diameter of the valve needle guide portion 21b, that is, the nominal diameter of the screw feed mechanism can be relatively small, thereby reducing the frictional resistance from the screw feed mechanism.

第2実施形態
以下は図5~図9を結合し、本出願の第2実施形態を説明する。
Second Embodiment The second embodiment of the present application will be described below in conjunction with FIGS.

説明を便利にするために、本実施形態において、第1実施形態の構成及び機能と基本的に同様である部材に対して同一符号を採用し、ただ簡単に説明し、当業者は第1実施形態の関する説明を参照して理解すればよく、本実施形態は主に、第1実施形態との相違点を詳しく説明する。 For ease of explanation, in this embodiment, the same reference numerals are used for components that are basically similar in configuration and function to those in the first embodiment, and only a brief description is given. Those skilled in the art can refer to the description of the first embodiment for understanding. This embodiment mainly describes in detail the differences from the first embodiment.

図5~図9を参照し、図5は第2実施形態の電子膨張弁が閉弁状態にある断面模式図であり、図6は第2実施形態の電子膨張弁が開弁状態にある断面模式図であり、図7は第2実施形態のナットユニットの構成模式図であり、図8は第2実施形態のローターユニットと弁ニードルとの係合の局所断面図であり、図9は第2実施形態のナットユニット平面図である。 Referring to Figures 5 to 9, Figure 5 is a schematic cross-sectional view of the electronic expansion valve of the second embodiment in a closed state, Figure 6 is a schematic cross-sectional view of the electronic expansion valve of the second embodiment in an open state, Figure 7 is a schematic diagram of the configuration of the nut unit of the second embodiment, Figure 8 is a local cross-sectional view of the engagement between the rotor unit and the valve needle of the second embodiment, and Figure 9 is a plan view of the nut unit of the second embodiment.

電子膨張弁は弁ボディ部材とコイル部材40とを含み、弁ボディ部材は弁座11、接続部材50、及びハウジング30を含み、弁座11、接続部材50、ハウジング30の構成及び係合形態について、第1実施形態の説明を参照すればよい。 The electronic expansion valve includes a valve body member and a coil member 40, and the valve body member includes a valve seat 11, a connecting member 50, and a housing 30. The configuration and engagement form of the valve seat 11, the connecting member 50, and the housing 30 can be described with reference to the description of the first embodiment.

電子膨張弁は、弁座11に固定接続されるナットユニット120を含む。具体的に、ナットユニット120は、固定接続されるナット1201と接続シート1202とを含む。ナット1201はその軸方向に沿って貫通する貫通孔を有し、当該貫通孔の内側壁には、雌ねじ部120bが設けられ、雌ねじ部120bは、弁軸部22の外縁部に設けられる雄ねじ部22cとねじ送り機構を形成するために用いられる。弁軸部22は磁気ローターユニット27に固定接続されるため、磁気ローターの回動に連れて、同期回転できる。磁気ローターユニット27は電磁コイルの電磁力を感知して回動しており、円周方向で磁極を有する磁気ローター271、及び磁気ローター271に固定接続され又は一体配置された接続板272を含み、接続板272は弁軸部22に固定接続される。一般的に、締まり圧入接続又はカシメ接続を採用し、又は接続板272と弁軸部22とを溶接して接続する。磁気ローターユニットは可動ストッパ部20aを含み、本実施形態において、可動ストッパ部20aは接続板272の一部としてもよく、接続板272に対して、軸方向に沿って弁座11方向に突出し、ナット12に設けられる固定ストッパ部と係合し、ストッパ機能を実現し、固定ストッパ部は具体的に、以下のストッパ突起部1201cである。 The electronic expansion valve includes a nut unit 120 fixedly connected to the valve seat 11. Specifically, the nut unit 120 includes a nut 1201 and a connection sheet 1202 that are fixedly connected. The nut 1201 has a through hole penetrating along its axial direction, and a female thread portion 120b is provided on the inner wall of the through hole, and the female thread portion 120b is used to form a screw feed mechanism with a male thread portion 22c provided on the outer edge of the valve shaft portion 22. Since the valve shaft portion 22 is fixedly connected to the magnetic rotor unit 27, it can rotate synchronously with the rotation of the magnetic rotor. The magnetic rotor unit 27 senses the electromagnetic force of the electromagnetic coil and rotates, and includes a magnetic rotor 271 having magnetic poles in the circumferential direction, and a connection plate 272 fixedly connected to or integrally arranged with the magnetic rotor 271, and the connection plate 272 is fixedly connected to the valve shaft portion 22. Generally, a press-fit connection or a crimp connection is adopted, or the connection plate 272 and the valve shaft portion 22 are connected by welding. The magnetic rotor unit includes a movable stopper portion 20a, which in this embodiment may be a part of the connection plate 272, protruding in the axial direction toward the valve seat 11 from the connection plate 272 and engaging with a fixed stopper portion provided on the nut 12 to realize a stopper function, and the fixed stopper portion is specifically the stopper protrusion portion 1201c described below.

図8に示すように、磁気ローターユニット27は接続板272によって、弁軸部22に固定接続され、磁気ローターユニットは弁軸部22を回転させ、弁軸部22は弁ニードル21を回転させ、弁ニードル21は弁軸部22に対して、限定された弾性変位範囲内で、軸方向に沿って相対的に移動してもよいし、相対的に回転運動を行ってもよい。弁軸部22と弁ニードル21との係合形態について、第1実施形態の関する説明を参照すればよく、ここで、贅言していない。 As shown in FIG. 8, the magnetic rotor unit 27 is fixedly connected to the valve shaft portion 22 by a connecting plate 272, and the magnetic rotor unit rotates the valve shaft portion 22, which in turn rotates the valve needle 21, and the valve needle 21 may move relative to the valve shaft portion 22 along the axial direction within a limited range of elastic displacement, or may rotate relative to the valve shaft portion 22. For the engagement form between the valve shaft portion 22 and the valve needle 21, please refer to the explanation of the first embodiment, and no detailed explanation will be given here.

電子膨張弁の基本的な原理は以下の通り、コイル40は駆動パルス信号を受信し、周期的に変化する磁場を生成し、磁気ローター27は励起されて回動し、弁軸部22は接続板272に固定接続されるため、磁気ローター27と同期回動し、弁軸部とナットとの間のねじ送り機構によって、磁気ローター27が回転運動を行うと同時に、軸方向で移動でき、弁ニードル21を軸方向に移動させ、弁ニードル21の針先調整部21aを、弁口113aに対して近接させ、又は離させ、電子膨張弁流量の線形開閉調整機能を実現する。図5の電子膨張弁は全閉状態のストッパ位置にあり、即ち、弁ニードル21の針先調整部21aがそのストロークの最も下端にあり、この場合、弁口113aは全閉状態、又は設定した最小の開度状態にある。コイル40は磁気ローターを下に移動させるように駆動し、針先調整部21aが全閉状態、又はそのストロークの最も下端位置にある場合、磁気ローターユニットの下向きの運動のストロークに対して、位置制限・ストッパを行うためのストッパ機構を配置する必要があるため、本実施例において、ナット1201の上端部には固定ストッパ部が設けられ、磁気ローターユニット27には、対応する可動ストッパ部20aが設けられる。電子膨張弁が全閉状態にある場合、可動ストッパ部20aは固定ストッパ部の対応する係合面に当接され、磁気ローターユニット、弁軸部、及び弁ニードルに対する位置制限・ストッパを実現する。 The basic principle of the electronic expansion valve is as follows: the coil 40 receives a driving pulse signal, generates a periodically changing magnetic field, and the magnetic rotor 27 is excited to rotate; the valve shaft 22 is fixedly connected to the connecting plate 272, so that it rotates synchronously with the magnetic rotor 27; the screw feed mechanism between the valve shaft and the nut allows the magnetic rotor 27 to move in the axial direction while rotating, moving the valve needle 21 in the axial direction, and moving the needle tip adjustment part 21a of the valve needle 21 closer to or farther from the valve port 113a, thereby realizing the linear opening and closing adjustment function of the electronic expansion valve flow rate. The electronic expansion valve in FIG. 5 is in the stopper position of the fully closed state, that is, the needle tip adjustment part 21a of the valve needle 21 is at the lowest end of its stroke, in which case the valve port 113a is in the fully closed state or in the set minimum opening state. The coil 40 drives the magnetic rotor to move downward, and when the needle tip adjustment part 21a is in a fully closed state or at the lowest end of its stroke, a stopper mechanism must be provided to limit and stop the downward movement stroke of the magnetic rotor unit. Therefore, in this embodiment, a fixed stopper part is provided at the upper end of the nut 1201, and a corresponding movable stopper part 20a is provided on the magnetic rotor unit 27. When the electronic expansion valve is in a fully closed state, the movable stopper part 20a abuts against the corresponding engagement surface of the fixed stopper part, realizing a position limit and stopper for the magnetic rotor unit, the valve stem, and the valve needle.

図6は本実施形態電子膨張弁の開け状態の断面図であり、図面の開度位置は約80%の開度にある。この場合、弁ニードル21の針先調整部21aは、弁口113aから離れた位置にあり、可動ストッパ部20aも固定ストッパ部から離れた位置状態にある。 Figure 6 is a cross-sectional view of the electronic expansion valve of this embodiment in an open state, and the opening position in the drawing is about 80% open. In this case, the needle tip adjustment portion 21a of the valve needle 21 is located away from the valve port 113a, and the movable stopper portion 20a is also located away from the fixed stopper portion.

図7は本実施形態のナットユニットの構成模式図であり、ナットユニット120は接続シート1202とナット1201とを含み、具体的な実施形態として、ナット1201は非金属材料、例えば樹脂材料から射出成形され、具体的に、接続シート1202をインサートとして金型キャビティに配置し、射出成形機を利用して樹脂射出の方式で、樹脂ナット1201を成形させ、接続シート1202の一部はナットで被覆されていない。ナットの材料に対して、PPS改質樹脂、PEEK改質樹脂、又はPTFE改質樹脂などを採用してもよい。ナットユニット120は弁座11に固定接続される。具体的に、接続シート1202の、ナットにより被覆されていない部分を、溶接又はカシメの方式で弁座11に固定し、ナット1201は弁座11の上端開口に圧入されるように、挿着される。 Figure 7 is a schematic diagram of the nut unit of this embodiment, in which the nut unit 120 includes a connection sheet 1202 and a nut 1201. In a specific embodiment, the nut 1201 is injection molded from a non-metallic material, for example, a resin material. Specifically, the connection sheet 1202 is placed in a mold cavity as an insert, and the resin nut 1201 is molded by a resin injection method using an injection molding machine, and a part of the connection sheet 1202 is not covered by the nut. PPS modified resin, PEEK modified resin, PTFE modified resin, etc. may be adopted as the material of the nut. The nut unit 120 is fixedly connected to the valve seat 11. Specifically, the part of the connection sheet 1202 that is not covered by the nut is fixed to the valve seat 11 by welding or crimping, and the nut 1201 is inserted so as to be pressed into the upper end opening of the valve seat 11.

ナット1201の外円周には少なくとも1本の凸リブ1201aが設けられ、少なくとも1本の凸リブ1201aはナットの端面まで延伸し、ナットの上端面1201dに突出し、ナット1201の、その上端面から突出する部分をストッパ突起部1201cに定義し、当該ストッパ突起部1201cは電子膨張弁の固定ストッパ部を構成する。図9に示すように、本実施形態において、ナット1201の外縁部には2本の凸リブが設けられ、そのうちの1本の凸リブ1201aはナットの上端面から突出し、ナットの上端面から突出する凸リブはストッパ突起部1201cの少なくとも一部を形成し、他方の凸リブ1201bの上端部は上端面1201dと揃える。ストッパ突起部1201cは電子膨張弁の固定ストッパ部を構成し、ストッパ突起部1201cの、可動ストッパ部20aによる衝突を受け可能である受力面の幅をK、ナットの相対的な上端の厚さをtに定義すると、K>tを満たす。 At least one convex rib 1201a is provided on the outer circumference of the nut 1201, and at least one of the convex ribs 1201a extends to the end face of the nut and protrudes to the upper end face 1201d of the nut. The part of the nut 1201 protruding from the upper end face is defined as a stopper protrusion 1201c, and the stopper protrusion 1201c constitutes a fixed stopper part of the electronic expansion valve. As shown in FIG. 9, in this embodiment, two convex ribs are provided on the outer edge of the nut 1201, one of which, the convex rib 1201a, protrudes from the upper end face of the nut, and the convex rib protruding from the upper end face of the nut forms at least a part of the stopper protrusion 1201c, and the upper end of the other convex rib 1201b is aligned with the upper end face 1201d. The stopper protrusion 1201c constitutes the fixed stopper portion of the electronic expansion valve, and if the width of the force-receiving surface of the stopper protrusion 1201c that can receive the impact of the movable stopper portion 20a is defined as K, and the relative thickness of the upper end of the nut is defined as t, then K>t is satisfied.

