JP7469177B2 - Heat exchange structure - Google Patents

Heat exchange structure Download PDF

Info

Publication number
JP7469177B2
JP7469177B2 JP2020129633A JP2020129633A JP7469177B2 JP 7469177 B2 JP7469177 B2 JP 7469177B2 JP 2020129633 A JP2020129633 A JP 2020129633A JP 2020129633 A JP2020129633 A JP 2020129633A JP 7469177 B2 JP7469177 B2 JP 7469177B2
Authority
JP
Japan
Prior art keywords
fluid
branch pipe
pipe
heat exchange
fluid branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020129633A
Other languages
Japanese (ja)
Other versions
JP2022026255A (en
Inventor
孝範 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankei Giken Kogyo Co Ltd
Original Assignee
Sankei Giken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankei Giken Kogyo Co Ltd filed Critical Sankei Giken Kogyo Co Ltd
Priority to JP2020129633A priority Critical patent/JP7469177B2/en
Publication of JP2022026255A publication Critical patent/JP2022026255A/en
Application granted granted Critical
Publication of JP7469177B2 publication Critical patent/JP7469177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、温度差のある流体相互の熱交換を行う熱交換構造に関する。 The present invention relates to a heat exchange structure that exchanges heat between fluids with different temperatures.

従来、温度差のある流体相互の熱交換を行う熱交換構造として特許文献1の熱交換構造がある。この熱交換構造は、内筒と外筒との間の円筒状の流路形成空間内に、第1流体を軸方向に流動させる第1流路と第2流体を軸方向に流動させる第2流路が周方向に交互に並ぶ状態で設けられるものであり、第1流路を形成する第1流路形成用筒体が流路形成空間の周方向に沿って間隔を隔てて並置され、周方向に隣接する第1流路形成用筒体の間の隙間空間で第2流路が形成されて製作の容易化が図られているものである。 A conventional heat exchange structure for exchanging heat between fluids with temperature differences is the heat exchange structure of Patent Document 1. In this heat exchange structure, a first flow path for axially flowing a first fluid and a second flow path for axially flowing a second fluid are arranged alternately in the circumferential direction in a cylindrical flow path forming space between an inner cylinder and an outer cylinder, and the first flow path forming cylinders that form the first flow path are arranged side by side at intervals along the circumferential direction of the flow path forming space, and the second flow path is formed in the gap space between the first flow path forming cylinders adjacent in the circumferential direction, making it easier to manufacture.

特開2019-128056号公報JP 2019-128056 A

ところで、特許文献1の熱交換構造は、内筒と外筒との間の円筒状の流路形成空間内に第1流路と第2流路を周方向に交互に並置することにより、ある程度高い熱交換効率を得ることができるものの、細分化された第1流路と第2流路が周方向にだけ熱交換するもの、換言すれば断面視で1次元的に熱交換するものであるため、未だ十分な熱交換効率を発揮するものとは言い難い。そのため、より優れた熱交換効率を実現できる熱交換構造が求められている。 Incidentally, the heat exchange structure of Patent Document 1 can obtain a relatively high heat exchange efficiency by arranging the first and second flow paths alternately in the circumferential direction in the cylindrical flow path forming space between the inner and outer cylinders. However, since the subdivided first and second flow paths exchange heat only in the circumferential direction, in other words, the heat exchange is one-dimensional in cross-sectional view, it is still difficult to say that the heat exchange structure exhibits sufficient heat exchange efficiency. Therefore, there is a demand for a heat exchange structure that can achieve better heat exchange efficiency.

本発明は上記課題に鑑み提案するものであり、温度差のある流体相互の熱交換を行う熱交換構造において、非常に高い熱交換効率で熱交換を行うことができる熱交換構造を提供することを目的とする。 The present invention has been proposed in light of the above problems, and aims to provide a heat exchange structure that can perform heat exchange between fluids with temperature differences with extremely high heat exchange efficiency.

本発明の熱交換構造は、温度差のある第1流体と第2流体との熱交換を行う熱交換構造であって、前記第1流体が軸方向に流れる基管の内部に上流側閉塞部と下流側閉塞部が設けられ、前記基管の前記上流側閉塞部より上流側と前記下流側閉塞部より下流側が前記基管の軸方向に延びる第1流体分岐管で連通され、前記第1流体分岐管の入口が前記基管の管路断面における縦横に間隔を開けて前記上流側閉塞部に配設され、前記第1流体分岐管の出口が前記基管の管路断面における縦横に間隔を開けて前記下流側閉塞部に配設され、前記上流側閉塞部と前記下流側閉塞部との間で前記基管の内部に連通する第2流体導入口と第2流体導出口が設けられ、前記第2流体導入口と前記第2流体導出口の一方が前記上流側閉塞部寄り、他方が前記下流側閉塞部寄りに配置され、前記第1流体分岐管の軸方向の中間部に、前記第1流体分岐管の軸方向に延びる整流壁が前記第1流体分岐管相互に架設され、前記第2流体が前記第1流体分岐管の外側を前記第1流体分岐管と前記整流壁に略沿うように流されることを特徴とする。
これによれば、第1流体分岐管の断面視における多様な方向で2次元的に第1流体と第2流体の熱交換を行うことができると共に、第2流体を第1流体分岐管と整流壁に略沿うように流すことにより、実効性のある熱交換面積を増大させることができ、非常に高い熱交換効率で熱交換を行うことができる。また、第1流体は、基管の軸方向に一貫して流されることから、第1流体の乱流化を抑制して第1流体の流れの圧力損失を抑制することができる。
The heat exchange structure of the present invention is a heat exchange structure for exchanging heat between a first fluid and a second fluid having a temperature difference, the structure including an upstream blocking portion and a downstream blocking portion provided inside a main pipe through which the first fluid flows in an axial direction, a first fluid branch pipe extending in the axial direction of the main pipe connecting an upstream side of the upstream blocking portion with a downstream side of the downstream blocking portion, inlets of the first fluid branch pipe being disposed in the upstream blocking portion at intervals vertically and horizontally in a cross section of the main pipe, and outlets of the first fluid branch pipe being disposed in the downstream blocking portion at intervals vertically and horizontally in a cross section of the main pipe. a second fluid inlet and a second fluid outlet are disposed in a side blocking portion and communicate with the inside of the main pipe between the upstream blocking portion and the downstream blocking portion, one of the second fluid inlet and the second fluid outlet is disposed closer to the upstream blocking portion and the other closer to the downstream blocking portion, a straightening wall extending in the axial direction of the first fluid branch pipe is disposed between the first fluid branch pipes at an intermediate portion in the axial direction of the first fluid branch pipe, and the second fluid is caused to flow around the outside of the first fluid branch pipe so as to approximately follow the first fluid branch pipe and the straightening wall.
According to this, the first fluid and the second fluid can be two-dimensionally heat exchanged in various directions in a cross-sectional view of the first fluid branch pipe, and by flowing the second fluid substantially along the first fluid branch pipe and the flow straightening wall, the effective heat exchange area can be increased, and heat exchange can be performed with very high heat exchange efficiency. Furthermore, since the first fluid is made to flow consistently in the axial direction of the main pipe, turbulence of the first fluid can be suppressed, and pressure loss of the flow of the first fluid can be suppressed.

