JP7481131B2 - Method and device for estimating depth of discharge of a lithium primary battery - Google Patents

Method and device for estimating depth of discharge of a lithium primary battery Download PDF

Info

Publication number
JP7481131B2
JP7481131B2 JP2020040096A JP2020040096A JP7481131B2 JP 7481131 B2 JP7481131 B2 JP 7481131B2 JP 2020040096 A JP2020040096 A JP 2020040096A JP 2020040096 A JP2020040096 A JP 2020040096A JP 7481131 B2 JP7481131 B2 JP 7481131B2
Authority
JP
Japan
Prior art keywords
discharge
depth
primary battery
lithium primary
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020040096A
Other languages
Japanese (ja)
Other versions
JP2021141027A (en
Inventor
洋一 鈴木
正彦 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2020040096A priority Critical patent/JP7481131B2/en
Publication of JP2021141027A publication Critical patent/JP2021141027A/en
Application granted granted Critical
Publication of JP7481131B2 publication Critical patent/JP7481131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Primary Cells (AREA)

Description

本発明は、リチウム一次電池の放電深度推定方法、及び放電深度推定装置に関する。 The present invention relates to a method for estimating the depth of discharge of a lithium primary battery, and a device for estimating the depth of discharge.

負極に金属リチウムを使用するリチウム電池は、他の電池と比較して小型で出力電圧が高いため、特に小型の電子機器の電力源として広く利用されている。このようなリチウム電池は、二次電池として構成されている場合には充放電の管理のために、一次電池として構成されている場合には交換時期の管理のために、電池残量を把握することが求められる。 Lithium batteries, which use metallic lithium in the negative electrode, are small and have a high output voltage compared to other batteries, and are therefore widely used as power sources, particularly for small electronic devices. When such lithium batteries are configured as secondary batteries, it is necessary to know the remaining battery charge in order to manage charging and discharging, and when configured as primary batteries, it is necessary to know the remaining battery charge in order to manage the replacement period.

リチウム電池は、内部起電力としての開放電圧(OCV:Open Circuit Voltage)と充電状態(SOC:State Of Charge)との関係である所謂SOC-OCV特性が、電池の使用状況や温度等によって変化しにくいことが知られており、開放電圧を用いることにより電池残量としての充電状態を推定することができる。ただし、開放電圧は、リチウム電池の充放電時においては直接測定することができない。そのため、例えば特許文献1の従来技術では、電池の等価回路モデルに基づいて開放電圧を含む関係式を形成し、測定可能な充放電電流及び端子電圧を用いた逐次最小二乗法により開放電圧を推定し、リチウム電池の電池残量を算出している。 It is known that the so-called SOC-OCV characteristic, which is the relationship between the open circuit voltage (OCV) as the internal electromotive force and the state of charge (SOC), of a lithium battery is unlikely to change due to the battery's usage conditions, temperature, etc., and the state of charge as the remaining battery capacity can be estimated using the open circuit voltage. However, the open circuit voltage cannot be measured directly when a lithium battery is being charged or discharged. Therefore, in the conventional technology of Patent Document 1, for example, a relational equation including the open circuit voltage is formed based on an equivalent circuit model of the battery, and the open circuit voltage is estimated by a recursive least squares method using measurable charging and discharging currents and terminal voltages, and the remaining battery capacity of the lithium battery is calculated.

特開2016-156771号公報JP 2016-156771 A

しかしながら、上記の従来技術は、リチウムイオン二次電池に対する充電状態を推定するものであるため、充電ができないリチウム一次電池には適用することができず放電深度(DOD:Depth Of Discharge)を推定することができない。また、リチウム一次電池は、特に放電深度の初期や放電電流が微弱な場合に、放電開始直後における内部抵抗の急激な変動が生じ、放電深度推定の精度が大幅に低下するだけでなく、予測値と実測値との大幅な乖離に基づく計算エラーの発生により放電深度推定が異常停止してしまう虞が生じる。 However, the above conventional technology is for estimating the state of charge of a lithium-ion secondary battery, and therefore cannot be applied to a lithium primary battery that cannot be charged, and is therefore unable to estimate the depth of discharge (DOD). Furthermore, in a lithium primary battery, especially in the early stages of discharge or when the discharge current is weak, the internal resistance fluctuates rapidly immediately after the start of discharge, which not only significantly reduces the accuracy of the depth of discharge estimation, but also creates the risk of the depth of discharge estimation stopping abnormally due to calculation errors caused by a large discrepancy between the predicted value and the actual measured value.

本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、リチウム一次電池の放電深度推定における計算エラーの発生を抑制することができるリチウム一次電池の放電深度推定方法、及び放電深度推定装置を提供することにある。 The present invention has been made in consideration of these circumstances, and its purpose is to provide a method and device for estimating the depth of discharge of a lithium primary battery that can suppress the occurrence of calculation errors in estimating the depth of discharge of a lithium primary battery.

<本発明の第1の態様>
本発明の第1の態様は、リチウム一次電池の放電電流と端子電圧とを入力パラメータとし、前記リチウム一次電池の開放電圧と内部抵抗とを推定パラメータとするパラメータ推定手法により前記開放電圧を推定し、所定の開放電圧特性から放電深度を推定するリチウム一次電池の放電深度推定方法であって、前記パラメータ推定手法における前記内部抵抗の初期値は、予め放電開始時の前記放電深度及び前記放電電流ごとに取得された前記内部抵抗の事前データに基づいて設定され、前記放電電流が所定の第1閾値よりも小さい場合に、前記放電深度の推定開始を所定の待機時間に亘り保留する、リチウム一次電池の放電深度推定方法である。
<First aspect of the present invention>
A first aspect of the present invention is a method for estimating the depth of discharge of a lithium primary battery, which estimates an open-circuit voltage by a parameter estimation method using a discharge current and terminal voltage of a lithium primary battery as input parameters and an open-circuit voltage and internal resistance of the lithium primary battery as estimation parameters, and estimates a depth of discharge from a predetermined open-circuit voltage characteristic, wherein an initial value of the internal resistance in the parameter estimation method is set based on prior data of the internal resistance obtained in advance for the depth of discharge at the start of discharge and for each discharge current, and when the discharge current is smaller than a predetermined first threshold, the start of estimation of the depth of discharge is suspended for a predetermined waiting time.

<本発明の第2の態様>
本発明の第2の態様は、上記した本発明の第1の態様において、前記第1閾値は、前記事前データにおける電流依存性に基づいて設定される、リチウム一次電池の放電深度推定方法である。
<Second aspect of the present invention>
A second aspect of the present invention is a method for estimating a depth of discharge of a lithium primary battery, in the first aspect of the present invention described above, wherein the first threshold is set based on current dependency in the prior data.

<本発明の第3の態様>
本発明の第3の態様は、上記した本発明の第1又は2の態様において、前記放電電流が前記第1閾値よりも小さく、且つ放電開始時からの前記放電電流の積分値に基づいて簡易的に算出される放電深度変化量が所定の第2閾値より低い場合に、前記放電深度の推定開始を保留する、リチウム一次電池の放電深度推定方法である。
<Third aspect of the present invention>
A third aspect of the present invention is a method for estimating depth of discharge of a lithium primary battery, in which, in the first or second aspect of the present invention described above, when the discharge current is smaller than the first threshold value and an amount of change in depth of discharge calculated simply based on an integral value of the discharge current from the start of discharge is lower than a predetermined second threshold value, starting estimation of the depth of discharge is suspended.

<本発明の第4の態様>
本発明の第4の態様は、上記した本発明の第3の態様において、前記第2閾値は、前記事前データにおける前記内部抵抗の初期急変領域に基づいて設定される、リチウム一次電池の放電深度推定方法である。
<Fourth aspect of the present invention>
A fourth aspect of the present invention is a method for estimating a depth of discharge of a lithium primary battery, in the third aspect of the present invention described above, wherein the second threshold value is set based on an initial sudden change region of the internal resistance in the preliminary data.

<本発明の第5の態様>
本発明の第5の態様は、上記した本発明の第4の態様において、前記第2閾値は、前記初期急変領域のピーク値に対応する前記放電深度として設定される、リチウム一次電池の放電深度推定方法である。
Fifth aspect of the present invention
A fifth aspect of the present invention is a method for estimating depth of discharge of a lithium primary battery, wherein the second threshold value is set as the depth of discharge corresponding to a peak value of the initial sudden change region in the fourth aspect of the present invention described above.

<本発明の第6の態様>
本発明の第6の態様は、上記した本発明の第1乃至5のいずれかに記載の態様において、前記待機時間は、予め前記放電深度及び前記放電電流ごとに取得された過電圧の平衡到達時間に対する近似式により設定される、リチウム一次電池の放電深度推定方法である。
<Sixth aspect of the present invention>
A sixth aspect of the present invention is a method for estimating the depth of discharge of a lithium primary battery, in any one of the first to fifth aspects of the present invention described above, wherein the waiting time is set by an approximation equation for a time to reach equilibrium of overvoltage obtained in advance for each of the depth of discharge and the discharge current.

<本発明の第7の態様>
本発明の第7の態様は、リチウム一次電池の放電電流を測定する電流計と、前記リチウム一次電池の端子電圧を測定する電圧計と、前記放電電流及び前記端子電圧が入力される制御部と、を備え、前記制御部は、前記放電電流及び前記端子電圧を入力パラメータとし、前記リチウム一次電池の開放電圧及び内部抵抗を推定パラメータとするパラメータ推定手法により前記開放電圧を推定し、所定の開放電圧特性から前記リチウム一次電池の放電深度を推定する放電深度推定部と、予め放電開始時の前記放電深度及び前記放電電流ごとに取得された前記内部抵抗の事前データに基づいて、前記パラメータ推定手法における前記内部抵抗の初期値を設定する初期値設定部と、を含み、前記放電電流が所定の第1閾値よりも小さい場合に、前記放電深度の推定開始を所定の待機時間に亘り保留する、リチウム一次電池の放電深度推定装置である。
<Seventh aspect of the present invention>
A seventh aspect of the present invention is a depth of discharge estimation device for a lithium primary battery, comprising: an ammeter that measures a discharge current of a lithium primary battery; a voltmeter that measures a terminal voltage of the lithium primary battery; and a control unit to which the discharge current and the terminal voltage are input, wherein the control unit estimates the open circuit voltage by a parameter estimation method that uses the discharge current and the terminal voltage as input parameters and the open circuit voltage and internal resistance of the lithium primary battery as estimation parameters, and estimates the depth of discharge of the lithium primary battery from a predetermined open circuit voltage characteristic; and an initial value setting unit that sets an initial value of the internal resistance in the parameter estimation method based on prior data of the depth of discharge at the start of discharge and the internal resistance obtained in advance for each of the discharge currents, and when the discharge current is smaller than a predetermined first threshold value, suspends start of estimation of the depth of discharge for a predetermined standby time.

<本発明の第8の態様>
本発明の第8の態様は、上記した本発明の第7の態様において、前記第1閾値は、前記事前データにおける電流依存性に基づいて設定される、リチウム一次電池の放電深度推定装置である。
<Eighth aspect of the present invention>
An eighth aspect of the present invention is a device for estimating depth of discharge of a lithium primary battery, in the seventh aspect of the present invention described above, wherein the first threshold value is set based on current dependency in the prior data.

<本発明の第9の態様>
本発明の第9の態様は、上記した本発明の第7又は8の態様において、前記制御部は、前記放電電流が前記第1閾値よりも小さく、且つ前記放電電流の積分値から簡易的に算出される放電深度変化量が所定の第2閾値より低い場合に、前記放電深度の推定開始を保留する、リチウム一次電池の放電深度推定装置である。
Ninth aspect of the present invention
A ninth aspect of the present invention is a depth of discharge estimation device for a lithium primary battery, wherein, in the seventh or eighth aspect of the present invention described above, the control unit suspends starting estimation of the depth of discharge when the discharge current is smaller than the first threshold value and an amount of change in depth of discharge simply calculated from an integral value of the discharge current is lower than a predetermined second threshold value.

<本発明の第10の態様>
本発明の第10の態様は、上記した本発明の第9の態様において、前記第2閾値は、前記事前データにおける前記内部抵抗の初期急変領域に基づいて設定される、リチウム一次電池の放電深度推定装置である。
<Tenth aspect of the present invention>
A tenth aspect of the present invention is a device for estimating depth of discharge of a lithium primary battery, in the ninth aspect of the present invention described above, wherein the second threshold value is set based on an initial sudden change region of the internal resistance in the preliminary data.

<本発明の第11の態様>
本発明の第11の態様は、上記した本発明の第10の態様において、前記第2閾値は、前記初期急変領域のピーク値に対応する前記放電深度として設定される、リチウム一次電池の放電深度推定装置である。
<Eleventh aspect of the present invention>
An eleventh aspect of the present invention is a device for estimating depth of discharge of a lithium primary battery, in the tenth aspect of the present invention described above, wherein the second threshold value is set as the depth of discharge corresponding to a peak value of the initial sudden change region.

<本発明の第12の態様>
本発明の第12の態様は、上記した本発明の第7乃至11のいずれかに記載の態様において、前記待機時間は、予め前記放電深度及び前記放電電流ごとに取得された過電圧の平衡到達時間に対する近似式により設定される、リチウム一次電池の放電深度推定装置である。
<Twelfth aspect of the present invention>
A twelfth aspect of the present invention is a device for estimating depth of discharge of a lithium primary battery, in any one of the seventh to eleventh aspects of the present invention described above, wherein the waiting time is set by an approximation equation for a time to reach equilibrium of overvoltage obtained in advance for each of the depth of discharge and the discharge current.