ナット1201は外縁部には、少なくとも1本の凸リブ1201aが設けられ、1本の凸リブ1201aは延びてナットの端面から突出し、ストッパ突起部1201cの一部を形成する。ストッパ突起部1201cを凸リブ1201aの、樹脂ナットに近接する端部に配置し、ストッパ突起部1201cの、ナット本体に対して径方向での突出量(K-t)と、凸リブの、ナット本体に対して径方向での突出量(K-t)とを同様に配置すれば、圧縮金型の構成を簡略化でき、上下脱型には便利である。図7に示すように、ストッパ突起部1201cはナットの端面に沿って上に突起する部分と、凸リブ1201aの、ナットの端面に突出する部分とを含み、前者の、周方向に沿う長さが、後者の、周方向に沿う長さより大きく、後者の、周方向に沿う長さは凸リブ1201aの幅である。また、凸リブとストッパ突起部とは一体で射出成形されることで、ストッパ突起部の強度を増やし、電子膨張弁ストッパ機構の動作寿命を向上させる。特に、凸リブの配置によって、ストッパ突起部の強度とナット本体(上端部に近接する部分)の材料厚さとの関連性を大幅に低減させ、即ち、薄いナット本体の厚さを採用しても、ストッパ機構の強度にひどく影響することなく、このように、樹脂材料の用量コストをさらに低減させる。且つ、一般的に、樹脂ナット基体材料が多く、厚さが大きいほど、射出によって、内部で空気孔が生じる確立も高くなり、本実施形態が提供するナット構成において、ストッパ突起部の強度を保証することを前提として、より少ない樹脂用量を採用して、空気孔発生の可能性を低減させ、樹脂ナットのサイズ精度及びサイズの一致性を高める。 At least one convex rib 1201a is provided on the outer edge of the nut 1201, and one of the convex ribs 1201a extends and protrudes from the end face of the nut to form a part of the stopper protrusion 1201c. If the stopper protrusion 1201c is arranged at the end of the convex rib 1201a close to the resin nut, and the radial protrusion amount (K-t) of the stopper protrusion 1201c relative to the nut body and the radial protrusion amount (K-t) of the convex rib relative to the nut body are arranged in the same manner, the configuration of the compression mold can be simplified, and it is convenient for upper and lower demolding. As shown in FIG. 7, the stopper protrusion 1201c includes a portion that protrudes upward along the end face of the nut and a portion of the convex rib 1201a that protrudes toward the end face of the nut, and the length of the former along the circumferential direction is greater than the length of the latter along the circumferential direction, and the length of the latter along the circumferential direction is the width of the convex rib 1201a. In addition, the convex rib and the stopper protrusion are integrally injection molded to increase the strength of the stopper protrusion and improve the operating life of the electronic expansion valve stopper mechanism. In particular, the arrangement of the convex rib greatly reduces the correlation between the strength of the stopper protrusion and the material thickness of the nut body (the portion close to the upper end), that is, even if a thin nut body is used, the strength of the stopper mechanism is not significantly affected, thus further reducing the dosage cost of the resin material. In addition, generally, the more the resin nut base material and the greater the thickness, the higher the probability of air holes being generated inside by injection. In the nut configuration provided by this embodiment, on the premise of ensuring the strength of the stopper protrusion, a smaller amount of resin is used to reduce the possibility of air holes being generated and improve the size accuracy and size consistency of the resin nut.

ここで、本実施形態において、主にナットの構成を詳しく説明し、それに対応する磁気ローターユニット構成は、磁気ローターユニットの、ナットに向かう一側には、可動ストッパ部として、ナットに設けられる固定ストッパ部に当接可能である突出部が設けられ、ストッパを実現すればよく、当該可動ストッパ部は具体的に、どの構成を採用するかということは、本実施形態の実現に影響していなく、当業者であれば理解すべきのは、当該構成を満たす全ての磁気ローターユニットはいずれも本実施形態に適用されることができる。弁座、弁ニードル、弁軸部などのような部材も、任意の実現可能な構成を採用してもよく、これによって、より多くの電子膨張弁の実施形態を生成する。 Here, in this embodiment, the configuration of the nut is mainly described in detail, and the corresponding magnetic rotor unit configuration is such that a protrusion that can abut against a fixed stopper portion provided on the nut is provided on one side of the magnetic rotor unit facing the nut as a movable stopper portion, and a stopper is realized. The specific configuration of the movable stopper portion does not affect the realization of this embodiment, and it should be understood by those skilled in the art that all magnetic rotor units that satisfy this configuration can be applied to this embodiment. Components such as the valve seat, valve needle, valve shaft portion, etc. may also adopt any feasible configuration, thereby generating more embodiments of the electronic expansion valve.

第3実施形態
以下は図10~図14を結合して本出願の第3の実施形態を説明する。
Third Embodiment The third embodiment of the present application will be described below in combination with FIGS.

説明を便利にするために、本実施形態において、第1実施形態の構成及び機能と基本的に同様である部材に対して同一符号を採用し、ただ簡単に説明し、当業者は第1実施形態の関する説明を参照して理解すればよく、本実施形態は主に、第1実施形態との相違点を詳しく説明する。 For ease of explanation, in this embodiment, the same reference numerals are used for components that are basically similar in configuration and function to those in the first embodiment, and only a brief description is given. Those skilled in the art can refer to the description of the first embodiment for understanding. This embodiment mainly describes in detail the differences from the first embodiment.

図10~図14を参照し、図10は第3実施形態の電子膨張弁が閉弁状態にある断面模式図であり、図11は第3実施形態の電子膨張弁が開弁状態にある断面模式図であり、図12は第3実施形態のナットユニットの構成模式図であり、図13は第3実施形態の弁軸部とストッパ部材との係合構成模式図であり、図14は第3実施形態の磁気ローターユニットと、弁軸部、弁ニードル及びストッパ部材との係合構成模式図である。 Referring to Figures 10 to 14, Figure 10 is a schematic cross-sectional view of the electronic expansion valve of the third embodiment in a closed state, Figure 11 is a schematic cross-sectional view of the electronic expansion valve of the third embodiment in an open state, Figure 12 is a schematic diagram of the nut unit of the third embodiment, Figure 13 is a schematic diagram of the engagement between the valve stem and the stopper member of the third embodiment, and Figure 14 is a schematic diagram of the engagement between the magnetic rotor unit of the third embodiment and the valve stem, valve needle, and stopper member.

電子膨張弁は弁ボディ部材とコイル部材40とを含み、弁ボディ部材は弁座11、接続部材50、及びハウジング30を含み、弁座11、接続部材50、ハウジング30の構成及び係合形態について、第1実施形態の説明を参照すればよい。 The electronic expansion valve includes a valve body member and a coil member 40, and the valve body member includes a valve seat 11, a connecting member 50, and a housing 30. The configuration and engagement form of the valve seat 11, the connecting member 50, and the housing 30 can be described with reference to the description of the first embodiment.

電子膨張弁は弁座11に固定接続されるナットユニット12を含む。具体的に、ナットユニット12は、固定接続されるナット121と接続シート122とを含む。具体的な実施形態として、ナット121は非金属材料、例えば樹脂材料から射出成形され、具体的に、接続シート122をインサートとして金型キャビティに配置し、射出成形機を利用して樹脂射出の方式で、樹脂ナット121を成形させ、接続シート122の一部はナットで被覆されていない。ナットの材料に対して、PPS改質樹脂、PEEK改質樹脂、又はPTFE改質樹脂などを採用してもよい。ナットユニット12は弁座11に固定接続される。具体的に、接続シート122の、ナットで被覆されていない部分を溶接又はカシメの方式で弁座11に固定し、ナット121は圧入により弁座11の上端開口に挿着される。ナット121はその軸方向に沿って貫通する貫通孔を有し、当該貫通孔の内側壁には、雌ねじ部12bが設けられ、雌ねじ部12bは、弁軸部22の外縁部に設けられる雄ねじ部22cと、ねじ送り機構を形成する。弁軸部22は磁気ローターユニット27に固定接続されるため、磁気ローターの回動に連れて、同期回転できる。磁気ローターユニット27は電磁コイルの電磁力を感知して回動しており、円周方向で磁極を有する磁気ローター271、及び磁気ローター271に固定接続され、又は一体配置された接続板272を含み、接続板272は弁軸部22に固定接続される。一般的に、締まり圧入接続又はカシメ接続を採用し、又は接続板272と弁軸部22とを溶接して接続する。ナット121の天井部の外縁には固定ストッパ部12dが設けられ、固定ストッパ部12dの少なくとも一部はナット121の上端面から突出し、言い換えると、固定ストッパ部12dの少なくとも一部は軸方向で、ナットの環状基体から突出し、本実施形態の図面の固定ストッパ部12dは径方向でも環状基体から突出し、無論、突出しないように配置されてもよい。 The electronic expansion valve includes a nut unit 12 fixedly connected to the valve seat 11. Specifically, the nut unit 12 includes a nut 121 and a connection sheet 122 that are fixedly connected. In a specific embodiment, the nut 121 is injection molded from a non-metallic material, for example, a resin material. Specifically, the connection sheet 122 is placed in a mold cavity as an insert, and the resin nut 121 is molded by a resin injection method using an injection molding machine, and a part of the connection sheet 122 is not covered by the nut. PPS modified resin, PEEK modified resin, PTFE modified resin, etc. may be adopted as the material of the nut. The nut unit 12 is fixedly connected to the valve seat 11. Specifically, the part of the connection sheet 122 that is not covered by the nut is fixed to the valve seat 11 by welding or crimping, and the nut 121 is inserted into the upper end opening of the valve seat 11 by press fitting. The nut 121 has a through hole penetrating along its axial direction, and the inner wall of the through hole is provided with a female screw portion 12b, which forms a screw feed mechanism together with a male screw portion 22c provided on the outer edge of the valve shaft portion 22. The valve shaft portion 22 is fixedly connected to the magnetic rotor unit 27, so that it can rotate synchronously with the rotation of the magnetic rotor. The magnetic rotor unit 27 senses the electromagnetic force of the electromagnetic coil and rotates, and includes a magnetic rotor 271 having magnetic poles in the circumferential direction, and a connecting plate 272 fixedly connected to or integrally disposed with the magnetic rotor 271, and the connecting plate 272 is fixedly connected to the valve shaft portion 22. Generally, a press-fit connection or a crimp connection is adopted, or the connecting plate 272 and the valve shaft portion 22 are connected by welding. A fixed stopper portion 12d is provided on the outer edge of the ceiling of the nut 121, and at least a portion of the fixed stopper portion 12d protrudes from the upper end surface of the nut 121. In other words, at least a portion of the fixed stopper portion 12d protrudes from the annular base of the nut in the axial direction, and the fixed stopper portion 12d in the drawings of this embodiment also protrudes from the annular base in the radial direction, and of course it may be arranged so that it does not protrude.

図14に示すように、磁気ローターユニット27は接続板272によって、弁軸部22に固定接続され、磁気ローターユニットは弁軸部22を回転させ、弁軸部22は弁ニードル21を回転させ、弁ニードル21は弁軸部22に対して、限定された弾性変位範囲内で、軸方向に沿って相対的に移動してもよいし、相対的に回転運動を行ってもよい。弁軸部22と弁ニードル21との係合形態について、第1実施形態の関する説明を参照すればよく、ここで、贅言していない。 As shown in FIG. 14, the magnetic rotor unit 27 is fixedly connected to the valve shaft portion 22 by a connecting plate 272, and the magnetic rotor unit rotates the valve shaft portion 22, which in turn rotates the valve needle 21, and the valve needle 21 may move relative to the valve shaft portion 22 along the axial direction within a limited range of elastic displacement, or may rotate relative to the valve shaft portion 22. For the engagement form between the valve shaft portion 22 and the valve needle 21, please refer to the explanation of the first embodiment, and no detailed explanation will be given here.

弁軸部22は略中空筒状を呈する部材であり、大径部221と小径部222とを含む。弁軸部22と、ブッシュ25、ナット12、弁ニードル21との組立関係について、第1実施形態の説明を参照すればよい。 The valve stem portion 22 is a member having a generally hollow cylindrical shape, and includes a large diameter portion 221 and a small diameter portion 222. For the assembly relationship between the valve stem portion 22, the bush 25, the nut 12, and the valve needle 21, please refer to the explanation of the first embodiment.