本発明の熱交換構造は、前記第1流体分岐管の入口が前記上流側閉塞部に前記基管の管路断面の全面に亘って網状に配設され、前記第1流体分岐管の出口が前記下流側閉塞部に前記基管の管路断面の全面に亘って網状に配設されていることを特徴とする。
これによれば、第1流体分岐管の入口と出口を基管の管路断面の全面に亘って網状に配設することにより、第1流体分岐管をより細分化して第1流体と第2流体の熱交換面積をより増大させることができ、より一層高い熱交換効率を実現することができる。
The heat exchange structure of the present invention is characterized in that the inlet of the first fluid branch pipe is arranged in a mesh-like manner over the entire surface of the pipe cross-section of the main pipe in the upstream blocking portion, and the outlet of the first fluid branch pipe is arranged in a mesh-like manner over the entire surface of the pipe cross-section of the main pipe in the downstream blocking portion.
According to this, by arranging the inlets and outlets of the first fluid branch pipe in a net-like manner over the entire surface of the cross section of the main pipe, the first fluid branch pipe can be further subdivided to further increase the heat exchange area between the first and second fluids, thereby achieving even higher heat exchange efficiency.

本発明の熱交換構造は、前記第2流体導入口が前記下流側閉塞部寄りに配置され、前記第2流体導出口が前記上流側閉塞部寄りに配置されていることを特徴とする。
これによれば、第2流体導入口から第2流体が導入されて第2流体導出口から第2流体が導出するまで、第1流体と第2流体の温度差を確実に維持することができ、より一層高い熱交換効率を実現することができる。
The heat exchange structure of the present invention is characterized in that the second fluid inlet is disposed closer to the downstream blocking portion, and the second fluid outlet is disposed closer to the upstream blocking portion.
This makes it possible to reliably maintain the temperature difference between the first and second fluids from the time the second fluid is introduced through the second fluid inlet until the second fluid is discharged through the second fluid outlet, thereby achieving even higher heat exchange efficiency.

本発明の熱交換構造は、前記整流壁が前記第1流体分岐管の前記中間部だけに設けられ、前記基管内の前記中間部の軸方向両側に位置する第2流体導入部及び第2流体導出部で、第2流体が前記第1流体分岐管相互の隙間を前記第1流体分岐管を横切るように流されることを特徴とする。
これによれば、第2流体導入部と第2流体導出部には整流壁を設けずに済むことから、例えばハニカム構造体の第1流体の分岐流路だけをパイプを接合する等で延設して第1流体分岐管とするような製造等が可能となり、効率的且つ低コストで製造することが可能となる。また、第2流体導入部と第2流体導出部には整流壁を設ける構造にせずに済むことから、第2流体導入部と第2流体導出部を小型化して、熱交換構造の小型化、設置場所の省スペース化を図ることができる。また、第2流体導入部と第2流体導出部には整流壁を設ける複雑な構造にせずに済むことから、故障時の修理の容易化、メンテナンス性の向上を図ることができる。
The heat exchange structure of the present invention is characterized in that the straightening wall is provided only in the intermediate portion of the first fluid branch pipe, and the second fluid is caused to flow through the gaps between the first fluid branch pipes so as to cross the first fluid branch pipes in a second fluid inlet portion and a second fluid outlet portion located on both axial sides of the intermediate portion in the main pipe.
According to this, since it is not necessary to provide a straightening wall in the second fluid inlet portion and the second fluid outlet portion, it is possible to manufacture, for example, by extending only the branch flow path of the first fluid of the honeycomb structure by joining a pipe, and to make it into a first fluid branch pipe, and it is possible to manufacture efficiently and at low cost. Furthermore, since it is not necessary to provide a structure with a straightening wall in the second fluid inlet portion and the second fluid outlet portion, it is possible to reduce the size of the second fluid inlet portion and the second fluid outlet portion, thereby reducing the size of the heat exchange structure and saving the space required for installation. Furthermore, since it is not necessary to provide a complex structure with a straightening wall in the second fluid inlet portion and the second fluid outlet portion, it is possible to facilitate repair in the event of a breakdown and improve maintainability.

本発明の熱交換構造は、前記第2流体導入部に位置する前記第1流体分岐管の部分と、前記第2流体導出部に位置する前記第1流体分岐管の部分とに、前記中間部に位置する前記第1流体分岐管の部分よりも外周寸法の小さい領域が形成されていることを特徴とする。
これによれば、第1流体と第2流体の熱交換面積をより増加させるために、並設される第1流体分岐管の数を多くして配置密度を高くした場合にも、第1流体分岐管の外周寸法の小さい領域により、第2流体がスムーズに流れる隙間を第2流体導入部と第2流体導出部に確保することができる。
The heat exchange structure of the present invention is characterized in that a portion of the first fluid branch pipe located at the second fluid inlet portion and a portion of the first fluid branch pipe located at the second fluid outlet portion are formed with an area having a smaller outer peripheral dimension than a portion of the first fluid branch pipe located at the intermediate portion.
According to this, even when the number of first fluid branch pipes arranged in parallel is increased to increase the arrangement density in order to further increase the heat exchange area between the first fluid and the second fluid, the area of the first fluid branch pipe with a small outer circumferential dimension can ensure a gap in the second fluid inlet portion and the second fluid outlet portion through which the second fluid can flow smoothly.

本発明の熱交換構造は、少なくとも、前記第2流体導出部に位置する前記第1流体分岐管の部分に管路が捩じられた捩じり部が形成されていることを特徴とする。
これによれば、第2流体導出部に位置する第1流体分岐管の捩じり部により、第1流体と熱交換した第2流体を乱流化して流体塊の混合を促進し、第2流体の熱伝達性、熱交換性をより一層高めることができる。
The heat exchange structure of the present invention is characterized in that at least a portion of the first fluid branch pipe located at the second fluid outlet portion is formed with a twisted portion at which a pipe line is twisted .
According to this, the twisted portion of the first fluid branch pipe located in the second fluid outlet portion turbulently causes the second fluid that has exchanged heat with the first fluid to be mixed, promoting mixing of the fluid masses and further improving the heat transferability and heat exchangeability of the second fluid.

本発明の熱交換構造は、前記第2流体導入部に位置する前記第1流体分岐管の部分に管路が捩じられた第1の捩じり部が形成され、前記第2流体導出部に位置する前記第1流体分岐管の部分に管路が捩じられた第2の捩じり部が形成され、前記第1の捩じり部と前記第2の捩じり部とに、前記中間部に位置する前記第1流体分岐管の部分よりも外周寸法の小さい領域がそれぞれ形成されていることを特徴とする。
これによれば、第2流体導出部に位置する第1流体分岐管の第2の捩じり部により、第1流体と熱交換した第2流体を乱流化して流体塊の混合を促進し、第2流体の熱伝達性、熱交換性をより一層高めることができる。また、第1流体と第2流体の熱交換面積をより増加させるために、並設される第1流体分岐管の数を多くして配置密度を高くした場合にも、第1の捩じり部と第2の捩じり部の第1流体分岐管の外周寸法の小さい領域により、第2流体がスムーズに流れる隙間を第2流体導入部と第2流体導出部に確保することができる。また、第2流体導入部と第2流体導出部の第1流体分岐管の外周寸法の小さい領域を同一構成の第1の捩じり部と第2の捩じり部で形成することにより、製造作業の容易化を図ることができる。
The heat exchange structure of the present invention is characterized in that a first twisted portion is formed in a portion of the first fluid branch pipe located at the second fluid inlet portion, and a second twisted portion is formed in a portion of the first fluid branch pipe located at the second fluid outlet portion, and a region having a smaller outer circumferential dimension than a portion of the first fluid branch pipe located at the intermediate portion is formed in the first twisted portion and the second twisted portion.
According to this, the second twisted portion of the first fluid branch pipe located in the second fluid outlet portion turbulizes the second fluid that has exchanged heat with the first fluid, promoting mixing of the fluid masses, and further improving the heat transferability and heat exchangeability of the second fluid. Also, even if the number of first fluid branch pipes arranged in parallel is increased to increase the arrangement density in order to further increase the heat exchange area between the first and second fluids, the small outer circumferential dimension areas of the first fluid branch pipe in the first twisted portion and the second twisted portion can ensure gaps in the second fluid inlet portion and the second fluid outlet portion through which the second fluid flows smoothly. Also, the small outer circumferential dimension areas of the first fluid branch pipe in the second fluid inlet portion and the second fluid outlet portion are formed by the first twisted portion and the second twisted portion having the same configuration, thereby facilitating the manufacturing work.

