JP7468800B2 - Steel plate and its manufacturing method - Google Patents

Steel plate and its manufacturing method Download PDF

Info

Publication number
JP7468800B2
JP7468800B2 JP2023553725A JP2023553725A JP7468800B2 JP 7468800 B2 JP7468800 B2 JP 7468800B2 JP 2023553725 A JP2023553725 A JP 2023553725A JP 2023553725 A JP2023553725 A JP 2023553725A JP 7468800 B2 JP7468800 B2 JP 7468800B2
Authority
JP
Japan
Prior art keywords
less
plate thickness
temperature
toughness
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023553725A
Other languages
Japanese (ja)
Other versions
JPWO2023219146A1 (en
Inventor
将臣 奥谷
祐介 寺澤
浩文 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2023219146A1 publication Critical patent/JPWO2023219146A1/ja
Application granted granted Critical
Publication of JP7468800B2 publication Critical patent/JP7468800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、船舶や海洋構造物、圧力容器、ラインパイプ、洋上風力発電機などの鋼構造物に好適に用いられる鋼材に関する。具体的には、板厚が100mm超であって、母材の強度靭性に優れるだけでなく、多層盛溶接部における継手CTOD特性にも優れる、厚肉の高張力鋼板およびその製造方法に関する。The present invention relates to a steel material suitable for use in steel structures such as ships, marine structures, pressure vessels, line pipes, and offshore wind power generators. Specifically, the present invention relates to a thick, high-tensile steel plate having a plate thickness of more than 100 mm and excellent not only in the strength and toughness of the base material but also in the joint CTOD characteristics in multi-layer welds, and a method for manufacturing the same.

近年、船舶や海洋構造物、圧力容器、ラインパイプ、洋上風力発電機などの鋼構造物は大型化が進んでいる。かかる大型化に伴って、母材に使用される鋼材を、より高強度で厚肉なものにする要求が高まっている。In recent years, steel structures such as ships, marine structures, pressure vessels, line pipes, and offshore wind turbines have become larger. As these structures become larger, there is an increasing demand for the steel materials used as base materials to be stronger and thicker.

特に、板厚が100mm超の厚鋼板を製造する場合、板厚が厚いために、板厚中心部では、冷却速度が低下して結晶粒が粗大になりやすい。そのため、板厚中心部の強度および靭性に優れる厚鋼板を製造しようとすると、板厚中心部の結晶粒の微細化が重要となる。In particular, when manufacturing thick steel plates with a thickness of over 100 mm, the cooling rate is slower in the center of the plate thickness due to the large thickness, and the crystal grains tend to become coarse. Therefore, when trying to manufacture thick steel plates with excellent strength and toughness in the center of the plate thickness, it is important to refine the crystal grains in the center of the plate thickness.

例えば、特許文献1には、圧延条件を制御することで、板厚中心におけるミクロ組織の平均有効結晶粒径を微細化し、母材靭性を向上させる技術が提案されている。For example, Patent Document 1 proposes a technology for controlling the rolling conditions to refine the average effective crystal grain size of the microstructure at the center of the plate thickness and improve the toughness of the base material.

従来、鋼の靭性評価手法として、主にシャルピー試験が行われてきた。一方、近年では、鋼構造物に使用される厚鋼板を対象に、破壊抵抗をより高精度に評価する手法として、き裂開口変位試験(Crack Tip Opening Displacement Test、以下、「CTOD試験」という)という評価手法を適用することが多くなっている。
このCTOD試験は、靭性評価部に疲労予き裂を導入した試験片を用いて3点曲げを行い、破壊直前のき裂の開口量(塑性変形量)を測定することで、脆性破壊の発生抵抗を評価するものである。
Conventionally, the Charpy test has been mainly used as a method for evaluating the toughness of steel. On the other hand, in recent years, an evaluation method called a Crack Tip Opening Displacement Test (hereinafter referred to as "CTOD test") has been often applied as a method for evaluating the fracture resistance with higher accuracy for thick steel plates used in steel structures.
This CTOD test evaluates the resistance to brittle fracture by performing three-point bending on a test specimen in which a fatigue pre-crack has been introduced in the toughness evaluation section and measuring the amount of crack opening (amount of plastic deformation) just before fracture.

また、厚鋼板を、船舶や海洋構造物、圧力容器、ラインパイプ、洋上風力発電機などの鋼構造物に適用する場合、多層盛溶接が用いられる。
この多層盛溶接の溶接熱影響部(Heat Affected Zone、以下、「HAZ」ともいう)は、各溶接パスのそれぞれから異なる熱サイクルを複数回受けることで、様々な組織が混在して形成される。中でも、先行の溶接パスにより粗大な組織となった溶接線近傍のHAZ領域(CGHAZ:Coarse Grain Heat Affected Zone)が後続の溶接パスによりフェライト+オ-ステナイトの2相域に再加熱されることで形成される、粗大な基地組織中に島状マルテンサイト(MA:Martensite-Austenite Constituent)が混在したHAZ組織(以下、ICCGHAZ:Inter-Critically reheated Coarse Grain Heat Affected Zoneという)は、特に靭性が低い。また、母材組織の結晶粒径が粗大な場合、SCHAZ(Sub-Critically reheated HAZ)の靭性が問題になる場合がある。
Furthermore, when thick steel plates are applied to steel structures such as ships, marine structures, pressure vessels, line pipes, and offshore wind turbines, multi-layer welding is used.
The heat affected zone (hereinafter, also referred to as "HAZ") of this multi-layer welding is subjected to multiple different heat cycles from each welding pass, and is formed with a mixture of various structures. Among them, the HAZ structure (hereinafter, referred to as ICCGHAZ: Inter-Critically Reheated Coarse Grain Heat Affected Zone) in which island martensite (MA: Martensite-Austenite Constituent) is mixed in the coarse base structure formed by reheating the HAZ area (CGHAZ: Coarse Grain Heat Affected Zone) near the weld line, which has become a coarse structure by the preceding welding pass, to a two-phase region of ferrite + austenite by the subsequent welding pass, has particularly low toughness. In addition, when the crystal grain size of the base material structure is coarse, the toughness of the SCHAZ (Sub-Critically Reheated HAZ) may become a problem.

継手CTOD試験方法が規定されているBS規格(British Standards)EN10225-4(2019)やAPI(American Petroleum Institute)規格RP(Recommended Practice)-2Z(2005)では、継手CTOD特性として、溶接線近傍部のCGHAZおよび、溶接時の母材の未変態領域/変態領域の境界であるSC/ICHAZ(Inter-Critically reheated HAZ)境界の継手CTOD特性が要求される。 The BS standard (British Standards) EN10225-4 (2019) and API (American Petroleum Institute) standard RP (Recommended Practice)-2Z (2005), which specify joint CTOD test methods, require joint CTOD characteristics of the CGHAZ near the weld line and the SC/ICHAZ (Inter-Critically Reheated HAZ) boundary, which is the boundary between the untransformed and transformed regions of the base material at the time of welding.