電子膨張弁の基本的な原理は以下の通り、コイル40は駆動パルス信号を受信し、周期的に変化する磁場を生成し、磁気ローター27は励起されて回動し、弁軸部22は接続板272に固定接続されるため、磁気ローター27と同期回動し、弁軸部とナットの間のねじ送り機構によって、磁気ローター27が回転運動を行うと同時に、軸方向で移動でき、弁ニードル21を軸方向に移動させ、弁ニードル21の針先調整部21aを、弁口113aに対して近接させ、又は離させ、電子膨張弁流量の線形開閉調整機能を実現する。図10の電子膨張弁は全閉状態のストッパ位置にあり、即ち、弁ニードル21の針先調整部21aは、そのストロークの最も下端にあり、この場合、弁口113aは全閉状態、又は設定した最小の開度状態にある。コイル40は磁気ローターを下に移動させるように駆動し、針先調整部21aが全閉状態又はそのストロークの最も下端位置にある場合、ストッパ機構は磁気ローターユニットの、下向きの運動のストロークに対して位置制限・ストッパを行うように配置される。 The basic principle of the electronic expansion valve is as follows: the coil 40 receives a driving pulse signal, generates a periodically changing magnetic field, and the magnetic rotor 27 is excited to rotate; the valve shaft 22 is fixedly connected to the connecting plate 272, so that it rotates synchronously with the magnetic rotor 27; the screw feed mechanism between the valve shaft and the nut allows the magnetic rotor 27 to move in the axial direction while rotating, moving the valve needle 21 in the axial direction, and moving the needle tip adjustment part 21a of the valve needle 21 closer to or farther from the valve port 113a, thereby realizing the linear opening and closing adjustment function of the electronic expansion valve flow rate. The electronic expansion valve in FIG. 10 is in the stopper position of the fully closed state, that is, the needle tip adjustment part 21a of the valve needle 21 is at the lowest end of its stroke, and in this case, the valve port 113a is in the fully closed state or in the set minimum opening state. The coil 40 drives the magnetic rotor to move downward, and when the needle tip adjustment unit 21a is in a fully closed state or at the lowest end of its stroke, the stopper mechanism is arranged to limit and stop the downward stroke of the magnetic rotor unit.

本実施形態において、弁軸部22に直接又は間接的に固定接続されるストッパ部材33をさらに含む。ここに記載の間接的な接続とは、ストッパ部材33が他の部品によって弁軸部22に固定接続されることを指す。ストッパ部材33は金属板材からプレス、折り曲げられることで形成され、その本体は環状を呈して、少なくとも一部の材料は軸方向に折り曲げられ、可動ストッパ部33aを形成する。具体的に、完全な環状金属板材を任意の位置で切断し、そのうちの1つの端部を軸方向に折り曲げることで、可動ストッパ部33aを形成する。無論、置換可能な形態として、環状ストッパ部材を成形した後、折り曲げなく、別途に溶接などの方式で、可動ストッパ部をストッパ部材に固定し、可動ストッパ部をストッパ部材の軸方向に沿って突出させても、同じように実現できる。 In this embodiment, the valve shaft portion 22 further includes a stopper member 33 that is directly or indirectly fixedly connected to the valve shaft portion 22. The indirect connection described here means that the stopper member 33 is fixedly connected to the valve shaft portion 22 by another part. The stopper member 33 is formed by pressing and bending a metal plate material, and its main body is annular, and at least a part of the material is bent in the axial direction to form the movable stopper portion 33a. Specifically, a completely annular metal plate material is cut at an arbitrary position, and one end of it is bent in the axial direction to form the movable stopper portion 33a. Of course, as an alternative form, after forming the annular stopper member, the movable stopper portion can be fixed to the stopper member by a separate method such as welding without bending, and the movable stopper portion can be made to protrude along the axial direction of the stopper member, which can be realized in the same way.

位置決めを便利にするために、本実施形態において、弁軸部22は大径部221の外縁には環状の凸リング部223が設けられ、これによって、接続板272は凸リング部223の上面によって位置決めされ、ストッパ部材33の少なくとも一部は環状凸リング部223の下面によって位置決めされ、これによって、弁軸部22で、ストッパ部材33の取付位置を正確に位置決めすることができる。無論、凸リング部223は必ずしも配置されるわけではなく、実際に、治具位置決めの方式でストッパ部材33と弁軸部22との相対位置に対して正確な位置制限を行ってもよい。弁軸部22とストッパ部材33とは溶接、又はカシメなどの他の方式で固定接続されてもよい。ストッパ部材33は弁軸部22に固定接続され、弁軸部22は磁気ローターユニット27に固定接続されるため、ストッパ部材33は磁気ローターユニット27に連れて同期回転する。図10に示すように、電子膨張弁が全閉状態にある場合、又は電子膨張弁の弁ニードル21の針先調整部21aが電子膨張弁に設定された最小開度にある場合、ストッパ部材33における下に折り曲げられた可動ストッパ部33aはナットユニット12の上端に設けられる固定ストッパ部12dと衝突し、磁気ローターユニットに対するストッパ・位置制限を実現する。図11に示すように、磁気ローターユニットが反対方向に回転すると、ストッパ部材33もそれに伴って上向きに変位し、この場合、可動ストッパ部33aは上向きに移動し、固定ストッパ部12dから離脱する。図11は本実施形態電子膨張弁の開け状態の断面図であり、図面の開度位置は約80%の開度にある。この場合、弁ニードル21の針先調整部21aは、弁口113aから離れた位置にあり、可動ストッパ部33aも、固定ストッパ部12dから離脱した位置状態にある。 For convenience of positioning, in this embodiment, the valve shaft portion 22 is provided with an annular convex ring portion 223 on the outer edge of the large diameter portion 221, whereby the connecting plate 272 is positioned by the upper surface of the convex ring portion 223, and at least a part of the stopper member 33 is positioned by the lower surface of the annular convex ring portion 223, so that the mounting position of the stopper member 33 can be accurately positioned on the valve shaft portion 22. Of course, the convex ring portion 223 is not necessarily positioned, and in fact, the relative position of the stopper member 33 and the valve shaft portion 22 may be accurately limited by a jig positioning method. The valve shaft portion 22 and the stopper member 33 may be fixedly connected by other methods such as welding or crimping. The stopper member 33 is fixedly connected to the valve shaft portion 22, and the valve shaft portion 22 is fixedly connected to the magnetic rotor unit 27, so that the stopper member 33 rotates synchronously with the magnetic rotor unit 27. As shown in FIG. 10, when the electronic expansion valve is in a fully closed state, or when the needle tip adjustment portion 21a of the valve needle 21 of the electronic expansion valve is at the minimum opening degree set in the electronic expansion valve, the movable stopper portion 33a bent downward in the stopper member 33 collides with the fixed stopper portion 12d provided at the upper end of the nut unit 12, realizing the stopper and position restriction for the magnetic rotor unit. As shown in FIG. 11, when the magnetic rotor unit rotates in the opposite direction, the stopper member 33 is displaced upward accordingly, and in this case, the movable stopper portion 33a moves upward and is separated from the fixed stopper portion 12d. FIG. 11 is a cross-sectional view of the electronic expansion valve in the open state of this embodiment, and the opening degree position in the drawing is about 80% opening degree. In this case, the needle tip adjustment portion 21a of the valve needle 21 is in a position away from the valve port 113a, and the movable stopper portion 33a is also in a position separated from the fixed stopper portion 12d.

図14に示すように、磁気ローターユニット27は接続板272によって、弁軸部22に固定接続され、磁気ローターユニットは弁軸部22を回転させ、弁軸部22は弁ニードル21を回転させ、弁ニードル21は弁軸部22に対して、限定された弾性変位範囲内で、軸方向に沿って相対的に移動してもよいし、相対的に回転運動を行ってもよい。弁軸部22と弁ニードル21との係合形態について、第1実施形態の関する説明を参照すればよく、ここで、贅言していない。 As shown in FIG. 14, the magnetic rotor unit 27 is fixedly connected to the valve shaft portion 22 by a connecting plate 272, and the magnetic rotor unit rotates the valve shaft portion 22, which in turn rotates the valve needle 21, and the valve needle 21 may move relative to the valve shaft portion 22 along the axial direction within a limited range of elastic displacement, or may rotate relative to the valve shaft portion 22. For the engagement form between the valve shaft portion 22 and the valve needle 21, please refer to the explanation of the first embodiment, and no detailed explanation will be given here.

本実施形態が提供する電子膨張弁において、ナット材料はPPS樹脂、又はPEEK樹脂、若しくはPTFE樹脂から射出成形され、樹脂ナットの上端部には、固定ストッパ部が一体で射出成形され、ストッパ部材は金属板材からプレスされることで形成され、部品の加工工程は相対的によく、金属材質のストッパ部材はよりよい耐摩耗性を有し、ストッパ機構の使用寿命を向上させ、製造コストも相対的に低い。 In the electronic expansion valve provided by this embodiment, the nut material is injection molded from PPS resin, PEEK resin, or PTFE resin, and the fixed stopper part is integrally injection molded at the upper end of the resin nut. The stopper member is formed by pressing a metal plate material, so the part processing process is relatively good, and the metal stopper member has better wear resistance, improving the service life of the stopper mechanism, and the manufacturing cost is relatively low.

第4実施形態
以下、図15~図16を結合し、本出願の第4の実施形態を説明する。
Fourth Embodiment Hereinafter, a fourth embodiment of the present application will be described with reference to FIGS.

ここで、本実施形態と第3実施形態との差異は、可動ストッパ部の差異にあるため、本実施形態は主に可動ストッパ部の構成を説明する。他の部品について、第1実施形態及び第3実施形態を参照して理解すればよい。 The difference between this embodiment and the third embodiment is in the movable stopper portion, so this embodiment will mainly explain the configuration of the movable stopper portion. The other parts can be understood by referring to the first and third embodiments.

図15、図16を参照し、図15は本出願の第4の実施形態が提供する接続板の構成模式図であり、図16は本出願の第4の実施形態が提供する磁気ローターユニットと、弁軸部、弁ニードルなどの部材との係合構成の局所断面図である。図16の方位を基準として、図15は底面視野角の接続板の模式図を示す。本実施形態において、接続板272は金属粉末から圧縮、焼結されることで成形され、大体、中心貫通孔を有する板状構成であり、その中心貫通孔の内壁部2721は弁軸部22に固定接続され、一般的に、締り圧入接続、カシメ接続を採用し、或いは接続板272と弁軸部22とを溶接して接続する。接続板272と弁軸部22との接触面積を増やすために、内壁部2721の高さを適切に大きくしてもよく、これによって、接続板272の縦断面は略L状を呈する。第1実施形態に記載するように、接続板272と磁気ローター271とは射出されるように固定接続され、即ち、接続板272をインサートとして、金型内腔に配置してから、磁気材料を注入し、磁気ローター271を形成し、このように、接続板272の板状外縁部2723は磁気材料で被覆される。接続板272の、弁口方向に向かう一側には可動ストッパ部2722が設けられ、即ち、可動ストッパ部2722は接続板の一側の表面に突出し、具体的に、可動ストッパ部2722と接続板の基体とは、金属粉末から一体で圧縮、焼結されるように成形され、この加工方式は、可動ストッパ部2722の強度を効果的に向上させ、加工が便利であり、ナットの固定ストッパ部と係合するための可動ストッパ部の部品を別途に追加する必要がなく、接続板と一体で製造されることができる。無論、置換可能な製造方法として、金属粉末を採用して金型によってビレットに射出された後、焼結成形されてもよい。 Referring to Figures 15 and 16, Figure 15 is a schematic diagram of the configuration of the connection plate provided by the fourth embodiment of the present application, and Figure 16 is a local cross-sectional view of the engagement configuration between the magnetic rotor unit provided by the fourth embodiment of the present application and components such as the valve shaft and the valve needle. Based on the orientation of Figure 16, Figure 15 shows a schematic diagram of the connection plate at the bottom viewing angle. In this embodiment, the connection plate 272 is formed by compressing and sintering metal powder, and is generally a plate-like configuration with a central through hole, and the inner wall portion 2721 of the central through hole is fixedly connected to the valve shaft portion 22, and generally adopts a tightening press-fit connection, a crimping connection, or the connection plate 272 and the valve shaft portion 22 are connected by welding. In order to increase the contact area between the connection plate 272 and the valve shaft portion 22, the height of the inner wall portion 2721 may be appropriately increased, so that the vertical section of the connection plate 272 is approximately L-shaped. As described in the first embodiment, the connection plate 272 and the magnetic rotor 271 are fixedly connected by injection, that is, the connection plate 272 is inserted into the cavity of the mold, and then the magnetic material is injected to form the magnetic rotor 271, and thus the plate-shaped outer edge 2723 of the connection plate 272 is covered with the magnetic material. A movable stopper 2722 is provided on one side of the connection plate 272 facing the valve port direction, that is, the movable stopper 2722 protrudes from the surface of one side of the connection plate, and specifically, the movable stopper 2722 and the base of the connection plate are molded by being compressed and sintered as a single unit from metal powder, and this processing method effectively improves the strength of the movable stopper 2722, is convenient to process, and does not require the addition of a separate part of the movable stopper to engage with the fixed stopper of the nut, and can be manufactured as a single unit with the connection plate. Of course, as an alternative manufacturing method, metal powder may be used to be injected into a billet by a mold, and then sintered.