本発明の熱交換構造は、前記第1流体分岐管が前記基管よりも熱伝導率が高い材料で形成されていることを特徴とする。
これによれば、熱伝達率が比較的低い基管で放熱を抑制しながら、熱伝導率が比較的高い第1流体分岐管を介して優れた熱交換を行うことができ、全体として熱エネルギーの有効利用を促進することができる。
The heat exchange structure of the present invention is characterized in that the first fluid branch pipe is formed of a material having a higher thermal conductivity than the main pipe.
This allows heat dissipation to be suppressed in the main pipe, which has a relatively low thermal conductivity, while excellent heat exchange can be performed via the first fluid branch pipe, which has a relatively high thermal conductivity, thereby promoting the effective use of thermal energy overall.

本発明の熱交換構造は、前記第1流体分岐管の入口が前記上流側閉塞部に前記基管の管路断面に千鳥配置で配設され、前記第1流体分岐管の出口が前記下流側閉塞部に前記基管の管路断面に千鳥配置で配設されていることを特徴とする。
これによれば、第1流体分岐管による第1流体の各分岐流路の大きさを平準化できると同時に、第1流体分岐管と整流壁に略沿うように流される第2流体の各分岐流路の大きさを、無駄なスペースを生ずることなく容易に平準化することができる。
The heat exchange structure of the present invention is characterized in that an inlet of the first fluid branch pipe is arranged in a staggered arrangement in the pipe cross section of the main pipe at the upstream blocking portion, and an outlet of the first fluid branch pipe is arranged in a staggered arrangement in the pipe cross section of the main pipe at the downstream blocking portion.
This makes it possible to equalize the size of each branch flow path of the first fluid by the first fluid branch pipe, and at the same time, it is possible to easily equalize the size of each branch flow path of the second fluid that flows approximately along the first fluid branch pipe and the straightening wall, without generating any wasted space.

本発明の熱交換構造によれば、温度差のある流体相互の熱交換を行う熱交換構造において、非常に高い熱交換効率で熱交換を行うことができる。 The heat exchange structure of the present invention allows heat exchange between fluids with temperature differences to be performed with extremely high heat exchange efficiency.

本発明による実施形態の熱交換構造の斜視図。1 is a perspective view of a heat exchange structure according to an embodiment of the present invention; 実施形態の熱交換構造の縦断斜視図。FIG. 2 is a vertical sectional perspective view of a heat exchange structure according to the embodiment. 図2の第2流体導入部の周辺の拡大図。FIG. 3 is an enlarged view of the periphery of the second fluid introduction portion of FIG. 2 . 図2の第2流体導入部の周辺の拡大図。FIG. 3 is an enlarged view of the periphery of the second fluid introduction portion of FIG. 2 . 実施形態の熱交換構造における第1流体分岐管の説明図。FIG. 4 is an explanatory diagram of a first fluid branch pipe in the heat exchange structure of the embodiment. 実施形態の熱交換構造の正面図。FIG. (a)は図6のA-A拡大端面図、(b)は図6のA-A拡大断面図。7A is an enlarged end view taken along line AA in FIG. 6, and FIG. 7B is an enlarged cross-sectional view taken along line AA in FIG. 図6のB-B拡大断面図。FIG. 7 is an enlarged cross-sectional view taken along the line B-B of FIG. 6;

〔実施形態の熱交換構造〕
本発明による実施形態の熱交換構造の構造体1は、温度差のある第1流体F1と第2流体F2との熱交換を行うものであり、図1、図2及び図6に示すように、第1流体F1が軸方向に流れる略筒状の基管2を有し、基管2の軸方向の一方の端部には端縁に向かって漸次縮径する略テーパ筒状の第1流体導入部21が設けられ、他方の端部には端縁に向かって漸次縮径する略テーパ筒状の第1流体導出部22が設けられている。第1流体導入部21と第1流体導出部22との間は全長に亘って略同一径或いは略同一の外周寸法を有する筒状の基部23になっている。
[Heat exchange structure of the embodiment]
A heat exchange structure 1 according to an embodiment of the present invention performs heat exchange between a first fluid F1 and a second fluid F2 having a temperature difference, and has a substantially cylindrical main pipe 2 through which the first fluid F1 flows in the axial direction, and is provided at one axial end of the main pipe 2 with a substantially tapered cylindrical first fluid inlet 21 that gradually reduces in diameter toward the edge, and at the other axial end with a substantially tapered cylindrical first fluid outlet 22 that gradually reduces in diameter toward the edge. Between the first fluid inlet 21 and the first fluid outlet 22 is a cylindrical base 23 having substantially the same diameter or substantially the same outer circumferential dimension over the entire length.

基管2の内部には第1流体F1の流れの上流側に上流側閉塞部3が設けられ、その下流側に下流側閉塞部4が設けられている(図2~図4参照)。本実施形態では、基管2の内部において、第1流体導入部21と基部23を仕切るように上流側閉塞部3が配設され、基部23と第1流体導出部22を仕切るように下流側閉塞部4が配設されている。基管2の内部において、第1流体F1の流れで上流側閉塞部3より上流側と、下流側閉塞部4より下流側は、基管2の軸方向に延びるように並設された第1流体分岐管5で連通されている(図2~図5、図7、図8参照)。 Inside the main pipe 2, an upstream blocking section 3 is provided upstream of the flow of the first fluid F1, and a downstream blocking section 4 is provided downstream of the upstream blocking section 3 (see Figures 2 to 4). In this embodiment, inside the main pipe 2, the upstream blocking section 3 is arranged to separate the first fluid introduction section 21 and the base section 23, and the downstream blocking section 4 is arranged to separate the base section 23 and the first fluid discharge section 22. Inside the main pipe 2, the upstream side of the upstream blocking section 3 in the flow of the first fluid F1 and the downstream side of the downstream blocking section 4 are connected by a first fluid branch pipe 5 arranged in parallel to extend in the axial direction of the main pipe 2 (see Figures 2 to 5, 7, and 8).

第1流体分岐管5と基管2は、同一の熱伝導率の同一材料、例えばステンレス(熱伝導率:27[W/m・k])等の金属材で形成してもよいが、例えば第1流体分岐管5をアルミニウム(熱伝導率:237[W/m・k])等の熱伝導率が高い金属材或いは熱伝導率が高い樹脂材等の材料で形成し、基管2をステンレス(熱伝導率:27[W/m・k])等の第1流体分岐管5よりも熱伝導率の低い金属材或いは熱伝導率の低い樹脂材等の材料で形成する等、第1流体分岐管5を、基管2よりも熱伝導率が高い材料で形成すると好適である。 The first fluid branch pipe 5 and the main pipe 2 may be made of the same material with the same thermal conductivity, for example, a metal material such as stainless steel (thermal conductivity: 27 [W/m·k]). However, it is preferable to make the first fluid branch pipe 5 from a material with a higher thermal conductivity than the main pipe 2, for example, by making the first fluid branch pipe 5 from a metal material with a high thermal conductivity such as aluminum (thermal conductivity: 237 [W/m·k]) or a resin material with a high thermal conductivity, and making the main pipe 2 from a metal material with a lower thermal conductivity than the first fluid branch pipe 5, such as stainless steel (thermal conductivity: 27 [W/m·k]), or a resin material with a lower thermal conductivity.