本発明によれば、リチウム一次電池の放電深度推定における計算エラーの発生を抑制することができるリチウム一次電池の放電深度推定方法、及び放電深度推定装置を提供することができる。 The present invention provides a method and device for estimating the depth of discharge of a lithium primary battery that can suppress the occurrence of calculation errors in estimating the depth of discharge of a lithium primary battery.

リチウム一次電池の内部抵抗を測定する測定系の回路図である。FIG. 1 is a circuit diagram of a measurement system for measuring the internal resistance of a lithium primary battery. 内部抵抗近似方法の手順を示すフローチャートである。1 is a flowchart showing the procedure of an internal resistance approximation method. リチウム一次電池のOCV-DOD特性を測定する手順を模式的に表す図である。FIG. 1 is a diagram showing a schematic diagram of a procedure for measuring the OCV-DOD characteristics of a lithium primary battery. リチウム一次電池の放電深度DODに対する平衡到達時間の一例である。1 is an example of the time to equilibrium versus depth of discharge DOD of a lithium primary battery. リチウム一次電池の測定されたV-DOD特性を表す図である。FIG. 1 shows the measured V L -DOD characteristics of a lithium primary battery. 放電電流によるV-DOD特性の形状の違いを模式的に示す図である。FIG. 10 is a diagram showing a schematic diagram illustrating a difference in the shape of the V L -DOD characteristic depending on the discharge current. 内部抵抗算出工程において算出されたR-DOD特性の図である。FIG. 11 is a diagram showing the R-DOD characteristics calculated in the internal resistance calculation process. 複数のV-DOD特性から算出された疑似内部抵抗R´の図である。FIG. 13 is a diagram showing pseudo internal resistance R' calculated from a number of V L -DOD characteristics. リチウム一次電池の放電初期抵抗ΔRを表す図である。FIG. 2 is a diagram showing an initial discharge resistance ΔR of a lithium primary battery. 放電電流に対するパラメータaの変化を表す図である。FIG. 13 is a diagram showing the change in parameter a with respect to the discharge current. 放電電流に対するパラメータbの変化を表す図である。FIG. 13 is a diagram showing the change in parameter b with respect to the discharge current. 放電電流に対するパラメータcの変化を表す図である。FIG. 13 is a diagram showing the change in parameter c with respect to the discharge current. 放電電流に対するパラメータdの変化を表す図である。FIG. 13 is a diagram showing the change in parameter d with respect to the discharge current. リチウム一次電池の内部抵抗の実測値及び近似曲線を放電電流ごとに表す図である。FIG. 1 is a diagram showing actual measured values and approximate curves of the internal resistance of a lithium primary battery for each discharge current. リチウム一次電池の温度に対する内部抵抗を表す図である。FIG. 2 is a graph showing the internal resistance of a lithium primary battery versus temperature. 放電深度に対する定数パラメータA及びBを表すグラフである。1 is a graph showing constant parameters A and B versus depth of discharge. リチウム一次電池の電力で動作する電子機器の回路図である。FIG. 1 is a circuit diagram of an electronic device that operates on power from a lithium primary battery. 制御部の内部構成を模式的に表す構成図である。2 is a configuration diagram illustrating a schematic internal configuration of a control unit. FIG. リチウム一次電池を断続的に放電させた場合の端子電圧Vの変化の一例を表すグラフである。1 is a graph showing an example of a change in terminal voltage VL when a lithium primary battery is intermittently discharged. 放電開始時点の放電深度DODが40%以下である場合の、放電深度変化量ΔDODに対する内部抵抗Rの変化の一例を表すグラフである。1 is a graph showing an example of a change in internal resistance R with respect to a change in depth of discharge ΔDOD when the depth of discharge DOD at the start of discharge is 40% or less. 放電開始時点の放電深度DODが40%以上である場合の、放電深度変化量ΔDODに対する内部抵抗Rの変化の一例を表すグラフである。1 is a graph showing an example of a change in internal resistance R with respect to a change in depth of discharge ΔDOD when the depth of discharge DOD at the start of discharge is 40% or more. 放電電流ごとの放電深度変化量ΔDODに対する内部抵抗の変化の一例を表すグラフである。1 is a graph showing an example of a change in internal resistance with respect to a change in depth of discharge ΔDOD for each discharge current. 放電開始時における過電圧の平衡到達までの所要時間ts、及び内部抵抗の値の放電電流依存性を表すグラフである。1 is a graph showing the time ts required for the overvoltage to reach equilibrium at the start of discharge, and the discharge current dependency of the internal resistance value. 初期急変領域において内部抵抗がピーク値を迎えるときの放電深度変化量ΔDODの放電電流依存性を表すグラフである。1 is a graph showing the discharge current dependency of the amount of change in depth of discharge ΔDOD when the internal resistance reaches a peak value in the initial rapid change region. 放電深度変化量ΔDODが1%である場合の内部抵抗及びピーク到達までの所要時間tsの放電電流依存性を表すグラフである。11 is a graph showing the discharge current dependency of the internal resistance and the time ts required to reach the peak when the amount of change in depth of discharge ΔDOD is 1%. 本発明に係る放電深度推定方法を表すフローチャートである。4 is a flowchart showing a method for estimating depth of discharge according to the present invention. パラメータ推定手法の保留を行わなかった場合の放電深度推定結果を示すグラフである。13 is a graph showing a result of estimating the depth of discharge when the parameter estimation method is not suspended. パラメータ推定手法の保留を行なった場合の放電深度推定結果を示すグラフである。13 is a graph showing a result of estimating the depth of discharge when the parameter estimation method is suspended.

以下、図面を参照し、本発明の実施の形態について詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。 The following describes in detail the embodiments of the present invention with reference to the drawings. Note that the present invention is not limited to the contents described below, and can be modified as desired without departing from the gist of the invention. Furthermore, the drawings used to explain the embodiments are all schematic representations of the components, and may be partially emphasized, enlarged, reduced, or omitted to facilitate understanding, and may not accurately represent the scale or shape of the components.

また、一般的に電池残量を表す表記としては二次電池における充電状態SOC(State Of Charge)が使用されるが、本発明が対象とする電池がリチウム一次電池であることから、100[%]-SOCと同等の意味である放電深度DOD(Depth Of Discharge)との表現を使用する。 The state of charge (SOC) of a secondary battery is generally used to express the remaining battery charge, but since the batteries targeted by this invention are lithium primary batteries, the expression depth of discharge (DOD) is used, which is equivalent to 100[%]-SOC.

そして、後述するように、リチウム一次電池1が使用される電子機器において逐次最小二乗法に代表されるパラメータ推定手法を利用した放電深度推定ができるよう、予めリチウム一次電池1の内部抵抗Rに関するシステム同定を行い、内部抵抗Rの挙動をモデル化する近似式を生成する。ここでは、まず、対象とする型式のリチウム一次電池1について、実験データに基づく内部抵抗Rの同定方法について説明する。 As described below, in order to enable depth of discharge estimation using a parameter estimation method such as the recursive least squares method in an electronic device in which the lithium primary battery 1 is used, system identification is performed in advance regarding the internal resistance R of the lithium primary battery 1, and an approximation equation is generated that models the behavior of the internal resistance R. Here, first, a method for identifying the internal resistance R based on experimental data for a target type of lithium primary battery 1 is described.

<内部抵抗同定方法>
図1は、リチウム一次電池1の内部抵抗Rを測定する測定系2の回路図である。図1において、測定系2は、接続されたリチウム一次電池1に対し、放電制御を行いながら電池状態を測定することにより、内部抵抗Rを算出すると共に当該内部抵抗Rの近似式を生成するための回路構成である。本実施形態においては、測定系2は、負荷3、電圧計4、電流計5、温度計6、及び制御部7を備える。
<Internal resistance identification method>
Fig. 1 is a circuit diagram of a measurement system 2 that measures the internal resistance R of a lithium primary battery 1. In Fig. 1, the measurement system 2 has a circuit configuration for calculating the internal resistance R and generating an approximation equation for the internal resistance R by measuring the battery state while performing discharge control on the connected lithium primary battery 1. In this embodiment, the measurement system 2 includes a load 3, a voltmeter 4, an ammeter 5, a thermometer 6, and a control unit 7.

リチウム一次電池1は、二酸化マンガン(MnO)からなる正極と、リチウムからなる負極とがセパレータを介して配置され、有機溶媒に塩類を溶解した電解液が含浸されてなり、例えばコイン形やボタン型、円筒形に生成された一次電池である。より具体的には、リチウム一次電池1は、例えば放電容量が170mAh、低格電流が0.2mA、定格電圧が3VのCR2025規格の電池を用いることができる。内部抵抗Rの同定においては、後述するように、放電深度推定対象と同じ型式のリチウム一次電池1が複数準備される。 The lithium primary battery 1 is a primary battery that is formed by arranging a positive electrode made of manganese dioxide (MnO 2 ) and a negative electrode made of lithium with a separator between them, and is impregnated with an electrolyte solution in which salts are dissolved in an organic solvent, and is formed into, for example, a coin type, button type, or cylindrical type. More specifically, the lithium primary battery 1 may be, for example, a CR2025 standard battery with a discharge capacity of 170 mAh, a rated current of 0.2 mA, and a rated voltage of 3 V. In identifying the internal resistance R, as described below, a plurality of lithium primary batteries 1 of the same type as the target for depth of discharge estimation are prepared.

また、リチウム一次電池1は、本発明においては、端子間が開放状態のときの開放電圧OCV(Open Circuit Voltage)を内部起電力として出力すると共に、放電時に電圧降下をもたらす内部抵抗Rを有する等価回路としてモデル化することができる。このため、リチウム一次電池1の端子電圧Vは、放電電流Iを用いて下記の式(1)で表される。
=OCV-I×R・・・(1)
In the present invention, the lithium primary battery 1 outputs an open circuit voltage OCV (Open Circuit Voltage) when the terminals are in an open state as an internal electromotive force, and can be modeled as an equivalent circuit having an internal resistance R that causes a voltage drop during discharge. For this reason, the terminal voltage VL of the lithium primary battery 1 is expressed by the following equation (1) using the discharge current I.
V L = OCV - I × R ... (1)

負荷3は、リチウム一次電池1を放電させる場合に、放電電力を消費するための抵抗器である。電圧計4は、リチウム一次電池1の端子間に並列に接続され、リチウム一次電池1の端子電圧Vを測定する。電流計5は、リチウム一次電池1と負荷3の間に直列に接続され、リチウム一次電池1の放電電流Iを測定する。温度計6は、リチウム一次電池1に接触するように配置され、リチウム一次電池1の電池温度Tを測定する。 The load 3 is a resistor for consuming discharge power when the lithium primary battery 1 is discharged. The voltmeter 4 is connected in parallel between the terminals of the lithium primary battery 1 and measures the terminal voltage VL of the lithium primary battery 1. The ammeter 5 is connected in series between the lithium primary battery 1 and the load 3 and measures the discharge current I of the lithium primary battery 1. The thermometer 6 is disposed so as to be in contact with the lithium primary battery 1 and measures the battery temperature T of the lithium primary battery 1.

制御部7は、リチウム一次電池1から負荷3への放電を制御しつつ、リチウム一次電池1の端子電圧V、放電電流I、及び電池温度Tを測定し、入力されるこれらの測定データに基づいてOCV-DOD特性、及び内部抵抗Rの近似式を生成する。 The control unit 7 measures the terminal voltage V L , discharge current I, and battery temperature T of the lithium primary battery 1 while controlling the discharge from the lithium primary battery 1 to the load 3, and generates approximate equations for the OCV-DOD characteristics and internal resistance R based on the input measurement data.

続いて、内部抵抗Rの近似式を生成する内部抵抗同定方法の具体的な手順について説明する。本実施形態においては、対象とするリチウム一次電池1と同じ型式の電池を測定用電池B0、B1、・・・、Bnとしてn+1個準備し、以下に示す手順で放電深度DODが100%になるまで放電させながら測定データを取得する。 Next, the specific steps of the internal resistance identification method for generating an approximation equation for the internal resistance R will be described. In this embodiment, n+1 batteries of the same model as the target lithium primary battery 1 are prepared as measurement batteries B0, B1, ..., Bn, and measurement data is obtained while discharging the batteries until the depth of discharge DOD reaches 100% according to the steps shown below.

図2は、内部抵抗同定方法の手順を示すフローチャートである。制御部7は、リチウム一次電池1として測定系2に接続される測定用電池B0を放電させながら、リチウム一次電池1の開放電圧特性、すなわちOCV-DOD特性を取得する(ステップS1)。 Figure 2 is a flowchart showing the steps of the internal resistance identification method. The control unit 7 acquires the open circuit voltage characteristics, i.e., OCV-DOD characteristics, of the lithium primary battery 1 while discharging the measurement battery B0 connected to the measurement system 2 as the lithium primary battery 1 (step S1).