磁気ローター271は励起されて回転すると、接続板272、弁軸部22も同期回転し、弁軸部22は、弁ニードル21及び弁軸部の内部に設けられる他の構成部品を回転させる。弁ニードル21は弁軸部22の内孔に嵌着され、弁ニードル21と弁軸部22との間は弾性接続である。弁ニードル21は弁軸部22に対して、限定された弾性変位範囲内で、軸方向に相対的に移動してもよく、相対的に回転運動を行ってもよい。 When the magnetic rotor 271 is excited and rotates, the connecting plate 272 and the valve shaft 22 also rotate synchronously, and the valve shaft 22 rotates the valve needle 21 and other components provided inside the valve shaft. The valve needle 21 is fitted into the inner hole of the valve shaft 22, and there is an elastic connection between the valve needle 21 and the valve shaft 22. The valve needle 21 may move axially relative to the valve shaft 22 within a limited elastic displacement range, and may perform a relative rotational movement.

電子膨張弁が全閉状態にある場合、又は電子膨張弁の弁ニードルの針先調整部が電子膨張弁に設定された最小開度にある場合、磁気ローターユニットの下向きの回動のストロークに対して、ストッパ・位置制限を行う必要があり、この場合、接続板272の、下に突出する可動ストッパ部2722は、ナットの上端に設けられる固定ストッパ部12dに当接され、ストッパ・位置制限の作用を実現する。磁気ローターユニットが開弁方向に回動すると、可動ストッパ部2722はローター部材に連れて回転して上に変位し、固定ストッパ部12dから離脱する。 When the electronic expansion valve is in a fully closed state, or when the needle tip adjustment part of the valve needle of the electronic expansion valve is at the minimum opening set in the electronic expansion valve, it is necessary to provide a stopper/position limit to the downward rotation stroke of the magnetic rotor unit. In this case, the movable stopper part 2722 protruding downward of the connection plate 272 abuts against the fixed stopper part 12d provided at the upper end of the nut, realizing the stopper/position limiting function. When the magnetic rotor unit rotates in the valve opening direction, the movable stopper part 2722 rotates with the rotor member and displaces upward, and detaches from the fixed stopper part 12d.

第5実施形態
以下は図17~図26を結合し、本出願の第5実施形態を説明する。
Fifth Embodiment The fifth embodiment of the present application will be described below in conjunction with FIGS.

本実施形態は第1実施形態に基づきさらなる改良である。本実施形態において、第1実施形態の構成及び機能と基本的に同じである部材に対して同一符号を採用し、ただ簡単に説明し、当業者は第1実施形態の関する説明を参照して理解すればよい。 This embodiment is a further improvement based on the first embodiment. In this embodiment, the same reference numerals are used for components that are basically the same in configuration and function as those in the first embodiment, and only a brief description is given, and those skilled in the art can understand it by referring to the description of the first embodiment.

図17は、第5実施形態の電子膨張弁の全閉状態がストッパ位置にある模式図であり、図18は図17におけるI部の拡大図であり、図19は図17におけるII部の拡大図であり、図20は第5実施形態の電子膨張弁がばね力除荷点にある際の断面図であり、図21は図20におけるIII部の拡大図であり、図22は図20におけるIV部の拡大図であり、図23は第5実施形態の電子膨張弁が開け臨界点にある際の断面図であり、図24は図23におけるV部の拡大図であり、図25は図23におけるVI部の拡大図であり、図26は第5実施形態の電子膨張弁が全開状態にある断面図である。 Figure 17 is a schematic diagram of the electronic expansion valve of the fifth embodiment in the fully closed state at the stopper position, Figure 18 is an enlarged view of part I in Figure 17, Figure 19 is an enlarged view of part II in Figure 17, Figure 20 is a cross-sectional view of the electronic expansion valve of the fifth embodiment at the spring force unloading point, Figure 21 is an enlarged view of part III in Figure 20, Figure 22 is an enlarged view of part IV in Figure 20, Figure 23 is a cross-sectional view of the electronic expansion valve of the fifth embodiment at the open critical point, Figure 24 is an enlarged view of part V in Figure 23, Figure 25 is an enlarged view of part VI in Figure 23, and Figure 26 is a cross-sectional view of the electronic expansion valve of the fifth embodiment in the fully open state.

電子膨張弁は弁ボディ部材とコイル部材40とを含み、弁ボディ部材は弁座11、接続部材50、及びハウジング30を含み、弁座11、接続部材50、ハウジング30、ナット12の構成及び係合形態について、第1実施形態の説明を参照すればよい。弁座11は弁口部113、第1接続口部111、及び第2接続口部112を含み、冷媒が第1接続口部111から電子膨張弁に流入し、弁口を介して第2接続口部112に流出する方向を第1流れ方向に定義し、冷媒が第2接続口部112から電子膨張弁に流入し、弁口を介して第1接続口部111に流出する方向を第2流れ方向に定義する。本実施形態は第1流れ方向を例として説明する。 The electronic expansion valve includes a valve body member and a coil member 40, and the valve body member includes a valve seat 11, a connection member 50, and a housing 30. The configuration and engagement form of the valve seat 11, the connection member 50, the housing 30, and the nut 12 can be described with reference to the description of the first embodiment. The valve seat 11 includes a valve port portion 113, a first connection port portion 111, and a second connection port portion 112. The direction in which the refrigerant flows into the electronic expansion valve from the first connection port portion 111 and flows out to the second connection port portion 112 through the valve port is defined as the first flow direction, and the direction in which the refrigerant flows into the electronic expansion valve from the second connection port portion 112 and flows out to the first connection port portion 111 through the valve port is defined as the second flow direction. This embodiment will be described using the first flow direction as an example.

電子膨張弁は弁座11に固定接続されるナットユニット12を含む。ナットユニット12は、固定接続されるナット121と接続シート122とを含む。ナット121はその軸方向に沿って貫通する貫通孔を有し、当該貫通孔の内側壁には雌ねじ部12bが設けられ、雌ねじ部12bは、弁軸部22の外縁部に設けられる雄ねじ部22cとねじ送り機構を形成するために用いられる。ナットの内側壁には第1ガイド部12aが設けられ、第1ガイド部12aは雌ねじ部12bの下方に設けられ、弁ニードル21に、円周方向のガイド・センタリング作用を提供でき、弁ニードル21は弁ニードルガイド部21bを含み、即ち、第1ガイド部12aと弁ニードルガイド部21bとは小さな隙間嵌めであり、弁軸部22によって、弁ニードル21はナットの第1ガイド部12aに沿って、回転又は上下変位することができる。ここに記載の第1ガイド部12はナットの内側壁に設けられる1つの部位を指し、弁ニードルガイド部21bは、弁ニードルの外縁部に設けられる1つの部位を指す。ナットの内側壁の相対的な上部には、弁軸部22に円周方向のガイド・センタリング作用を提供できる第2ガイド部12cが設けられる。弁軸部22の外縁部には弁軸ガイド部22bが設けられ、弁軸ガイド部22bと第2ガイド部12cとは小さな隙間嵌めであり、磁気ローターユニットによって、弁軸部22は第2ガイド部12cに沿って回転又は上下変位することができる。以上に記載の第1ガイド部12a、第2ガイド部12cはいずれもナット貫通孔の内壁の一部であり、ナット外縁部の形状及び接続シート122の、ナット外縁部での配置位置は、第1ガイド部及び第2ガイド部の配置に影響しない。 The electronic expansion valve includes a nut unit 12 fixedly connected to the valve seat 11. The nut unit 12 includes a nut 121 and a connection seat 122 which are fixedly connected. The nut 121 has a through hole penetrating along its axial direction, and the inner wall of the through hole is provided with a female thread portion 12b, which is used to form a screw feed mechanism with a male thread portion 22c provided on the outer edge of the valve shaft portion 22. The inner wall of the nut is provided with a first guide portion 12a, which is provided below the female thread portion 12b and can provide a circumferential guide and centering action for the valve needle 21, and the valve needle 21 includes a valve needle guide portion 21b, that is, the first guide portion 12a and the valve needle guide portion 21b are a small clearance fit, and the valve shaft portion 22 allows the valve needle 21 to rotate or move up and down along the first guide portion 12a of the nut. The first guide portion 12 described here refers to a portion provided on the inner wall of the nut, and the valve needle guide portion 21b refers to a portion provided on the outer edge of the valve needle. The second guide portion 12c is provided at a relatively upper portion of the inner wall of the nut, which can provide a circumferential guide and centering action for the valve stem portion 22. The valve stem guide portion 22b is provided at the outer edge of the valve stem portion 22, and the valve stem guide portion 22b and the second guide portion 12c are a small clearance fit, and the valve stem portion 22 can rotate or move up and down along the second guide portion 12c by the magnetic rotor unit. The first guide portion 12a and the second guide portion 12c described above are both part of the inner wall of the nut through hole, and the shape of the outer edge of the nut and the position of the connection sheet 122 on the outer edge of the nut do not affect the arrangement of the first guide portion and the second guide portion.

ナット121の天井部の外縁には固定ストッパ部12dが設けられ、固定ストッパ部12dの少なくとも一部はナット121の上端面から突出し、磁気ローターユニットに設けられる可動ストッパ部20aと係合し、磁気ローターユニットに対するストッパを実現する。本実施形態の可動ストッパ部20a及び固定ストッパ部12dは第1実施形態と同様であり、無論、可動ストッパ部は完全に、第3実施形態又は第4実施形態の構成を採用でき、固定ストッパ部は完全に、第2実施形態の構成を採用できる。磁気ローターユニットがストロークの最も下端まで下に移動した場合、可動ストッパ部20aは固定ストッパ部12dに当接され、磁気ローターユニットは継続的に回動できず、磁気ローター部材の、下向きの運動のストロークを制御できる。 A fixed stopper portion 12d is provided on the outer edge of the ceiling of the nut 121, and at least a part of the fixed stopper portion 12d protrudes from the upper end surface of the nut 121 and engages with the movable stopper portion 20a provided on the magnetic rotor unit to realize a stopper for the magnetic rotor unit. The movable stopper portion 20a and the fixed stopper portion 12d of this embodiment are the same as those of the first embodiment, and of course the movable stopper portion can completely adopt the configuration of the third or fourth embodiment, and the fixed stopper portion can completely adopt the configuration of the second embodiment. When the magnetic rotor unit moves down to the lowest end of the stroke, the movable stopper portion 20a abuts against the fixed stopper portion 12d, the magnetic rotor unit cannot continue to rotate, and the downward movement stroke of the magnetic rotor member can be controlled.

磁気ローターユニット27は電磁コイルの電磁力を感知して回動しており、円周方向で磁極を有する磁気ローター271、及び磁気ローター271に固定接続され、又は一体配置される接続板272を含む。弁軸部22は略中空筒状を呈する部材であり、大径部221と小径部222とを含む。弁軸部22は接続板272に固定接続される。大径部221の外縁部の一部は、磁気ローターユニット27の接続板272に固定接続されるためのローター固定部22aとして形成され、大径部221の外縁部の他の一部は、ナットの第2ガイド部12cに小さな隙間嵌めされるための弁軸ガイド部22bとして形成され、ガイドを実現する。ローター固定部22aは弁軸ガイド部22bの相対的な上方に位置し、弁軸ガイド部22bは大体、磁気ローター271から囲まれた空間内に位置する。小径部222の外縁部には雄ねじ部22cが設けられ、雄ねじ部22cは、ナットに設けられる雌ねじ部12bとねじ送り機構を形成するために用いられる。弁軸部22は第1貫通孔部22e及び第2貫通孔部22dを含み、第1貫通孔部22eは大体、大径部221の内孔部分に対応し、第2貫通孔部22dは大体、小径部222の内孔部分に対応し、このように、第1貫通孔部22eの内径は第2貫通孔部22dの内径より大きく、第1貫通孔部22eと第2貫通孔部22dの間に弁軸段差部22fが形成される。 The magnetic rotor unit 27 senses the electromagnetic force of the electromagnetic coil and rotates, and includes a magnetic rotor 271 having magnetic poles in the circumferential direction, and a connection plate 272 fixedly connected to the magnetic rotor 271 or integrally arranged. The valve shaft portion 22 is a member having a substantially hollow cylindrical shape and includes a large diameter portion 221 and a small diameter portion 222. The valve shaft portion 22 is fixedly connected to the connection plate 272. A part of the outer edge of the large diameter portion 221 is formed as a rotor fixing portion 22a for fixed connection to the connection plate 272 of the magnetic rotor unit 27, and another part of the outer edge of the large diameter portion 221 is formed as a valve shaft guide portion 22b for fitting into the second guide portion 12c of the nut with a small gap, thereby realizing a guide. The rotor fixing portion 22a is located relatively above the valve shaft guide portion 22b, and the valve shaft guide portion 22b is generally located within the space surrounded by the magnetic rotor 271. A male thread 22c is provided on the outer edge of the small diameter portion 222, and the male thread 22c is used to form a screw feed mechanism together with the female thread 12b provided on the nut. The valve shaft portion 22 includes a first through hole portion 22e and a second through hole portion 22d, where the first through hole portion 22e generally corresponds to the inner hole portion of the large diameter portion 221, and the second through hole portion 22d generally corresponds to the inner hole portion of the small diameter portion 222. Thus, the inner diameter of the first through hole portion 22e is larger than the inner diameter of the second through hole portion 22d, and a valve shaft step portion 22f is formed between the first through hole portion 22e and the second through hole portion 22d.