第1流体分岐管5の入口51は、基管2の管路断面における縦横に間隔を開けて上流側閉塞部3に配設されており、好適には、第1流体分岐管5の入口51は上流側閉塞部3に基管2の管路断面の全面に亘って網状に配設され、より好適には千鳥配置で配設される。また、第1流体分岐管5の出口52も、基管2の管路断面における縦横に間隔を開けて下流側閉塞部4に配設されており、好適には、第1流体分岐管5の出口52は、下流側閉塞部4に基管2の管路断面の全面に亘って網状に配設され、より好適には千鳥配置で配設される。 The inlets 51 of the first fluid branch pipe 5 are arranged in the upstream closure section 3 at intervals in the vertical and horizontal directions in the cross section of the main pipe 2, and preferably, the inlets 51 of the first fluid branch pipe 5 are arranged in a net-like manner over the entire cross section of the main pipe 2 in the upstream closure section 3, and more preferably, in a staggered arrangement. The outlets 52 of the first fluid branch pipe 5 are also arranged in the downstream closure section 4 at intervals in the vertical and horizontal directions in the cross section of the main pipe 2, and preferably, the outlets 52 of the first fluid branch pipe 5 are arranged in a net-like manner over the entire cross section of the main pipe 2 in the downstream closure section 4, and more preferably, in a staggered arrangement.

上流側閉塞部3と下流側閉塞部4との間の基管2の内部は熱交換領域HRになっており、この熱交換領域HRで基管2の内部と連通するようにして第2流体F2が流れる第2流体導入口61と第2流体導出口62が設けられている。第2流体導入口61と第2流体導出口62は、その一方が上流側閉塞部3寄りに配置され、他方が下流側閉塞部4寄りに配置されており、本実施形態では、第2流体導入口61が下流側閉塞部4寄りに配置され、第2流体導出口62が上流側閉塞部3寄りに配置されている。 The inside of the main pipe 2 between the upstream blocking section 3 and the downstream blocking section 4 is a heat exchange area HR, and a second fluid inlet 61 and a second fluid outlet 62 through which the second fluid F2 flows are provided so as to communicate with the inside of the main pipe 2 in this heat exchange area HR. One of the second fluid inlet 61 and the second fluid outlet 62 is located closer to the upstream blocking section 3, and the other is located closer to the downstream blocking section 4. In this embodiment, the second fluid inlet 61 is located closer to the downstream blocking section 4, and the second fluid outlet 62 is located closer to the upstream blocking section 3.

基管2の内部の熱交換領域HRにおいて、第2流体導入口61に対応する位置は第2流体導入口61が連通する第2流体導入部71になっており、第2流体導出口62に対応する位置は第2流体導出口62が連通する第2流体導出部72になっている。第1流体分岐管5の軸方向で第2流体導入部71に位置する部分と第2流体導出部72に位置する部分の間に位置する部分は第1流体分岐管5の中間部53になっており、第1流体分岐管5の軸方向の中間部53では、第1流体分岐管5の軸方向に延びる整流壁8が第1流体分岐管5・5相互に架設されている。 In the heat exchange region HR inside the main pipe 2, the position corresponding to the second fluid inlet 61 is the second fluid inlet section 71 to which the second fluid inlet 61 is connected, and the position corresponding to the second fluid outlet 62 is the second fluid outlet section 72 to which the second fluid outlet 62 is connected. The portion located between the portion located at the second fluid inlet section 71 and the portion located at the second fluid outlet section 72 in the axial direction of the first fluid branch pipe 5 is the intermediate portion 53 of the first fluid branch pipe 5, and in the axial intermediate portion 53 of the first fluid branch pipe 5, a flow straightening wall 8 extending in the axial direction of the first fluid branch pipe 5 is installed between the first fluid branch pipes 5, 5.

本実施形態では、整流壁8が第1流体分岐管5の中間部53だけに設けられ、第1流体分岐管5の第2流体導入部71に位置する部分と第2流体導出部72に位置する部分には整流壁8は設けられていない。そして、基管2内の第1流体分岐管5の中間部53の軸方向両側に位置する第2流体導入部71及び第2流体導出部72では、第2流体F2が第1流体分岐管5・5相互の隙間Gを第1流体分岐管5を横切るように流れるようになっている。 In this embodiment, the straightening wall 8 is provided only in the intermediate portion 53 of the first fluid branch pipe 5, and the straightening wall 8 is not provided in the portion located at the second fluid introduction portion 71 of the first fluid branch pipe 5 and the portion located at the second fluid discharge portion 72. In the second fluid introduction portion 71 and the second fluid discharge portion 72 located on both axial sides of the intermediate portion 53 of the first fluid branch pipe 5 in the main pipe 2, the second fluid F2 flows through the gap G between the first fluid branch pipes 5, 5 so as to cross the first fluid branch pipe 5.

第2流体導入部71に位置する第1流体分岐管5の部分には管及び管路が捩じられた第1の捩じり部56が形成され、第2流体導出部72に位置する第1流体分岐管5の部分には管及び管路が捩じられた第2の捩じり部55が形成されている。第1の捩じり部56及び第2の捩じり部55には、引き伸ばされるように捩じられて形成されることで、中間部53に位置する第1流体分岐管5の部分或いは第1流体分岐管5の中間部よりも、外周寸法或いは外径の小さい領域が形成されている。この外周寸法或いは外径の小さい領域により、第1流体分岐管5の本数を多くして並設する密度を高くした場合にも、第2流体導入部71と第2流体導出部72において、第1流体分岐管5・5相互の隙間Gが確保されるようになっている。 A first twisted portion 56 is formed in the portion of the first fluid branch pipe 5 located at the second fluid inlet portion 71, where the pipe and the pipeline are twisted, and a second twisted portion 55 is formed in the portion of the first fluid branch pipe 5 located at the second fluid outlet portion 72, where the pipe and the pipeline are twisted. The first twisted portion 56 and the second twisted portion 55 are formed by being twisted so as to be stretched, so that an area having a smaller outer circumferential dimension or outer diameter is formed than the portion of the first fluid branch pipe 5 located at the intermediate portion 53 or the intermediate portion of the first fluid branch pipe 5. This area having a smaller outer circumferential dimension or outer diameter ensures a gap G between the first fluid branch pipes 5, 5 at the second fluid inlet portion 71 and the second fluid outlet portion 72, even when the number of first fluid branch pipes 5 is increased to increase the density at which the first fluid branch pipes 5 are arranged side by side.

本実施形態の熱交換構造の構造体1を使用する際には、基管2内を上流側から下流側に第1流体F1を流した状態にし、第2流体導入口61から基管2内の第2流体導入部71に第1流体F1より低温又は高温の第2流体F2を流して導入する。第2流体導入部71内では、第2流体F2は、第1流体分岐管5やその第1の捩じり部56で乱流化、渦流化されながら第1流体分岐管5・5相互の隙間Gを流れる。 When using the heat exchange structure 1 of this embodiment, the first fluid F1 is caused to flow from the upstream side to the downstream side in the main pipe 2, and the second fluid F2, which is lower or higher in temperature than the first fluid F1, is introduced by flowing it from the second fluid inlet 61 to the second fluid introduction section 71 in the main pipe 2. In the second fluid introduction section 71, the second fluid F2 flows through the gap G between the first fluid branch pipes 5, 5 while being turbulently formed and swirled in the first fluid branch pipe 5 and its first twisted section 56 .