溶接継手部のCTOD試験では基本的に全厚で試験を行うため、CGHAZを評価対象とする場合、疲労予き裂を導入する領域にはICCGHAZ組織が含まれる。すなわち、継手CTOD試験により得られる継手CTOD特性は、評価領域内における最脆化組織の靭性に支配されるため、CGHAZの継手CTOD特性には、CGHAZ組織だけでなくICCGHAZ組織の靭性も反映される。
このため、CGHAZでの継手CTOD特性を向上させるためにはICCGHAZ組織の靭性向上も必要である。
なお、上述したHAZ組織は、多層盛(多パス)溶接中のある1溶接パスで生成する組織においては、溶接線から近い順にCGHAZ、ICHAZ、SCHAZという位置関係となる。ICCGHAZは、多層盛溶接においては後続のパスの熱履歴によってCGHAZがフェライトとオーステナイトの二相域に加熱されることで生成される組織であり、溶接パスの積層の仕方によりICCGHAZ組織の生成する位置および頻度が変動し得る。
In a CTOD test of a welded joint, the test is basically performed over the entire thickness, so when the CGHAZ is the subject of evaluation, the region where a fatigue pre-crack is introduced includes the ICCGHAZ structure. In other words, the joint CTOD properties obtained by a joint CTOD test are governed by the toughness of the most embrittled structure in the evaluation region, so the joint CTOD properties of the CGHAZ reflect not only the CGHAZ structure but also the toughness of the ICCGHAZ structure.
For this reason, in order to improve the joint CTOD characteristics in the CGHAZ, it is also necessary to improve the toughness of the ICCGHAZ structure.
In addition, the above-mentioned HAZ structure, in a structure generated in one welding pass during multi-layer (multi-pass) welding, has a positional relationship of CGHAZ, ICHAZ, and SCHAZ in the order of proximity to the weld line. In multi-layer welding, the ICCGHAZ is a structure generated by heating the CGHAZ to a two-phase region of ferrite and austenite due to the thermal history of the subsequent passes, and the position and frequency of generation of the ICCGHAZ structure can vary depending on the way the welding passes are stacked.

従来、溶接熱影響部(HAZ)の靭性向上技術として、TiNの微細分散によるCGHAZのオ-ステナイト粒粗大化の抑制や、TiNのフェライト変態核としての利用が行われてきた。しかし、ボンド部においてはTiNが溶解する温度域まで加熱されることがあり、溶接部の低温靭性要求が厳しい場合、上述の効果だけでは前述の要求を満足することが困難となる。 Conventionally, techniques for improving the toughness of weld heat-affected zones (HAZ) have involved the fine dispersion of TiN to suppress the coarsening of austenite grains in the CGHAZ, and the use of TiN as a ferrite transformation nucleus. However, the bond zone can be heated to a temperature range where TiN melts, and when the low-temperature toughness requirements of the weld are strict, it becomes difficult to meet the requirements with the above-mentioned effects alone.

また、REM(希土類金属)を添加して生成したREM系酸硫化物の分散によるオ-ステナイト粒の粒成長抑制や、BNのフェライト核生成能を活用する技術も用いられてきた。 Technologies that have also been used include the inhibition of austenite grain growth by dispersing REM-based oxysulfides produced by adding rare earth metals (REM), and the utilization of the ferrite nucleation ability of BN.

例えば、特許文献2には、Tiと共にREMを複合添加して鋼中に微細粒子を分散させることにより、オーステナイトの粒成長を抑制し、溶接部の靭性を向上させる技術が開示されている。
また、特許文献3には、大入熱溶接熱影響部においてBN(窒化ホウ素)をフェライト変態核として利用し、HAZ組織を微細化することでHAZ靭性を向上させる技術が提案されている。
For example, Patent Document 2 discloses a technique in which REM is added in combination with Ti to disperse fine particles in steel, thereby suppressing the grain growth of austenite and improving the toughness of welds.
Furthermore, Patent Document 3 proposes a technique for improving HAZ toughness by utilizing BN (boron nitride) as ferrite transformation nuclei in a high heat input weld heat affected zone and refining the HAZ structure.

特許文献4には、ICCGHAZの靭性低下対策として、低C、低Si化することでMAの生成を抑制し、さらにCuを添加することによって母材強度を高める技術が提案されている。Patent Document 4 proposes a technology to counter the decline in toughness of ICCGHAZ by reducing the C and Si content to suppress the generation of MA, and further increasing the strength of the base material by adding Cu.

以上のように、鋼板の厚肉化と高強度化を両立するためには合金元素の添加量の増加が必要であるが、合金元素の多量添加は多層盛溶接HAZの靭性悪化につながり、低温での継手CTOD特性の確保が困難になるという問題がある。
この問題に対しては、特許文献5に、中心偏析部の硬度を制御することで低温靭性を向上させる技術が開示されている。
As described above, in order to achieve both thickening and high strength of steel plate, it is necessary to increase the amount of alloying elements added. However, adding a large amount of alloying elements leads to deterioration of the toughness of the multi-pass weld HAZ, and there is a problem that it becomes difficult to ensure the CTOD characteristics of the joint at low temperatures.
To address this problem, Patent Document 5 discloses a technique for improving low-temperature toughness by controlling the hardness of the center segregation portion.

特許第6477993号公報Patent No. 6477993 特開昭60-184663号公報Japanese Patent Application Laid-Open No. 60-184663 特開昭61-253344号公報Japanese Patent Application Laid-Open No. 61-253344 特開平05-186823号公報Japanese Patent Application Laid-Open No. 05-186823 特許第5846311号公報Patent No. 5846311

ここで、継手CTOD特性を規定している規格(例えば、API規格 RP-2Z)におけるCTOD仕様温度は、通常、-10℃である。
ところが、近年のエネルギー需要の増加に対応し、新たな資源を確保するために、海洋構造物等の建造地域がこれまで資源採掘を行えていなかった寒冷域および深海域にシフトしている。このため、高強度かつ厚肉で、API規格が定めるCTOD仕様温度よりもさらに低温のCTOD仕様温度に対応できる厚鋼板に対する要求が増加している。
Here, the CTOD specification temperature in the standards that prescribe the CTOD characteristics of joints (for example, API standard RP-2Z) is usually -10°C.
However, in order to meet the increasing demand for energy in recent years and to secure new resources, the construction regions of marine structures and the like are shifting to cold regions and deep sea regions where resource mining has not been possible until now. This has led to an increasing demand for high-strength, thick-walled steel plates that can withstand CTOD specification temperatures that are even lower than the CTOD specification temperatures set by the API standard.

発明者らの検討によれば、前記特許文献1~5に記載されている従来の技術は、板厚:100mm超の厚鋼板において、低温仕様向けの多層盛溶接継手に要求される継手CTOD特性を十分満足させることができないものであった。According to the inventors' investigations, the conventional techniques described in the above Patent Documents 1 to 5 were unable to fully satisfy the joint CTOD characteristics required for multi-pass welded joints for low-temperature specifications in thick steel plates having a plate thickness of more than 100 mm.

