JP7476810B2 - Pipe material manufacturing method and manufacturing device - Google Patents

Pipe material manufacturing method and manufacturing device Download PDF

Info

Publication number
JP7476810B2
JP7476810B2 JP2021006301A JP2021006301A JP7476810B2 JP 7476810 B2 JP7476810 B2 JP 7476810B2 JP 2021006301 A JP2021006301 A JP 2021006301A JP 2021006301 A JP2021006301 A JP 2021006301A JP 7476810 B2 JP7476810 B2 JP 7476810B2
Authority
JP
Japan
Prior art keywords
tube
forming
section
manufacturing
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021006301A
Other languages
Japanese (ja)
Other versions
JP2022110718A (en
Inventor
政敏 澤村
徳利 岩田
隆道 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2021006301A priority Critical patent/JP7476810B2/en
Publication of JP2022110718A publication Critical patent/JP2022110718A/en
Application granted granted Critical
Publication of JP7476810B2 publication Critical patent/JP7476810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

本発明は、管材の製造方法等に関する。 The present invention relates to a manufacturing method for pipe materials, etc.

一定断面のストレートな直管のみならず、長手方向に沿って断面や曲率等が変化する異形管が構造部材(例えば、自動車のピラー等)として用いられる。異形管を用いることにより、軽量化と高い機械的特性(強度、剛性等)を高次元で両立できる。 Not only straight pipes with a constant cross section, but also irregularly shaped pipes whose cross section and curvature change along the length are used as structural components (such as automobile pillars). The use of irregularly shaped pipes makes it possible to achieve both lightweight construction and high mechanical properties (strength, rigidity, etc.) at a high level.

異形管は、その全体を板材の溶接等により製造することもできる。しかし、基本的な断面形状の素管(一定断面の管材の他、テーラードブランク(tailored blank)管材も含む。)に曲げや成形を加えて異形管が得られると、その生産性を向上させ得る。これに関連する記載が下記の特許文献にある。 A special-shaped pipe can be manufactured entirely by welding plate materials, etc. However, if a special-shaped pipe is obtained by bending or forming a base pipe of a basic cross-sectional shape (including tailored blank pipe material as well as pipe material with a fixed cross-section), productivity can be improved. The following patent documents contain related descriptions:

特開2007-301587Patent Publication No. 2007-301587 特開2014-87846Patent Publication 2014-87846

特許文献1は、軸方向(長手方向)に周長(断面)が変化する予め製作された素材(異形管)に対して曲げ加工だけを行っている。特許文献2は、一定断面の管状の素材(素管)を所望断面に成形した後、その素材(異形管)に曲げ加工を行っている。 In Patent Document 1, only bending is performed on a prefabricated material (irregular shaped pipe) whose circumferential length (cross section) changes in the axial direction (longitudinal direction). In Patent Document 2, a tubular material (base pipe) with a constant cross section is formed into the desired cross section, and then the material (irregular shaped pipe) is bent.

このような従来の方法により曲げられた管材は、その断面が所望断面と異なったもの(つまり形状崩れを生じたもの)となり易い。 Pipes bent using these conventional methods tend to end up with a cross section that is different from the desired cross section (i.e., the shape is distorted).

本発明はこのような事情に鑑みて為されたものであり、所望形態の管材が効率的に得られる製造方法等を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a manufacturing method etc. that can efficiently obtain pipe materials of the desired shape.

本発明者はこの課題を解決すべく鋭意研究した結果、素材(素管)を曲げた後に所望断面へ成形することにより、断面(形状)崩れを抑制できることを見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of intensive research into solving this problem, the inventors discovered that by bending the material (blank tube) and then forming it into the desired cross section, it is possible to prevent the cross section (shape) from collapsing. By expanding on this finding, they have completed the present invention, which is described below.

《製造方法》
(1)本発明は、閉断面を有する管状の素材である素管を曲げる曲げ工程と、該曲げられた素管を塑性変形させて該素管と異なる閉断面を有する成形管を得る成形工程と、を備える管材の製造方法である。
"Production method"
(1) The present invention is a method for manufacturing a tube material, comprising: a bending step of bending a mother tube, which is a tubular material having a closed cross section; and a shaping step of plastically deforming the bent mother tube to obtain a formed tube having a closed cross section different from that of the mother tube.

(2)本発明の製造方法によれば、素管の曲げ(成形)により生じた応力状態を利用しつつ素管を塑性変形させることにより、素管と異なる断面を有する成形管を、形状崩れを抑制しつつ効率的に得ることができる。 (2) According to the manufacturing method of the present invention, by plastically deforming the base tube while utilizing the stress state generated by bending (forming) the base tube, a formed tube having a cross section different from that of the base tube can be efficiently obtained while suppressing deformation of the shape.

《製造装置》
本発明は製造装置としても把握される。例えば、本発明は、閉断面を有する管状の素材である素管を長手方向へ移動させる送り手段と、該素管を長手方向へ移動させつつ該素管を支持する支持手段と、該支持手段の下流側で該素管を曲げる曲げ手段と、該曲げられた素管を塑性変形させて該素管と異なる閉断面を有する成形管にする成形手段と、を備える管材の製造装置でもよい。
"Manufacturing equipment"
The present invention can also be understood as a manufacturing apparatus. For example, the present invention may be an apparatus for manufacturing a tube material, comprising: a feeding means for moving, in a longitudinal direction, a mother tube which is a tubular material having a closed cross section, a supporting means for supporting the mother tube while moving the mother tube in the longitudinal direction, a bending means for bending the mother tube downstream of the supporting means, and a forming means for plastically deforming the bent mother tube to form a formed tube having a closed cross section different from that of the mother tube.

《管材、制御装置等》
本発明は、上述した製造方法により得られた管材(成形管)としても把握される。また、上述した製造装置を制御する方法または装置としても把握される。制御対象は、例えば、送り手段による送り速度、曲げ手段による曲げ方向や曲率、成形手段による成形空間の形態(形状、大きさ)等がある。これらを素管の移動に応じて制御すれば、長手方向に関して、曲げ方向や曲率、断面の形状や肉厚、特性等が異なる成形管を得ることもできる。また、周方向に関して、肉厚、特性等が異なる成形管を得ることもできる。
<Pipe materials, control devices, etc.>
The present invention can also be understood as a pipe material (formed pipe) obtained by the above-mentioned manufacturing method. It can also be understood as a method or apparatus for controlling the above-mentioned manufacturing apparatus. The controlled objects include, for example, the feed speed by the feed means, the bending direction and curvature by the bending means, and the form (shape, size) of the forming space by the forming means. By controlling these in accordance with the movement of the mother tube, it is possible to obtain formed pipes with different bending directions and curvatures, cross-sectional shapes, wall thicknesses, characteristics, etc. in the longitudinal direction. It is also possible to obtain formed pipes with different wall thicknesses, characteristics, etc. in the circumferential direction.