そして、隙間Gを流れた第2流体F2は、第1流体分岐管5の中間部53に対応する領域において第1流体分岐管5の外側を流れ、第1流体分岐管5の周壁54と整流壁8で囲まれる分岐流路f21や、中間部53の対応位置で基管2に設けられた基部周壁24と第1流体分岐管5の周壁54と整流壁8で囲まれる分岐流路f22を流れる。第2流体F2は、これらの流路を流れることにより、第1流体分岐管5の外側を第1流体分岐管5と整流壁8が延びる方向に第1流体分岐管5と整流壁8に略沿うように流れる。 The second fluid F2 that has flowed through the gap G flows outside the first fluid branch pipe 5 in a region corresponding to the intermediate portion 53 of the first fluid branch pipe 5, and flows through a branch flow path f21 surrounded by the peripheral wall 54 and the straightening wall 8 of the first fluid branch pipe 5, and a branch flow path f22 surrounded by the base peripheral wall 24 provided on the base pipe 2 and the peripheral wall 54 and straightening wall 8 of the first fluid branch pipe 5 at a position corresponding to the intermediate portion 53. By flowing through these flow paths, the second fluid F2 flows outside the first fluid branch pipe 5 in a direction in which the first fluid branch pipe 5 and the straightening wall 8 extend, approximately along the first fluid branch pipe 5 and the straightening wall 8.

第1流路分岐管5の周壁54を介して第1流体F1と熱交換を行い、分岐流路f21、f22から第2流体導出部72に流れ出た第2流体F2は、第2流体導出部72において第1流体分岐管5やその第2の捩じり部55で乱流化、渦流化されながら第1流体分岐管5・5相互の隙間Gを流れ、第2流体導出部72から第2流体導出口62へと導出される。 The second fluid F2 exchanges heat with the first fluid F1 through the peripheral wall 54 of the first flow path branch pipe 5, and flows out from the branch flow paths f21, f22 to the second fluid discharge section 72. In the second fluid discharge section 72, the second fluid F2 flows through the gap G between the first fluid branch pipes 5, 5 while being turbulent and vortexized in the first fluid branch pipe 5 and its second twisted section 55 , and is discharged from the second fluid discharge section 72 to the second fluid discharge outlet 62.

本実施形態によれば、第1流体分岐管5の断面視における多様な方向で2次元的に第1流体F1と第2流体F2の熱交換を行うことができると共に、第2流体F2を第1流体分岐管5と整流壁8に略沿うように流すことにより、実効性のある熱交換面積を増大させることができ、非常に高い熱交換効率で熱交換を行うことができる。また、第1流体F1は、基管2の軸方向に一貫して流されることから、第1流体F1の乱流化を抑制して第1流体F1の流れの圧力損失を抑制することができる。 According to this embodiment, heat exchange between the first fluid F1 and the second fluid F2 can be performed two-dimensionally in various directions in a cross-sectional view of the first fluid branch pipe 5, and by flowing the second fluid F2 approximately along the first fluid branch pipe 5 and the flow straightening wall 8, the effective heat exchange area can be increased, and heat exchange can be performed with very high heat exchange efficiency. In addition, since the first fluid F1 is consistently flowed in the axial direction of the main pipe 2, turbulence of the first fluid F1 can be suppressed, and pressure loss in the flow of the first fluid F1 can be suppressed.

また、第1流体分岐管5の入口51と出口52を基管2の管路断面の全面に亘って網状に配設することにより、第1流体分岐管5をより細分化して第1流体F1と第2流体F2の熱交換面積をより増大させることができ、より一層高い熱交換効率を実現することができる。 In addition, by arranging the inlet 51 and outlet 52 of the first fluid branch pipe 5 in a net-like manner over the entire cross section of the main pipe 2, the first fluid branch pipe 5 can be further subdivided to further increase the heat exchange area between the first fluid F1 and the second fluid F2, thereby achieving even higher heat exchange efficiency.

また、第2流体導入口61を下流側閉塞部4寄りに配置し、第2流体導出口62を上流側閉塞部3寄りに配置することにより、第2流体導入口61から第2流体F2が導入されて第2流体導出口62から第2流体F2が導出するまで、第1流体F1と第2流体F2の温度差を確実に維持することができ、より一層高い熱交換効率を実現することができる。 In addition, by positioning the second fluid inlet 61 closer to the downstream blocking section 4 and the second fluid outlet 62 closer to the upstream blocking section 3, the temperature difference between the first fluid F1 and the second fluid F2 can be reliably maintained from when the second fluid F2 is introduced through the second fluid inlet 61 until when the second fluid F2 is discharged through the second fluid outlet 62, thereby achieving even higher heat exchange efficiency.

また、整流壁8を第1流体分岐管5の中間部53だけに設け、第2流体導入部71及び第2流体導出部72で第2流体F2を第1流体分岐管5・5相互の隙間Gを第1流体分岐管5を横切るように流す構造により、第2流体導入部71と第2流体導出部72に整流壁8を設けずに済むことから、例えばハニカム構造体の第1流体の分岐流路だけをパイプを接合する等で延設して第1流体分岐管5とするような製造等が可能となり、効率的且つ低コストで製造することが可能となる。また、第2流体導入部71と第2流体導出部72に整流壁8を設ける構造にせずに済むことから、第2流体導入部71と第2流体導出部72を小型化して、熱交換構造の構造体1の小型化、設置場所の省スペース化を図ることができる。また、第2流体導入部71と第2流体導出部72には整流壁8を設ける複雑な構造にせずに済むことから、故障時の修理の容易化、メンテナンス性の向上を図ることができる。 In addition, the straightening wall 8 is provided only in the intermediate portion 53 of the first fluid branch pipe 5, and the second fluid F2 flows through the gap G between the first fluid branch pipes 5 and 5 in the second fluid inlet portion 71 and the second fluid outlet portion 72 so as to cross the first fluid branch pipe 5. This means that there is no need to provide the straightening wall 8 in the second fluid inlet portion 71 and the second fluid outlet portion 72. For example, it is possible to extend only the branch flow path of the first fluid of the honeycomb structure by joining a pipe, etc., to form the first fluid branch pipe 5, and this makes it possible to manufacture the first fluid branch pipe 5 efficiently and at low cost. In addition, since there is no need to provide the straightening wall 8 in the second fluid inlet portion 71 and the second fluid outlet portion 72, the second fluid inlet portion 71 and the second fluid outlet portion 72 can be made smaller, which can reduce the size of the heat exchange structure 1 and the space required for installation. In addition, the second fluid inlet 71 and the second fluid outlet 72 do not require a complex structure that requires the provision of a straightening wall 8, which makes it easier to repair in the event of a breakdown and improves maintainability.

また、第2流体導入部71に位置する前記第1流体分岐管5の部分と、第2流体導出部72に位置する第1流体分岐管5の部分とに、中間部53に位置する第1流体分岐管5の部分よりも外周寸法の小さい領域、本実施形態では第1の捩じり部56と第2の捩じり部55の第1流体分岐管の外周寸法の小さい領域を形成することにより、第1流体F1と第2流体F2の熱交換面積をより増加させるために、並設される第1流体分岐管5の数を多くして配置密度を高くした場合にも、第2流体F2がスムーズに流れる隙間Gを第2流体導入部71と第2流体導出部72に確保することができる。 Furthermore, in the portion of the first fluid branch pipe 5 located at the second fluid inlet portion 71 and the portion of the first fluid branch pipe 5 located at the second fluid outlet portion 72, there are formed areas having smaller outer circumferential dimensions than the portion of the first fluid branch pipe 5 located at the intermediate portion 53, i.e., in this embodiment, areas of the first fluid branch pipe at the first twisted portion 56 and the second twisted portion 55.By doing so, even when the number of first fluid branch pipes 5 arranged in parallel is increased to increase the arrangement density in order to further increase the heat exchange area between the first fluid F1 and the second fluid F2, a gap G through which the second fluid F2 can flow smoothly can be secured in the second fluid inlet portion 71 and the second fluid outlet portion 72.