例えば、特許文献1は、板厚中心におけるミクロ組織の平均有効結晶粒径微細化のための圧延条件制御を提案しているものの、板厚100mm超の厚鋼板に対しては適用できていない。また、板厚中心部における靭性改善のためには、その平均有効結晶粒径を微細化するだけでは不十分で、その最大有効結晶粒径も微細化することが必要である。For example, Patent Document 1 proposes control of rolling conditions to refine the average effective grain size of the microstructure in the center of the plate thickness, but this cannot be applied to thick steel plates with a plate thickness of over 100 mm. In addition, to improve toughness in the center of the plate thickness, it is not enough to refine the average effective grain size alone; it is also necessary to refine the maximum effective grain size.

特許文献2で提案されているREMとTiを複合添加して鋼中に微細粒子を分散させることによるHAZのオ-ステナイト組織の粗大化抑制技術は、比較的低強度で合金元素量の少ない鋼材が対象である。そのため、より高強度で合金元素量の多い鋼材の場合は、HAZ組織がフェライトを含まない組織となるために適用できない。The technology proposed in Patent Document 2 to suppress the coarsening of the austenite structure in the HAZ by dispersing fine particles in the steel through the combined addition of REM and Ti is intended for steel materials with relatively low strength and low amounts of alloying elements. Therefore, in the case of steel materials with higher strength and higher amounts of alloying elements, the HAZ structure does not contain ferrite, and so it cannot be applied.

特許文献3で提案されている技術は、大入熱溶接の場合のように、溶接熱影響部における冷却速度が遅く、HAZがフェライト主体の組織となる場合には効果を発揮する。しかし、多層盛溶接では入熱量が比較的小さく、さらに板厚100mm超の厚鋼板の場合は母材に含有される合金成分の量が比較的多い。そのため、厚鋼板の多層盛溶接においてはHAZ組織がベイナイト主体となり、前記のHAZ靭性向上効果が得られない。The technology proposed in Patent Document 3 is effective when the cooling rate in the heat-affected zone is slow, as in the case of high heat input welding, and the HAZ has a structure mainly composed of ferrite. However, in multi-layer welding, the heat input is relatively small, and in the case of thick steel plates with a plate thickness of over 100 mm, the amount of alloy components contained in the base material is relatively large. Therefore, in multi-layer welding of thick steel plates, the HAZ structure is mainly composed of bainite, and the above-mentioned effect of improving HAZ toughness cannot be obtained.

特許文献4で提案されている技術によれば、通常仕様温度(-10℃)でのCTOD特性を満足することができる。しかし、前述したようなさらなる低温仕様温度での継手CTOD特性については検討されておらず、CやSiといった母材合金成分の低減によるICCGHAZ靭性の向上のみでは低温CTOD仕様を満足することはできないと考えられる。
また、ICCGHAZの靭性を向上させるために母材の合金元素含有量を低減することは、厚肉化のための強度確保と相反する技術であり、海洋構造物などに使用される厚鋼板には適用しがたいと考えられる。
According to the technology proposed in Patent Document 4, it is possible to satisfy the CTOD characteristics at the normal specification temperature (-10°C). However, the CTOD characteristics of the joint at the lower specification temperature as described above have not been considered, and it is considered that the low-temperature CTOD specification cannot be satisfied only by improving the ICCGHAZ toughness by reducing the base alloy components such as C and Si.
In addition, reducing the alloy element content of the base material in order to improve the toughness of the ICCGHAZ is a technology that contradicts the need to ensure strength for thickening, and is therefore considered difficult to apply to thick steel plates used in marine structures, etc.

特許文献5は、板厚100mm以下の厚鋼板において、通常仕様温度(-10℃)での継手CTOD特性を満足するための技術を提案している。ところが、板厚100mm超の極厚鋼板に対しては、板厚が100mm以下の鋼板と同等の力学特性を得るまでには至っておらず、前述したようなさらなる低温仕様温度での継手CTOD特性については検討されていない。また、SC/ICHAZ境界のCTOD特性についても未検討である。 Patent Document 5 proposes a technology for satisfying the joint CTOD characteristics at normal specification temperatures (-10°C) for thick steel plates with a plate thickness of 100 mm or less. However, for extra-thick steel plates with a plate thickness of more than 100 mm, it has not yet achieved mechanical properties equivalent to those of steel plates with a plate thickness of 100 mm or less, and no consideration has been given to the joint CTOD characteristics at even lower specification temperatures as mentioned above. In addition, the CTOD characteristics at the SC/ICHAZ boundary have not been considered.

このように、高強度と低温靭性を両立する板厚100mm超の厚鋼板において、多層盛溶接熱影響部でのCGHAZ、ICCGHAZおよびSCHAZの靭性を併せて向上させる技術が確立されているとは言いがたく、継手CTOD特性を向上させることは困難であった。 Thus, in thick steel plates over 100 mm thick that combine high strength and low-temperature toughness, it cannot be said that technology has been established to simultaneously improve the toughness of the CGHAZ, ICCGHAZ, and SCHAZ in the heat-affected zone of multi-layer welds, and it has been difficult to improve the CTOD characteristics of joints.

本発明は、従来技術が抱える上記問題を鑑みてなされたものであり、その目的は、高強度かつ低温での母材靭性および、多層盛溶接継手CTOD特性に優れる板厚100mm超の厚鋼板およびその製造方法を提供することである。
なお、本発明において、高強度とは、引張試験における板厚中心部における降伏強度が325MPa以上であることを指す。低温での母材靭性に優れるとは、板厚中心部において、-40℃でのシャルピー試験における吸収エネルギーが100J以上であることを指す。多層盛溶接継手CTOD特性に優れるとは、切欠位置CGHAZ及び、SC/ICHAZ境界のそれぞれにおいて、試験温度が-20℃の場合に、き裂開口変位量が0.4mm以上であることを指す。
The present invention has been made in consideration of the above problems associated with the conventional technology, and an object of the present invention is to provide a thick steel plate having a thickness of more than 100 mm, which has high strength and excellent base material toughness at low temperatures, and excellent multi-pass welded joint CTOD characteristics, and a manufacturing method thereof.
In the present invention, "high strength" refers to a yield strength of 325 MPa or more at the center of the plate thickness in a tensile test. "excellent base material toughness at low temperatures" refers to an absorbed energy of 100 J or more at the center of the plate thickness in a Charpy test at -40°C. "excellent multi-pass welded joint CTOD characteristics" refers to a crack opening displacement of 0.4 mm or more at the notch position CGHAZ and at the SC/ICHAZ boundary when the test temperature is -20°C.