素管と成形管は、対応する断面位置における外周長が異なっていてもよい。その外周長が略等しくなるように曲げまたは成形すれば、形状(断面)崩れがより抑制され得る。 The blank tube and the formed tube may have different outer circumferential lengths at corresponding cross-sectional positions. If they are bent or formed so that the outer circumferential lengths are approximately equal, deformation of the shape (cross-section) can be further suppressed.

《その他》
(1)本発明でいう素管の曲げと成形は、段階的(逐次的)になされても、連続的になされても、略同時的(略一体的)になされてもよい。
"others"
(1) The bending and forming of the blank tube referred to in the present invention may be performed stepwise (sequentially), continuously, or approximately simultaneously (approximately integrally).

(2)本明細書でいう長手方向は、管材(特に素管)が延在する方向である。管材は、通常、その長手方向(軸線方向)に移送される。管材は、上流側から押し出されてもよいし、下流側から引き抜かれてもよいし、それらの中間で送りされてもよい。管材の肉厚は、その断面中心を通過する軸線に対する直交方向(放射方向)の幅である。 (2) The longitudinal direction in this specification is the direction in which the tube material (particularly the blank tube) extends. The tube material is usually transported in its longitudinal direction (axial direction). The tube material may be pushed out from the upstream side, pulled out from the downstream side, or fed somewhere in between. The wall thickness of the tube material is the width in the direction perpendicular to the axis passing through the center of its cross section (radial direction).

(3)本明細書でいう「~手段」、「~工程」または「~ステップ」は、相互に読み替えることができる。例えば、方法に係る構成要素である「~工程」を「~手段」と読み替えることにより装置に係る構成要素とすることができる。逆に、装置に係る構成要素である「~手段」を「~工程」と読み替えることにより方法に係る構成要素とすることもできる。各手段、各工程または各ステップは、プログラムをコンピュータで実行して実現されてもよい。この場合、本発明を製造装置の制御プログラムとして把握してもよい。 (3) In this specification, "means", "process" or "step" can be interpreted as interchangeable. For example, a "process", which is a component related to a method, can be interpreted as a component related to an apparatus by being interpreted as "means". Conversely, a "means", which is a component related to an apparatus, can be interpreted as a component related to a method by being interpreted as "process". Each means, process or step may be realized by executing a program on a computer. In this case, the present invention may be understood as a control program for a manufacturing apparatus.

(4)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。特に断らない限り、本明細書でいう「x~ymm」はxmm~ymmを意味する。他の単位系についても同様である。 (4) Unless otherwise specified, "x to y" in this specification includes a lower limit of x and an upper limit of y. Any numerical value included in the various numerical values or numerical ranges described in this specification may be used as a new lower limit or upper limit to create a new range such as "a to b." Unless otherwise specified, "x to y mm" in this specification means x mm to y mm. The same applies to other units.

管材の製造装置(一例)を示す概要図である。FIG. 2 is a schematic diagram showing an example of a pipe material manufacturing apparatus. その要部の拡大図である。FIG. 成形ローラの駆動制御装置(一例)を示す正面図である。FIG. 4 is a front view showing an example of a drive control device for the forming rollers. その側面図である。This is a side view. 成形管の断面図に係る解析例である。1 is an example of an analysis relating to a cross-sectional view of a formed tube.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、製造方法や製造装置のみならず管材(特に成形管)にも適宜該当し、方法的な構成要素であっても物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components selected from this specification may be added to the components of the present invention described above. The contents described in this specification apply not only to manufacturing methods and manufacturing apparatuses but also to pipe materials (particularly formed pipes) as appropriate, and may be method-related components or product-related components. Which embodiment is best depends on the target, required performance, etc.

《管材》
(1)材質
管材(素管または成形管)は、鉄系、アルミニウム系、マグネシウム系、チタン系等のいずれでもよい。管材の代表例は鋼管(例えば高張力鋼管)である。なお、本明細書でいう「~系」は、材質が純金属または合金であることを意味する。
《Pipe Material》
(1) Material The pipe material (raw pipe or formed pipe) may be any of iron, aluminum, magnesium, titanium, etc. A typical example of a pipe material is a steel pipe (e.g., a high-tensile steel pipe). In this specification, "based on" means that the material is a pure metal or an alloy.

管材の厚さ(肉厚)は、周方向および長手方向に一定でもよいし、周方向と長手方向の少なくとも一方に関して変化してもよい。肉厚は適宜選択されるが、例えば、0.5~7mmさらには0.8~4mm程度である。 The thickness (wall thickness) of the tube material may be constant in the circumferential and longitudinal directions, or may vary in at least one of the circumferential and longitudinal directions. The wall thickness is selected appropriately, but is, for example, about 0.5 to 7 mm, or even 0.8 to 4 mm.

(2)素管
素管は、断面、肉厚および材質が一定でもよいし、断面が長手方向(軸線方向)に関して変化していてもよいし、肉厚や材質が周方向と長手方向の少なくとも一方に関して変化していてもよい。本明細書では、断面、肉厚および材質が一定でない管材(特に長手方向に変化する管材)を異形管という。
(2) Blank tube The blank tube may have a constant cross section, wall thickness and material, or the cross section may vary in the longitudinal direction (axial direction), or the wall thickness and material may vary in at least one of the circumferential direction and the longitudinal direction. In this specification, a tube material whose cross section, wall thickness and material are not constant (especially a tube material whose cross section, wall thickness and material vary in the longitudinal direction) is called a non-circumferential tube.