また、第2流体導出部72に位置する第1流体分岐管5の第2の捩じり部55により、第1流体F1と熱交換した第2流体F2を乱流化して流体塊の混合を促進し、第2流体F2の熱伝達性、熱交換性をより一層高めることができる。また、第2流体導入部71と第2流体導出部72の第1流体分岐管5の外周寸法の小さい領域を同一構成の第1の捩じり部56と第2の捩じり部55で形成することにより、製造作業の容易化を図ることができる。 Moreover, the second torsion portion 55 of the first fluid branch pipe 5 located in the second fluid outlet portion 72 turbulently flows the second fluid F2 that has exchanged heat with the first fluid F1, promoting mixing of the fluid masses and further improving the heat transferability and heat exchangeability of the second fluid F2. Moreover, by forming the areas with small outer circumferential dimensions of the first fluid branch pipe 5 of the second fluid inlet portion 71 and the second fluid outlet portion 72 with the first torsion portion 56 and the second torsion portion 55 of the same configuration, the manufacturing work can be simplified.

また、第1流体分岐管5を基管2よりも熱伝導率が高い材料で形成する場合には、熱伝達率が比較的低い基管2で放熱を抑制しながら、熱伝導率が比較的高い第1流体分岐管5を介して優れた熱交換を行うことができ、全体として熱エネルギーの有効利用を促進することができる。 In addition, if the first fluid branch pipe 5 is made of a material with a higher thermal conductivity than the main pipe 2, heat dissipation can be suppressed in the main pipe 2, which has a relatively low thermal conductivity, while excellent heat exchange can be achieved via the first fluid branch pipe 5, which has a relatively high thermal conductivity, thereby promoting the effective use of thermal energy overall.

また、第1流体分岐管5の入口51を上流側閉塞部3に基管2の管路断面に千鳥配置で配設し、第1流体分岐管5の出口52が下流側閉塞部4に基管2の管路断面に千鳥配置で配設する構成、換言すれば第1流体分岐管5を断面視で千鳥配置で配設することにより、第1流体分岐管5による第1流体F1の各分岐流路の大きさを平準化できると同時に、第1流体分岐管5と整流壁8に略沿うように流される第2流体F2の各分岐流路の大きさを、無駄なスペースを生ずることなく容易に平準化することができる。 In addition, the inlets 51 of the first fluid branch pipes 5 are arranged in a staggered configuration in the cross section of the main pipe 2 at the upstream blocking section 3, and the outlets 52 of the first fluid branch pipes 5 are arranged in a staggered configuration in the cross section of the main pipe 2 at the downstream blocking section 4, in other words, by arranging the first fluid branch pipes 5 in a staggered configuration in cross section, the size of each branch flow path of the first fluid F1 by the first fluid branch pipes 5 can be equalized, and at the same time, the size of each branch flow path of the second fluid F2 that flows approximately along the first fluid branch pipes 5 and the straightening wall 8 can be easily equalized without generating wasted space.

〔本明細書開示発明の包含範囲〕
本明細書開示の発明は、発明として列記した各発明、実施形態の他に、適用可能な範囲で、これらの部分的な内容を本明細書開示の他の内容に変更して特定したもの、或いはこれらの内容に本明細書開示の他の内容を付加して特定したもの、或いはこれらの部分的な内容を部分的な作用効果が得られる限度で削除して上位概念化して特定したものを包含する。そして、本明細書開示の発明には下記変形例や追記した内容も含まれる。
[Scope of the invention disclosed herein]
The invention disclosed in this specification includes, in addition to each invention and embodiment listed as the invention, those specified by changing partial contents of these to other contents disclosed in this specification, those specified by adding other contents disclosed in this specification to these contents, or those specified by deleting partial contents of these to the extent that partial action and effect can be obtained, and specifying them as a higher conceptualization. The invention disclosed in this specification also includes the following modified examples and added contents.

例えば第1流体F1の流量、第2流体F2の流量は適用可能な範囲で適宜設定することが可能であり、例えば第1流体F1が排気等の気体である場合に第1流体F1の流量を10~150g/secとし、第2流体F2が冷却水等の液体である場合に第2流体F2の流量を10~40L/minとしても好適である。また、第1流体分岐管5の流路断面積、第1流体分岐管5の中間部53に対応する領域における第1流体分岐管5に略沿うように流れる第2流体F2の各分岐流路の流路断面積は、適用可能な範囲で適宜設定することが可能であるが、第1流体F1の流れの圧力損失と、第2流体F2の流れの圧力損失をバランスよく低減しつつ、熱交換面積を増加させる観点から、例えば第1流体分岐管5の流路断面積を0.25mm2~4.0mm2、第2流体F2の各分岐流路の流路断面積を0.25mm2~4.0mm2とすると好適である。 For example, the flow rates of the first fluid F1 and the second fluid F2 can be appropriately set within an applicable range, and for example, when the first fluid F1 is a gas such as exhaust gas, the flow rate of the first fluid F1 can be set to 10 to 150 g/sec, and when the second fluid F2 is a liquid such as cooling water, the flow rate of the second fluid F2 can be set to 10 to 40 L/min. In addition, the flow path cross-sectional area of the first fluid branch pipe 5 and the flow path cross-sectional area of each branch flow path of the second fluid F2 that flows approximately along the first fluid branch pipe 5 in a region corresponding to the intermediate portion 53 of the first fluid branch pipe 5 can be appropriately set within an applicable range, but from the viewpoint of increasing the heat exchange area while reducing the pressure loss of the flow of the first fluid F1 and the pressure loss of the flow of the second fluid F2 in a balanced manner, it is preferable to set the flow path cross-sectional area of the first fluid branch pipe 5 to 0.25 mm 2 to 4.0 mm 2 and the flow path cross-sectional area of each branch flow path of the second fluid F2 to 0.25 mm 2 to 4.0 mm 2 , for example.

また、第1流体分岐管5の流路断面積と、第1流体分岐管5の中間部53に対応する領域における第1流体分岐管5に略沿うように流れる第2流体F2の各分岐流路の流路断面積の流路比率は適用可能な範囲で適宜であり、例えば1:1~1:2.5等とすることが可能である。この際、図7及び図8の例のように、第1流体分岐管5を千鳥配置で配設し、断面視矩形の第1流体分岐管5の外側に断面視八角形の第2流体F2の分岐流路を設ける構成では、八角形の辺の長さを変更するだけで流路比率を変更することが可能となって好適である。 The flow rate ratio between the flow rate cross-sectional area of the first fluid branch pipe 5 and the flow rate cross-sectional area of each branch flow rate of the second fluid F2 that flows approximately along the first fluid branch pipe 5 in the region corresponding to the intermediate portion 53 of the first fluid branch pipe 5 may be any suitable ratio within an applicable range, and may be, for example, 1:1 to 1:2.5. In this case, as in the example of Figures 7 and 8, in a configuration in which the first fluid branch pipes 5 are arranged in a staggered arrangement and a branch flow rate of the second fluid F2 that is octagonal in cross section is provided outside the first fluid branch pipe 5 that is rectangular in cross section, it is preferable because the flow rate ratio can be changed simply by changing the length of the sides of the octagon.