本発明者らは、上記課題を解決するため、板厚100mm超の厚鋼板において、母材の高強度化と低温靭性向上を両立しつつ、CTOD特性を向上させる手法について鋭意検討を行った。その結果、以下の知見を得た。In order to solve the above problems, the inventors have conducted extensive research into a method for improving the CTOD characteristics of thick steel plates with a thickness of over 100 mm while simultaneously increasing the strength of the base material and improving low-temperature toughness. As a result, they have obtained the following findings.

強度および靭性は結晶粒径との間に強い相関性があるので、板厚100mm超の厚鋼板において板厚中心部での高強度と低温靭性とを両立するためには、かかる部位での結晶粒微細化が不可欠である。そして、結晶粒を微細化する際には、その平均有効結晶粒径を微細化することも重要であるが、かかる微細な結晶粒の中に一部でも粗大な結晶粒が混在していると、その粗大な結晶粒が最弱部となり、破壊起点となる。つまり、材料特性は平均結晶粒径だけでなく、最大結晶粒径にも支配される。そのため、結晶粒の微細化だけでなく、整粒化も肝要となる。 Since strength and toughness are strongly correlated with grain size, in order to achieve both high strength and low-temperature toughness at the center of the plate thickness in thick steel plates over 100 mm, it is essential to refine the grains in these areas. When refining the grains, it is also important to refine the average effective grain size, but if even a portion of the fine grains contain coarse grains, the coarse grains will become the weakest part and the starting point of fracture. In other words, material properties are governed not only by the average grain size but also by the maximum grain size. Therefore, in addition to refining the grains, it is also essential to regulate the grain size.

上記に関して、発明者らは、後述のとおり、板厚中心部における母材組織の平均有効結晶粒径を20μm以下にしつつ、最大有効結晶粒径を150μm以下にすることで、所望の強度、靭性を確保できることを知見した。With regard to the above, the inventors have discovered that the desired strength and toughness can be ensured by setting the average effective grain size of the base material structure at the center of the plate thickness to 20 μm or less, while setting the maximum effective grain size to 150 μm or less, as described below.

しかし、従来技術では、特に板厚100mm超の厚鋼板において、圧延中に板厚中心部にひずみが入りにくく、板厚中心部における母材組織の平均有効結晶粒径を20μm以下に微細化することが困難であった。
また、板厚中心部にひずみを適切に導入し、平均有効結晶粒径を微細化できたとしても、粗大な結晶粒が混在する場合、その粗大粒が破壊起点になってしまうという問題点があった。
かかる問題は、最大有効結晶粒径が150μm超の粗大な結晶粒をなくすことで解決できることを知見した。
しかしながら、従来技術では、特に板厚100mm超の厚鋼板において、最大有効結晶粒径が150μm超の粗大な結晶粒をなくすことは困難であった。
However, in the conventional technology, it was difficult to introduce strain into the center of the plate thickness during rolling, particularly in thick steel plates with a thickness of more than 100 mm, and it was difficult to refine the average effective crystal grain size of the base material structure in the center of the plate thickness to 20 μm or less.
Furthermore, even if strain is appropriately introduced into the center of the plate thickness and the average effective grain size is refined, if coarse grains are mixed in, the coarse grains can become the starting point of fracture.
It has been discovered that this problem can be solved by eliminating coarse grains having a maximum effective grain size of more than 150 μm.
However, with conventional techniques, it has been difficult to eliminate coarse crystal grains having a maximum effective crystal grain size of more than 150 μm, particularly in thick steel plates having a plate thickness of more than 100 mm.

前記検討の結果、これらの問題を以下の方法で解決できることを見出した。
(1)板厚中心温度が再結晶温度域であるT℃以上の温度域において、平均圧下率/パス(各パスでの圧下率の平均値)が3%以上、累積圧下率(累積圧下量/圧延開始板厚)25%以上の圧延を行うことにより、板厚中心部に十分なひずみを導入でき、再結晶による結晶粒の微細化および均質化を行うことができる。次いで、再結晶粒と粗大な回復粒が生成される部分再結晶温度域(T1~T℃)での圧延を避けた上で、未再結晶温度域であるT℃以下で、累積圧下率30%以上となる圧延を行う。これらの圧延によって、板厚100mm超の厚鋼板においても、板厚中心部における最大有効結晶粒径を150μm以下にしつつ、平均有効結晶粒径を20μm以下にすることができる。
As a result of the above investigation, it was found that these problems can be solved by the following method.
(1) In a temperature range where the plate thickness center temperature is equal to or higher than T 1 ° C., the average reduction rate/pass (average value of reduction rate in each pass) is 3% or more, and the cumulative reduction rate (cumulative reduction amount/rolling start plate thickness) is 25% or more, so that sufficient strain can be introduced into the plate thickness center, and the crystal grains can be refined and homogenized by recrystallization. Next, while avoiding rolling in the partial recrystallization temperature range (T 1 to T 2 ° C.) where recrystallized grains and coarse recovery grains are generated, rolling is performed at a cumulative reduction rate of 30% or more in the non-recrystallization temperature range of T 2 ° C. or less. By these rolling processes, even in thick steel plates with a plate thickness of more than 100 mm, the maximum effective crystal grain size in the plate thickness center can be made 150 μm or less, while the average effective crystal grain size can be made 20 μm or less.

このように、板厚100mm超の厚鋼板においては、T℃以上の再結晶温度域とT℃以下の未再結晶温度域を明確にし、再結晶粒と粗大な回復粒が生成される部分再結晶域温度(T1~T℃)での圧延を避けた上で、T1℃以上およびT℃以下それぞれにおいて上述のように適切な条件の圧延を行うことで、板厚中心部において目的の微細かつ整粒な組織を得ることができる。
なお、本発明において、板厚中心部とは、板厚の中心(1/2位置)から鋼板の両表面方向にそれぞれ板厚の10%の厚みを持った領域である。
In this way, for thick steel plates with a thickness of over 100 mm, the recrystallization temperature range above T1 °C and the non-recrystallization temperature range below T2 °C are clearly defined, and rolling at the partial recrystallization temperature range ( T1 to T2 °C) where recrystallized grains and coarse recovered grains are generated is avoided, and rolling is performed under appropriate conditions as described above at temperatures above T1 °C and below T2 °C, respectively, thereby making it possible to obtain the desired fine and regular grained structure in the center of the plate thickness.
In the present invention, the plate thickness center portion refers to a region having a thickness of 10% of the plate thickness from the center (1/2 position) of the plate thickness toward both surface directions of the steel plate.