図3は、リチウム一次電池1のOCV-DOD特性を測定する手順を模式的に表す図である。開放電圧測定工程では、測定用電池B0の端子電圧Vを測定する電圧測定と、測定用電池B0をパルス放電させつつ放電深度DODを算出する放電深度監視と、測定用電池B0の開放状態を維持した待機とを繰り返すことにより、図3に示されるOCV-DOD特性の曲線が取得される。 Fig. 3 is a diagram showing a schematic diagram of a procedure for measuring the OCV-DOD characteristics of the lithium primary battery 1. In the open circuit voltage measurement step, a voltage measurement for measuring the terminal voltage VL of the test battery B0, a depth of discharge monitoring for calculating the depth of discharge DOD while pulse discharging the test battery B0, and a standby state in which the test battery B0 is maintained in an open circuit state are repeated to obtain the OCV-DOD characteristics curve shown in Fig. 3.

より具体的には、制御部7は、図3のP1で示されるように、まず測定用電池B0を放電させない開放状態において端子電圧Vを測定する。次に、制御部7は、図3のP2で示されるように、測定用電池B0を例えば放電電流I=10mAで10秒間放電させつつ、この期間の放電電流Iの時間積分により放電深度DODの増加を監視する。このとき、端子電圧Vは、内部抵抗Rに伴う過電圧により、測定対象の開放電圧OCVから低下することになる。そして、制御部7は、図3のP3で示されるように、測定用電池B0の放電を停止した後、測定用電池B0が過電圧状態から平衡状態に到達するまでの平衡到達時間に亘り開放状態を維持することで、開放電圧OCVを測定できるよう待機する。そして、これらの手順を繰り返すことにより、放電深度DODに対する開放電圧OCVの変化を測定することができる。 More specifically, as shown by P1 in Fig. 3, the control unit 7 first measures the terminal voltage VL in an open state where the test battery B0 is not discharged. Next, as shown by P2 in Fig. 3, the control unit 7 discharges the test battery B0 for 10 seconds, for example, at a discharge current I of 10 mA, and monitors the increase in the depth of discharge DOD by the time integral of the discharge current I during this period. At this time, the terminal voltage VL drops from the open circuit voltage OCV to be measured due to the overvoltage caused by the internal resistance R. Then, as shown by P3 in Fig. 3, after stopping the discharge of the test battery B0, the control unit 7 waits to measure the open circuit voltage OCV by maintaining the open circuit state for the equilibrium time until the test battery B0 reaches an equilibrium state from an overvoltage state. Then, by repeating these procedures, the change in the open circuit voltage OCV with respect to the depth of discharge DOD can be measured.

ここで、平衡状態に到達するまでの平衡到達時間について詳しく説明する。図4は、リチウム一次電池1の放電深度DODに対する平衡到達時間の一例である。ここで、平衡到達時間とは、放置試験により得られた開放電圧OCVの97%まで電圧が復帰する時間として算出した。図4に見られるように、リチウム一次電池1の平衡到達時間は、放電深度DODが低いほど平衡状態に到達するまでに時間を要し、例えば放電深度DODが0%の状態においては26.9H、放電深度DODが20%の状態においては18minである。すなわち、開放電圧測定工程においては、図3のP3で示される待機時間は、少なくとも放電深度DODの初期において1日以上の時間が必要となることがわかる。尚、図4のような平衡到達時間が事前に把握できる場合には、放電深度DODに応じた平衡到達時間を参考に放置時間を設定することができる。 Here, the equilibrium time required to reach the equilibrium state will be described in detail. Figure 4 shows an example of the equilibrium time for the depth of discharge DOD of the lithium primary battery 1. Here, the equilibrium time was calculated as the time required for the voltage to return to 97% of the open circuit voltage OCV obtained by the storage test. As shown in Figure 4, the lower the depth of discharge DOD, the longer the time required for the lithium primary battery 1 to reach the equilibrium state. For example, when the depth of discharge DOD is 0%, it is 26.9 hours, and when the depth of discharge DOD is 20%, it is 18 minutes. That is, in the open circuit voltage measurement process, the waiting time indicated by P3 in Figure 3 requires at least one day at the beginning of the depth of discharge DOD. If the equilibrium time as shown in Figure 4 can be known in advance, the storage time can be set with reference to the equilibrium time corresponding to the depth of discharge DOD.

図2のフローチャートに戻り、ステップS1においてOCV-DOD特性を取得すると、制御部7は、測定用電池B1、・・・、Bnを用いて複数の放電電流Iに対するリチウム一次電池1の端子電圧特性、すなわちV-DOD特性を取得する(ステップS2)。 Returning to the flowchart of FIG. 2, after acquiring the OCV-DOD characteristics in step S1, the control unit 7 acquires the terminal voltage characteristics of the lithium primary battery 1 for multiple discharge currents I, i.e., the V L -DOD characteristics, using the measurement batteries B1, ..., Bn (step S2).

より具体的には、制御部7は、例えば測定用電池B1に対して放電電流Iを0.1mAとする定電流放電を行い、そのときの端子電圧Vを電圧計4で測定すると共に、上記したOCV-DOD特性の取得と同様に放電深度DODを算出することで、放電深度DODに対する端子電圧Vの変化を取得する。また、同様に、制御部7は、例えば測定用電池B2~Bnに対して、例えば放電電流Iをそれぞれ0.2mA、0.5mA、1.0mA、2.0mA、3.0mA、4.0mA、5.0mAとして、互いに異なる放電電流Iで定電流放電させた場合の放電深度DODに対する端子電圧Vの変化を取得する。 More specifically, the control unit 7 performs constant current discharge with a discharge current I of 0.1 mA, for example, on the test battery B1, measures the terminal voltage VL at that time with the voltmeter 4, and calculates the depth of discharge DOD in the same manner as in obtaining the OCV-DOD characteristics described above, thereby obtaining the change in terminal voltage VL with respect to the depth of discharge DOD. Similarly, the control unit 7 obtains the change in terminal voltage VL with respect to the depth of discharge DOD when the test batteries B2 to Bn are subjected to constant current discharge with different discharge currents I, for example, 0.2 mA, 0.5 mA, 1.0 mA, 2.0 mA, 3.0 mA, 4.0 mA, and 5.0 mA , respectively.

図5は、リチウム一次電池1の測定されたV-DOD特性を表す図である。図5においては、放電電流Iが0.1mA、0.2mA、・・・、5.0mAである場合のV-DOD特性をそれぞれC1、C2、・・・C8の曲線で表していることに加え、ステップS1で取得されたOCV-DOD特性も併せて示している。図5に見られるように、V-DOD特性は、巨視的な傾向として、放電電流Iが大きいほど電圧降下も大きくなることから、当然ながら放電電流Iの大きさに応じてOCV-DOD特性から低下することになる。 5 is a diagram showing the measured V L -DOD characteristics of the lithium primary battery 1. In FIG. 5, the V L -DOD characteristics when the discharge current I is 0.1 mA, 0.2 mA, ..., 5.0 mA are shown by curves C1, C2, ..., C8, respectively, and the OCV-DOD characteristics obtained in step S1 are also shown. As can be seen in FIG. 5, the V L -DOD characteristics tend to decrease from the OCV-DOD characteristics according to the magnitude of the discharge current I, since the voltage drop increases as the discharge current I increases macroscopically.

一方、微視的な傾向として、放電電流Iが異なる複数のV-DOD特性は、放電深度DODが低い領域において特性曲線の形状に相違が見られる。この点について、模式図を参照しながら詳しく説明する。図6は、放電電流IによるV-DOD特性の形状の違いを模式的に示す図である。より具体的には、図6においては、横軸で放電深度DODを表し、縦軸で端子電圧Vを表した場合に、放電電流Iが比較的大きい場合のV-DOD特性であるV(high)、及び放電電流Iが比較的小さい場合のV-DOD特性であるV(low)のそれぞれの形状を模式的に表している。 On the other hand, as a microscopic tendency, a plurality of V L -DOD characteristics with different discharge currents I show differences in the shapes of the characteristic curves in the region where the depth of discharge DOD is low. This point will be described in detail with reference to a schematic diagram. FIG. 6 is a diagram showing a schematic diagram of differences in the shapes of the V L -DOD characteristics depending on the discharge current I. More specifically, in FIG. 6, when the horizontal axis represents the depth of discharge DOD and the vertical axis represents the terminal voltage V L , the respective shapes of V L (high), which is the V L -DOD characteristic when the discharge current I is relatively large, and V L (low), which is the V L -DOD characteristic when the discharge current I is relatively small, are shown.

図6に見られるように、放電電流Iが比較的大きい場合のV(high)は、OCV-DOD特性に対しておおむね相似な形状である。これに対して、放電電流Iが比較的小さい場合のV(low)は、図中の破線楕円DEで示すように、放電深度DODが低い放電初期において端子電圧Vが低下しており、OCV-DOD特性に対する相似形状から外れた変化を示す。そして、当該傾向は、図5における放電初期に見られるように、放電電流Iが小さくなるに従って顕著に表れる。本発明においては、特異的な内部抵抗の上昇を表す当該傾向を後述するように近似式によってモデル化することにより、放電深度DODの推定精度の低下を抑制する。 As shown in Fig. 6, VL (high) when the discharge current I is relatively large has a shape that is roughly similar to the OCV-DOD characteristics. In contrast, VL (low) when the discharge current I is relatively small shows a change that deviates from the similar shape to the OCV-DOD characteristics, as shown by the dashed ellipse DE in the figure, in which the terminal voltage VL drops in the early stage of discharge when the depth of discharge DOD is low. This tendency becomes more pronounced as the discharge current I becomes smaller, as seen in the early stage of discharge in Fig. 5. In the present invention, the tendency that indicates a specific increase in internal resistance is modeled by an approximation formula as described below, thereby suppressing a decrease in the estimation accuracy of the depth of discharge DOD.

続いて、制御部7は、ステップS1で取得したOCV-DOD特性、及びステップS2で取得したV-DOD特性に基づいて、リチウム一次電池1の放電深度DODに対する内部抵抗特性、すなわちR-DOD特性を算出する(ステップS3)。より具体的には、制御部7は、放電電流IごとにOCV-DOD特性とV-DOD特性との差分を算出し、当該差分をそれぞれの放電電流Iで除することにより、放電電流IごとにR-DOD特性を算出することができる。 Next, the control unit 7 calculates the internal resistance characteristic with respect to the depth of discharge DOD of the lithium primary battery 1, i.e., the R-DOD characteristic, based on the OCV-DOD characteristic obtained in step S1 and the V L -DOD characteristic obtained in step S2 (step S3). More specifically, the control unit 7 calculates the difference between the OCV-DOD characteristic and the V L -DOD characteristic for each discharge current I, and divides the difference by each discharge current I, thereby calculating the R-DOD characteristic for each discharge current I.

図7は、内部抵抗算出工程において算出されたR-DOD特性の図である。図7において、放電電流Iが0.2mA、0.5mA、・・・、5.0mAである場合のR-DOD特性をそれぞれD2、D3、・・・、D8の曲線で表している。図7に見られるように、リチウム一次電池1のR-DOD特性は、放電電流Iが小さいほど放電深度DODの初期において内部抵抗Rが高い値から低下し、放電深度DODの後期において内部抵抗Rが指数関数的に上昇することが確認できる。 Figure 7 shows the R-DOD characteristics calculated in the internal resistance calculation process. In Figure 7, the R-DOD characteristics when the discharge current I is 0.2 mA, 0.5 mA, ..., 5.0 mA are shown by the curves D2, D3, ..., D8, respectively. As can be seen in Figure 7, the R-DOD characteristics of the lithium primary battery 1 show that as the discharge current I becomes smaller, the internal resistance R decreases from a high value in the early stage of the depth of discharge DOD, and the internal resistance R increases exponentially in the later stage of the depth of discharge DOD.

そして、放電初期における微弱な放電電流Iでの抵抗成分が、リチウム一次電池1の残量推定精度を低下させる一因となる。そのため、制御部7は、内部抵抗算出工程に引き続き、ステップS2で取得したV-DOD特性に基づいて、リチウム一次電池1の放電深度DODに対する疑似内部抵抗としてのR´-DOD特性を算出する(ステップS4)。より具体的には、まず、複数のV-DOD特性のうち、放電電流Iが最小の端子電圧特性、すなわち本実施形態においては放電電流I=0.1mAのときのV-DOD特性(図5のC1)をOCV´-DOD特性(疑似開放電圧特性)と定義する。また、制御部7は、OCV´-DOD特性と他のV-DOD特性(図5のC2~C8)との差分を算出し、当該差分をそれぞれの放電電流Iで除することにより、放電電流IごとにR´-DOD特性(以下、疑似内部抵抗R´と称する)を算出することができる。 The resistance component at the weak discharge current I at the beginning of discharge is one of the factors that reduce the accuracy of estimating the remaining capacity of the lithium primary battery 1. Therefore, following the internal resistance calculation step, the control unit 7 calculates the R' -DOD characteristic as a pseudo internal resistance for the depth of discharge DOD of the lithium primary battery 1 based on the VL-DOD characteristic acquired in step S2 (step S4). More specifically, first, among the multiple VL -DOD characteristics, the terminal voltage characteristic with the smallest discharge current I, that is, in this embodiment, the VL -DOD characteristic (C1 in FIG. 5) when the discharge current I=0.1 mA, is defined as the OCV'-DOD characteristic (pseudo open circuit voltage characteristic). In addition, the control unit 7 calculates the difference between the OCV'-DOD characteristic and the other VL -DOD characteristics (C2 to C8 in FIG. 5) and divides the difference by each discharge current I, thereby being able to calculate the R'-DOD characteristic (hereinafter referred to as pseudo internal resistance R') for each discharge current I.