ブッシュ25は弁軸部22に固定接続されており、略中空の筒状を呈して、その少なくとも一部の外縁は第1貫通孔部22eの少なくとも一部の内縁と係合する。弁軸部22の大径部221とブッシュ25とは空間を形成し、圧縮ばね24は当該空間内に位置し、圧縮ばね24の上端部はブッシュ25の底端部に当接され、ここに記載の当接は、直接的な当接であってもよいし、間接的な当接であってもよく、例えば、ばねとブッシュとの間にガスケットを配置することで、間接的な当接を実現する。圧縮ばね24の他端はワッシャ部23に当接される。ワッシャ部23は、その一端が圧縮ばね24に当接され、他端が弁ニードル21に当接される。 The bushing 25 is fixedly connected to the valve shaft 22 and has a generally hollow cylindrical shape, with at least a portion of its outer edge engaging with at least a portion of the inner edge of the first through-hole 22e. The large diameter portion 221 of the valve shaft 22 and the bushing 25 form a space, the compression spring 24 is located in the space, and the upper end of the compression spring 24 abuts against the bottom end of the bushing 25. The abutment described here may be direct abutment or indirect abutment. For example, the indirect abutment is achieved by disposing a gasket between the spring and the bushing. The other end of the compression spring 24 abuts against the washer portion 23. One end of the washer portion 23 abuts against the compression spring 24 and the other end abuts against the valve needle 21.

弁ニードル21は、ブッシュ25、弁軸部22及びナット12によって共同で限定された中心通路に穿設され、圧縮ばね24は弁ニードル21の外縁部の一部の周辺に外嵌される。弁ニードル21全体は棒状を呈し、複数段の異なる外径を有し、弁ニードル21の最も底端は針先調整部21aであり、弁ニードル21は、ナットの第1ガイド部12aに小隙間嵌めされための弁ニードルガイド部21bを含み、磁気ローターの回動過程で、ナットの第1ガイド部12aは、弁ニードル21に円周方向のガイド・センタリング作用を提供する。第1実施形態に類似し、弁ニードルのストローク内で、弁ニードルの外縁には、ナットの第1ガイド部12aとガイド作用を形成するための、滑らかな弁ニードルガイド部21bが設けられるように保証すればよい。弁ニードル21は、ガスケット23に当接されるためのガスケット当接部21eを含み、これによって、ガスケット23が弁ニードルに当接された後、弁ニードルの中心軸線方向に沿って下に変位することがない。弁ニードル21の弁ニードルガイド部の上方には、それぞれ第1軸状部21c及び第2軸状部21dが設けられ、第1軸状部21cの外径は第2軸状部21dの外径より大きいとともに、弁ニードルガイド部における弁ニードルの外径より小さい。このように、第1軸状部21cと第2軸状部21dの間には1つの階段が形成され、当該階段はガスケット当接部21eの1つの具体的な実施例としてもよく、ガスケット23の下端面はガスケット当接部21eに当接され、本実施形態において、ガスケット23の数は2つであり、下側にあるガスケットはガスケット当接部21eに当接され、ガスケット23の上部には圧縮ばね24が取り付けられ、即ち、圧縮ばね24の下端はガスケット23に当接され、圧縮ばね24の上端はブッシュ25の底端に当接される。ガスケット23、圧縮ばね24はいずれも弁軸部22の大径部とブッシュ25によって限定された空間内に収容される。具体的に、組み立てる場合、弁ニードル21は図4の下方から上向きに弁軸部22の中心貫通孔に挿着され、これによって、第1軸状部は弁軸部小径部222の貫通孔内に、貫通するように配置され、互いに運動でき、第2軸状部21dは、ブッシュ25の中心貫通孔に、貫通するように配置されるとともに、ブッシュ25の上端面から突き抜ける。第2軸状部21dの上端部には弁ニードルスリーブ26が外嵌されるように固定され、弁ニードルスリーブ26の外径がブッシュ25の内径より大きいため、弁ニードル21は弁ニードルスリーブ26によって制限され、弁ニードル21は弁ニードルスリーブ26に固定接続された後、ブッシュ25及び弁軸部22の中心貫通孔から下に脱出することなくなる。弁ニードル21と磁気ローターユニット27の間にはフローティング接続を形成し、弁ニードル21は弁軸部22に対して上に運動すると、軸方向で、圧縮ばね24をさらに圧縮でき、限定された範囲内で、弁ニードル21と弁軸部22とは相対移動できる。弁ニードルの第1軸状部21cと弁軸部22の第2貫通孔部22dとは隙間嵌めであり、第2軸状部21dとブッシュ25の中心貫通孔とも隙間嵌めであるため、弁ニードル21は弁軸部22に対しても、円周方向に沿って相対回動できる。 The valve needle 21 is drilled into a central passage jointly defined by the bush 25, the valve shaft portion 22 and the nut 12, and the compression spring 24 is fitted around a part of the outer edge of the valve needle 21. The entire valve needle 21 is rod-shaped and has different outer diameters in multiple stages, the bottom end of the valve needle 21 is the needle tip adjustment portion 21a, and the valve needle 21 includes a valve needle guide portion 21b for small clearance fit into the first guide portion 12a of the nut, and during the rotation of the magnetic rotor, the first guide portion 12a of the nut provides a circumferential guide and centering effect for the valve needle 21. Similar to the first embodiment, it is only necessary to ensure that within the stroke of the valve needle, the outer edge of the valve needle is provided with a smooth valve needle guide portion 21b for forming a guide effect with the first guide portion 12a of the nut. The valve needle 21 includes a gasket abutment portion 21e for abutting against the gasket 23, so that the gasket 23 will not displace downward along the central axis of the valve needle after abutting against the valve needle. A first shaft portion 21c and a second shaft portion 21d are provided above the valve needle guide portion of the valve needle 21, and the outer diameter of the first shaft portion 21c is larger than the outer diameter of the second shaft portion 21d and smaller than the outer diameter of the valve needle at the valve needle guide portion. In this way, a step is formed between the first shaft portion 21c and the second shaft portion 21d, which may be a specific example of the gasket abutment portion 21e, and the lower end surface of the gasket 23 abuts against the gasket abutment portion 21e, in this embodiment, there are two gaskets 23, the lower gasket abuts against the gasket abutment portion 21e, and the compression spring 24 is attached to the upper part of the gasket 23, that is, the lower end of the compression spring 24 abuts against the gasket 23, and the upper end of the compression spring 24 abuts against the bottom end of the bush 25. The gasket 23 and the compression spring 24 are both accommodated in the space defined by the large diameter portion of the valve shaft portion 22 and the bush 25. 4, the first shaft-shaped portion is disposed in a penetrating manner within the penetrating hole of the valve shaft small-diameter portion 222 and can move relative to each other, and the second shaft-shaped portion 21d is disposed in a penetrating manner within the penetrating hole of the bushing 25 and protrudes through the upper end surface of the bushing 25. The valve needle sleeve 26 is fixedly fitted onto the upper end of the second shaft-shaped portion 21d, and since the outer diameter of the valve needle sleeve 26 is larger than the inner diameter of the bushing 25, the valve needle 21 is restricted by the valve needle sleeve 26, and the valve needle 21 will not escape downward from the central through-hole of the bushing 25 and the valve shaft 22 after being fixedly connected to the valve needle sleeve 26. A floating connection is formed between the valve needle 21 and the magnetic rotor unit 27. When the valve needle 21 moves upward relative to the valve shaft portion 22, the compression spring 24 can be further compressed in the axial direction, and the valve needle 21 and the valve shaft portion 22 can move relative to each other within a limited range. The first shaft portion 21c of the valve needle and the second through hole portion 22d of the valve shaft portion 22 are a clearance fit, and the second shaft portion 21d is also a clearance fit with the central through hole of the bush 25, so the valve needle 21 can also rotate relative to the valve shaft portion 22 in the circumferential direction.

ここで、第1実施形態に類似し、弁ニードルガイド部、第1軸状部、第2軸状部はいずれも本技術案に果たす作用に応じて命名され、弁ニードルは図4の3段軸状部を組み合わせて形成されるように、機械的に理解され又は限定されるべきではない。又は、弁ニードル21は段階的な組立形態で製造され、例えば、隣接する2段の間でねじ接続又は溶接を実施する方式を採用する。実際、以上のように、図示の構成は加工を便利にする実施例のみである。 Here, similar to the first embodiment, the valve needle guide portion, the first shaft portion, and the second shaft portion are all named according to the functions they perform in the technical solution, and the valve needle should not be mechanically understood or limited to being formed by combining the three-stage shaft portion in FIG. 4. Alternatively, the valve needle 21 is manufactured in a staged assembly form, for example, by adopting a method of threading or welding between two adjacent stages. In fact, as described above, the illustrated configuration is only an example for convenience of processing.

弁ニードルスリーブ26の外周には戻しバネ28が外嵌され、戻しバネ28の下端はブッシュ25又は弁軸部22の上端面に当接され、具体的な当接位置は、ブッシュ25と弁軸部22との相対的な位置関係、及び戻しバネ28の直径に応じて決定されてもよい。図4に示すように、ブッシュ25と弁軸部22との先端は揃え、又は基本的に揃えるように配置され、この場合、戻しバネは弁軸部22に当接されるように配置されてもよく、ブッシュ25に当接されるように配置されてもよく、又は弁軸部22及びブッシュ25に同時に当接されるように配置されてもよい。戻しバネ28の高さが弁ニードルスリーブ26とハウジング30の間の距離より大きいため、戻しバネ28は弁ニードルスリーブ26の外周から脱落することない。 The return spring 28 is fitted around the outer periphery of the valve needle sleeve 26, and the lower end of the return spring 28 abuts against the upper end surface of the bush 25 or the valve stem 22. The specific abutment position may be determined according to the relative positional relationship between the bush 25 and the valve stem 22 and the diameter of the return spring 28. As shown in FIG. 4, the tips of the bush 25 and the valve stem 22 are aligned or essentially aligned. In this case, the return spring may be arranged to abut against the valve stem 22, may be arranged to abut against the bush 25, or may be arranged to abut against the valve stem 22 and the bush 25 simultaneously. Since the height of the return spring 28 is greater than the distance between the valve needle sleeve 26 and the housing 30, the return spring 28 will not fall off the outer periphery of the valve needle sleeve 26.