(2)鋼中のCa、OおよびS含有量を、下記式で示される原子濃度比(ACR:Atomic Concentration Ratio)で0~1.5の範囲内に制御すると、介在物の形態が、Mnの一部固溶したCa系硫化物とAl系酸化物とを含有する複合介在物となる。
ACR={[Ca]-(0.18+130[Ca])×[O]}/1.25/[S]
高強度かつ厚肉の鋼板を製造する場合は多量の合金元素添加が不可欠であるため、従来は、多層盛溶接HAZの低温での継手CTOD特性確保が困難であった。
前記検討の結果、介在物形態を2種類の介在物すなわちCaおよびMnを含有する硫化物とAlを含有する酸化物とを含有する複合介在物とすることで、高温まで昇温される溶接線近傍の領域においても、かかる複合介在物は安定的に存在でき、オーステナイト粒粗大化抑制効果を十分に発揮できることを知見した。さらに、複合介在物周囲にMn希薄層が形成されるため、ベイナイトなどの核生成効果(変態核生成効果)を有することを知見した。
すなわち、核生成効果を有する上記複合介在物がオーステナイト粒内に存在すると、オーステナイト粒界に加えてオーステナイト粒内からも核生成が起こるので、最終的に得られるHAZ組織が微細となる。その結果、HAZ靭性および継手CTOD特性が向上する。
(2) When the contents of Ca, O and S in steel are controlled to be within a range of 0 to 1.5 in terms of the atomic concentration ratio (ACR) represented by the following formula, the inclusions become composite inclusions containing Ca-based sulfides partially dissolved with Mn and Al-based oxides.
ACR = {[Ca] - (0.18 + 130 [Ca]) x [O]} / 1.25 / [S]
When manufacturing high-strength, thick steel plates, it is essential to add a large amount of alloying elements, so in the past, it was difficult to ensure joint CTOD properties at low temperatures in multi-pass weld HAZs.
As a result of the above investigation, it was found that by making the inclusions into two types of inclusions, i.e., composite inclusions containing sulfides containing Ca and Mn and oxides containing Al, such composite inclusions can be stably present even in the region near the weld line where the temperature is raised to high temperatures, and can fully suppress the coarsening of austenite grains. Furthermore, it was found that a Mn-poor layer is formed around the composite inclusions, which has a nucleation effect (transformation nucleation effect) of bainite, etc.
That is, when the above-mentioned complex inclusions having a nucleation effect are present in the austenite grains, nucleation occurs not only at the austenite grain boundaries but also within the austenite grains, so that the finally obtained HAZ structure becomes fine, and as a result, the HAZ toughness and the CTOD characteristics of the joint are improved.

また、上記複合介在物による変態核生成効果を十分に発揮させるためには、かかる複合介在物サイズが円相当直径0.1μm以上であることが必要となることを知見した。 We also found that in order to fully utilize the transformation nucleation effect of the above-mentioned composite inclusions, the size of such composite inclusions needs to be a circular equivalent diameter of 0.1 μm or more.

さらに、変態核生成効果によるHAZ組織の微細化を十分に活用するためには、溶接昇温時にHAZのオーステナイト粒内中に少なくとも1個以上の複合介在物が存在する必要がある。特に、溶接線近傍部のオーステナイト粒径は約200μm以上に達するので、最終的に得られるHAZ組織が十分微細となるためには、複合介在物の個数密度は25個/mm以上が必要であることを知見した。一方、上記複合介在物自体の靭性は低いため、過剰な量の複合介在物の存在は、かえってHAZ靭性を低下させてしまう。特に、元素の偏析が存在し、多層盛溶接HAZ靭性の劣る板厚中心部においては複合介在物の個数を適切に制御する必要がある。そこで、複合介在物の個数密度を250個/mm以下にすることで、良好な多層盛溶接継手CTOD特性を得ることができることを知見した。 Furthermore, in order to fully utilize the refinement of the HAZ structure due to the transformation nucleation effect, it is necessary that at least one composite inclusion is present in the austenite grain of the HAZ when the welding temperature is increased. In particular, since the austenite grain size in the vicinity of the weld line reaches about 200 μm or more, it has been found that in order for the finally obtained HAZ structure to be sufficiently fine, the number density of the composite inclusions must be 25 pieces/ mm2 or more. On the other hand, since the toughness of the above-mentioned composite inclusions themselves is low, the presence of an excessive amount of composite inclusions rather reduces the HAZ toughness. In particular, it is necessary to appropriately control the number of composite inclusions in the plate thickness center where element segregation exists and the multi-layer welding HAZ toughness is poor. Therefore, it has been found that by setting the number density of the composite inclusions to 250 pieces/ mm2 or less, good multi-layer weld joint CTOD characteristics can be obtained.

(3)通常、スラブ板厚中心部の元素偏析領域には、合金元素が濃化することで粗大な介在物が低密度で分散してしまうという問題点がある。
前記検討の結果、板厚中心温度がT℃以上という高温域で平均圧下率/パスが3%以上、累積圧下率25%以上の圧延を行うことにより、板厚中心部に加わるひずみを増大させ、粗大介在物を伸長、分断し、微細な介在物を高密度に分散させることができることを見出した。また、かかる介在物はHAZ靭性向上効果を確保することができることを見出した。
(3) Usually, in the element segregation region at the center of the slab thickness, there is a problem that the alloy elements are concentrated, causing large inclusions to be dispersed at a low density.
As a result of the above-mentioned investigation, it was found that by rolling at an average reduction rate/pass of 3% or more and a cumulative reduction rate of 25% or more in a high temperature range where the plate thickness center temperature is T1°C or more, the strain applied to the plate thickness center can be increased, coarse inclusions can be elongated and broken up, and fine inclusions can be dispersed at a high density. It was also found that such inclusions can ensure the effect of improving HAZ toughness.

(4)SC/ICHAZ境界の継手CTOD特性では、母材靭性が支配的となることが知られている。前記検討の結果、SC/ICHAZ境界で試験温度-20℃における継手CTOD特性を満足させるためには、母材ミクロ組織の最大有効結晶粒径が150μm以下かつ、平均有効結晶粒径を20μm以下とする、結晶粒微細化および整粒化による母材靭性向上が必要であることを見出した。
通常、板厚100mm超の厚鋼板では、板厚中心部の冷却速度が小さくなり結晶粒が粗大化してしまう。そこで、板厚中心温度が再結晶温度域であるT℃以上での圧延条件を、平均圧下率/パスが3%以上、累積圧下率:25%以上とし、再結晶粒と粗大な回復粒が生成される部分再結晶域温度(T1~T℃)での圧延を避けた上で、さらに未再結晶温度域であるT℃以下における圧延条件を、累積圧下率:30%以上とする。これら圧延条件により、板厚中心部の組織を十分に微細化、整粒化でき、所望の結晶粒径まで結晶粒微細化および整粒化を行うことが可能であることを見出した。
(4) It is known that the toughness of the base material is dominant in the CTOD characteristics of joints at the SC/ICHAZ boundary. As a result of the above investigation, it was found that in order to satisfy the CTOD characteristics of joints at the SC/ICHAZ boundary at a test temperature of -20°C, it is necessary to improve the toughness of the base material by refining and regulating the crystal grains so that the maximum effective crystal grain size of the base material microstructure is 150 μm or less and the average effective crystal grain size is 20 μm or less.
Usually, in a thick steel plate having a thickness of more than 100 mm, the cooling rate at the center of the plate thickness is small, and the crystal grains become coarse. Therefore, the rolling conditions at the plate thickness center temperature of T 1 ° C or higher, which is the recrystallization temperature range, are set to an average reduction rate/pass of 3% or more and a cumulative reduction rate of 25% or more, and rolling at the partial recrystallization temperature range (T 1 to T 2 ° C) where recrystallized grains and coarse recovery grains are generated is avoided, and the rolling conditions at the non-recrystallization temperature range T 2 ° C or lower are set to a cumulative reduction rate of 30% or more. It has been found that these rolling conditions can sufficiently refine and regulate the structure at the center of the plate thickness, and can refine and regulate the crystal grains to the desired grain size.