素管は、継目無管でも溶接管でもよい。継目無管は、例えば、熱間または冷間で造管(押出管、伸管等)されて得られる。異形管(素管)は、成形管の仕様に応じて、例えば、部位毎に異なる管材や鋼板を溶接して製造される。素管として、例えば、略円環状の閉断面を有する丸管がある。なお、本明細書でいう「略円」は、真円度を問わず、楕円も含む意味である。 The base pipe may be a seamless pipe or a welded pipe. A seamless pipe is obtained, for example, by hot or cold pipe making (extrusion, drawing, etc.). A specially shaped pipe (base pipe) is manufactured, for example, by welding different pipe materials or steel plates for each part according to the specifications of the formed pipe. An example of a base pipe is a round pipe having a closed cross section of an approximately circular ring shape. Note that "approximately circular" in this specification includes an ellipse, regardless of the degree of circularity.

(3)成形管
成形管は、曲げ応力が印加された素管を塑性加工して得られる。成形管は、長手方向の少なくとも一部において、素管と異なる断面を有する。成形管は、必ずしも環状の閉断面である必要はない。流体が内通する配管でない成形管(構造部材)は、所望特性を満たす形態であれば足る。また成形管は湾曲した曲げ管に限らず、曲げ管を曲げ戻し等して直管にしたものでもよい。
(3) Formed pipes Formed pipes are obtained by plastic processing of a blank pipe to which bending stress has been applied. A formed pipe has a cross section different from that of the blank pipe in at least a portion of the longitudinal direction. A formed pipe does not necessarily have to have a closed circular cross section. A formed pipe (structural member) that is not a pipe through which a fluid flows is sufficient as long as it has a shape that satisfies the desired characteristics. In addition, a formed pipe is not limited to a curved bent pipe, and may be a bent pipe that has been straightened by bending it back.

成形管として、例えば、略角環状の閉断面を有する角管がある。その閉断面は、例えば、略三角環状(三角管)、略四角環状(四角管)、略五角環状(五角管)、略六角環状(六角管)等である。角管の代表例として、閉断面が略矩形環状(略四角環状)である矩形管(四角管)がある。なお、本明細書でいう「略角」は、角や面の精度を問わず、角や隅に面取りや丸め等がある場合を含む意味である。 An example of a molded tube is a square tube with a closed cross section that is approximately a square ring. The closed cross section can be, for example, an approximately triangular ring (triangular tube), an approximately square ring (square tube), an approximately pentagonal ring (pentagonal tube), an approximately hexagonal ring (hexagonal tube), etc. A typical example of a square tube is a rectangular tube (square tube) whose closed cross section is approximately a rectangular ring (approximately a square ring). Note that in this specification, "approximately square" refers to cases where the corners or corners are chamfered or rounded, regardless of the precision of the corners or surfaces.

《製造方法》
成形管は、素管に対する曲げ工程および成形工程を経て得られる。曲げ工程は、二次元曲げでも三次元曲げでもよい。成形工程は、素管を成形空間(キャビティ)へ通過させたり、素管の外周面を押動したりしてなされる。成形時、回転や曲げ等がさらに付加されてもよい。このとき、成形前後で素管と成形管の外周長変化が少ないと、形状崩れを抑制できて好ましい。
"Production method"
The formed tube is obtained by subjecting a blank tube to a bending process and a forming process. The bending process may be two-dimensional bending or three-dimensional bending. The forming process is performed by passing the blank tube through a forming space (cavity) or by pressing the outer circumferential surface of the blank tube. During forming, rotation, bending, etc. may be added. In this case, it is preferable that there is little change in the outer circumferential length of the blank tube and the formed tube before and after forming, since this can suppress deformation of the shape.

曲げ工程や成形工程は、素管に非圧縮性流体を充填さらには加圧してなされるハイドロベンドやハイドロフォーミングであると、成形管の形状崩れがより一層抑制され得る。 If the bending and forming processes are hydrobending or hydroforming, in which an incompressible fluid is filled into the blank tube and then pressurized, deformation of the formed tube can be further prevented.

《製造装置》
製造装置は、例えば、送り手段と、支持手段、曲げ手段、成形手段等を備える。
"Manufacturing equipment"
The manufacturing apparatus includes, for example, a feeding means, a supporting means, a bending means, a forming means, and the like.

送り手段は素管を長手方向へ移動させる。上流側(成形管となる反対側)から下流側へ素管を押し出す(送出する)場合、素管の長さに応じて、その座屈を抑止する手段を設けるとよい。例えば、曲げ前の素管の中間域に、素管に接する対向した少なくとも一対の補助ロールを設けるとよい。補助ロールは、素管の移動に連動したり、素管の上端部が近接するときに回避動を行うとよい。 The feeding means moves the blank tube in the longitudinal direction. When pushing (sending) the blank tube from the upstream side (the side opposite to the formed tube) to the downstream side, it is advisable to provide a means for preventing the blank tube from buckling, depending on its length. For example, it is advisable to provide at least a pair of opposing auxiliary rolls that come into contact with the blank tube in the middle region of the blank tube before bending. It is advisable for the auxiliary rolls to move in conjunction with the movement of the blank tube, or to perform an avoiding movement when the upper end of the blank tube approaches.

支持手段は、素管の長手方向への移動を許容しつつ素管を支持して、素管の曲げ起点(支点)となる。支持手段は、例えば、素管の曲げ方向に応じて、素管に接する対向した少なくとも一対の支持ロールを備えてなる。また、素管の曲げ方向が複数ある場合(3次元的に曲げられる場合)は、曲げ起点となる支持ロールは、少なくとも二対あるとよい。例えば、上下一対の支持ロールと左右一対の支持ロールが曲げ起点に配設されるとよい。このような支持ロールは、さらに、素管の長手方向に沿って少なくとも2列あると、素管をより安定して支持できる。 The support means supports the blank tube while allowing it to move in the longitudinal direction, and serves as the bending starting point (fulcrum) of the blank tube. The support means, for example, includes at least a pair of opposing support rolls that contact the blank tube according to the bending direction of the blank tube. Furthermore, when there are multiple bending directions of the blank tube (when it is bent three-dimensionally), it is preferable that there are at least two pairs of support rolls that serve as bending starting points. For example, it is preferable that a pair of upper and lower support rolls and a pair of left and right support rolls are arranged at the bending starting points. Furthermore, if there are at least two rows of such support rolls along the longitudinal direction of the blank tube, the blank tube can be supported more stably.