電子膨張弁のコイル40は駆動パルス信号を受信し、周期的に変化する磁場を生成し、磁気ローター27は励起されて回動し、弁軸部22は接続板272に固定接続されるため、磁気ローター27と同期回動し、弁軸部とナットの間のねじ送り機構によって、磁気ローター27が回転運動を行うと同時に、軸方向で移動でき、弁ニードル21を軸方向に移動させ、弁ニードル21の針先調整部21aを、弁口113aに対して近接させ又は離させ、電子膨張弁流量の線形開閉調整機能を実現する。図17の電子膨張弁は全閉状態のストッパ位置にあり、即ち、弁ニードルの針先調整部21aは、そのストロークの最も下端にあり、弁ニードルは弁口部113に当接され、この場合、弁口113aは全閉状態にある。磁気ローターユニット27は図17の状態から、弁軸部の雄ねじ部22cが上にナット12の雌ねじ部12bから脱出するまで、開弁方向に向かって継続的に上に回転した場合、戻しバネ28の上端はハウジング30の頂壁に既に当接され、戻しバネ28は圧縮された状態にある。この場合、弁軸部とナットとの間のねじ送り機構は既に互いに離脱したため、磁気ローターユニット27は継続的に上に移動しない。閉弁動作を行う必要がある場合、磁気ローターユニット27は回転すると同時に、戻しバネ28の下向きのばね力を受け、これによって、弁軸部22の雄ねじ部22cとナットの雌ねじ部12bとを再びねじ噛合させるように促進し、ねじ送り機構を改めて組み合わせるように確保する。 The coil 40 of the electronic expansion valve receives the driving pulse signal, generates a periodically changing magnetic field, and the magnetic rotor 27 is excited to rotate. The valve shaft 22 is fixedly connected to the connecting plate 272, so that it rotates synchronously with the magnetic rotor 27. The screw feed mechanism between the valve shaft and the nut allows the magnetic rotor 27 to move in the axial direction while rotating, moving the valve needle 21 in the axial direction, and moving the needle tip adjustment part 21a of the valve needle 21 close to or away from the valve port 113a, thereby realizing the linear opening and closing adjustment function of the electronic expansion valve flow rate. The electronic expansion valve in FIG. 17 is in the stopper position of the fully closed state, that is, the needle tip adjustment part 21a of the valve needle is at the lowest end of its stroke, and the valve needle is abutted against the valve port part 113, in which case the valve port 113a is in the fully closed state. When the magnetic rotor unit 27 continues to rotate upward in the valve opening direction from the state shown in FIG. 17 until the male threaded portion 22c of the valve stem escapes from the female threaded portion 12b of the nut 12, the upper end of the return spring 28 has already abutted against the top wall of the housing 30, and the return spring 28 is in a compressed state. In this case, the screw feed mechanism between the valve stem and the nut has already disengaged from each other, so the magnetic rotor unit 27 does not continue to move upward. When it is necessary to perform a valve closing operation, the magnetic rotor unit 27 rotates and at the same time receives the downward spring force of the return spring 28, which promotes the male threaded portion 22c of the valve stem 22 and the female threaded portion 12b of the nut to be screw-engaged again, ensuring that the screw feed mechanism is reassembled.

図18、図19を参照し、図18は図17におけるI部の拡大図であり、図19は図17におけるII部の拡大図である。図17は電子膨張弁が全閉状態にあるストッパ位置であり、即ち、可動ストッパ部20aがちょうど、固定ストッパ部12dに衝突して接触する位置であり、この場合、弁ニードル21の針先調整部21aはそのストロークの最も下端にあり、弁ニードルは弁口部113に当接される。図19に示すように、この場合、弁ニードル21は、圧縮ばね24がガスケット23によって図面の下方に伝達するばね力を受け、ばね力は弁ニードル21によって弁口部113における弁ニードルと接触する部位に伝達される。本実施形態はガスケットの数が2つであることに対して説明し、ガスケット23は第1ガスケット231及び第2ガスケット232を含み、図17の図示を基準として、第1ガスケット231は第2ガスケット232の上方に位置するとともに、第2ガスケット232に当接される。置換可能な実施形態として、ガスケットの数は1つであってもよいし、2つ以上であってもよい。 Referring to Figures 18 and 19, Figure 18 is an enlarged view of part I in Figure 17, and Figure 19 is an enlarged view of part II in Figure 17. Figure 17 shows the stopper position where the electronic expansion valve is in a fully closed state, that is, the position where the movable stopper part 20a collides with and contacts the fixed stopper part 12d. In this case, the needle tip adjustment part 21a of the valve needle 21 is at the lowest end of its stroke, and the valve needle abuts against the valve orifice part 113. As shown in Figure 19, in this case, the valve needle 21 receives the spring force transmitted by the compression spring 24 to the lower part of the drawing through the gasket 23, and the spring force is transmitted by the valve needle 21 to the part of the valve orifice part 113 that contacts the valve needle. In this embodiment, the number of gaskets is two, and the gasket 23 includes a first gasket 231 and a second gasket 232. Based on the illustration in FIG. 17, the first gasket 231 is positioned above the second gasket 232 and abuts against the second gasket 232. In an alternative embodiment, the number of gaskets may be one or more than two.

圧縮ばね24の上端部はブッシュ25の下端部に当接され、圧縮ばねの下端部は第1ガスケット231の上端面に当接され、第2ガスケット232の下端部は弁ニードル21のガスケット当接部21eに当接され、この場合、第2ガスケット232の下端面から、弁軸部22の弁軸段差部22fまで一定の距離kを有し、ここで、第2ガスケット232はさらに、図面の下方に向かって、距離がkである変位量を生成できる。この場合、圧縮ばね24のばね力はガスケット23及び弁ニードル21の伝達によって、最後、弁口部における弁ニードルと接触する密封部位に作用する。 The upper end of the compression spring 24 abuts against the lower end of the bush 25, the lower end of the compression spring abuts against the upper end surface of the first gasket 231, and the lower end of the second gasket 232 abuts against the gasket abutment portion 21e of the valve needle 21. In this case, there is a certain distance k from the lower end surface of the second gasket 232 to the valve stem step portion 22f of the valve stem portion 22, and here, the second gasket 232 can further generate a displacement amount of distance k toward the bottom of the drawing. In this case, the spring force of the compression spring 24 is transmitted through the gasket 23 and the valve needle 21, and finally acts on the sealing portion that contacts the valve needle at the valve opening portion.

弁ニードル21の上端部には弁ニードルスリーブ26が外嵌されるように固定され、弁ニードルスリーブ26の下端部から、ブッシュ25の上端部まで一定の距離hを有し、且つh>kを満たす。また、図19に示すように、本実施形態の弁ニードルスリーブ26の外径はブッシュ25の外径より小さい。当業者が理解できるように、置換可能な形態として、弁ニードルスリーブ26の外径はブッシュ25の外径より大きくされてもよく、この場合、弁軸部22の、軸方向での高さがブッシュ25の高さより大きい場合、弁ニードルスリーブ26はどんな場合でも、ブッシュ25に当接されることなく、下向きに移動する場合、弁軸部22に当接される。この際のhは、弁ニードルスリーブ26の下端部から弁軸部22の上端部までの距離である。 The valve needle sleeve 26 is fixed to the upper end of the valve needle 21 so as to be fitted externally, and there is a certain distance h from the lower end of the valve needle sleeve 26 to the upper end of the bush 25, and h>k is satisfied. Also, as shown in FIG. 19, the outer diameter of the valve needle sleeve 26 in this embodiment is smaller than the outer diameter of the bush 25. As can be understood by those skilled in the art, as an alternative form, the outer diameter of the valve needle sleeve 26 may be larger than the outer diameter of the bush 25, and in this case, when the axial height of the valve stem 22 is greater than the height of the bush 25, the valve needle sleeve 26 will not abut against the bush 25 in any case, but will abut against the valve stem 22 when moving downward. In this case, h is the distance from the lower end of the valve needle sleeve 26 to the upper end of the valve stem 22.

図17の状態を始点として、磁気ローターユニット27はステータコイル40の励起駆動によって上向きに回転し、可動ストッパ部20aは回転して固定ストッパ部12dから離脱し始め、ねじ送り機構の作用で、磁気ローターユニット27は弁軸部22とともに、同期に上に変位し、上げられた高さはちょうどkである場合、電子膨張弁はばね力除荷点にある。 Starting from the state in FIG. 17, the magnetic rotor unit 27 rotates upwards due to the excitation drive of the stator coil 40, the movable stopper portion 20a rotates and begins to separate from the fixed stopper portion 12d, and due to the action of the screw feed mechanism, the magnetic rotor unit 27 displaces upwards synchronously together with the valve shaft portion 22, and when the raised height is exactly k, the electronic expansion valve is at the spring force unloading point.

図20~図22を参照し、図20は第5実施形態の電子膨張弁がばね力除荷点にある際の断面図である。図21は図20におけるIII部の拡大図である。図22は図20におけるIV部の拡大図である。 Referring to Figures 20 to 22, Figure 20 is a cross-sectional view of the electronic expansion valve of the fifth embodiment when it is at the spring force unloading point. Figure 21 is an enlarged view of part III in Figure 20. Figure 22 is an enlarged view of part IV in Figure 20.

この場合、第2ガスケット232の下端部と弁軸部の弁軸段差部22fとの距離は0であり、即ち、圧縮ばね24のばね力はガスケット23の伝達によって、図17に示す弁ニードル21のガスケット当接部21eに作用することから、図20に示す弁軸部22の弁軸段差部22fに作用するように移転し、即ち、この場合、電子膨張弁は圧縮ばね24のばね力除荷点にあり、弁ニードル21は圧縮ばね24によって伝達されるばね力をもう受けない。図21に示すように、この場合、弁ニードルスリーブ26の下端部から、ブッシュ25の上端部まで、一定の距離を有し、当該距離はh-kである。無論、弁ニードルスリーブ26の外径が、ブッシュ25の外径より大きくされた場合、弁ニードルスリーブ26の下端部から弁軸部22の上端部まで、h-kである一定の距離を有する。 In this case, the distance between the lower end of the second gasket 232 and the valve stem step 22f of the valve stem is 0, that is, the spring force of the compression spring 24 is transferred from the gasket abutment 21e of the valve needle 21 shown in FIG. 17 through the transmission of the gasket 23 to the valve stem step 22f of the valve stem 22 shown in FIG. 20, that is, in this case, the electronic expansion valve is at the spring force unloading point of the compression spring 24, and the valve needle 21 is no longer subjected to the spring force transmitted by the compression spring 24. As shown in FIG. 21, in this case, there is a certain distance from the lower end of the valve needle sleeve 26 to the upper end of the bush 25, and the distance is h-k. Of course, if the outer diameter of the valve needle sleeve 26 is made larger than the outer diameter of the bush 25, there is a certain distance from the lower end of the valve needle sleeve 26 to the upper end of the valve stem 22, which is h-k.

図17の全閉状態から、図20のばね力除荷点状態まで、弁軸部22及び磁気ローターユニット27の上向きの変位量はkであり、弁ニードル21の上向きの変位量は0である。 From the fully closed state in FIG. 17 to the spring force unloading point state in FIG. 20, the upward displacement of the valve stem portion 22 and the magnetic rotor unit 27 is k, and the upward displacement of the valve needle 21 is 0.

図20を基準として、磁気ローターユニット27は、ステータコイル40の励起駆動によって継続的に上に回転し、ねじ送り機構のよじ登りの変換作用のため、磁気ローターユニット27は弁軸部22とともに、継続的に、同期に上に変位し、上げられた高さがh-kである場合、電子膨張弁は開け臨界点にある。 Based on FIG. 20, the magnetic rotor unit 27 rotates upward continuously by the excitation drive of the stator coil 40, and due to the climbing conversion action of the screw feed mechanism, the magnetic rotor unit 27 displaces upward continuously and synchronously together with the valve shaft portion 22, and when the raised height is h-k, the electronic expansion valve is at the opening critical point.

図23~25を参照し、図23は第5実施形態の電子膨張弁が開け臨界点にある際の断面図である。図24是図23におけるV部の拡大図である。図25是図23におけるVI部の拡大図。この場合、弁ニードル21はちょうど弁口部113と接触する状態にあり、又は、弁ニードル21は継続的に上に変位すれば、弁口部113から離脱できる。この場合、第2ガスケット232の下端部は弁軸部22の弁軸段差部22fに当接され、圧縮ばね24のばね力はガスケット23の伝達によって、弁軸段差部22fに作用する。図24に示すように、この場合、弁ニードルスリーブ26の下端部からブッシュ25の上端部までの距離は0であり、即ち、図20から図23までの状態において、弁軸部22とローターとの、上向きの同期変位はh-kである。この場合、弁ニードル21は圧縮ばね24によって伝達されるばね力をもう受けなく、ばね力は弁ニードル21から既に除荷され、弁ニードル21の、弁軸部22に対する回転運動の摩擦力は著しく小さくなる。即ち、弁ニードルが弁口部に対して接触・離脱する瞬間に、弁ニードル21は圧縮ばね24のばね力をもう受けないため、弁ニードルと弁口部の間の相対回動による摩擦衝撃力を小さくして、両者の接触部位の摩耗を減少させ、電子膨張弁の使用寿命を向上させる。 Referring to Figures 23 to 25, Figure 23 is a cross-sectional view of the electronic expansion valve of the fifth embodiment when it is at the open critical point. Figure 24 is an enlarged view of the V part in Figure 23. Figure 25 is an enlarged view of the VI part in Figure 23. In this case, the valve needle 21 is just in contact with the valve orifice 113, or the valve needle 21 can be released from the valve orifice 113 by continuously displacing upward. In this case, the lower end of the second gasket 232 abuts against the valve stem step 22f of the valve stem 22, and the spring force of the compression spring 24 acts on the valve stem step 22f through the transmission of the gasket 23. As shown in Figure 24, in this case, the distance from the lower end of the valve needle sleeve 26 to the upper end of the bush 25 is 0, that is, in the states from Figure 20 to Figure 23, the upward synchronous displacement of the valve stem 22 and the rotor is h-k. In this case, the valve needle 21 is no longer subjected to the spring force transmitted by the compression spring 24, the spring force has already been released from the valve needle 21, and the frictional force of the rotational movement of the valve needle 21 relative to the valve shaft portion 22 is significantly reduced. That is, at the moment when the valve needle contacts or separates from the valve orifice portion, the valve needle 21 is no longer subjected to the spring force of the compression spring 24, so the frictional impact force caused by the relative rotation between the valve needle and the valve orifice portion is reduced, the wear at the contact portion between the two is reduced, and the service life of the electronic expansion valve is improved.