本発明は、以上の知見を踏まえ、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次の通りである。
[1]質量%で、C:0.03~0.13%、Si:0.60%以下、Mn:0.9~2.7%、P:0.050%以下、S:0.0050%以下、Al:0.002~0.100%、Ti:0.002~0.055%、Nb:0.005~0.070%、Ca:0.0005~0.0200%、N:0.0120%以下およびO:0.0070%以下を含み、残部がFeおよび不可避的不純物であって、下記(1)~(4)式を満たす成分組成を有し:
1.50≦[Ti]/[N]≦5.00 …(1)
0≦{[Ca]-(0.18+130[Ca])×[O]}/1.25/[S]≦1.50 …(2)
0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.500% …(3)
Pcm(=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.240% …(4)
(前記(1)~(4)式における括弧は、括弧内の元素の含有量(質量%)を表し、当該元素を含有しない場合にはゼロとする)、
板厚中心部において、平均有効結晶粒径が20μm以下であって最大有効結晶粒径が150μm以下であり、かつ
板厚1/2位置において、CaおよびMnを含有する硫化物とAlを含有する酸化物とを含有する円相当直径が0.1μm以上の複合介在物が25~250個/mm存在する、板厚100mm超の鋼板。
The present invention has been completed based on the above findings and further investigations. That is, the gist of the present invention is as follows.
[1] In mass%, it contains C: 0.03 to 0.13%, Si: 0.60% or less, Mn: 0.9 to 2.7%, P: 0.050% or less, S: 0.0050% or less, Al: 0.002 to 0.100%, Ti: 0.002 to 0.055%, Nb: 0.005 to 0.070%, Ca: 0.0005 to 0.0200%, N: 0.0120% or less, and O: 0.0070% or less, with the balance being Fe and unavoidable impurities, and has a component composition that satisfies the following formulas (1) to (4):
1.50≦[Ti]/[N]≦5.00 ... (1)
0≦{[Ca]−(0.18+130[Ca])×[O]}/1.25/[S]≦1.50 … (2)
0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.500% ... (3)
Pcm (= [C] + [Si] / 30 + ( [Mn] + [Cu] + [Cr]) / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B]) ≦ 0.240% ... (4)
(The brackets in the formulas (1) to (4) above represent the content (mass%) of the element in the brackets, and are set to zero when the element is not contained.)
A steel plate having a thickness of more than 100 mm, in which, at the center of the plate thickness, an average effective crystal grain size is 20 μm or less and a maximum effective crystal grain size is 150 μm or less, and at a 1/2 position of the plate thickness, there are present 25 to 250 composite inclusions per mm2 , each of which contains a sulfide containing Ca and Mn and an oxide containing Al and has a circle equivalent diameter of 0.1 μm or more.

[2]前記成分組成が、さらに、質量%で、Ni:2.5%以下、Cu:2.0%以下、Cr:1.5%以下、Mo:1.5%以下、V:0.25%以下、W:0.45%以下、B:0.0045%以下、REM:0.025%以下およびMg:0.005%以下からなる群より選択される1種以上を含む、前記[1]に記載の鋼板。 [2] The steel plate described in [1], wherein the chemical composition further includes, by mass%, one or more selected from the group consisting of Ni: 2.5% or less, Cu: 2.0% or less, Cr: 1.5% or less, Mo: 1.5% or less, V: 0.25% or less, W: 0.45% or less, B: 0.0045% or less, REM: 0.025% or less and Mg: 0.005% or less.

[3]前記[1]または[2]に記載の成分組成を有する素材を、990℃以上1210℃以下に加熱した後、板厚中心温度が下記式(5)で定義するT℃以上の温度域においては平均圧下率/パスが3%以上で累積圧下率:25%以上の圧下条件で圧延を施し、板厚中心温度が下記式(6)で定義するT℃以下の温度域においては累積圧下率:30%以上の圧下条件で圧延を施したのち、板厚中心の平均冷却速度1.0~50.0℃/sにて600℃以下の冷却停止温度まで冷却する、鋼板の製造方法。

Figure 0007468800000001
(ここで、sol.[Nb]は(7)式による)
Figure 0007468800000002
Figure 0007468800000003
(上記式(5)、(7)における[C]、[N]はそれぞれC、Nの質量%を、Tは素材の加熱温度(℃)、sol.[Nb]はNbの固溶量(質量%)を表す。ただし、[Nb]を鋼板に含まれる総Nb含有量(質量%)とすると、sol.[Nb]≦[Nb]である。) [3] A method for producing a steel plate, comprising heating a material having the chemical composition described in [1] or [2] above to 990°C or lower and rolling it under conditions of an average reduction rate/pass of 3% or higher and a cumulative reduction rate of 25% or higher when the temperature at the center of thickness is equal to or higher than T1 °C as defined by the following formula (5), and rolling it under conditions of a cumulative reduction rate of 30% or higher when the temperature at the center of thickness is equal to or lower than T2 °C as defined by the following formula (6), and then cooling it to a cooling stop temperature of 600°C or lower at an average cooling rate of 1.0 to 50.0°C/s at the center of thickness.
Figure 0007468800000001
(where sol.[Nb] is based on formula (7))
Figure 0007468800000002
Figure 0007468800000003
(In the above formulas (5) and (7), [C] and [N] respectively represent mass% of C and N, T0 represents the heating temperature (°C) of the material, and sol. [Nb] represents the amount of Nb dissolved in solid solution (mass%). However, if [Nb] is the total Nb content (mass%) contained in the steel plate, sol. [Nb] ≦ [Nb].)

[4]前記冷却停止温度まで冷却した後、700℃以下の温度で焼戻し処理を行う、前記[3]に記載の鋼板の製造方法。 [4] A method for manufacturing the steel plate described in [3], in which after cooling to the cooling stop temperature, tempering is performed at a temperature of 700°C or less.

本発明によれば、高強度かつ、低温での母材靭性および多層盛溶接継手CTOD特性に優れる厚鋼板およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a thick steel plate having high strength, excellent base material toughness at low temperatures, and excellent CTOD characteristics of multi-pass welded joints, and a manufacturing method thereof.