曲げ手段は、支持手段の下流側において、素管の移動方向を曲げ起点(支持手段)の前後で変更して素管を曲げる。曲げ方向または曲率は長手方向に沿って、一定でも変化してもよい。 The bending means bends the blank tube by changing the direction of movement of the blank tube before and after the bending starting point (supporting means) downstream of the supporting means. The bending direction or curvature may be constant or may vary along the longitudinal direction.

成形手段は、その曲げられた素管を塑性変形させて、素管と異なる閉断面を有する成形管にする。成形手段は、例えば、成形管の閉断面に応じて曲げられた素管に接すると共に素管を囲む少なくとも二対の成形ロールにより実現される。成形ロールにより形成された隙間(成形空間)に素管を通過させることにより、所望断面の成形管が得られる。 The forming means plastically deforms the bent blank tube to produce a formed tube with a closed cross section different from that of the blank tube. The forming means is realized, for example, by at least two pairs of forming rolls that contact the blank tube bent according to the closed cross section of the formed tube and surround the blank tube. A formed tube with the desired cross section is obtained by passing the blank tube through the gap (forming space) formed by the forming rolls.

曲げ起点(支持手段)より上流側における素管の軸線(移動方向)から逸脱した位置に成形手段(例えば成形ロール)を配設すると、成形手段は素管に曲げを加えつつ成形することになる。つまり、成形手段は曲げ手段を兼ねることになり、両者は一体化され得る。 If a forming means (e.g., a forming roll) is disposed upstream of the bending start point (supporting means) and away from the axis (moving direction) of the blank tube, the forming means will bend the blank tube while forming it. In other words, the forming means will also function as the bending means, and the two can be integrated.

一例として、略矩形環状の閉断面を有する矩形管(成形管)を製造する場合を考えると、成形手段は、素管に接すると共に素管を囲む四つの成形ロールと、その各成形ロールを素管の内側へ押動する押動手段とを備えるとよい。押動手段は、例えば、油圧または電動で駆動されるアクチュエーター(シリンダ、ネジ等)からなる。押動手段により対向する成形ロールの間隙(成形空間)を調整すれば、長手方向に一定または変化した断面を有する成形管が得られる。 As an example, when considering the production of a rectangular tube (formed tube) having a closed cross section of a roughly rectangular ring shape, the forming means may include four forming rolls that contact and surround the blank tube, and a pushing means for pushing each of the forming rolls inwardly into the blank tube. The pushing means may be, for example, an actuator (cylinder, screw, etc.) that is driven hydraulically or electrically. By adjusting the gap (forming space) between the opposing forming rolls with the pushing means, a formed tube having a constant or varying cross section in the longitudinal direction can be obtained.

ある成形ロールの移動に連動して別な成形ロールをスライドさせてもよい。例えば、第1成形ロールを押動手段で移動させたとき、それに隣接する第2成形ロールを同期してスライドさせるとよい。これにより素管を成形する隙間(キャビティ)を安定して維持できる。第1成形ロールによる第2成形ロールのスライドは、例えば、第2成形ロールに接するブロック(連動部材)等を第1成形ロールの押動手段で移動させることで行える。連動部材を利用すれば、第2成形ロールをスライドさせる駆動源を省略できる。 A forming roll may be slid in conjunction with the movement of another forming roll. For example, when a first forming roll is moved by a pushing means, the adjacent second forming roll may be slid in sync. This allows the gap (cavity) for forming the blank tube to be stably maintained. The sliding of the second forming roll by the first forming roll can be achieved, for example, by moving a block (interlocking member) or the like in contact with the second forming roll by the pushing means of the first forming roll. By using an interlocking member, the drive source for sliding the second forming roll can be omitted.

丸管(素管)を矩形状断面の角管(矩形管/成形管)へ成形する具体例を示しつつ、本発明をさらに詳しく説明する。 The present invention will be explained in more detail while showing a concrete example of forming a round tube (base tube) into a square tube with a rectangular cross section (rectangular tube/formed tube).

《概要》
(1)構成
本発明の一実施例である管材の製造装置D(単に「装置D」という。)の概要を図1および図2に示した。なお、本実施例では、特に断らない限り、図中に矢印で示した方向を上下方向、左右方向、前後方向(素管の移動方向)とする。
"overview"
(1) Configuration An outline of a tube material manufacturing apparatus D (simply referred to as "apparatus D") according to one embodiment of the present invention is shown in Figures 1 and 2. In this embodiment, unless otherwise specified, the directions indicated by arrows in the figures are the up-down direction, the left-right direction, and the front-rear direction (direction of movement of the blank tube).

装置Dは、前後方向に断面が一定なストレート状の丸管T0を、長手方向に断面が一定または変化した角管T1へ成形する。装置Dは、成形ロール11と、第1支持ロール21(支持手段)と、第2支持ロール22と、補助ロール23と、丸管T0(角管T1)の下流端側開口に取り付けられたチェック3と、丸管T0の上流端側開口に取り付けられたチェック4と、チェック4を介して丸管T0を下流側へ押し込む送り手段(図略)と、成形ロール11を変位させる駆動制御装置M(後述)とを備える。 The device D forms a straight round tube T0, whose cross section is constant in the front-to-rear direction, into a square tube T1, whose cross section is constant or varies in the longitudinal direction. The device D includes a forming roll 11, a first support roll 21 (support means), a second support roll 22, an auxiliary roll 23, a check 3 attached to the downstream end opening of the round tube T0 (square tube T1), a check 4 attached to the upstream end opening of the round tube T0, a feed means (not shown) that pushes the round tube T0 downstream through the check 4, and a drive control device M (described later) that displaces the forming roll 11.

成形ロール11は、上下方向に対向する一対の成形ロール111、112と左右方向に対向する一対の成形ロール113、114とを備える。各成形ロールの外周面は、断面が直線状である円筒面からなる。各成形ロールにより角管T1の外形状に応じた方形状(矩形状)の成形空間s(キャビティ)が形成される。 The forming rolls 11 include a pair of forming rolls 111, 112 facing each other in the vertical direction, and a pair of forming rolls 113, 114 facing each other in the horizontal direction. The outer peripheral surface of each forming roll is a cylindrical surface with a linear cross section. Each forming roll forms a square (rectangular) forming space s (cavity) that corresponds to the outer shape of the square tube T1.