図17の全閉状態から図23の開け臨界点状態まで、弁軸部22と磁気ローターユニット27との上向きの変位量はhであり、弁ニードル21の上向きの変位量は0である。 From the fully closed state in FIG. 17 to the open critical point state in FIG. 23, the upward displacement of the valve stem portion 22 and the magnetic rotor unit 27 is h, and the upward displacement of the valve needle 21 is 0.

図26を参照し、図26は第5実施形態の電子膨張弁の全開状態の断面図である。この場合、弁ニードル21は既に弁口部113から離れ、図23~図26の動作過程で、即ち、電子膨張弁が開け臨界点から最大開度までの往復動作の過程で、弁ニードル21は弁軸部22に連れて軸方向の昇降運動を同期に行って、弁ニードル21は圧縮ばね24のばね力を常に受けず、これによって、弁ニードル21と弁軸部22の間の相対的な回転による摩擦力を低減させ、弁ニードルガイド部21bとナットの第1ガイド部12aの間の摩耗を減少させ、電子膨張弁の使用寿命を向上させる。図23の開け臨界点から、図26の全開状態まで、弁ニードル21と弁軸部22との、軸方向での相対位置はそのままに保持される。 Referring to FIG. 26, FIG. 26 is a cross-sectional view of the electronic expansion valve of the fifth embodiment in a fully open state. In this case, the valve needle 21 has already left the valve port portion 113, and in the operation process of FIG. 23 to FIG. 26, that is, in the process of the electronic expansion valve reciprocating from the opening critical point to the maximum opening degree, the valve needle 21 synchronously moves up and down in the axial direction along with the valve shaft portion 22, and the valve needle 21 is not always subjected to the spring force of the compression spring 24, thereby reducing the frictional force caused by the relative rotation between the valve needle 21 and the valve shaft portion 22, reducing the wear between the valve needle guide portion 21b and the first guide portion 12a of the nut, and improving the service life of the electronic expansion valve. From the opening critical point of FIG. 23 to the fully open state of FIG. 26, the relative position of the valve needle 21 and the valve shaft portion 22 in the axial direction is maintained as it is.

電子膨張弁は図20のばね力除荷点から図23の開け臨界点状態に移転し、弁軸部22と磁気ローターユニット27との上向きの変位量はh-kであり、弁ニードル21の上向きの変位量は0である。電子膨張弁は図17の全閉状態から図26の全開状態まで、弁軸部22と磁気ローターユニット27との上向きの変位量はLであり、弁ニードル21の上向きの変位量はL-hである。 When the electronic expansion valve moves from the spring force unloading point in FIG. 20 to the open critical point state in FIG. 23, the upward displacement of the valve stem 22 and magnetic rotor unit 27 is h-k, and the upward displacement of the valve needle 21 is 0. When the electronic expansion valve moves from the fully closed state in FIG. 17 to the fully open state in FIG. 26, the upward displacement of the valve stem 22 and magnetic rotor unit 27 is L, and the upward displacement of the valve needle 21 is L-h.

また、本実施形態において、第1ガスケット及び第2ガスケットは何れも板状を呈し、弁軸部の第2貫通孔部の底面(即ち、弁軸段差部)も平面状を呈するため、図面におけるh、kの符号も、2つの平面の間の、軸方向での距離として示されるが、実際、ガスケット又は第2貫通孔部の接触部位は2つの平面の接触に限定されず、いろんな変更を行ってもよく、例えば、2つの斜面の軸方向での接触、又は他の不規則形状の接触に変更してもよく、この場合、h、kを2つの部材の、軸方向での変位差として理解すればよい。 In addition, in this embodiment, both the first gasket and the second gasket are plate-shaped, and the bottom surface of the second through-hole portion of the valve stem portion (i.e., the valve stem step portion) is also flat, so the symbols h and k in the drawings are also shown as the axial distance between two planes, but in reality, the contact area of the gasket or the second through-hole portion is not limited to contact between two planes and may be modified in various ways, for example, to contact between two inclined surfaces in the axial direction, or to contact with other irregular shapes, in which case h and k may be understood as the axial displacement difference of the two members.

ここで、第5実施形態は第1流れ方向を例として説明し、第1接続口部の流体圧力は第2接続口部の流体圧力より大きいため、電子膨張弁の弁ニードルは上記の各状態で、流体媒体の下向きの差圧力を常に受けている。 Here, the fifth embodiment is described using the first flow direction as an example, and since the fluid pressure at the first connection port is greater than the fluid pressure at the second connection port, the valve needle of the electronic expansion valve is always subjected to a downward differential pressure of the fluid medium in each of the above states.

図26のローター部材の状態で、弁ニードル21は圧縮ばね24によるばね力の作用を受けず、第1接続口部の流体と第2接続口部の流体とは圧力差を具備しない場合、弁ニードル21は、その自体重力の作用のみを受け、即ち、弁ニードル21は弁ニードルスリーブ26に固定接続された後、弁ニードル21は圧縮ばね24によるばね力作用を受けない状態で、弁軸部22に対してその軸方向に沿って、一定の可動隙間をさらに有し、その隙間サイズは、図25の隙間と同様であり、h-kである。 In the state of the rotor member in FIG. 26, when the valve needle 21 is not subjected to the spring force of the compression spring 24 and there is no pressure difference between the fluid in the first connection port and the fluid in the second connection port, the valve needle 21 is only subjected to the force of its own gravity, that is, after the valve needle 21 is fixedly connected to the valve needle sleeve 26, the valve needle 21 further has a certain movable gap along its axial direction relative to the valve shaft portion 22 in a state where it is not subjected to the spring force of the compression spring 24, and the size of the gap is the same as the gap in FIG. 25, that is, h-k.

本実施形態が提供する電子膨張弁において、開けから閉じ状態まで、弁ニードルと弁口部とが密封して接触する瞬間、及び閉じから開け状態まで、弁ニードルと弁口部とが離脱する瞬間に、圧縮ばねのばね力は弁ニードルに付加されず、両者の密封部位の相対回動による摩擦衝撃力を低減させ、接触部位の摩耗を減少させ、電子膨張弁の使用寿命を向上させる。電子膨張弁の、最小開度から最大開度までの往復動作過程で、圧縮ばねのばね力は常に、弁ニードルに付加されていないため、弁ニードルと弁軸部の間の回転摩擦力を低減させ、弁ニードルガイド部とナットの間の摩耗を減少させ、電子膨張弁の使用寿命を向上させる。 In the electronic expansion valve provided by this embodiment, the spring force of the compression spring is not applied to the valve needle at the moment when the valve needle and the valve orifice come into sealed contact from the open to closed state, and at the moment when the valve needle and the valve orifice separate from each other from the closed to open state, reducing the frictional impact force caused by the relative rotation of the two sealing parts, reducing wear at the contact parts, and improving the service life of the electronic expansion valve. During the reciprocating movement of the electronic expansion valve from the minimum opening to the maximum opening, the spring force of the compression spring is not always applied to the valve needle, reducing the rotational friction force between the valve needle and the valve shaft, reducing wear between the valve needle guide part and the nut, and improving the service life of the electronic expansion valve.

第6実施形態
以下、図27を結合し、本出願の第6実施形態を説明する。
Sixth Embodiment Hereinafter, a sixth embodiment of the present application will be described in conjunction with FIG.

以上の5つの実施形態において、電子膨張弁の第1接続口部には第1接続管10bが接続され、第2接続口部には第2接続管10aが接続され、即ち、電子膨張弁は接続管の形式で、冷凍システムに接続される。実際には、上記実施形態の電子膨張弁は多くの分野に適用され、電子膨張弁と冷凍システムとの間は接続管による接続方式に限定されていない。例えば、カーエアコンなどのような、迅速な修理可能を必要とする場合に適用されると、第1接続管及び第2接続管の構成を採用しなく、弁座を直接的に、複数の通路が集積された一体型弁ボディに固定接続し、例えば、フランジ密封接続の方式を採用する。 In the above five embodiments, the first connection port of the electronic expansion valve is connected to the first connection pipe 10b, and the second connection port is connected to the second connection pipe 10a, that is, the electronic expansion valve is connected to the refrigeration system in the form of a connection pipe. In reality, the electronic expansion valve of the above embodiments is applied to many fields, and the connection between the electronic expansion valve and the refrigeration system is not limited to the connection method using a connection pipe. For example, when applied to a case that requires quick repairability such as a car air conditioner, the configuration of the first and second connection pipes is not adopted, and the valve seat is directly fixedly connected to an integrated valve body in which multiple passages are integrated, for example, a flange sealed connection method is adopted.

図27を参照し、図27は本発明の第6実施形態の電子膨張弁の構成模式図である。本実施形態は電子膨張弁がカーエアコンシステムに適用される実施例である。弁座11は溶接によって接続部材51aに固定され、全体として弁ボディ80に固定接続される。接続部材51aは適応的に、弁ボディに接続されることに適する形状に配置されてもよい。具体的に、接続部材51aはフランジ密封接続の方式で、弁ボディ80に固定接続され(図示せず)、例えば、接続部材の円盤板状部位にねじ穴を配置し、ねじ接続するように、接続部材を弁ボディに固定接続する。密封性能を保証するために、接続部材及び弁ボディの前、第1密封部材803を配置する。また、弁座11と弁ボディ80の間には第2密封部材804が設けられ、組立を完成させた後、接続部材51及び弁座11は弁ボディ80と固定接続を実現し、よい密封性能を保持する。 Referring to FIG. 27, FIG. 27 is a schematic diagram of the electronic expansion valve of the sixth embodiment of the present invention. This embodiment is an example in which the electronic expansion valve is applied to a car air conditioning system. The valve seat 11 is fixed to the connecting member 51a by welding, and the whole is fixedly connected to the valve body 80. The connecting member 51a may be adaptively arranged in a shape suitable for connecting to the valve body. Specifically, the connecting member 51a is fixedly connected to the valve body 80 in the manner of a flange sealing connection (not shown), for example, a screw hole is arranged in the disk-shaped part of the connecting member, and the connecting member is fixedly connected to the valve body by screw connection. In order to ensure the sealing performance, a first sealing member 803 is arranged in front of the connecting member and the valve body. In addition, a second sealing member 804 is provided between the valve seat 11 and the valve body 80. After completing the assembly, the connecting member 51 and the valve seat 11 realize a fixed connection with the valve body 80 and maintain good sealing performance.

弁ボディ80は金属から切削加工を行うことで形成され、第1接続口端801及び第2接続口端802を形成し、第1接続口端801及び第2接続口端802は空調システムの他の部材に接続される。無論、第1接続口端801及び第2接続口端802の構成は図27に限定されず、システムのニーズに応じて、異なる配置を行ってもよい。このように、取り外して修理しようとすると、電子膨張弁の弁座及び接続部材を弁ボディから便利に分離させる。 The valve body 80 is machined from metal to form a first connection end 801 and a second connection end 802, which are connected to other components of the air conditioning system. Of course, the configuration of the first connection end 801 and the second connection end 802 is not limited to that shown in FIG. 27, and may be arranged differently according to the needs of the system. In this way, the valve seat and connection members of the electronic expansion valve can be conveniently separated from the valve body for removal and repair.

ここで、本明細書に言及された上、下、左、右などの方位名詞はいずれも明細書の図面を基準として、記載を便利にするために導入され、及び部材名称における「第1」、「第2」などの序数詞も部材の何れかの順番に対する何れかの限定ではなく、記載を便利にするために導入され、また、上記実施例が提供する各部品の間のいくつかの部位の機能は同様であるため、本明細書はこれらの部位に対して統一に命名する。以上、関する技術案が提供する電子膨張弁を詳しく紹介し、本明細書は具体的な実施例を利用して記載し、以上の実施例の説明は、本発明に対する何れかの形式面での限定ではなく、ただ本発明の方法及びその中心思想を理解するためのものである。 Here, all directional nouns such as up, down, left, and right mentioned in this specification are introduced for convenience of description based on the drawings of the specification, and ordinal numbers such as "first" and "second" in the names of components are introduced for convenience of description, and do not impose any restrictions on the order of components. In addition, since the functions of some parts between each component provided in the above embodiment are similar, this specification will unify the names of these parts. Above, the electronic expansion valve provided by the related technical solution is introduced in detail, and this specification describes it using specific embodiments. The description of the above embodiments does not impose any restrictions on the form of the present invention, but is only for understanding the method and the core idea of the present invention.