図8は、複数のV-DOD特性から算出された疑似内部抵抗R´の図である。図8において、放電電流Iが0.5mA、1.0mA、・・・、5.0mAである場合のR´-DOD特性をそれぞれE3、E4、・・・、E8の曲線で表している。図8に見られるように、リチウム一次電池1の疑似内部抵抗R´は、図7のR-DOD特性と同様に放電深度DODの後期においては抵抗値が指数関数的に上昇するが、微弱な放電電流IによるOCV´-DOD特性を基準としていることにより、放電深度DODの初期においても疑似内部抵抗R´はほぼ単調増加することが確認できる。 Fig. 8 is a diagram of pseudo internal resistance R' calculated from a number of V L -DOD characteristics. In Fig. 8, the R'-DOD characteristics when the discharge current I is 0.5 mA, 1.0 mA, ..., 5.0 mA are shown by curves E3, E4, ..., E8, respectively. As can be seen in Fig. 8, the pseudo internal resistance R' of the lithium primary battery 1 increases exponentially in resistance value in the later stage of the depth of discharge DOD, similar to the R-DOD characteristics in Fig. 7, but since the OCV'-DOD characteristics based on a weak discharge current I are used as the reference, it can be confirmed that the pseudo internal resistance R' increases almost monotonically even in the early stage of the depth of discharge DOD.

次いで、制御部7は、内部抵抗算出工程で算出した内部抵抗特性R-DOD特性(図7)と算出した疑似内部抵抗R´-DOD特性(図8)との差分である放電初期抵抗ΔRを算出する(ステップS5)。図9は、リチウム一次電池1の放電初期抵抗ΔRを表す図である。図9において、放電電流Iが0.5mA、1.0mA、・・・、5.0mAである場合の放電初期抵抗ΔRをそれぞれF3、F4、・・・、F8の曲線で表している。 Next, the control unit 7 calculates the initial discharge resistance ΔR, which is the difference between the internal resistance characteristic R-DOD characteristic (FIG. 7) calculated in the internal resistance calculation step and the calculated pseudo internal resistance R'-DOD characteristic (FIG. 8) (step S5). FIG. 9 is a diagram showing the initial discharge resistance ΔR of the lithium primary battery 1. In FIG. 9, the initial discharge resistance ΔR when the discharge current I is 0.5 mA, 1.0 mA, ..., 5.0 mA is shown by the curves F3, F4, ..., F8, respectively.

ここで、放電初期抵抗ΔRは、放電深度DODの初期において微弱な放電電流Iで見られる内部抵抗Rの抵抗成分が抽出されたものである。換言すると、リチウム一次電池1の内部抵抗Rは、放電初期抵抗ΔRと上記の疑似内部抵抗R´との和としてモデル化することができる。そこで、制御部7は、測定データから算出された放電初期抵抗ΔR及び疑似内部抵抗R´にフィッティングする近似式をそれぞれ生成し、両者の和をリチウム一次電池1の内部抵抗Rについての近似式としてモデリングする(ステップS6)。 Here, the initial discharge resistance ΔR is the resistance component of the internal resistance R seen at the weak discharge current I at the beginning of the depth of discharge DOD. In other words, the internal resistance R of the lithium primary battery 1 can be modeled as the sum of the initial discharge resistance ΔR and the pseudo internal resistance R' described above. Therefore, the control unit 7 generates approximate equations that fit the initial discharge resistance ΔR and the pseudo internal resistance R' calculated from the measurement data, and models the sum of the two as an approximate equation for the internal resistance R of the lithium primary battery 1 (step S6).

本実施形態においては、制御部7は、図9で示される放電初期抵抗ΔRについて、放電深度DOD及び放電電流Iを含む近似式にフィッティングさせる。例えば、放電初期抵抗ΔRは、0.5mA≦I≦2.5mAの範囲においては、係数Aを放電深度DODの多項式とし、係数Bを定数として、ΔR=A×(I)-Bのように近似式を生成した場合、A≒-0.0001(1-DOD)4 +0.05(1-DOD)3 -5(1-DOD)2 +500(1-DOD)-5000、B≒1として表される。尚、放電初期抵抗ΔRの近似式は、放電電流Iに対する累乗関数に限られるものではなく、ΔR=A×e-BIで表される指数関数や、ΔR=-A×LN(I)+Bで表される対数関数であってもよく、さらには放電電流Iの区分ごとに場合分けしてもよい。 In this embodiment, the control unit 7 fits the discharge initial resistance ΔR shown in Fig. 9 to an approximation including the depth of discharge DOD and the discharge current I. For example, in the range of 0.5mA≦I≦2.5mA, when an approximation is generated such that coefficient A is a polynomial of the depth of discharge DOD and coefficient B is a constant, the discharge initial resistance ΔR is expressed as A ≈ -0.0001(1-DOD) 4 + 0.05(1-DOD) 3 -5(1-DOD) 2 + 500(1-DOD) -5000, and B ≈ 1. Note that the approximation of the discharge initial resistance ΔR is not limited to a power function of the discharge current I, but may be an exponential function expressed as ΔR = A × e -BI or a logarithmic function expressed as ΔR = -A × LN(I) + B, or may be classified according to the range of the discharge current I.

また、制御部7は、図8で示される疑似内部抵抗R´についても、放電深度DOD及び放電電流Iを含む近似式にフィッティングさせる。ここでは、放電電流Iを独立変数とする4つのパラメータa、b、c、及びdを従属変数として含む近似式を用いて、疑似内部抵抗R´を放電深度DODに関する以下の式(2)によりモデル化を行う。そして、制御部7は、放電電流Iに対する図8の疑似内部抵抗R´の曲線を式(2)にフィッティングするように、最小二乗法により4つのパラメータa、b、c、及びdを放電電流Iで表現する。
R´=a+b×DOD+c×exp [-d×(1-DOD)]・・・(2)
The control unit 7 also fits the pseudo internal resistance R' shown in Fig. 8 to an approximation equation including the depth of discharge DOD and the discharge current I. Here, the pseudo internal resistance R' is modeled by the following equation (2) related to the depth of discharge DOD, using an approximation equation including four parameters a, b, c, and d as dependent variables with the discharge current I as an independent variable. Then, the control unit 7 expresses the four parameters a, b, c, and d in terms of the discharge current I by the least squares method so as to fit the curve of the pseudo internal resistance R' in Fig. 8 against the discharge current I to equation (2).
R' = a + b × DOD + c × exp [-d × (1-DOD)] ... (2)

図10は、放電電流Iに対するパラメータaの変化を表す図である。当該波形を用いて、パラメータaは、例えば次のように表現することができる。
I≦2.5mAにおいて、a≒100×exp[-0.5×I]
2.5mA<I≦4.5mAにおいて、a≒-10×LN(I)+50
4.5mA<I≦10mAにおいて、a=-0.38×I+29.6
10mA<Iにおいて、a≒50
10 is a diagram showing the change in parameter a with respect to the discharge current I. Using this waveform, the parameter a can be expressed, for example, as follows.
When I≦2.5mA, a ≒ 100 × exp[-0.5 × I]
When 2.5mA<I≦4.5mA, a ≈ -10×LN(I)+50
When 4.5mA<I≦10mA, a=-0.38×I+29.6
At 10mA < I, a ≒ 50

図11は、放電電流Iに対するパラメータbの変化を表す図である。当該波形を用いて、パラメータbは、例えば次のように表現することができる。
I≦2.5mAにおいて、b≒-0.5×I+0.05
2.5mA<Iにおいて、b≒1
11 is a diagram showing a change in parameter b with respect to the discharge current I. Using this waveform, parameter b can be expressed, for example, as follows.
When I≦2.5mA, b ≈ -0.5 × I + 0.05
At 2.5mA < I, b ≈ 1

図12は、放電電流Iに対するパラメータcの変化を表す図である。当該波形を用いて、パラメータcは、例えば次のように表現することができる。
I≦2.5mAにおいて、c≒100×LN(I)+500
2.5mA<I≦10mAにおいて、c≒0.001×I10
10mA<Iにおいて、c≒50000×exp[I]
12 is a diagram showing a change in parameter c with respect to the discharge current I. Using this waveform, the parameter c can be expressed, for example, as follows.
At I≦2.5mA, c≒100×LN(I)+500
When 2.5mA<I≦10mA, c≒0.001× I
At 10mA < I, c ≒ 50000 × exp [I]

図13は、放電電流Iに対するパラメータdの変化を表す図である。当該波形を用いて、パラメータdは、例えば次のように表現することができる。
I≦2.5mAにおいて、d≒0.05×LN(I)+0.1
2.5mA<Iにおいて、d≒0.01×I+0.1
13 is a diagram showing a change in parameter d with respect to the discharge current I. Using this waveform, the parameter d can be expressed, for example, as follows.
When I≦2.5mA, d≈0.05×LN(I)+0.1
When I is less than 2.5mA, d ≈ 0.01 × I + 0.1

そして、制御部7は、放電電流I及び放電深度DODを含む放電初期抵抗ΔR及び疑似内部抵抗R´の近似式を足し合わせることにより、リチウム一次電池1の内部抵抗Rを放電電流I及び放電深度DODの関数f(I,DOD)として近似する(ステップS7)。 Then, the control unit 7 approximates the internal resistance R of the lithium primary battery 1 as a function f(I, DOD) of the discharge current I and the depth of discharge DOD by adding together the approximation equations of the discharge initial resistance ΔR and the pseudo internal resistance R', which include the discharge current I and the depth of discharge DOD (step S7).

これにより、制御部7は、ステップS4からステップS7までのモデリング工程を通じて、リチウム一次電池1の内部抵抗Rに対し、放電初期において微小な放電電流Iで生じる放電初期抵抗ΔRと、その他の抵抗成分としての疑似内部抵抗R´とを分離してモデリングすることができる。 As a result, through the modeling process from step S4 to step S7, the control unit 7 can model the internal resistance R of the lithium primary battery 1 by separating the initial discharge resistance ΔR generated by the minute discharge current I at the beginning of discharge from the pseudo internal resistance R' as the other resistance component.

図14は、リチウム一次電池1の内部抵抗Rの実測値及び近似曲線を放電電流Iごとに表す図である。図14に見られるように、リチウム一次電池1の内部抵抗Rは、いずれの放電電流Iにおいてもおおむね実測値と近似曲線とが重り、上記の内部抵抗同定方法により生成された近似式で適切に近似されていることが確認できる。そして、リチウム一次電池1の内部抵抗Rは、特に、比較的小さい放電電流Iにおける放電初期の傾向に対しても実測値に追従した近似を行うことができる。 Figure 14 shows the actual measured values and approximate curves of the internal resistance R of the lithium primary battery 1 for each discharge current I. As can be seen in Figure 14, the actual measured values and approximate curves of the internal resistance R of the lithium primary battery 1 generally overlap at each discharge current I, and it can be confirmed that the internal resistance R is appropriately approximated by the approximate equation generated by the above-mentioned internal resistance identification method. Furthermore, the internal resistance R of the lithium primary battery 1 can be approximated to follow the actual measured values, especially for the tendency in the early stage of discharge at a relatively small discharge current I.

次に、内部抵抗Rの上記の近似式に対して、温度特性を考慮して補正する方法について説明する。内部抵抗Rの近似式に温度特性を付加する場合には、放電電流Iを固定した上で、複数のリチウム一次電池1を互いに異なる温度環境下において上記したステップS3と同様の工程によりR-DOD特性を取得する。 Next, a method of correcting the above approximation formula for internal resistance R by taking into account temperature characteristics will be described. When adding temperature characteristics to the approximation formula for internal resistance R, the discharge current I is fixed, and the R-DOD characteristics are obtained by subjecting multiple lithium primary batteries 1 to different temperature environments through a process similar to step S3 described above.

より具体的には、本実施形態においては、上記の測定用電池を5個準備し、それぞれの測定用電池の温度をT=-20℃、0℃、25℃、45℃、60℃に制御した状態で放電電流I=10mAで放電させたときのR-DOD特性を取得する。 More specifically, in this embodiment, five of the above-mentioned test batteries are prepared, and the R-DOD characteristics are obtained when each test battery is discharged at a discharge current I of 10 mA while controlling the temperature of each test battery to T = -20°C, 0°C, 25°C, 45°C, and 60°C.

図15は、リチウム一次電池1の温度Tに対する内部抵抗Rを表す図である。より具体的には、図15は、放電させた測定用電池の温度Tと内部抵抗Rとの対応関係を、放電深度DODごとにプロットした図である。図15に見られるように、リチウム一次電池1の内部抵抗Rは、いずれの放電深度DODに対してもおおむね減衰曲線に沿うことが確認できる。そこで、内部抵抗Rを定数パラメータA及びBを用いてR=A×exp(-B×T)の減衰曲線に近似し、そのときの定数パラメータA及びBを算出する。 Figure 15 is a diagram showing the internal resistance R versus temperature T of the lithium primary battery 1. More specifically, Figure 15 is a diagram plotting the correspondence between temperature T and internal resistance R of a discharged measurement battery for each depth of discharge DOD. As can be seen from Figure 15, it can be confirmed that the internal resistance R of the lithium primary battery 1 generally follows a decay curve for each depth of discharge DOD. Therefore, the internal resistance R is approximated to a decay curve of R = A x exp(-B x T) using constant parameters A and B, and the constant parameters A and B at that time are calculated.