第1支持ロール21も、上下方向に対向する一対の支持ロール211、212と左右方向に対向する一対の支持ロール213、214とを備える。各支持ロールの外周面は、断面が丸管T0の外周面に沿う半円弧状である環状曲面からなる。第1支持ロール21が、丸管T0の曲げ起点(支点)を構成する。 The first support roll 21 also comprises a pair of support rolls 211, 212 facing each other in the vertical direction and a pair of support rolls 213, 214 facing each other in the horizontal direction. The outer peripheral surface of each support roll is an annular curved surface whose cross section is a semicircular arc that follows the outer peripheral surface of the round tube T0. The first support roll 21 constitutes the bending starting point (fulcrum) of the round tube T0.

第2支持ロール22も、上下方向に対向する一対の支持ロール221、222と左右方向に対向する一対の支持ロール223、224(図略)とを備える。第2支持ロール22も第1支持ロール21と同形状であり、各外周面は、断面が丸管T0の外周面に沿う半円弧状である環状曲面からなる。第2支持ロール22は、第1支持ロール21と協働して、曲げられる丸管T0を安定的に支持する。 The second support roll 22 also comprises a pair of support rolls 221, 222 facing each other in the vertical direction and a pair of support rolls 223, 224 (not shown) facing each other in the horizontal direction. The second support roll 22 has the same shape as the first support roll 21, and each outer circumferential surface is an annular curved surface whose cross section is a semicircular arc that follows the outer circumferential surface of the round tube T0. The second support roll 22 cooperates with the first support roll 21 to stably support the round tube T0 being bent.

補助ロール23も、上下方向に対向する一対の補助ロール231、232と左右方向に対向する一対の補助ロール233、234(図略)とを備える。補助ロール23も第1支持ロール21、第2支持ロール22と同形状であり、各外周面は、断面が丸管T0の外周面に沿う半円弧状である環状曲面からなる。補助ロール23は、丸管T0をその上流端と第2支持ロール22の間で支持して、丸管T0の押込み時の座屈を抑止する。 The auxiliary roll 23 also comprises a pair of auxiliary rolls 231, 232 facing each other in the vertical direction and a pair of auxiliary rolls 233, 234 (not shown) facing each other in the horizontal direction. The auxiliary roll 23 has the same shape as the first support roll 21 and the second support roll 22, and each outer circumferential surface is an annular curved surface whose cross section is a semicircular arc that follows the outer circumferential surface of the round tube T0. The auxiliary roll 23 supports the round tube T0 between its upstream end and the second support roll 22, preventing buckling when the round tube T0 is pushed in.

第1支持ロール21、第2支持ロール22および補助ロール23は、丸管T0の外径(外形幅)に応じて、対向間隔(隙間)が調整可能である。これにより各ロールは、丸管T0の外表面に安定的に接触して転動する。また、補助ロール23は前後方向への移動が可能であり、丸管T0の進行に連動して後方向(下流側)へ移動する。 The distance (gap) between the first support roll 21, the second support roll 22, and the auxiliary roll 23 can be adjusted according to the outer diameter (outer width) of the round tube T0. This allows each roll to roll in stable contact with the outer surface of the round tube T0. The auxiliary roll 23 can also move in the forward and backward directions, and moves backward (downstream) in conjunction with the progress of the round tube T0.

チェック3は、丸管T0(角管T1)の下流端側開口を液密に閉塞すると共に、管内へ液体(例えば水や油/非圧縮性流体)を充填する供給口を兼ねる。液体は、例えば、管内に加圧(0.1~10MPa程度)した状態で充填される。このような液体の充填により、丸管T0を曲げまたは成形したときに内外面に生じるシワや形状崩れ等をより一層抑止できる。 Check 3 liquid-tightly closes the downstream end opening of round tube T0 (square tube T1), and also serves as a supply port for filling the tube with liquid (e.g., water or oil/incompressible fluid). The liquid is filled, for example, under pressure (approximately 0.1 to 10 MPa) inside the tube. Filling the tube with liquid in this way can further prevent wrinkles and deformation that occur on the inner and outer surfaces when round tube T0 is bent or formed.

チェック4は、丸管T0の上流端側開口を液密に閉塞すると共に、油圧または電動のシリンダ等(送り手段/図略)に把持されて、丸管T0を下流側へ押し出す。 The check 4 liquid-tightly closes the opening at the upstream end of the round tube T0 and is held by a hydraulic or electric cylinder (feeding means/not shown) to push the round tube T0 downstream.

(2)曲げと成形
丸管T0は、液体が充填された状態で、チェック4から下流側へ押し出され、補助ロール23、第2支持ロール22、第1支持ロール21および成形ロール11を通過して角管T1となる。
(2) Bending and Forming The round tube T0, filled with liquid, is extruded downstream from the check 4 and passes through the auxiliary roll 23, the second support roll 22, the first support roll 21 and the forming roll 11 to become a square tube T1.

ここで第1支持ロール21、第2支持ロール22および補助ロール23は、丸管T0をその軸線(前後方向に延在するストレートな中心線)に沿って支持している。一方、成形ロール11により構成される成形空間sは、その軸線から変位(並進と回転)した位置にある。この変位により、丸管T0には第1支持ロール21を起点とした曲げが生じる。丸管T0は、その曲げにより特定の応力状態となったまま成形ロール11により外周面が押動されて塑性変形して角管T1となる。 The first support roll 21, the second support roll 22, and the auxiliary roll 23 support the round tube T0 along its axis (a straight center line extending in the front-rear direction). Meanwhile, the forming space s formed by the forming roll 11 is at a position displaced (translated and rotated) from that axis. This displacement causes bending of the round tube T0 starting from the first support roll 21. The round tube T0 is in a specific stress state due to this bending, and the outer circumferential surface is pressed by the forming roll 11, causing plastic deformation to become the square tube T1.

成形ロール11は図2に示すように、成形ロール111~114はそれぞれ、丸管T0の外周面を半径方向内側へ押し込む方向(外周面の法線方向)へ駆動され得る。また、成形ロール11全体(成形空間)は、上下方向への平行動(L1)、左右方向への平行動(L2)、上下方向への回転動(θ1)、左右方向への回転動(θ2)が可能となっている。こうして成形ロール11は、複数方向への並進動または回転動が可能であり、成形ロール11により形成される成形空間sも、その大きさや向きが様々に変化し得る。 As shown in FIG. 2, each of the forming rolls 111-114 can be driven in a direction that pushes the outer circumferential surface of the round tube T0 radially inward (the normal direction of the outer circumferential surface). The entire forming roll 11 (forming space) can move in a vertical direction (L1), a horizontal direction (L2), a vertical rotational movement (θ1), and a horizontal rotational movement (θ2). In this way, the forming roll 11 can move in a translational or rotational manner in multiple directions, and the size and orientation of the forming space s formed by the forming roll 11 can also change in various ways.