本発明は、例えば自動車の内燃機関の排気と冷却水の熱交換など温度差のある流体相互の熱交換に利用することができる。 The present invention can be used for heat exchange between fluids with temperature differences, such as the heat exchange between the exhaust gas and the coolant of an automobile internal combustion engine.

1…熱交換構造の構造体 2…基管 21…第1流体導入部 22…第1流体導出部 23…基部 24…基部周壁 3…上流側閉塞部 4…下流側閉塞部 5…第1流体分岐管 51…入口 52…出口 53…中間部 54…周壁 56…第1の捩じり部 55…第2の捩じり部 61…第2流体導入口 62…第2流体導出口 71…第2流体導入部 72…第2流体導出部 8…整流壁 F1…第1流体 F2…第2流体 f21、f22…第2流体の分岐流路 HR…熱交換領域 G…隙間 REFERENCE SIGNS LIST 1...Structural body of heat exchange structure 2...Main pipe 21...First fluid inlet portion 22...First fluid outlet portion 23...Base portion 24...Base peripheral wall 3...Upstream blocking portion 4...Downstream blocking portion 5...First fluid branch pipe 51...Inlet 52...Outlet 53...Middle portion 54...Peripheral wall 56 ...First twisted portion 55 ...Second twisted portion 61...Second fluid inlet port 62...Second fluid outlet port 71...Second fluid inlet portion 72...Second fluid outlet portion 8...Flow straightening wall F1...First fluid F2...Second fluid f21, f22...Branched flow paths of second fluid HR...Heat exchange region G...Gap

Claims (7)

温度差のある第1流体と第2流体との熱交換を行う熱交換構造であって、
前記第1流体が軸方向に流れる基管の内部に上流側閉塞部と下流側閉塞部が設けられ、
前記基管の前記上流側閉塞部より上流側と前記下流側閉塞部より下流側が前記基管の軸方向に延びる第1流体分岐管で連通され、
前記第1流体分岐管の入口が前記基管の管路断面における縦横に間隔を開けて前記上流側閉塞部に配設され、
前記第1流体分岐管の出口が前記基管の管路断面における縦横に間隔を開けて前記下流側閉塞部に配設され、
前記上流側閉塞部と前記下流側閉塞部との間で前記基管の内部に連通する第2流体導入口と第2流体導出口が設けられ、
前記第2流体導入口と前記第2流体導出口の一方が前記上流側閉塞部寄り、他方が前記下流側閉塞部寄りに配置され、
前記第1流体分岐管の軸方向の中間部に、前記第1流体分岐管の軸方向に延びる整流壁が前記第1流体分岐管相互に架設され、
前記第2流体が前記第1流体分岐管の外側を前記第1流体分岐管と前記整流壁に略沿うように流され
前記整流壁が前記第1流体分岐管の前記中間部だけに設けられ、
前記基管内の前記中間部の軸方向両側に位置する第2流体導入部及び第2流体導出部で、第2流体が前記第1流体分岐管相互の隙間を前記第1流体分岐管を横切るように流され、
少なくとも、前記第2流体導出部に位置する前記第1流体分岐管の部分に管路が捩じられた捩じり部が形成されていることを特徴とする熱交換構造。
A heat exchange structure for performing heat exchange between a first fluid and a second fluid having a temperature difference,
an upstream blocking portion and a downstream blocking portion are provided inside a connecting pipe through which the first fluid flows in an axial direction;
the upstream side of the upstream closing portion of the main pipe and the downstream side of the downstream closing portion of the main pipe are connected to each other by a first fluid branch pipe extending in the axial direction of the main pipe,
the inlets of the first fluid branch pipes are disposed in the upstream blocking portion at intervals in the vertical and horizontal directions in a cross section of the main pipe;
the outlets of the first fluid branch pipe are disposed in the downstream blocking portion at intervals in the vertical and horizontal directions in a cross section of the main pipe;
a second fluid inlet and a second fluid outlet communicating with an inside of the connecting pipe are provided between the upstream blocking portion and the downstream blocking portion,
one of the second fluid inlet and the second fluid outlet is disposed closer to the upstream blocking portion, and the other is disposed closer to the downstream blocking portion;
a straightening wall extending in an axial direction of the first fluid branch pipe is disposed between the first fluid branch pipes at an intermediate portion in an axial direction of the first fluid branch pipe;
the second fluid is caused to flow outside the first fluid branch pipe so as to substantially follow the first fluid branch pipe and the flow straightening wall ,
the straightening wall is provided only in the intermediate portion of the first fluid branch pipe,
a second fluid is caused to flow through a gap between the first fluid branch pipes so as to cross the first fluid branch pipes in a second fluid inlet portion and a second fluid outlet portion located on both axial sides of the intermediate portion in the main pipe;
A heat exchange structure, comprising : at least a portion of the first fluid branch pipe located at the second fluid outlet portion, the portion having a twisted pipe line formed therein.
温度差のある第1流体と第2流体との熱交換を行う熱交換構造であって、
前記第1流体が軸方向に流れる基管の内部に上流側閉塞部と下流側閉塞部が設けられ、
前記基管の前記上流側閉塞部より上流側と前記下流側閉塞部より下流側が前記基管の軸方向に延びる第1流体分岐管で連通され、
前記第1流体分岐管の入口が前記基管の管路断面における縦横に間隔を開けて前記上流側閉塞部に配設され、
前記第1流体分岐管の出口が前記基管の管路断面における縦横に間隔を開けて前記下流側閉塞部に配設され、
前記上流側閉塞部と前記下流側閉塞部との間で前記基管の内部に連通する第2流体導入口と第2流体導出口が設けられ、
前記第2流体導入口と前記第2流体導出口の一方が前記上流側閉塞部寄り、他方が前記下流側閉塞部寄りに配置され、
前記第1流体分岐管の軸方向の中間部に、前記第1流体分岐管の軸方向に延びる整流壁が前記第1流体分岐管相互に架設され、
前記第2流体が前記第1流体分岐管の外側を前記第1流体分岐管と前記整流壁に略沿うように流され、
前記整流壁が前記第1流体分岐管の前記中間部だけに設けられ、
前記基管内の前記中間部の軸方向両側に位置する第2流体導入部及び第2流体導出部で、第2流体が前記第1流体分岐管相互の隙間を前記第1流体分岐管を横切るように流され、
前記第2流体導入部に位置する前記第1流体分岐管の部分に管路が捩じられた第1の捩じり部が形成され、
前記第2流体導出部に位置する前記第1流体分岐管の部分に管路が捩じられた第2の捩じり部が形成され、
前記第1の捩じり部と前記第2の捩じり部とに、前記中間部に位置する前記第1流体分岐管の部分よりも外周寸法の小さい領域がそれぞれ形成されていることを特徴とする熱交換構造。
A heat exchange structure for performing heat exchange between a first fluid and a second fluid having a temperature difference,
an upstream blocking portion and a downstream blocking portion are provided inside a connecting pipe through which the first fluid flows in an axial direction;
the upstream side of the upstream closing portion of the main pipe and the downstream side of the downstream closing portion of the main pipe are connected to each other by a first fluid branch pipe extending in the axial direction of the main pipe,
the inlets of the first fluid branch pipes are disposed in the upstream blocking portion at intervals in the vertical and horizontal directions in a cross section of the main pipe;
the outlets of the first fluid branch pipe are disposed in the downstream blocking portion at intervals in the vertical and horizontal directions in a cross section of the main pipe;
a second fluid inlet and a second fluid outlet communicating with an inside of the connecting pipe are provided between the upstream blocking portion and the downstream blocking portion,
one of the second fluid inlet and the second fluid outlet is disposed closer to the upstream blocking portion, and the other is disposed closer to the downstream blocking portion;
a straightening wall extending in an axial direction of the first fluid branch pipe is disposed between the first fluid branch pipes at an intermediate portion in an axial direction of the first fluid branch pipe;
the second fluid is caused to flow outside the first fluid branch pipe so as to substantially follow the first fluid branch pipe and the flow straightening wall,
the straightening wall is provided only in the intermediate portion of the first fluid branch pipe,
a second fluid is caused to flow through a gap between the first fluid branch pipes so as to cross the first fluid branch pipes in a second fluid inlet portion and a second fluid outlet portion located on both axial sides of the intermediate portion in the main pipe;
a first twisted portion is formed in a portion of the first fluid branch pipe located in the second fluid introduction portion,
a second twisted portion is formed in a portion of the first fluid branch pipe located in the second fluid outlet portion,
A heat exchange structure, characterized in that the first twisted portion and the second twisted portion each have an area having a smaller outer circumferential dimension than a portion of the first fluid branch pipe located in the intermediate portion .
前記第1流体分岐管の入口が前記上流側閉塞部に前記基管の管路断面の全面に亘って網状に配設され、
前記第1流体分岐管の出口が前記下流側閉塞部に前記基管の管路断面の全面に亘って網状に配設されていることを特徴とする請求項1又は2記載の熱交換構造。
an inlet of the first fluid branch pipe is disposed in a net-like manner in the upstream blocking portion over an entire surface of a pipe cross section of the connecting pipe;
3. The heat exchange structure according to claim 1, wherein the outlet of the first branch pipe is disposed in a net-like manner over the entire surface of a cross section of the connecting pipe in the downstream closed portion.
前記第2流体導入口が前記下流側閉塞部寄りに配置され、前記第2流体導出口が前記上流側閉塞部寄りに配置されていることを特徴とする請求項1~3の何れかに記載の熱交換構造。 A heat exchange structure described in any one of claims 1 to 3, characterized in that the second fluid inlet is positioned closer to the downstream blocking portion, and the second fluid outlet is positioned closer to the upstream blocking portion. 前記第2流体導入部に位置する前記第1流体分岐管の部分と、前記第2流体導出部に位置する前記第1流体分岐管の部分とに、前記中間部に位置する前記第1流体分岐管の部分よりも外周寸法の小さい領域が形成されていることを特徴とする請求項記載の熱交換構造。 2. The heat exchange structure according to claim 1, wherein a portion of the first fluid branch pipe located at the second fluid inlet portion and a portion of the first fluid branch pipe located at the second fluid outlet portion have an area having a smaller outer circumferential dimension than a portion of the first fluid branch pipe located at the intermediate portion. 前記第1流体分岐管が前記基管よりも熱伝導率が高い材料で形成されていることを特徴とする請求項1~の何れかに記載の熱交換構造。 6. The heat exchange structure according to claim 1, wherein the first branch pipe is made of a material having a higher thermal conductivity than the main pipe. 前記第1流体分岐管の入口が前記上流側閉塞部に前記基管の管路断面に千鳥配置で配設され、
前記第1流体分岐管の出口が前記下流側閉塞部に前記基管の管路断面に千鳥配置で配設されていることを特徴とする請求項1~の何れかに記載の熱交換構造。
the inlets of the first fluid branch pipes are disposed in the upstream blocking portion in a staggered arrangement in a cross section of the connecting pipe;
7. The heat exchange structure according to claim 1, wherein the outlets of the first fluid branch pipes are arranged in a staggered arrangement in the cross section of the main pipe at the downstream closed portion.
JP2020129633A 2020-07-30 2020-07-30 Heat exchange structure Active JP7469177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020129633A JP7469177B2 (en) 2020-07-30 2020-07-30 Heat exchange structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020129633A JP7469177B2 (en) 2020-07-30 2020-07-30 Heat exchange structure