図16は、例えば、放電深度DODに対する定数パラメータA及びBを表すグラフである。ここで、図16は、横軸を放電深度DODとし、左側の縦軸で定数パラメータAの値を表し、右側の縦軸で定数パラメータBの値を表している。図16に見られるように、定数パラメータBについては、放電深度DODに対してほぼ一定(約0.05)であることが確認できる。すなわち、リチウム一次電池1の内部抵抗Rは、温度Tに対して一定の増減率(ここでは減衰率)を持つことになる。 Figure 16 is a graph showing, for example, constant parameters A and B versus depth of discharge DOD. Here, in Figure 16, the horizontal axis represents depth of discharge DOD, the left vertical axis represents the value of constant parameter A, and the right vertical axis represents the value of constant parameter B. As can be seen in Figure 16, it can be confirmed that constant parameter B is almost constant (approximately 0.05) versus depth of discharge DOD. In other words, the internal resistance R of the lithium primary battery 1 has a constant rate of increase/decrease (here, decay rate) versus temperature T.

そのため、所定の基準温度Tにおいて生成された内部抵抗Rの上記の近似式f(I、DOD)に対して、基準温度Tとの温度差ΔTを用いた補正係数exp(-0.05×ΔT)をかけることにより、温度特性を考慮した内部抵抗Rの近似式f(I、DOD、ΔT)を形成することができる。すなわち、f(I、DOD、ΔT)=f(I、DOD)×exp(-0.05×ΔT)により、リチウム一次電池1の内部抵抗Rを温度Tに対応した近似式でモデリングすることができる。 Therefore, by multiplying the above approximate equation f(I, DOD) of the internal resistance R generated at a predetermined reference temperature T S by a correction coefficient exp(-0.05×ΔT) using the temperature difference ΔT from the reference temperature T S , an approximate equation f(I, DOD, ΔT) of the internal resistance R that takes temperature characteristics into consideration can be formed. In other words, the internal resistance R of the lithium primary battery 1 can be modeled by an approximate equation corresponding to the temperature T from f(I, DOD, ΔT)=f(I, DOD)×exp(-0.05×ΔT).

<パラメータ推定手法>
続いて、上記のようにモデル化された内部抵抗Rの近似式を用いて、リチウム一次電池1の運用時における放電深度DODを推定する方法について説明する。図17は、リチウム一次電池1の電力で動作する電子機器10の回路図である。
<Parameter estimation method>
Next, a method for estimating the depth of discharge DOD during operation of the lithium primary battery 1 will be described using the approximation equation for the internal resistance R modeled as above. Fig. 17 is a circuit diagram of an electronic device 10 that operates on power from the lithium primary battery 1.

電子機器10は、リチウム一次電池1、放電深度推定装置12、負荷13を備える。また、放電深度推定装置12は、電圧計14、電流計15、温度計16、及び制御部17を備える。ここで、電子機器10は、例えば小型センサを搭載するセンサモジュールとして構成されており、搭載されるリチウム一次電池1を電力源としてセンシング動作を行う。そして、電子機器10は、リチウム一次電池1の放電に伴う残量低下を把握するために、制御部17においてリチウム一次電池1の放電深度DODが推定される。 The electronic device 10 comprises a lithium primary battery 1, a depth of discharge estimation device 12, and a load 13. The depth of discharge estimation device 12 also comprises a voltmeter 14, an ammeter 15, a thermometer 16, and a control unit 17. Here, the electronic device 10 is configured as a sensor module equipped with, for example, a small sensor, and performs sensing operations using the equipped lithium primary battery 1 as a power source. Then, in the electronic device 10, the depth of discharge DOD of the lithium primary battery 1 is estimated in the control unit 17 in order to grasp the remaining charge decrease accompanying the discharge of the lithium primary battery 1.

ここで、負荷13は、本実施形態においては、リチウム一次電池1の電力を消費するセンサモジュールのセンサ部に相当する。ここで、電圧計14、電流計15、及び温度計16についても、それぞれ上記した電圧計4、電流計5、及び温度計6と同様の機能を有するため詳細な説明を省略する。 Here, in this embodiment, the load 13 corresponds to the sensor section of the sensor module that consumes the power of the lithium primary battery 1. Here, the voltmeter 14, ammeter 15, and thermometer 16 have the same functions as the voltmeter 4, ammeter 5, and thermometer 6 described above, respectively, so detailed explanations are omitted.

制御部17は、リチウム一次電池1から負荷13への放電を制御しつつ、放電中におけるリチウム一次電池1の端子電圧Vを電圧計14で測定すると共に、放電電流Iを電流計15で測定する。また、制御部17は、放電深度推定において温度特性を考慮する場合には、リチウム一次電池1の電池温度Tを温度計16で測定する。そして、制御部17は、上記の内部抵抗同定方法で予め得られたリチウム一次電池1の開放電圧特性(OCV-DOD特性)を記憶しており、運用段階で得られる測定データに基づくパラメータ推定手法によりリチウム一次電池1の放電深度DODを推定する。パラメータ推定手法は、逐次最小二乗法やカルマンフィルタ推定法等の公知の手法を採用することができる。 While controlling the discharge from the lithium primary battery 1 to the load 13, the control unit 17 measures the terminal voltage VL of the lithium primary battery 1 during discharge with a voltmeter 14 and measures the discharge current I with an ammeter 15. When temperature characteristics are taken into consideration in estimating the depth of discharge, the control unit 17 also measures the battery temperature T of the lithium primary battery 1 with a thermometer 16. The control unit 17 stores the open circuit voltage characteristics (OCV-DOD characteristics) of the lithium primary battery 1 obtained in advance by the above-mentioned internal resistance identification method, and estimates the depth of discharge DOD of the lithium primary battery 1 by a parameter estimation method based on measurement data obtained during operation. As the parameter estimation method, a known method such as the recursive least squares method or a Kalman filter estimation method can be adopted.

より具体的には、本発明における逐次最小二乗法では、リチウム一次電池1の等価回路モデルによる上記した式(1)を、データ取得のサンプリング時刻kを用いたベクトル形式で表現する。すなわち、上記の式(1)のダイナミクスに対し、回帰パラメータを下記の式(3)で表し、推定パラメータを下記の式(4)で表した場合、観測方程式は、下記の式(5)で表される。ここで、wは、端子電圧Vの測定値に対するノイズ項である。ただし、当該ノイズは正規分布に従うことにより、積分によってゼロとなる。

Figure 0007481131000001
Figure 0007481131000002
Figure 0007481131000003
More specifically, in the recursive least squares method of the present invention, the above-mentioned formula (1) based on the equivalent circuit model of the lithium primary battery 1 is expressed in a vector format using the sampling time k for data acquisition. That is, for the dynamics of the above formula (1), if the regression parameters are expressed by the following formula (3) and the estimated parameters are expressed by the following formula (4), the observation equation is expressed by the following formula (5). Here, w is a noise term for the measured value of the terminal voltage VL . However, since the noise follows a normal distribution, it becomes zero by integration.
Figure 0007481131000001
Figure 0007481131000002
Figure 0007481131000003

また、本実施形態における放電深度推定では、下記の式(6)で表される忘却係数λを設けたいわゆる忘却係数付き逐次最小二乗法とした。ここで、τは、EXP関数の減衰率を調整する項である。

Figure 0007481131000004
In the present embodiment, the depth of discharge estimation is performed by a so-called recursive least squares method with a forgetting factor λ expressed by the following formula (6): Here, τ is a term for adjusting the decay rate of the EXP function.
Figure 0007481131000004

上記の各式に基づき、制御部17は、観測可能なリチウム一次電池1の放電電流I(k)及び端子電圧V(k)を入力パラメータとして忘却係数付き逐次最小二乗法により回帰的に計算することで、開放電圧OCVと内部抵抗Rとを式(4)で表される未知の推定パラメータとして逐次算出する。そして、制御部17は、算出された開放電圧OCVとリチウム一次電池1のOCV-DOD特性とに基づいて、リチウム一次電池1の放電深度DODを逐次推定する。尚、忘却係数付き逐次最小二乗法は、それ自体は公知の手法であるため、詳細な説明を省略する。 Based on the above equations, the control unit 17 recursively calculates the open circuit voltage OCV and internal resistance R as unknown estimated parameters represented by equation (4) by using the recursive least squares method with a forgetting factor to calculate the observable discharge current I(k) and terminal voltage VL(k) of the lithium primary battery 1 as input parameters. Then, the control unit 17 recursively estimates the depth of discharge DOD of the lithium primary battery 1 based on the calculated open circuit voltage OCV and the OCV-DOD characteristics of the lithium primary battery 1. Note that the recursive least squares method with a forgetting factor is a known technique itself, so a detailed description thereof will be omitted.

上記のような放電深度推定によれば、疑似内部抵抗R´の近似式が上記の式(2)により表されていることにより、放電深度DODに対するEXP関数の項で拡散分極を表現し、定数項及び比例項により純粋な抵抗成分を表現するモデリングがなされている。これにより、リチウム一次電池1の内部抵抗Rの挙動に対応して実測データを精度良く近似できるほか、計算が比較的簡単かつ少ない項の線形和として表現されているため、計算負荷が軽く演算処理を高速化することができる。 According to the above-described depth of discharge estimation, the approximate formula for the pseudo internal resistance R' is expressed by the above formula (2), and thus modeling is performed in which the diffusion polarization is expressed in terms of the EXP function for the depth of discharge DOD, and the pure resistance component is expressed by constant terms and proportional terms. This allows for accurate approximation of the measured data corresponding to the behavior of the internal resistance R of the lithium primary battery 1, and since the calculation is relatively simple and expressed as a linear sum of a small number of terms, the calculation load is light and the calculation process can be accelerated.

また、上記のような放電深度推定によれば、リチウム一次電池1の内部抵抗Rの近似式を電池の温度Tに基づいて補正することができるため、内部抵抗Rの近似精度を向上させることができる。更に、上記の式(2)で疑似内部抵抗R´を精度良く近似する近似式に含まれるパラメータは、放電電流Iを独立変数とした場合の従属変数となっている。これにより、放電深度推定における放電電流Iの値を予め特定しておく必要がなく、そのときの放電電流Iに対応した推定を行うことができるほか、内部抵抗Rの近似式が放電電流Iの大きさに対応して調整されるため、近似精度を向上させることができる。 In addition, according to the depth of discharge estimation as described above, the approximation formula for the internal resistance R of the lithium primary battery 1 can be corrected based on the temperature T of the battery, thereby improving the approximation accuracy of the internal resistance R. Furthermore, the parameters included in the approximation formula that accurately approximates the pseudo internal resistance R' in the above formula (2) are dependent variables when the discharge current I is the independent variable. As a result, it is not necessary to specify the value of the discharge current I in advance in the depth of discharge estimation, and an estimation can be made that corresponds to the discharge current I at that time. In addition, since the approximation formula for the internal resistance R is adjusted according to the magnitude of the discharge current I, the approximation accuracy can be improved.

ところで、上記のようなリチウム一次電池1は、有機溶媒に塩類を溶解した電解液が用いられることから、未使用又は開放期間が長い電池においては、リチウムからなる負極の表面に炭酸リチウム被膜、すなわちSEI被膜(Solid Elecrolyte Interphase)が形成されることがある。SEI被膜は、放電電流Iが比較的大きい場合には容易に破壊されるため、放電電流Iに伴う電圧降下にそれほど影響を与えない。 Incidentally, the lithium primary battery 1 described above uses an electrolyte solution in which salts are dissolved in an organic solvent, so in batteries that have not been used or have been open for a long period of time, a lithium carbonate coating, i.e., a solid electrolyte interphase (SEI) coating, may form on the surface of the lithium negative electrode. The SEI coating is easily destroyed when the discharge current I is relatively large, so it does not have much effect on the voltage drop associated with the discharge current I.

一方、放電電流Iが微弱である場合には、リチウム一次電池1は、放電によるSEI被膜の破壊が鈍速であり、放電時におけるSEI被膜を介したイオン伝導度の低下に伴い内部抵抗Rが増加することになる。すなわち、放電初期において微弱な放電電流Iで顕著に見られる上記の放電初期抵抗ΔRは、当該SEI被膜によるものであると考えられる。このため、上記のようにリチウム一次電池1の内部抵抗Rの近似式において放電初期抵抗ΔRを考慮することにより、放電初期における挙動に対応した放電深度推定が可能になる。 On the other hand, when the discharge current I is weak, the destruction of the SEI film due to discharge of the lithium primary battery 1 is slow, and the internal resistance R increases with the decrease in ionic conductivity through the SEI film during discharge. In other words, the above-mentioned initial discharge resistance ΔR, which is noticeable at the beginning of discharge with a weak discharge current I, is thought to be due to the SEI film. For this reason, by considering the initial discharge resistance ΔR in the approximation formula for the internal resistance R of the lithium primary battery 1 as described above, it becomes possible to estimate the depth of discharge corresponding to the behavior at the beginning of discharge.