《駆動制御装置》
成形ロール11の駆動制御装置M(単に「装置M」という。)を図3A(正面図)と図3B(側面図)に例示した。図3Aと図3Bを併せて図3という。なお、既述した部材等には同符号を付し、適宜、それらの説明を省略した。また、符号は代表的な図面または部材等について主に付し、類似する部材等への符号は適宜省略した。
<<Drive control device>>
A drive control device M (simply referred to as "device M") for the forming roll 11 is illustrated in Fig. 3A (front view) and Fig. 3B (side view). Fig. 3A and Fig. 3B are collectively referred to as Fig. 3. Note that the same reference numerals are used for the members already described, and their explanations are omitted as appropriate. Reference numerals are mainly used for representative drawings or members, and reference numerals for similar members are omitted as appropriate.

装置Mは、床等に固定された基台100と、駆動機構131により基台100に対して上下動(L1)する昇降台101と、駆動機構132により昇降台101に対して左右方向に水平移動(L2)する外枠102と、駆動機構133により外枠102に対して上下(鉛直)軸まわりに回転(θ2)する中枠103と、駆動機構134により中枠103に対して左右(水平)軸まわりに回転(θ1)する内枠104と、上述した成形ロール111~114の各回転軸(枢軸)を丸管T0の外周面へ移動させる駆動機構121~124(これらを併せて「駆動機構12」という。)とを備える。成形ロール11と駆動機構12(押動手段)は内枠104の内側に配設される。本発明でいう成形手段および曲げ手段は、成形ロール11と駆動制御装置Mにより実現される。 The device M includes a base 100 fixed to a floor or the like, a lifting platform 101 that moves up and down (L1) relative to the base 100 by a driving mechanism 131, an outer frame 102 that moves horizontally (L2) in the left-right direction relative to the lifting platform 101 by a driving mechanism 132, a middle frame 103 that rotates (θ2) around a vertical axis relative to the outer frame 102 by a driving mechanism 133, an inner frame 104 that rotates (θ1) around a horizontal axis relative to the middle frame 103 by a driving mechanism 134, and driving mechanisms 121-124 (collectively referred to as the "driving mechanism 12") that move the rotation axes (pivots) of the above-mentioned forming rolls 111-114 to the outer periphery of the round tube T0. The forming roll 11 and the driving mechanism 12 (pushing means) are disposed inside the inner frame 104. The forming means and bending means referred to in the present invention are realized by the forming roll 11 and the driving control device M.

駆動機構12、131、132は、減速機を伴う直動機構(例えば、ウォームギア、送り螺子等)とその駆動源であるサーボモータを備える。駆動機構133、134は、減速機を伴う回転機構とその駆動源であるサーボモータを備える。それぞれの駆動機構(特にサーボモータ)は、制御プログラムを実行するコンピュータにより個別に制御され得る。 The drive mechanisms 12, 131, and 132 each include a linear motion mechanism with a reducer (e.g., a worm gear, a feed screw, etc.) and a servomotor that serves as the drive source for the mechanism. The drive mechanisms 133 and 134 each include a rotation mechanism with a reducer and a servomotor that serves as the drive source for the mechanism. Each drive mechanism (particularly the servomotor) can be individually controlled by a computer that executes a control program.

装置Mは、さらに、駆動機構121~124に並設された連結スライドブロック141~144(これらを併せて「ブロック14」という。)を備える。ブロック14(連動部材)により、隣接する成形ロール11の連動が実現される。例えば、連結スライドブロック141は、駆動機構121による成形ロール111の上方動に連動して、隣接する成形ロール113を上方動させる。なお、連結スライドブロック141は、駆動機構123に対してスライドするため、成形ロール113の左右動を妨げない。このようなブロック14により矩形状の成形空間sが安定して形成される。 The device M further includes connecting slide blocks 141-144 (collectively referred to as "blocks 14") arranged in parallel with the drive mechanisms 121-124. The blocks 14 (interlocking members) enable the interlocking of adjacent forming rolls 11. For example, the connecting slide block 141 moves the adjacent forming roll 113 upward in conjunction with the upward movement of the forming roll 111 by the drive mechanism 121. Note that the connecting slide block 141 slides relative to the drive mechanism 123 and does not impede the left-right movement of the forming roll 113. Such blocks 14 allow a rectangular forming space s to be stably formed.

《解析例》
上述したような装置Dを用いて丸管から角管を成形する場合を想定して、得られる角管の断面をCAE(computer-aided engineering)解析して求めた。
<Analysis example>
Assuming that a square tube is molded from a round tube using the above-mentioned device D, the cross section of the resulting square tube was determined by CAE (computer-aided engineering) analysis.

φ50.8mm×t1.2mmの丸管(素管)を、外形断面が38mm×38mmの角管へ成形する場合について、衝撃・構造解析ソフトLS-DYNA(株式会社JSOL製)を用いて解析した。このとき、成形ロールにより形成される成形空間は角管の外形断面と同形状とし、成形空間の中心位置は丸管の軸線から33mm上方(つまり成形ロール全体の押上量:33mm)とした。なお、解析は、管内に液体が充填されていない状態(内圧なし状態)で行った。 The impact and structural analysis software LS-DYNA (made by JSOL Co., Ltd.) was used to analyze the molding of a round tube (raw tube) with a diameter of 50.8 mm and a thickness of 1.2 mm into a square tube with an outer cross section of 38 mm x 38 mm. In this case, the molding space formed by the forming rolls was set to the same shape as the outer cross section of the square tube, and the center of the molding space was set 33 mm above the axis of the round tube (i.e., the total push-up amount of the forming rolls: 33 mm). The analysis was performed in a state where the tube was not filled with liquid (no internal pressure).