Publications (2)

Publication Number Publication Date
JP2022026255A JP2022026255A (en) 2022-02-10
JP7469177B2 true JP7469177B2 (en) 2024-04-16

Family

ID=80263544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020129633A Active JP7469177B2 (en) 2020-07-30 2020-07-30 Heat exchange structure

Country Status (1)

Country Link
JP (1) JP7469177B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054511A (en) 2000-08-14 2002-02-20 Hino Motors Ltd Egr cooler
JP2006282413A (en) 2005-03-31 2006-10-19 Hitachi Ltd Hydrogen production system
JP2010532858A (en) 2007-07-12 2010-10-14 ヒートマトリクス グループ ベスローテン ヴェンノートチャップ Heat exchanger
JP2013210157A (en) 2012-03-30 2013-10-10 Idemitsu Kosan Co Ltd Support structure
US20200080789A1 (en) 2018-09-11 2020-03-12 Hamilton Sundstrand Corporation Shell and tube heat exchanger with perforated fins interconnecting the tubes
JP2020513535A (en) 2016-12-13 2020-05-14 ザ テキサス エー アンド エム ユニバーシティ システム Specific application to vapor compression desalination of sensible and latent heat exchangers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054511A (en) 2000-08-14 2002-02-20 Hino Motors Ltd Egr cooler
JP2006282413A (en) 2005-03-31 2006-10-19 Hitachi Ltd Hydrogen production system
JP2010532858A (en) 2007-07-12 2010-10-14 ヒートマトリクス グループ ベスローテン ヴェンノートチャップ Heat exchanger
JP2013210157A (en) 2012-03-30 2013-10-10 Idemitsu Kosan Co Ltd Support structure
JP2020513535A (en) 2016-12-13 2020-05-14 ザ テキサス エー アンド エム ユニバーシティ システム Specific application to vapor compression desalination of sensible and latent heat exchangers
US20200080789A1 (en) 2018-09-11 2020-03-12 Hamilton Sundstrand Corporation Shell and tube heat exchanger with perforated fins interconnecting the tubes

Also Published As

Publication number Publication date
JP2022026255A (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP5193310B2 (en) Recirculation exhaust gas cooler for internal combustion engines
US8069905B2 (en) EGR gas cooling device
JP6075381B2 (en) Heat exchanger
JP5395783B2 (en) Heat exchanger with tube bundle
KR101887750B1 (en) Egr cooler for vehicle
US20060231243A1 (en) Egr cooler
CN106066128B (en) Heat exchange device
JP5967300B2 (en) Heat exchanger
JP2005283095A (en) Efficient heat exchanger, and engine using the same
KR20110025633A (en) Heat exchanging having flow disruptor and method of operating the same
JP2008231929A (en) Cooling water inlet structure of heat exchanger for egr cooler
JPWO2016190445A1 (en) Heat exchanger tank structure and manufacturing method thereof
JP2002054511A (en) Egr cooler
JP2006118436A (en) Bonnet for egr gas cooling device
JPH1113551A (en) Egr cooler
JP7469177B2 (en) Heat exchange structure
JP2003090693A (en) Exhaust gas heat exchanger
CN206860296U (en) A kind of water cooled pipeline structure
JPH11287571A (en) Egr cooler
US20230251041A1 (en) Heat exchanger
JP6577282B2 (en) Heat exchanger
JPH11183062A (en) Double piped heat exchanger
JPS6311493Y2 (en)
JP2011196620A (en) Ebullient cooling type heat exchanger
JP2007085724A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240404

R150 Certificate of patent or registration of utility model

Ref document number: 7469177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150