以下、本発明の各構成要件の限定理由について説明する。
[成分組成]
はじめに、本発明において厚鋼板および素材の成分組成を上記範囲に限定する理由を説明する。なお、成分組成に関する「%」は、特に断らない限り「質量%」を意味する。
C:0.03~0.13%
Cは、焼入れ性を高め、鋼の強度を向上させる元素であり、0.03%以上の含有を必要とする。一方、0.13%を超えてCを過剰に含有すると、Cが濃化した部分の硬度が高くなり、継手CTOD特性が低下する。そのため、C含有量は0.03~0.13%の範囲とする。好ましくは、0.04%以上、0.12%以下である。より好ましくは、0.06%以上、0.10%以下である。
The reasons for limiting each of the constituent elements of the present invention will now be described.
[Component composition]
First, the reasons for limiting the composition of the steel plate and the base material to the above ranges in the present invention will be explained. Note that "%" regarding the composition means "mass %" unless otherwise specified.
C: 0.03 to 0.13%
C is an element that improves hardenability and improves the strength of steel, and must be contained at 0.03% or more. On the other hand, if C is contained in excess of 0.13%, the hardness of the C-concentrated portion increases, and the CTOD characteristics of the joint deteriorate. Therefore, the C content is set to a range of 0.03 to 0.13%. Preferably, it is 0.04% or more and 0.12% or less. More preferably, it is 0.06% or more and 0.10% or less.

Si:0.60%以下
Siは、脱酸剤としても使用され、不純物として不可避的に含まれる元素であるが、0.60%を超えてSiを過剰に含有すると、継手CTOD特性が低下する。そのため、Si含有量は上限を0.60%に制限する。好ましくは0.50%以下である。一方、下限は特に限定されないが、過度の低Si化は精錬時間の増加やコストの上昇を招くため、0.02%程度が好ましく、より好ましくは0.04%以上である。
Si: 0.60% or less Si is also used as a deoxidizer and is an element that is inevitably contained as an impurity, but if the Si content exceeds 0.60%, the joint CTOD characteristics will deteriorate. Therefore, the upper limit of the Si content is limited to 0.60%, and preferably 0.50% or less. On the other hand, although there is no particular limit, an excessively low Si content will increase refining time and costs, so that the lower limit is preferably about 0.02%, and more preferably 0.04% or more.

Mn:0.9~2.7%
Mnは、鋼の焼入れ性の向上を介して母材および溶接部の強度を向上させる効果を有する元素である。かかる効果を得るためには0.9%以上の添加が必要である。一方、2.7%を超える添加は溶接性を低下させるだけでなく、焼入れ性が過剰となり、母材および溶接部の靭性を低下させるので、継手CTOD特性が劣化する。このためMn含有量は0.9~2.7%の範囲とする。好ましくは、1.1%以上、2.5%以下である。より好ましくは、1.2%以上、2.3%以下である。
Mn: 0.9 to 2.7%
Mn is an element that has the effect of improving the strength of the base material and the welded portion by improving the hardenability of the steel. To obtain such an effect, the addition of 0.9% or more is necessary. On the other hand, the addition of more than 2.7% not only reduces the weldability, but also causes excessive hardenability, which reduces the toughness of the base material and the welded portion, thereby deteriorating the joint CTOD characteristics. For this reason, the Mn content is set to the range of 0.9 to 2.7%. It is preferably 1.1% or more and 2.5% or less. It is more preferably 1.2% or more and 2.3% or less.

P:0.050%以下
Pは、粒界を脆化させる効果が大きい元素であり、多量に添加するとHAZ靭性を低下させ、継手CTOD特性を低下させる。そのため、P含有量を0.050%以下に制限する。好ましくは0.030%以下である。一方、P含有量はできる限り低減することが望ましいので、P含有量の下限は特に限定されないが、過度の低P化は精錬時間の増加やコスト上昇を招く。そのため、P含有量は0.001%以上とすることが好ましく、より好ましくは0.005%以上である。
P: 0.050% or less P is an element that has a large effect of embrittling grain boundaries, and adding a large amount of it reduces HAZ toughness and joint CTOD characteristics. Therefore, the P content is limited to 0.050% or less, and preferably 0.030% or less. On the other hand, since it is desirable to reduce the P content as much as possible, the lower limit of the P content is not particularly limited, but excessive reduction in P content leads to an increase in refining time and an increase in costs. Therefore, the P content is preferably 0.001% or more, and more preferably 0.005% or more.

S:0.0050%以下
Sは、継手CTOD特性を低下させる元素であるため、S含有量の上限を0.0050%に制限する。好ましくは0.0030%以下である。一方、S含有量はできる限り低減することが望ましいので、S含有量の下限は限定されないが、過度の低S化は精錬時間の増加やコスト上昇を招く。そのため、S含有量は0.0001%以上とすることが好ましく、より好ましくは0.0005%以上である。
S: 0.0050% or less S is an element that reduces the CTOD characteristics of joints, so the upper limit of the S content is limited to 0.0050%. It is preferably 0.0030% or less. On the other hand, since it is desirable to reduce the S content as much as possible, the lower limit of the S content is not limited, but excessive reduction in S content leads to an increase in refining time and an increase in costs. Therefore, the S content is preferably 0.0001% or more, and more preferably 0.0005% or more.

Al:0.002~0.100%
Alは、多層盛溶接HAZの靭性を改善し、継手CTOD特性を向上するための複合介在物形成に必要な元素であり、0.002%以上の添加が必要である。一方、0.100%を超えて過剰に添加すると、複合介在物量が過剰になって低温域での継手CTOD特性が低下する。そのため、Al含有量は0.002~0.100%の範囲とする。好ましくは、0.005%以上、0.090%以下である。より好ましくは、0.020%以上、0.075%以下である。
Al: 0.002 to 0.100%
Al is an element necessary for forming complex inclusions to improve the toughness of multi-pass weld HAZ and improve joint CTOD properties, and must be added at 0.002% or more. On the other hand, if added in excess of 0.100%, the amount of complex inclusions becomes excessive and the joint CTOD properties in the low temperature range deteriorate. Therefore, the Al content is set to a range of 0.002 to 0.100%. Preferably, it is 0.005% or more and 0.090% or less. More preferably, it is 0.020% or more and 0.075% or less.