こうして丸管から成形された角管の断面(解析結果)を図4に示した。図4から明らかなように、本発明の製造方法によれば、曲げられた角管(曲率半径:664mm)の断面は、目標断面に対してズレが1mm以内となった。 The cross section (analysis results) of the square tube thus formed from the round tube is shown in Figure 4. As is clear from Figure 4, using the manufacturing method of the present invention, the cross section of the bent square tube (curvature radius: 664 mm) deviated from the target cross section by within 1 mm.

比較のため、38mm×38mmの角管(素管)を、44mm上方に押し上げた成形ロール全体で曲げたときに得られる角管(曲率半径:763mm)の断面も求めた。その解析結果を図4に併せて示した。この場合、押上量を11mm増加させたにもかかわらず、曲率半径は逆に大きくなり、その断面は目標断面から大きく逸脱した形状となり、形状崩れが大きくなることがわかった。丸管から角管を成形した場合と曲率半径を同程度にすれば、形状崩れがさらに大きくなると考えられる。 For comparison, the cross section of a square tube (radius of curvature: 763 mm) obtained when a 38 mm x 38 mm square tube (base tube) was bent by the entire forming rolls that had been pushed up 44 mm was also obtained. The analysis results are also shown in Figure 4. In this case, despite the amount of pushing up being increased by 11 mm, the radius of curvature actually became larger, and the cross section deviated significantly from the target cross section, resulting in significant deformation. It is believed that if the radius of curvature were made the same as when a square tube is formed from a round tube, deformation would become even greater.

以上から、曲げを加えた素管を成形することにより、断面崩れを抑制しつつ、所望断面の管材を効率的に製造できることが確認された。 From the above, it was confirmed that by forming a bent blank tube, it is possible to efficiently manufacture tube materials with the desired cross-section while suppressing cross-sectional collapse.

T0 丸管(素管)
T1 角管
D 管材の製造装置
M 駆動制御装置
11 成形ロール(成形手段)
21 支持ロール(支持手段)
T0 Round pipe (plain pipe)
T1 Square tube D Tube material manufacturing device M Drive control device 11 Forming roll (forming means)
21 Support roll (support means)

Claims (13)

閉断面を有する管状の素材である素管を曲げる曲げ工程と、
該曲げられた素管を塑性変形させて該素管と異なる閉断面を有する成形管を得る成形工程と備え
該素管の閉断面と該成形管の閉断面は、成形前後の対応位置における外周長が略等しい管材の製造方法。
a bending process of bending a blank tube, which is a tubular material having a closed cross section;
a forming step of plastically deforming the bent mother tube to obtain a formed tube having a closed cross section different from that of the mother tube ,
A method for manufacturing a pipe material in which the closed cross section of the mother pipe and the closed cross section of the formed pipe have approximately the same outer circumferential length at corresponding positions before and after forming .
前記曲げ工程および前記成形工程は、前記素管に非圧縮性流体を充填してなされる請求項1に記載の管材の製造方法。 The method for manufacturing a tube material according to claim 1, wherein the bending process and the forming process are performed by filling the blank tube with an incompressible fluid. 前記素管は、略円環状の閉断面を有する丸管であり、
前記成形管は、略角環状の閉断面を有する角管である請求項1または2に記載の管材の製造方法。
the raw tube is a round tube having a substantially annular closed cross section,
The method for manufacturing a tube material according to claim 1 or 2, wherein the formed tube is a square tube having a substantially square annular closed cross section.
前記成形管は、断面、肉厚、材質または特性の少なくとも一つが長手方向に変化する異形管である請求項1~3のいずれかに記載の管材の製造方法。 The method for manufacturing a pipe material according to any one of claims 1 to 3, wherein the formed pipe is a non-standard pipe in which at least one of the cross section, wall thickness, material, or characteristics changes in the longitudinal direction. 前記成形管は、肉厚、材質または特性の少なくとも一つが周方向に関して異なる部位を有する請求項1~4のいずれかに記載の管材の製造方法。 The method for manufacturing a pipe material according to any one of claims 1 to 4, wherein the formed pipe has portions in which at least one of the wall thickness, material, or characteristics varies in the circumferential direction. 前記成形管は、曲げ方向または曲率の少なくとも一つが長手方向に関して異なる部位を有する請求項1~のいずれかに記載の管材の製造方法。 6. The method for manufacturing a tube material according to claim 1 , wherein the formed tube has a portion in which at least one of a bending direction and a curvature varies along the longitudinal direction. 閉断面を有する管状の素材である素管を長手方向へ移動させる送り手段と、
該素管を長手方向へ移動させつつ該素管を支持する支持手段と、
該支持手段の下流側で該素管を曲げる曲げ手段と、
該曲げられた素管を塑性変形させて該素管と異なる閉断面を有する成形管にする成形手段と備え
該成形管は、略矩形環状の閉断面を有する矩形管であり、
該成形手段は、該素管に接すると共に該素管を囲む四つの成形ロールと、
該成形ロールのそれぞれを該素管の内側へ押動する押動手段と、
該成形ロールの押動に連動して該押動方向へ該成形ロールの隣にある成形ロールをスライドさせる連動部材とをさらに有する管材の製造装置。
a feeding means for moving a blank tube, which is a tubular material having a closed cross section, in a longitudinal direction;
a supporting means for supporting the mother tube while moving the mother tube in a longitudinal direction;
bending means for bending the blank tube downstream of the supporting means;
a forming means for plastically deforming the bent mother tube into a formed tube having a closed cross section different from that of the mother tube ,
The formed tube is a rectangular tube having a substantially rectangular annular closed cross section,
The forming means includes four forming rolls that are in contact with and surround the mother tube;
a pushing means for pushing each of the forming rolls toward the inside of the blank tube;
and an interlocking member that interlocks with the pushing movement of the forming roll and slides a forming roll adjacent to the forming roll in the pushing direction .
前記支持手段は、該素管に接する対向した少なくとも一対の支持ロールを備える請求項に記載の管材の製造装置。 8. The apparatus for manufacturing a tube material according to claim 7 , wherein said supporting means comprises at least a pair of opposing support rolls in contact with the blank tube. 前記支持ロールは、前記素管の長手方向に沿って少なくとも2列ある請求項に記載の管材の製造装置。 9. The tube material manufacturing apparatus according to claim 8 , wherein the support rolls are provided in at least two rows along the longitudinal direction of the mother tube. 前記曲げ手段は、前記素管の移動に応じて曲げ方向または曲率の少なくとも一つを変化させ得る請求項のいずれかに記載の管材の製造方法。 The method for manufacturing a tube material according to any one of claims 7 to 9 , wherein the bending means is capable of changing at least one of a bending direction and a curvature in response to the movement of the mother tube. 前記成形手段は、前記素管の移動に応じて該素管が通過する成形空間の形態または傾きの少なくとも一つを変化させ得る請求項10のいずれかに記載の管材の製造方法。 11. The method for manufacturing a tube material according to claim 7 , wherein the forming means is capable of changing at least one of the shape and inclination of a forming space through which the mother tube passes in accordance with the movement of the mother tube. 前記成形手段は、前記曲げられた素管に接すると共に該素管を囲む少なくとも二対の成形ロールを備える請求項11のいずれかに記載の管材の製造装置。 12. The tube material manufacturing apparatus according to claim 7 , wherein the forming means comprises at least two pairs of forming rolls which are in contact with and surround the bent mother tube. 前記曲げ手段と前記成形手段は一体化している請求項12のいずれかに記載の管材の製造装置。 13. The tube material manufacturing apparatus according to claim 7, wherein the bending means and the forming means are integrated together.
JP2021006301A 2021-01-19 2021-01-19 Pipe material manufacturing method and manufacturing device Active JP7476810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021006301A JP7476810B2 (en) 2021-01-19 2021-01-19 Pipe material manufacturing method and manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021006301A JP7476810B2 (en) 2021-01-19 2021-01-19 Pipe material manufacturing method and manufacturing device