しかしながら、リチウム一次電池1は、放電初期のなかでも特に放電開始直後、すなわち放電深度が約0~2%の期間においては、後述するように内部抵抗Rが短時間のうちに急増及び急減して上記の放電初期抵抗ΔRに至るため、上記の近似式であっても追従しきれず、予測値と実測値との大幅な乖離に基づく計算エラーの発生により放電深度推定が異常停止してしまう虞が生じる。そこで、本発明における放電深度推定方法では、以下に説明する手順により放電深度推定における異常停止の虞を低減している。 However, in the early stage of discharge, especially immediately after the start of discharge, i.e., during the period when the depth of discharge is approximately 0 to 2%, the internal resistance R of the lithium primary battery 1 rapidly increases and decreases in a short period of time, as described below, to reach the above-mentioned initial discharge resistance ΔR, so that even the above approximation formula cannot keep up, and there is a risk that the depth of discharge estimation will abnormally stop due to a calculation error caused by a large discrepancy between the predicted value and the actual measured value. Therefore, the depth of discharge estimation method of the present invention reduces the risk of abnormal stopping in the depth of discharge estimation by the procedure described below.

図18は、制御部17の内部構成を模式的に表す構成図である。本実施形態における制御部17は、測定値入力部20、放電深度推定部21、初期値設定部22、及び記憶部23を含む。 Figure 18 is a schematic diagram showing the internal configuration of the control unit 17. In this embodiment, the control unit 17 includes a measurement value input unit 20, a discharge depth estimation unit 21, an initial value setting unit 22, and a memory unit 23.

測定値入力部20は、上記した電圧計14、電流計15、温度計16のそれぞれから、電子機器10の運用時におけるリチウム一次電池1の電圧、電流、温度をそれぞれ取得する。放電深度推定部21は、測定値入力部20を介して入力されたセンサ情報に基づいて、上記したパラメータ推定手法によりリチウム一次電池1の放電深度DODを推定する。初期値設定部22は、上記のパラメータ推定手法を開始するときの内部抵抗Rの初期値R0を設定する。記憶部23は、放電深度推定部21において放電深度推定方法を実行するためのプログラム、及び初期値設定部22において初期値R0を設定するための後述する近似式等を記憶する。 The measurement value input unit 20 acquires the voltage, current, and temperature of the lithium primary battery 1 during operation of the electronic device 10 from the voltmeter 14, ammeter 15, and thermometer 16 described above. The depth of discharge estimation unit 21 estimates the depth of discharge DOD of the lithium primary battery 1 using the parameter estimation method described above based on the sensor information input via the measurement value input unit 20. The initial value setting unit 22 sets an initial value R0 of the internal resistance R when starting the parameter estimation method described above. The memory unit 23 stores a program for executing the depth of discharge estimation method in the depth of discharge estimation unit 21, and an approximation formula (described later) for setting the initial value R0 in the initial value setting unit 22.

<事前データ>
本発明に係る放電深度推定方法においては、放電深度推定における異常停止を抑制するための準備として、放電深度DODの推定対象となるリチウム一次電池1の関する事前データを予め取得しておく。ここでは、当該事前データの取得手順について説明する。
<Advance data>
In the depth of discharge estimation method according to the present invention, advance data on the lithium primary battery 1 that is the subject of depth of discharge DOD estimation is acquired in advance as a preparation for suppressing abnormal stoppage in depth of discharge estimation. Here, the procedure for acquiring the advance data will be described.

事前データの取得においては、まず、対象とするリチウム一次電池1に対し、複数の放電電流Iごとに断続的に放電させたときの端子電圧Vを測定する。図19は、リチウム一次電池1を断続的に放電させた場合の端子電圧Vの変化の一例を表すグラフである。より具体的には、図19は、放電電流IをCC0.2mAとして放電させた場合のリチウム一次電池1の端子電圧Vについて、放電電流Iの積分値に基づくいわゆるクーロンカウンターにより算出された放電深度DODを横軸として表している。 In acquiring the advance data, first, the terminal voltage VL of the target lithium primary battery 1 is measured when the battery 1 is intermittently discharged for each of a plurality of discharge currents I. Fig. 19 is a graph showing an example of the change in the terminal voltage VL when the lithium primary battery 1 is intermittently discharged. More specifically, Fig. 19 shows the depth of discharge DOD calculated by a so-called coulomb counter based on the integral value of the discharge current I on the horizontal axis for the terminal voltage VL of the lithium primary battery 1 when the battery 1 is discharged at a discharge current I of CC0.2 mA.

図19の測定データに係るリチウム一次電池1は、クーロンカウンターによる放電深度DODが20%となるまで放電された後、過電圧が解消されるまで半日程度の期間に亘り開放状態で放置され、放電を再開して放電深度DODが40%に達すると再び開放状態で放置される。以降も同様に、リチウム一次電池1の放電と放置とを繰り返しつつ端子電圧Vを計測することにより、図19のようなグラフが得られる。尚、放電期間の間隔は、放電深度DODとして20%分~5%分のように任意に変更してもよい。また、図19では、放電電流IがCC0.2mAであるグラフのみを例示しているが、例えばCC0.5mA、CC1.0mA、CC2.0mA、…、CC20mAと、他の放電電流Iでのデータについても同様の手順により取得する。 The lithium primary battery 1 according to the measurement data in FIG. 19 is discharged until the depth of discharge DOD measured by the coulomb counter reaches 20%, and then left in an open state for about half a day until the overvoltage is eliminated. When the discharge is resumed and the depth of discharge DOD reaches 40%, the battery is left in an open state again. The lithium primary battery 1 is discharged and left in the open state again, and the terminal voltage VL is measured. The interval between the discharge periods may be changed to any value, such as 20% to 5% of the depth of discharge DOD. Although FIG. 19 shows only a graph in which the discharge current I is CC0.2mA, data for other discharge currents I, such as CC0.5mA, CC1.0mA, CC2.0mA, ..., CC20mA, may be obtained in the same manner.

更に、放電開始直後における内部抵抗Rの変化をより詳しく把握するために、上記の図19における電深度DODが0%~20%の範囲については、放電を再開するときの放電深度DODをより細かい刻みで測定し、補完データとして追加している。 Furthermore, in order to obtain a more detailed understanding of the change in internal resistance R immediately after the start of discharge, for the range of 0% to 20% of the discharge depth DOD in Figure 19 above, the discharge depth DOD was measured in finer increments when discharge was resumed, and this was added as supplementary data.

次に、上記の測定により得られた放電電流I及び放電開始時の放電深度DODごとの端子電圧Vに対し、それぞれの放電電流Iで除することにより内部抵抗Rに変換すると共に、放電開始時点からの放電深度DODの変化量である放電深度変化量ΔDODを横軸にとるグラフを生成する。 Next, the discharge current I and the terminal voltage VL for each depth of discharge DOD at the start of discharge obtained by the above measurement are converted into an internal resistance R by dividing them by the respective discharge current I, and a graph is generated in which the horizontal axis represents the amount of change in the depth of discharge ΔDOD, which is the amount of change in the depth of discharge DOD from the start of discharge.

図20は、放電開始時点の放電深度DODが40%以下である場合の、放電深度変化量ΔDODに対する内部抵抗Rの変化の一例を表すグラフである。また、図21は、放電開始時点の放電深度DODが40%以上である場合の、放電深度変化量ΔDODに対する内部抵抗Rの変化の一例を表すグラフである。 Figure 20 is a graph showing an example of the change in internal resistance R versus the amount of change in depth of discharge ΔDOD when the depth of discharge DOD at the start of discharge is 40% or less. Also, Figure 21 is a graph showing an example of the change in internal resistance R versus the amount of change in depth of discharge ΔDOD when the depth of discharge DOD at the start of discharge is 40% or more.

図20に見られるように、放電開始後の内部抵抗Rは、放電開始と共に増加し、放電深度変化量ΔDODが約1%~2%においてピークを有し、放電深度DODの進行と共に低下していく。このとき、放電開始時点の放電深度DODが40%であるグラフにおいては、放電深度DODの進行に伴う内部抵抗Rの変化が比較的小さいことから、当該内部抵抗Rの値が純粋な過放電、すなわちIRドロップであると考えられる。 As can be seen in Figure 20, the internal resistance R after the start of discharge increases with the start of discharge, peaks when the depth of discharge change ΔDOD is about 1% to 2%, and decreases as the depth of discharge DOD progresses. In this case, in the graph where the depth of discharge DOD at the start of discharge is 40%, the change in internal resistance R with the progress of the depth of discharge DOD is relatively small, so the value of internal resistance R is considered to be pure overdischarge, i.e., IR drop.

また、放電開始時点の放電深度DODが3%~40%であるグラフにおいては、放電深度DODの進行に伴い内部抵抗Rが減少していることから、上記の放電初期抵抗ΔRに相当する抵抗成分であると考えられる。 In addition, in the graph where the depth of discharge DOD at the start of discharge is 3% to 40%, the internal resistance R decreases as the depth of discharge DOD progresses, and this is thought to be the resistance component equivalent to the initial discharge resistance ΔR described above.

一方、放電開始時点の放電深度DODが0%~2%であるグラフにおいては、破線楕円で示すように、放電深度変化量ΔDODが約2%までの期間において、内部抵抗Rのオーバーシュートが見られる。このような内部抵抗Rの初期急変領域は、内部抵抗Rのモデリングによる近似式からの予測値では追従が困難と挙動となるため、放電深度推定の計算エラーを招来する可能性が生じる。 On the other hand, in the graph where the depth of discharge DOD at the start of discharge is 0% to 2%, as shown by the dashed ellipse, an overshoot of the internal resistance R is observed in the period in which the depth of discharge change ΔDOD is up to about 2%. This initial sudden change region of the internal resistance R is difficult to follow using the predicted value from the approximation formula obtained by modeling the internal resistance R, which may lead to calculation errors in estimating the depth of discharge.

当該初期急変領域は、放電開始時の放電深度DODが約2%以下の場合に見られるものの、以降に放電が再開される場合には、その影響を無視することができる。例えば、図21に見られるように、放電開始時の放電深度DODが40%以上である場合には、初期急変領域だけでなく放電初期抵抗ΔRも見られないことから、初期急変領域に対してはリチウム一次電池1がほぼ未使用である場合の放電開始時に対応すればよいことがわかる。 Although the initial rapid change region is observed when the depth of discharge DOD at the start of discharge is approximately 2% or less, its effect can be ignored if discharging is resumed thereafter. For example, as shown in FIG. 21, when the depth of discharge DOD at the start of discharge is 40% or more, not only the initial rapid change region but also the initial discharge resistance ΔR is not observed, so it can be seen that the initial rapid change region can be dealt with when the lithium primary battery 1 is almost unused at the start of discharge.

次に、放電深度変化量ΔDODに対する内部抵抗Rの電流依存性について検討する。図22は、放電電流Iごとの放電深度変化量ΔDODに対する内部抵抗Rの変化の一例を表すグラフである。より具体的には、図22は、放電深度DODが0%の複数のリチウム一次電池1を放電電流Iごとに放電させた場合の端子電圧Vのデータに基づいて算出された内部抵抗Rのグラフである。 Next, the current dependency of the internal resistance R on the depth of discharge change ΔDOD will be examined. Fig. 22 is a graph showing an example of the change in internal resistance R on the depth of discharge change ΔDOD for each discharge current I. More specifically, Fig. 22 is a graph of the internal resistance R calculated based on data on the terminal voltage VL when a plurality of lithium primary batteries 1 with a depth of discharge DOD of 0% are discharged for each discharge current I.

図22に見られるように、初期急変領域における内部抵抗Rは、放電電流Iが小さいほどピーク値が大きく、予測による追従が困難になる。一方で、内部抵抗Rがピーク値をとる放電深度変化量ΔDODは、複数の放電電流Iに亘り共通し、おおよそ1%であることが分かる。すなわち、初期急変領域における内部抵抗Rは、ピーク値及び当該ピーク値を迎える放電開始からの時間を放電電流Iの値に依存する近似式で表すことができることになる。 As can be seen in Figure 22, the peak value of the internal resistance R in the initial rapid change region becomes larger as the discharge current I becomes smaller, making it difficult to follow by prediction. On the other hand, it can be seen that the discharge depth change amount ΔDOD at which the internal resistance R reaches its peak value is common across multiple discharge currents I and is approximately 1%. In other words, the internal resistance R in the initial rapid change region can be expressed by an approximation formula that depends on the value of the discharge current I, which indicates the peak value and the time from the start of discharge at which the peak value is reached.

図23は、放電開始時における過電圧の平衡到達までの所要時間ts、及び内部抵抗Rの値の放電電流依存性を表すグラフである。より具体的には、図23の所要時間ts及び内部抵抗Rは、複数の放電深度DODと複数の放電電流Iとの組み合わせによる各条件で放電を開始した場合の端子電圧Vの変化を取得し、上記したOCV-DOD特性に対する差分から過電圧の時間特性及びそのときの内部抵抗Rとして算出される。この場合、それぞれのグラフは、次のような近似式で表される。
所要時間:ts≒100×I-1
内部抵抗:R≒500×I-1
Fig. 23 is a graph showing the time ts required for the overvoltage to reach equilibrium at the start of discharge, and the discharge current dependency of the value of the internal resistance R. More specifically, the time ts and the internal resistance R in Fig. 23 are calculated by acquiring the change in the terminal voltage VL when discharge is started under each condition based on a combination of multiple depths of discharge DOD and multiple discharge currents I, and calculating the time characteristic of the overvoltage and the internal resistance R at that time from the difference with respect to the above-mentioned OCV-DOD characteristic. In this case, each graph is expressed by the following approximate formula.
Time required: ts ≒ 100 × I -1
Internal resistance: R ≒ 500 × I -1

また、図24は、初期急変領域において内部抵抗Rがピーク値を迎えるときの放電深度変化量ΔDODの放電電流依存性を表すグラフである。図24に見られるように、内部抵抗Rがピークに達する放電深度変化量ΔDODは、放電電流Iに拘らず0.5%~1%である。 Figure 24 is a graph showing the discharge current dependency of the change in depth of discharge ΔDOD when the internal resistance R reaches its peak value in the initial rapid change region. As can be seen in Figure 24, the change in depth of discharge ΔDOD at which the internal resistance R reaches its peak is 0.5% to 1%, regardless of the discharge current I.