Claims (10)

弁座、ナットユニット、弁軸部、弁ニードル、及び磁気ローターユニットを含み、前記弁座は弁口部を含み、前記ナットユニットは、前記弁座に固定接続されており、ナット及び接続シートを含み、前記ナットは第1ガイド部、雌ねじ部、及び第2ガイド部を含み、前記第1ガイド部は前記雌ねじ部より、前記弁口部に近接し、前記第2ガイド部は前記雌ねじ部より、前記弁口部から離れ、前記第1ガイド部の内径が前記第2ガイド部の内径より小さく、
前記弁軸部は、前記磁気ローターユニットに固定接続されており、前記第2ガイド部に隙間嵌めされる弁軸ガイド部を含み、前記弁軸部は前記ナットに対して前記ナットの軸方向に沿って相対変位可能であり、前記弁軸部は雄ねじ部を含み、前記雄ねじ部と前記雌ねじ部とはねじ送り機構を構成し、前記弁軸部は第1貫通孔部と第2貫通孔部とを含み、前記第1貫通孔部の内径が前記第2貫通孔部の内径より大きく、
前記弁ニードルは、前記第1ガイド部に隙間嵌めされる弁ニードルガイド部を含み、前記弁ニードルは前記ナットに対して、前記ナットの軸方向に沿って相対変位可能であり、前記弁ニードルガイド部の外径が前記第2貫通孔部の内径より大きいことを特徴とする電子膨張弁。
a valve seat, a nut unit, a valve stem portion, a valve needle, and a magnetic rotor unit, the valve seat includes a valve orifice portion, the nut unit is fixedly connected to the valve seat and includes a nut and a connecting seat, the nut includes a first guide portion, a female thread portion, and a second guide portion, the first guide portion is closer to the valve orifice portion than the female thread portion, the second guide portion is farther from the valve orifice portion than the female thread portion, and the inner diameter of the first guide portion is smaller than the inner diameter of the second guide portion,
the valve stem portion is fixedly connected to the magnetic rotor unit and includes a valve stem guide portion that is clearance-fitted into the second guide portion, the valve stem portion is displaceable relative to the nut along an axial direction of the nut, the valve stem portion includes a male thread portion, and the male thread portion and the female thread portion form a screw feed mechanism, the valve stem portion includes a first through hole portion and a second through hole portion, and an inner diameter of the first through hole portion is larger than an inner diameter of the second through hole portion,
the valve needle includes a valve needle guide portion that is gap-fitted into the first guide portion, the valve needle is displaceable relative to the nut in an axial direction of the nut, and an outer diameter of the valve needle guide portion is larger than an inner diameter of the second through-hole portion.
前記弁軸部は大径部と小径部とを含み、前記大径部の外径が前記小径部の外径より大きく、前記大径部は前記小径部より、前記弁口部から離れ、前記雄ねじ部は前記小径部の外縁部に設けられ、前記弁軸ガイド部は前記大径部の外縁部に設けられることを特徴とする請求項1に記載の電子膨張弁。 The electronic expansion valve according to claim 1, characterized in that the valve stem includes a large diameter portion and a small diameter portion, the outer diameter of the large diameter portion is larger than the outer diameter of the small diameter portion, the large diameter portion is farther from the valve opening portion than the small diameter portion, the male thread portion is provided on the outer edge of the small diameter portion, and the valve stem guide portion is provided on the outer edge of the large diameter portion. 前記大径部の外縁部にはローター固定部が設けられ、前記磁気ローターユニットは磁気ローターと接続板とを含み、前記磁気ローターと前記接続板とは固定接続され又は一体構成であり、前記ローター固定部は前記接続板に固定接続されることを特徴とする請求項2に記載の電子膨張弁。 The electronic expansion valve according to claim 2, characterized in that a rotor fixing part is provided on the outer edge of the large diameter part, the magnetic rotor unit includes a magnetic rotor and a connection plate, the magnetic rotor and the connection plate are fixedly connected or integrally configured, and the rotor fixing part is fixedly connected to the connection plate. 前記電子膨張弁はブッシュを含み、前記ブッシュの外縁部の少なくとも一部は前記第1貫通孔部の内縁部の少なくとも一部と係合し、前記ブッシュは前記弁軸部に固定接続されることを特徴とする請求項1~3の何れか1項に記載の電子膨張弁。 The electronic expansion valve according to any one of claims 1 to 3, characterized in that the electronic expansion valve includes a bush, at least a portion of the outer edge of the bush engages with at least a portion of the inner edge of the first through-hole portion, and the bush is fixedly connected to the valve shaft portion. 前記電子膨張弁は圧縮ばねとガスケットとを含み、前記圧縮ばねは、一端が前記ブッシュに当接され、他端が前記ガスケットに当接され、前記弁ニードルは、前記ガスケットに当接されるガスケット当接部を含むことを特徴とする請求項4に記載の電子膨張弁。 The electronic expansion valve according to claim 4, characterized in that the electronic expansion valve includes a compression spring and a gasket, one end of the compression spring abuts against the bush and the other end abuts against the gasket, and the valve needle includes a gasket abutment portion that abuts against the gasket. 前記第1貫通孔部と前記第2貫通孔部の間には、前記ガスケットに当接可能である弁軸段差部が設けられていることを特徴とする請求項5に記載の電子膨張弁。 The electronic expansion valve according to claim 5, characterized in that a valve stem step portion capable of contacting the gasket is provided between the first through hole portion and the second through hole portion. 前記圧縮ばねは前記弁軸部及び前記ブッシュから形成された空間に収容され、前記圧縮ばねの最大外径は前記第2貫通孔部の内径より大きいことを特徴とする請求項5又は6に記載の電子膨張弁。 The electronic expansion valve according to claim 5 or 6, characterized in that the compression spring is housed in a space formed by the valve shaft portion and the bush, and the maximum outer diameter of the compression spring is larger than the inner diameter of the second through-hole portion. 前記ねじ送り機構のねじ公称直径が前記第1貫通孔部の内径より小さく、前記ねじ送り機構のねじ公称直径は前記弁ニードルガイド部の外径より、わずかに大きいことを特徴とする請求項1に記載の電子膨張弁。 The electronic expansion valve of claim 1, characterized in that the nominal diameter of the screw of the screw feed mechanism is smaller than the inner diameter of the first through hole portion, and the nominal diameter of the screw of the screw feed mechanism is slightly larger than the outer diameter of the valve needle guide portion. 前記弁ニードルは第1軸状部と第2軸状部とを含み、前記第1軸状部の外径は前記第2軸状部の外径より大きく、前記第1軸状部の外径は弁ニードルガイド部の外径より小さいことを特徴とする請求項1に記載の電子膨張弁。 The electronic expansion valve of claim 1, characterized in that the valve needle includes a first shaft portion and a second shaft portion, the outer diameter of the first shaft portion is larger than the outer diameter of the second shaft portion, and the outer diameter of the first shaft portion is smaller than the outer diameter of the valve needle guide portion. 前記電子膨張弁は接続部材、第1接続口部、第2接続口部及び弁ボディを含み、前記弁ボディは切削加工成形体であり、第1接続口端と第2接続口端とを含み、前記弁座は前記接続部材に固定接続され、前記接続部材と前記弁ボディとはフランジ接続され、前記接続部材と前記弁ボディの間には第1密封部材が設けられ、前記弁座と前記弁ボディの間には第2密封部材が設けられていることを特徴とする請求項1に記載の電子膨張弁。 2. The electronic expansion valve according to claim 1, wherein the electronic expansion valve comprises a connecting member, a first connecting port, a second connecting port and a valve body, the valve body being a machined formed body and including a first connecting port end and a second connecting port end, the valve seat is fixedly connected to the connecting member, the connecting member and the valve body are flange-connected, a first sealing member is provided between the connecting member and the valve body, and a second sealing member is provided between the valve seat and the valve body.
JP2022543515A 2020-05-11 2021-05-10 Electronic Expansion Valve Active JP7483014B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010392210.5 2020-05-11
CN202010392210.5A CN113639050A (en) 2020-05-11 2020-05-11 Electronic expansion valve
PCT/CN2021/092626 WO2021228013A1 (en) 2020-05-11 2021-05-10 Electronic expansion valve

Publications (2)

Publication Number Publication Date
JP2023511556A JP2023511556A (en) 2023-03-20
JP7483014B2 true JP7483014B2 (en) 2024-05-14

Family

ID=78415409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022543515A Active JP7483014B2 (en) 2020-05-11 2021-05-10 Electronic Expansion Valve

Country Status (4)

Country Link
JP (1) JP7483014B2 (en)
KR (1) KR20230008854A (en)
CN (1) CN113639050A (en)
WO (1) WO2021228013A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240033295A (en) * 2022-03-04 2024-03-12 제지앙 둔안 아트피셜 인바이런먼트 컴퍼니 리미티드 Nut assembly and electronic expansion valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329158A (en) 2002-05-15 2003-11-19 Saginomiya Seisakusho Inc Motor-driven valve
JP2012533717A (en) 2010-10-15 2012-12-27 浙江三花股▲ふん▼有限公司 Motorized valve
JP2016151284A (en) 2015-02-16 2016-08-22 株式会社テージーケー Motor valve
EP3792529A1 (en) 2018-05-08 2021-03-17 Emerson Climate Technologies (Suzhou) Co., Ltd. Valve needle assembly and electronic expansion valve having the valve needle assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239875A (en) * 1990-02-19 1991-10-25 Fuji Koki Seisakusho:Kk Manufacture of electric expansion valve
JP5022120B2 (en) * 2007-07-03 2012-09-12 株式会社不二工機 Motorized valves for air conditioning systems
CN106763989B (en) * 2015-11-25 2019-11-12 浙江盾安人工环境股份有限公司 Electric expansion valve
CN208010998U (en) * 2018-03-13 2018-10-26 珠海励高精工制造有限公司 Electric expansion valve and air conditioner
CN209370494U (en) * 2019-01-13 2019-09-10 浙江恒森实业集团有限公司 A kind of electric expansion valve rotor assembly using Elastic buckle nut
CN209943654U (en) * 2019-06-02 2020-01-14 浙江恒森实业集团有限公司 Electronic expansion valve for automobile
CN213419900U (en) * 2020-11-03 2021-06-11 浙江恒森实业集团有限公司 Electronic expansion valve rotor capable of reducing noise of air flow impacting valve needle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329158A (en) 2002-05-15 2003-11-19 Saginomiya Seisakusho Inc Motor-driven valve
JP2012533717A (en) 2010-10-15 2012-12-27 浙江三花股▲ふん▼有限公司 Motorized valve
JP2016151284A (en) 2015-02-16 2016-08-22 株式会社テージーケー Motor valve
EP3792529A1 (en) 2018-05-08 2021-03-17 Emerson Climate Technologies (Suzhou) Co., Ltd. Valve needle assembly and electronic expansion valve having the valve needle assembly

Also Published As

Publication number Publication date
CN113639050A (en) 2021-11-12
JP2023511556A (en) 2023-03-20
KR20230008854A (en) 2023-01-16
WO2021228013A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
CN114458782B (en) Electric valve and refrigeration cycle system
KR20010025106A (en) Electrically operated valve
US7387501B2 (en) Control valve for variable displacement compressor
CN108343776B (en) Electric valve and refrigeration cycle system
JP7483014B2 (en) Electronic Expansion Valve
JP2021500516A (en) Solenoid valve
US6811137B2 (en) Solenoid valve
JP7481562B2 (en) Motor-operated valve and refrigeration cycle system
JP7299264B2 (en) electric valve
CN113124180B (en) Electric valve and refrigeration cycle system
JPWO2019187866A1 (en) Motorized valve
JP7049461B2 (en) Solenoid valve and its manufacturing method
WO2023143028A1 (en) Electronic expansion valve
CN110094513B (en) Electric valve
JP2023525102A (en) electronic expansion valve
CN215487932U (en) Electromagnetic valve
CN113639049A (en) Electronic expansion valve
CN113639051A (en) Electronic expansion valve
CN113639053A (en) Electronic expansion valve
CN114763842A (en) Electronic expansion valve
JP7161515B2 (en) Electric valve and refrigeration cycle system
WO2022161426A1 (en) Electric valve
EP4220038A1 (en) Control valve
JP2022163841A (en) Motor valve and refrigeration cycle system
CN110094524B (en) Electric valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240430

R150 Certificate of patent or registration of utility model

Ref document number: 7483014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150