Publications (2)

Publication Number Publication Date
JP2022110718A JP2022110718A (en) 2022-07-29
JP7476810B2 true JP7476810B2 (en) 2024-05-01

Family

ID=82585315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021006301A Active JP7476810B2 (en) 2021-01-19 2021-01-19 Pipe material manufacturing method and manufacturing device

Country Status (1)

Country Link
JP (1) JP7476810B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153310A (en) 1998-11-17 2000-06-06 Chubu Engineering Kk Device for bending metal hollow body and system for bending metal hollow body
JP2003266133A (en) 2002-03-15 2003-09-24 Calsonic Kansei Corp Bulging method and device
WO2006093006A1 (en) 2005-03-03 2006-09-08 Sumitomo Metal Industries, Ltd. Method of bending processing for metal material, bending processing apparatus, bending processing equipment line and bending-processed produced obtained thereby
JP2014087846A (en) 2009-01-14 2014-05-15 Nippon Steel & Sumitomo Metal Device of manufacturing hollow member
JP2017018963A (en) 2015-07-07 2017-01-26 新日鐵住金株式会社 Manufacturing method for hollow tubes having u-shaped bent parts and manufacturing device for hollow tubes having u-shaped bent parts
US20170066037A1 (en) 2015-09-07 2017-03-09 Hyundai Motor Company Manufacturing method for bumper beam of vehicle
WO2019171868A1 (en) 2018-03-09 2019-09-12 住友重機械工業株式会社 Molding device, molding method, and metal pipe
JP2019171407A (en) 2018-03-27 2019-10-10 日鉄日新製鋼株式会社 Hydroforming method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153310A (en) 1998-11-17 2000-06-06 Chubu Engineering Kk Device for bending metal hollow body and system for bending metal hollow body
JP2003266133A (en) 2002-03-15 2003-09-24 Calsonic Kansei Corp Bulging method and device
WO2006093006A1 (en) 2005-03-03 2006-09-08 Sumitomo Metal Industries, Ltd. Method of bending processing for metal material, bending processing apparatus, bending processing equipment line and bending-processed produced obtained thereby
JP2014087846A (en) 2009-01-14 2014-05-15 Nippon Steel & Sumitomo Metal Device of manufacturing hollow member
JP2017018963A (en) 2015-07-07 2017-01-26 新日鐵住金株式会社 Manufacturing method for hollow tubes having u-shaped bent parts and manufacturing device for hollow tubes having u-shaped bent parts
US20170066037A1 (en) 2015-09-07 2017-03-09 Hyundai Motor Company Manufacturing method for bumper beam of vehicle
WO2019171868A1 (en) 2018-03-09 2019-09-12 住友重機械工業株式会社 Molding device, molding method, and metal pipe
JP2019171407A (en) 2018-03-27 2019-10-10 日鉄日新製鋼株式会社 Hydroforming method

Also Published As

Publication number Publication date
JP2022110718A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
JP5718400B2 (en) Method of forming using roll forming device
EP2127774B1 (en) Apparatus and method for press-bending tube material
CN102056687B (en) Method for producing a large steel tube
CA2967914C (en) Method of producing steel pipe and press die used for same
JP5162102B2 (en) Bending method of deformed pipe, bending apparatus thereof, and bending product using them
Ktari et al. Modeling and computation of the three-roller bending process of steel sheets
US8387435B2 (en) Elbow material production device and production method thereof
Wong et al. Effects of roller path and geometry on the flow forming of solid cylindrical components
JP6803336B2 (en) Ring rolling method and ring rolling equipment
KR20100100926A (en) Apparatus and process for forming profiles with a variable height by means of cold rolling
KR101322482B1 (en) Flexible three-dimensional work-piece forming equipment
JP2017185498A (en) Method and device for manufacturing metal tube with groove
JP7476810B2 (en) Pipe material manufacturing method and manufacturing device
EP3328567B1 (en) Method and device for producing a formed hollow profile
Kuboki et al. A new schedule-free mandrel-less bending method for straight/pre-shaped long tubes
JP2006255750A (en) Metallic structure member and its manufacturing method
JP4906849B2 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
JP5440680B2 (en) Hydroform equipment
EP2542362B1 (en) A method for forming, by means of a hydroforming process, a tubular element as well as a device suitable for carrying out such a method, and a tubular element
CN104942112B (en) Method of forming thin-wall blank step by step with multi-rod force application
JP5239505B2 (en) Hydroform processing method
JP2023028632A (en) Round steel tube molding device and round steel tube molding method
RU2641937C1 (en) Method for producing straight-seam pipe with butt joint of metal blank and tube-forming device
JP2015178127A (en) Fine diameter forming method and fine diameter forming facility
JPS63183720A (en) Manufacture of elbow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240401

R150 Certificate of patent or registration of utility model

Ref document number: 7476810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150