そして、図25は、放電深度変化量ΔDODが1%である場合の内部抵抗R及びピーク到達までの所要時間tsの放電電流依存性を表すグラフである。この場合、それぞれのグラフは、次のような近似式で表される。
所要時間:ts≒100/I・・・(7)
内部抵抗:R≒100×I-0.5・・・(8)
25 is a graph showing the discharge current dependency of the internal resistance R and the time ts required to reach the peak when the depth of discharge change ΔDOD is 1%. In this case, each graph is expressed by the following approximate formula.
Time required: ts ≒ 100/I ... (7)
Internal resistance: R ≒ 100 × I - 0.5 ... (8)

つまり、上記の手順により、リチウム一次電池1についての事前データを予め取得しておき、内部抵抗Rがピーク値を迎える放電深度変化量ΔDODを確認すると共に、その放電深度変化量ΔDODにおける内部抵抗R及びピーク到達までの所要時間tsを取得することにより、上記の式(7)及び(8)に係る近似式を算出することができる。そして当該近似式を制御部17における記憶部23に記憶させておくことにより、放電深度推定に支障をきたす条件の下では放電深度DODの推定を保留して計算エラーに伴う異常停止を回避することができる。 In other words, by using the above procedure, preliminary data on the lithium primary battery 1 is obtained in advance, the amount of change in depth of discharge ΔDOD at which the internal resistance R reaches a peak value is confirmed, and the internal resistance R at that amount of change in depth of discharge ΔDOD and the time ts required to reach the peak are obtained, thereby making it possible to calculate an approximation formula for the above formulas (7) and (8). Then, by storing the approximation formula in the memory unit 23 in the control unit 17, it is possible to suspend the estimation of the depth of discharge DOD under conditions that would interfere with the estimation of the depth of discharge, thereby avoiding an abnormal stop due to a calculation error.

図26は、本発明に係る放電深度推定方法を表すフローチャートである。より具体的には、図26は、電子機器10の運用時にリチウム一次電池1の電力が消費されるタイミングで制御部17が実行する放電深度推定制御の手順を表している。すなわち、制御部17は、電子機器10に新品のリチウム一次電池1がセットされることにより、電子機器10の動作に必要な電力要求に応じてリチウム一次電池1を放電させつつ、放電深度推定制御の当該手順を開始する。尚、リチウム一次電池1の放電期間中は、放電電流Iの積分値が算出されているものとする。 Figure 26 is a flowchart showing the depth of discharge estimation method according to the present invention. More specifically, Figure 26 shows the procedure for depth of discharge estimation control executed by the control unit 17 when the power of the lithium primary battery 1 is consumed during operation of the electronic device 10. That is, when a new lithium primary battery 1 is set in the electronic device 10, the control unit 17 starts the procedure for depth of discharge estimation control while discharging the lithium primary battery 1 in accordance with the power requirements necessary for the operation of the electronic device 10. It is to be noted that the integral value of the discharge current I is calculated during the discharging period of the lithium primary battery 1.

放電深度推定制御が開始されると、制御部17は、測定値入力部20を介して、リチウム一次電池1の放電電流Iを取得し、放電電流Iを所定の第1閾値TH1と比較する(ステップS10)。ここで、所定の第1閾値TH1とは、内部抵抗Rの上記した初期急変領域が表れるか否かを判定するために予め事前データに基づいて設定される放電電流Iの閾値であり、本実施形態においては例えば図22からTH1=1mAと設定される。 When the depth of discharge estimation control is started, the control unit 17 acquires the discharge current I of the lithium primary battery 1 via the measurement value input unit 20, and compares the discharge current I with a predetermined first threshold TH1 (step S10). Here, the predetermined first threshold TH1 is a threshold of the discharge current I that is set in advance based on prior data in order to determine whether or not the above-mentioned initial sudden change region of the internal resistance R appears, and in this embodiment, for example, TH1 is set to 1 mA from FIG. 22.

また、制御部17は、放電電流Iが第1閾値TH1よりも小さいと判断した場合には(ステップS10でNo)、放電開始時からの放電電流Iの積分値により簡易的に算出される放電深度変化量ΔDODを算出して所定の第2閾値TH2と比較する(ステップS11)。ここで、所定の第2閾値TH2とは、内部抵抗Rの上記した初期急変領域が表れるか否かを判定するために予め設定される放電深度変化量ΔDODの閾値である。第2閾値TH2は、本実施形態においては、例えば図20における初期急変領域を含む範囲としてΔDOD=2%と設定されてもよく、又は図24における初期急変領域のピーク値としてΔDOD=1%と設定されてもよい。 When the control unit 17 determines that the discharge current I is smaller than the first threshold value TH1 (No in step S10), the control unit 17 calculates the discharge depth change amount ΔDOD, which is calculated simply by the integral value of the discharge current I from the start of discharge, and compares it with a predetermined second threshold value TH2 (step S11). Here, the predetermined second threshold value TH2 is a threshold value of the discharge depth change amount ΔDOD that is set in advance to determine whether the above-mentioned initial sudden change region of the internal resistance R appears. In this embodiment, the second threshold value TH2 may be set, for example, to ΔDOD = 2% as a range including the initial sudden change region in FIG. 20, or may be set to ΔDOD = 1% as the peak value of the initial sudden change region in FIG. 24.

ステップS10又はステップS11で内部抵抗Rの初期急変領域が顕著に表れないと判断された場合には(ステップS10又はステップS11でYes)、制御部17の初期値設定部22は、上記したパラメータ推定手法のための内部抵抗Rの初期値R0を任意に設定する(ステップS12)。この場合、初期値R0は、例えば上記の事前データ及び図8のデータから、内部抵抗Rが急激に増減しない2%<DOD<80%の範囲に対応するRの値として設定するのが好ましい。尚、初期値R0は、固定値として記憶部23で記憶しておくことにより、ステップS12においては特に計算を行う必要はない。 If it is determined in step S10 or step S11 that the initial rapid change region of the internal resistance R is not evident (Yes in step S10 or step S11), the initial value setting unit 22 of the control unit 17 arbitrarily sets the initial value R0 of the internal resistance R for the parameter estimation method described above (step S12). In this case, it is preferable to set the initial value R0 as a value of R corresponding to the range of 2%<DOD<80% in which the internal resistance R does not increase or decrease rapidly, for example, from the above-mentioned preliminary data and the data in FIG. 8. Note that the initial value R0 is stored as a fixed value in the storage unit 23, so that no special calculation is required in step S12.

そして、初期値R0が設定されると、制御部17の放電深度推定部21は、測定値入力部20から入力された測定データに基づいて上記のパラメータ推定手法を実行することにより放電深度DODの推定を開始する(ステップS13)。 When the initial value R0 is set, the depth of discharge estimation unit 21 of the control unit 17 starts estimating the depth of discharge DOD by executing the above-mentioned parameter estimation method based on the measurement data input from the measurement value input unit 20 (step S13).

また、制御部17は、リチウム一次電池1の放電が終了したか否かを判定し(ステップS14)、放電が継続している期間においてはパラメータ推定手法を継続し(ステップS14でNo)、放電が終了した場合には放電深度推定制御の当該手順を終了する(ステップS14でYes)。このとき、制御部17は、最後に推定された内部抵抗R及び放電深度DODを記憶部23に記憶させることにより、次回のパラメータ推定手法の実行時における初期値として利用することができる。 The control unit 17 also determines whether or not discharging of the lithium primary battery 1 has been completed (step S14), continues the parameter estimation method while discharging is continuing (No in step S14), and ends the procedure of the depth of discharge estimation control when discharging has been completed (Yes in step S14). At this time, the control unit 17 stores the last estimated internal resistance R and depth of discharge DOD in the memory unit 23, so that they can be used as initial values the next time the parameter estimation method is executed.

これに対し、ステップS10及びステップS11で内部抵抗Rの初期急変領域が顕著に表れる可能性があると判断された場合には(ステップS10及びステップS11でNo)、制御部17は、当該初期急変領域の期間における放電深度推定の開始を保留するため、必要な待機時間を設定する(ステップS15)。 In contrast, if it is determined in steps S10 and S11 that the initial rapid change region of the internal resistance R is likely to be evident (No in steps S10 and S11), the control unit 17 sets the necessary waiting time to suspend the start of the depth of discharge estimation during the initial rapid change region (step S15).

より具体的には、制御部17は、初期急変領域のピーク値までの期間を待機期間として設定する場合には、図20及び図22等の事前データに基づいてΔDOD=1%に達するまでの所要時間を算出する。このとき、当該所要時間は、図25に示す事前データから準備された上記の式(7)により算出される。尚、初期急変領域の全ての期間を待機期間として設定する場合には、図25と同様のΔDOD=2%に相当する事前データ及び所要時間の近似式を準備しておくことになる。 More specifically, when the control unit 17 sets the period up to the peak value of the initial sudden change region as the waiting period, it calculates the time required to reach ΔDOD = 1% based on the advance data of Figures 20 and 22, etc. At this time, the required time is calculated by the above formula (7) prepared from the advance data shown in Figure 25. Note that when the entire period of the initial sudden change region is set as the waiting period, advance data equivalent to ΔDOD = 2%, similar to Figure 25, and an approximation formula for the required time are prepared.

ステップS15で待機時間が設定されると、制御部17は、放電深度推定の待機を開始し、待機時間が経過したか否かを監視すると共に(ステップS16)、当該待機時間が経過する前に放電が終了したか否かを判定する(ステップS17)。すなわち、制御部17は、放電が終了した場合には放電深度推定制御の当該手順を終了し(ステップS17でYes)、放電が終了するまでは待機時間が経過するまで待機を継続する(ステップS16及びステップS17でNo)。 When the standby time is set in step S15, the control unit 17 starts standby for estimating the depth of discharge, monitors whether the standby time has elapsed (step S16), and determines whether the discharge has ended before the standby time has elapsed (step S17). That is, when the discharge has ended, the control unit 17 ends the procedure for the depth of discharge estimation control (Yes in step S17), and continues standby until the discharge ends and the standby time has elapsed (No in steps S16 and S17).

そして、制御部17は、待機時間が経過したと判定した場合には(ステップS16でYes)、初期値設定部22において上記した事前データに基づいてパラメータ推定手法のための初期値R0を設定する(ステップS18)。ここで、初期値R0は、初期急変領域のピーク値までの期間を待機期間として設定した場合には、ΔDOD=1%に対応する内部抵抗Rとして上記の式(8)により算出することができる。 When the control unit 17 determines that the waiting time has elapsed (Yes in step S16), the initial value setting unit 22 sets an initial value R0 for the parameter estimation method based on the above-mentioned advance data (step S18). Here, when the period up to the peak value of the initial sudden change region is set as the waiting period, the initial value R0 can be calculated by the above formula (8) as the internal resistance R corresponding to ΔDOD = 1%.

そして、制御部17は、ステップS18において初期値R0が設定されることにより、上記と同様にパラメータ推定手法を実行して放電深度DODの推定を開始することができる(ステップS13)。 Then, the control unit 17 can execute the parameter estimation method as described above and start estimating the depth of discharge DOD by setting the initial value R0 in step S18 (step S13).

以上のような一連の手順により、制御部17は、計算エラーに伴う異常停止が生じやすい状況を判定してパラメータ推定手法の実行を保留することで、比較的正確な放電深度DODの推定を行うことができる。 By following the above series of steps, the control unit 17 can determine a situation in which an abnormal stop due to a calculation error is likely to occur and suspend execution of the parameter estimation method, thereby enabling a relatively accurate estimation of the depth of discharge DOD.

続いて、パラメータ推定手法の保留の有無による推定精度への影響について説明する。図27は、パラメータ推定手法の保留を行わなかった場合の放電深度推定結果を示すグラフである。また、図28は、パラメータ推定手法の保留を行なった場合の放電深度推定結果を示すグラフである。図28においては、電流積算により真と仮定した放電深度DODを横軸で表し、パラメータ推定手法に基づき推定された放電深度DODを縦軸で表している。すなわち、推定結果が正確であるほど、データ点が破線で示す直線上の付近にプロットされることになる。 Next, the effect on estimation accuracy of whether or not the parameter estimation method is suspended will be described. FIG. 27 is a graph showing the results of depth of discharge estimation when the parameter estimation method is not suspended. FIG. 28 is a graph showing the results of depth of discharge estimation when the parameter estimation method is suspended. In FIG. 28, the horizontal axis represents the depth of discharge DOD assumed to be true by current integration, and the vertical axis represents the depth of discharge DOD estimated based on the parameter estimation method. In other words, the more accurate the estimation result is, the closer the data points will be plotted to the straight line indicated by the dashed line.

ここで、それぞれのグラフは、放電深度DODが50%となるまで消費した同一のリチウム一次電池1に対し、しばらくの期間に亘り開放状態で放置し、図17と同様の電子機器10にセットして放電させつつ放電深度DODを推定した場合に実験データである。また、電子機器10の負荷13は、抵抗値を1000Ωとした。尚、リチウム一次電池1の放電再開時の端子電圧Vは約2.8Vであったため、放電電流Iは約2.8mAとなる。 Each graph shows experimental data obtained by estimating the depth of discharge DOD of the same lithium primary battery 1 that had been consumed to a depth of discharge DOD of 50% and then left in an open state for a period of time and then placed in an electronic device 10 similar to that shown in Fig. 17 to discharge the battery. The load 13 of the electronic device 10 had a resistance value of 1000 Ω. The terminal voltage VL of the lithium primary battery 1 when it resumed discharging was about 2.8 V, so the discharge current I was about 2.8 mA.

放電の開始と共に放電深度推定を開始した場合、図27に見られるように、計算の発散は回避されたものの、推定開始時の推定誤差が約15%であり、推定終了時の推定誤差も約15%であった。 When the discharge depth estimation started at the same time as the discharge started, as shown in Figure 27, the divergence of the calculation was avoided, but the estimation error at the start of the estimation was about 15%, and the estimation error at the end of the estimation was also about 15%.

これに対し、放電開始後、上記の式(7)に基づいて36秒間待機した後、放電深度推定を開始した場合、図28に見られるように、推定誤差が終始約5%以内に収まり、図27の結果と比較して推定精度が改善されていることが分かる。 In contrast, when the discharge depth estimation was started after waiting for 36 seconds based on the above formula (7) after the discharge started, as shown in Figure 28, the estimation error remained within approximately 5% throughout, indicating that the estimation accuracy was improved compared to the results in Figure 27.

以上のように、本実施形態に係るリチウム一次電池の放電深度推定方法によれば、放電電流Iが所定の第1閾値TH1よりも小さい場合に、内部抵抗Rの初期急変領域に基づく所定の期間に亘り放電深度DODの推定を保留することにより、放電深度推定の精度を改善することができ、計算エラーの発生により放電深度推定が異常停止してしまう虞を低減することができる。 As described above, according to the method for estimating the depth of discharge of a lithium primary battery of this embodiment, when the discharge current I is smaller than a predetermined first threshold value TH1, the estimation of the depth of discharge DOD is suspended for a predetermined period based on the initial sudden change region of the internal resistance R, thereby improving the accuracy of the depth of discharge estimation and reducing the risk of the depth of discharge estimation being abnormally stopped due to the occurrence of a calculation error.

1 リチウム一次電池
2 測定系
3、13 負荷
4、14 電圧計
5、15 電流計
6、16 温度計
7、17 制御部
10 電子機器
21 放電深度推定部
22 初期値設定部
23 記憶部
REFERENCE SIGNS LIST 1 Lithium primary battery 2 Measurement system 3, 13 Load 4, 14 Voltmeter 5, 15 Ammeter 6, 16 Thermometer 7, 17 Control unit 10 Electronic device 21 Depth of discharge estimation unit 22 Initial value setting unit 23 Storage unit

Claims (12)

リチウム一次電池の放電電流と端子電圧とを入力パラメータとし、前記リチウム一次電池の開放電圧と内部抵抗とを推定パラメータとするパラメータ推定手法により前記開放電圧を推定し、所定の開放電圧特性から放電深度を推定するリチウム一次電池の放電深度推定方法であって、
前記パラメータ推定手法における前記内部抵抗の初期値は、予め放電開始時の前記放電深度及び前記放電電流ごとに取得された前記内部抵抗の事前データに基づいて設定され、
前記放電電流が所定の第1閾値よりも小さい場合に、前記放電深度の推定開始を所定の待機時間に亘り保留する、リチウム一次電池の放電深度推定方法。
A method for estimating depth of discharge of a lithium primary battery, comprising: estimating an open circuit voltage by a parameter estimation method having a discharge current and a terminal voltage of the lithium primary battery as input parameters and an open circuit voltage and an internal resistance of the lithium primary battery as estimation parameters; and estimating a depth of discharge from a predetermined open circuit voltage characteristic, comprising:
an initial value of the internal resistance in the parameter estimation method is set based on prior data of the internal resistance acquired in advance for each of the depth of discharge and the discharge current at the start of discharge;
A method for estimating depth of discharge of a lithium primary battery, comprising: when the discharge current is smaller than a predetermined first threshold, suspending start of estimation of the depth of discharge for a predetermined standby time.
前記第1閾値は、前記事前データにおける電流依存性に基づいて設定される、請求項1に記載のリチウム一次電池の放電深度推定方法。 The method for estimating the depth of discharge of a lithium primary battery according to claim 1, wherein the first threshold is set based on the current dependency in the prior data. 前記放電電流が前記第1閾値よりも小さく、且つ放電開始時からの前記放電電流の積分値に基づいて簡易的に算出される放電深度変化量が所定の第2閾値より低い場合に、前記放電深度の推定開始を保留する、請求項1又は2に記載のリチウム一次電池の放電深度推定方法。 The method for estimating the depth of discharge of a lithium primary battery according to claim 1 or 2, wherein the start of estimating the depth of discharge is suspended when the discharge current is smaller than the first threshold value and the amount of change in the depth of discharge calculated simply based on the integral value of the discharge current from the start of discharge is lower than a predetermined second threshold value. 前記第2閾値は、前記事前データにおける前記内部抵抗の初期急変領域に基づいて設定される、請求項3に記載のリチウム一次電池の放電深度推定方法。 The method for estimating the depth of discharge of a lithium primary battery according to claim 3, wherein the second threshold value is set based on an initial rapid change region of the internal resistance in the preliminary data. 前記第2閾値は、前記初期急変領域のピーク値に対応する前記放電深度として設定される、請求項4に記載のリチウム一次電池の放電深度推定方法。 The method for estimating the depth of discharge of a lithium primary battery according to claim 4, wherein the second threshold value is set as the depth of discharge corresponding to a peak value of the initial sudden change region. 前記待機時間は、予め前記放電深度及び前記放電電流ごとに取得された過電圧の平衡到達時間に対する近似式により設定される、請求項1乃至5のいずれかに記載のリチウム一次電池の放電深度推定方法。 The method for estimating the depth of discharge of a lithium primary battery according to any one of claims 1 to 5, wherein the waiting time is set by an approximation formula for the time to reach equilibrium of the overvoltage previously obtained for each of the depth of discharge and the discharge current. リチウム一次電池の放電電流を測定する電流計と、
前記リチウム一次電池の端子電圧を測定する電圧計と、
前記放電電流及び前記端子電圧が入力される制御部と、を備え、
前記制御部は、前記放電電流及び前記端子電圧を入力パラメータとし、前記リチウム一次電池の開放電圧及び内部抵抗を推定パラメータとするパラメータ推定手法により前記開放電圧を推定し、所定の開放電圧特性から前記リチウム一次電池の放電深度を推定する放電深度推定部と、
予め放電開始時の前記放電深度及び前記放電電流ごとに取得された前記内部抵抗の事前データに基づいて、前記パラメータ推定手法における前記内部抵抗の初期値を設定する初期値設定部と、を含み、
前記放電電流が所定の第1閾値よりも小さい場合に、前記放電深度の推定開始を所定の待機時間に亘り保留する、リチウム一次電池の放電深度推定装置。
an ammeter for measuring the discharge current of the lithium primary battery;
a voltmeter for measuring a terminal voltage of the lithium primary battery;
a control unit to which the discharge current and the terminal voltage are input,
the control unit is a discharge depth estimation unit that estimates the open circuit voltage by a parameter estimation method that uses the discharge current and the terminal voltage as input parameters and the open circuit voltage and internal resistance of the lithium primary battery as estimation parameters, and estimates the discharge depth of the lithium primary battery from a predetermined open circuit voltage characteristic;
an initial value setting unit that sets an initial value of the internal resistance in the parameter estimation method based on advance data of the internal resistance acquired in advance for each of the depth of discharge and the discharge current at the start of discharge,
A device for estimating depth of discharge of a lithium primary battery, which suspends start of estimation of the depth of discharge for a predetermined standby time when the discharge current is smaller than a predetermined first threshold.
前記第1閾値は、前記事前データにおける電流依存性に基づいて設定される、請求項7に記載のリチウム一次電池の放電深度推定装置。 The discharge depth estimation device for a lithium primary battery according to claim 7, wherein the first threshold is set based on the current dependency in the prior data. 前記制御部は、前記放電電流が前記第1閾値よりも小さく、且つ前記放電電流の積分値から簡易的に算出される放電深度変化量が所定の第2閾値より低い場合に、前記放電深度の推定開始を保留する、請求項7又は8に記載のリチウム一次電池の放電深度推定装置。 The device for estimating depth of discharge of a lithium primary battery according to claim 7 or 8, wherein the control unit suspends the start of estimating the depth of discharge when the discharge current is smaller than the first threshold value and the amount of change in the depth of discharge calculated simply from the integral value of the discharge current is lower than a predetermined second threshold value. 前記第2閾値は、前記事前データにおける前記内部抵抗の初期急変領域に基づいて設定される、請求項9に記載のリチウム一次電池の放電深度推定装置。 The discharge depth estimation device for a lithium primary battery according to claim 9, wherein the second threshold value is set based on an initial sudden change region of the internal resistance in the preliminary data. 前記第2閾値は、前記初期急変領域のピーク値に対応する前記放電深度として設定される、請求項10に記載のリチウム一次電池の放電深度推定装置。 The discharge depth estimation device for a lithium primary battery according to claim 10, wherein the second threshold value is set as the discharge depth corresponding to a peak value of the initial sudden change region. 前記待機時間は、予め前記放電深度及び前記放電電流ごとに取得された過電圧の平衡到達時間に対する近似式により設定される、請求項7乃至11のいずれかに記載のリチウム一次電池の放電深度推定装置。 The discharge depth estimation device for a lithium primary battery according to any one of claims 7 to 11, wherein the waiting time is set by an approximation formula for the overvoltage equilibrium arrival time obtained in advance for each of the discharge depth and the discharge current.
JP2020040096A 2020-03-09 2020-03-09 Method and device for estimating depth of discharge of a lithium primary battery Active JP7481131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040096A JP7481131B2 (en) 2020-03-09 2020-03-09 Method and device for estimating depth of discharge of a lithium primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040096A JP7481131B2 (en) 2020-03-09 2020-03-09 Method and device for estimating depth of discharge of a lithium primary battery

Publications (2)

Publication Number Publication Date
JP2021141027A JP2021141027A (en) 2021-09-16
JP7481131B2 true JP7481131B2 (en) 2024-05-10

Family

ID=77668924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040096A Active JP7481131B2 (en) 2020-03-09 2020-03-09 Method and device for estimating depth of discharge of a lithium primary battery

Country Status (1)

Country Link
JP (1) JP7481131B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245627A (en) 2003-02-12 2004-09-02 Nissan Motor Co Ltd Charging rate prediction device for secondary battery
JP2018141665A (en) 2017-02-27 2018-09-13 学校法人立命館 Battery management method, battery management device, and computer program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245627A (en) 2003-02-12 2004-09-02 Nissan Motor Co Ltd Charging rate prediction device for secondary battery
JP2018141665A (en) 2017-02-27 2018-09-13 学校法人立命館 Battery management method, battery management device, and computer program

Also Published As

Publication number Publication date
JP2021141027A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
CN110914696B (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of a battery
JP5393182B2 (en) Battery internal resistance component estimation method and charge capacity estimation method
CN109342950B (en) Method, device and equipment for evaluating state of charge of lithium battery
CN109154635B (en) Method for determining a parameter value relating to the battery state of a battery, battery and electronic battery management system
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
EP2568303A2 (en) Systems and methods for determining battery state-of-health
KR102347014B1 (en) Remaining battery estimating device, storage battery remaining estimating method, and program
EP3107146B1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2006242880A (en) Condition detector for power supply device, power supply device, and initial characteristic extractor used for power supply device
US10393814B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2008522152A (en) Battery state and parameter estimation system and method
US20090248334A1 (en) Method for estimating the charge of a motor vehicle battery
US20140365150A1 (en) Method and device for determining a charge state of an electric energy store
JP2015524048A (en) Estimating battery charge
US20230349981A1 (en) Battery management device, battery management method
US20240125860A1 (en) Battery Management Device, and Electric Power System
EP2827163A1 (en) Temperature-compensated state of charge estimation for rechargeable batteries
US11313911B2 (en) Secondary battery parameter estimation device, secondary battery parameter estimation method, and program
US20240210485A1 (en) Battery state estimation device and power system
EP3264119A1 (en) Electricity storage system, electricity storage control method, and electricity storage control program
JP7183576B2 (en) Secondary battery parameter estimation device, secondary battery parameter estimation method and program
Chen et al. An internal resistance estimation method of lithium-ion batteries with constant current tests considering thermal effect
JP2020106317A (en) Method for identifying internal resistance of lithium primary battery, depth of discharge estimation device, and depth of discharge estimation method
JP7481131B2 (en) Method and device for estimating depth of discharge of a lithium primary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240425

R150 Certificate of patent or registration of utility model

Ref document number: 7481131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150