Ti:0.002~0.055%
Tiは、TiNとして鋼中に析出する。析出したTiNは、母材およびHAZにおけるオ-ステナイト粒の粗大化を抑制する作用を有しており、HAZ組織を微細化し、継手CTOD特性を向上させる。かかる効果を得るためには0.002%以上の添加が必要である。一方、Ti含有量が0.055%を超えると、Ti窒化物が粗大化し、かえって溶接熱影響部の靭性が低下して継手CTOD特性が劣化する。そのため、Ti含有量は0.002~0.055%の範囲とする。好ましくは、0.005%以上、0.050%以下である。より好ましくは、0.010%以上、0.045%以下である。
Ti: 0.002 to 0.055%
Ti precipitates in steel as TiN. The precipitated TiN has the effect of suppressing the coarsening of austenite grains in the base material and HAZ, refining the HAZ structure, and improving the joint CTOD characteristics. In order to obtain such an effect, an addition of 0.002% or more is necessary. On the other hand, if the Ti content exceeds 0.055%, the Ti nitrides coarsen, and the toughness of the welded heat affected zone decreases, and the joint CTOD characteristics deteriorate. Therefore, the Ti content is set to a range of 0.002 to 0.055%. Preferably, it is 0.005% or more and 0.050% or less. More preferably, it is 0.010% or more and 0.045% or less.

Nb:0.005~0.070%
Nbは、オ-ステナイト相の未再結晶温度域を広げる元素であり、未再結晶域圧延を効率的に行い、微細組織を得ることで母材強度と母材靭性とを向上させる効果を有する。Nbを添加しない場合、未再結晶温度Tが低くなりすぎ、細粒化のための未再結晶域圧延の圧延温度が低温になりすぎる。低温で圧延すると、圧延素材の変形抵抗が大きくなり、圧延機への負荷が高くなるため、圧延パス数が増加して製造能率の低下を招くとともに、パス圧下率を高くすることが難しくなる。その結果、板厚100mm超の厚鋼板において1/2tへの適切なひずみの導入ができず、所望の特性を得ることが困難になる。かかる効果を得るためには、Nb含有量が0.005%以上必要である。一方、Nb含有量が0.070%を超えると継手CTOD特性が低下する。そのため、Nb含有量は0.005~0.070%の範囲とする。好ましくは、0.010%以上、0.060%以下である。より好ましくは、0.015%以上、0.050%以下である。
Nb: 0.005 to 0.070%
Nb is an element that widens the non-recrystallization temperature range of the austenite phase, and has the effect of efficiently performing non-recrystallization region rolling and obtaining a fine structure, thereby improving the strength and toughness of the base material. If Nb is not added, the non-recrystallization temperature T2 becomes too low, and the rolling temperature of the non-recrystallization region rolling for grain refinement becomes too low. When rolling at a low temperature, the deformation resistance of the rolled material increases, and the load on the rolling machine increases, so that the number of rolling passes increases, leading to a decrease in production efficiency and making it difficult to increase the pass reduction rate. As a result, in thick steel plates with a plate thickness of more than 100 mm, it is not possible to introduce appropriate strain to 1/2t, making it difficult to obtain the desired characteristics. In order to obtain such an effect, the Nb content must be 0.005% or more. On the other hand, if the Nb content exceeds 0.070%, the joint CTOD characteristics decrease. Therefore, the Nb content is set to a range of 0.005 to 0.070%. Preferably, it is 0.010% or more and 0.060% or less. More preferably, it is 0.015% or more and 0.050% or less.

Ca:0.0005~0.0200%
Caは、高温での安定性が高い酸硫化物を形成することで多層盛溶接HAZの靭性を向上させ、継手CTOD特性を向上させる元素である。かかる効果を得るためには、Ca含有量が0.0005%以上必要である。一方、0.0200%を超える含有は、酸硫化物の過剰な析出を引き起こし、かえって継手CTOD特性を低下させる。そのため、Ca含有量は0.0005~0.0200%とする。好ましくは、0.0010%以上、0.0170%以下である。より好ましくは、0.0015%以上、0.0150%以下である。
Ca: 0.0005 to 0.0200%
Ca is an element that improves the toughness of multi-pass weld HAZ by forming oxysulfides that are highly stable at high temperatures, and improves the CTOD characteristics of the joint. In order to obtain such an effect, a Ca content of 0.0005% or more is necessary. On the other hand, a Ca content of more than 0.0200% causes excessive precipitation of oxysulfides, which in turn reduces the CTOD characteristics of the joint. Therefore, the Ca content is set to 0.0005 to 0.0200%. Preferably, the Ca content is 0.0010% or more and 0.0170% or less. More preferably, the Ca content is 0.0015% or more and 0.0150% or less.

N:0.0120%以下
Nは、HAZ靭性を低下させ、継手CTOD特性を劣化させる元素であるため、N含有量の上限を0.0120%に制限する。一方、N含有量はできる限り低減することが望ましいので、N含有量の下限は限定されないが、過度の低N化は精錬時間の増加やコスト上昇を招く。そのため、N含有量は、0.0005%以上とすることが好ましい。より好ましくは、0.0020%以上、0.0110%以下である。さらに好ましくは、0.0030%以上、0.0090%以下である。
N: 0.0120% or less N is an element that reduces HAZ toughness and deteriorates joint CTOD characteristics, so the upper limit of the N content is limited to 0.0120%. On the other hand, since it is desirable to reduce the N content as much as possible, the lower limit of the N content is not limited, but excessive reduction in N content leads to an increase in refining time and an increase in costs. Therefore, the N content is preferably 0.0005% or more. More preferably, it is 0.0020% or more and 0.0110% or less. Even more preferably, it is 0.0030% or more and 0.0090% or less.

O:0.0070%以下
Oは、HAZ靭性を低下させ、継手CTOD特性を劣化させる元素であるため、O含有量の上限を0.0070%に制限する。一方、O含有量はできる限り低減することが望ましいので、O含有量の下限は限定されないが、過度の低O化は精錬時間の増加やコスト上昇を招く。そのため、O含有量は0.0005%以上とすることが好ましい。より好ましくは、0.0010%以上、0.0060%以下である。さらに好ましくは、0.0015%以上、0.0055%以下である。
O: 0.0070% or less O is an element that reduces HAZ toughness and deteriorates joint CTOD characteristics, so the upper limit of the O content is limited to 0.0070%. On the other hand, since it is desirable to reduce the O content as much as possible, the lower limit of the O content is not limited, but excessive reduction of O content leads to an increase in refining time and an increase in cost. Therefore, the O content is preferably 0.0005% or more. More preferably, it is 0.0010% or more and 0.0060% or less. Even more preferably, it is 0.0015% or more and 0.0055% or less.

本発明の一実施形態における厚鋼板の成分組成は、上記必須元素と残部のFeおよび不可避不純物からなるものとする。
また、本発明の他の実施形態においては、強度、母材靭性、継手靭性などのさらなる向上を目的として、上記成分組成に加え、Ni、Cu、Cr、Mo、V、W、B、REM、およびMgからなる群より選択される1種以上の任意元素を、以下に示す含有量でさらに含有することができる。
The composition of the steel plate in one embodiment of the present invention is made up of the above essential elements with the balance being Fe and unavoidable impurities.
In another embodiment of the present invention, in order to further improve the strength, base material toughness, joint toughness, and the like, in addition to the above-mentioned component composition, one or more optional elements selected from the group consisting of Ni, Cu, Cr, Mo, V, W, B, REM, and Mg can be further contained in the contents shown below.

Ni:2.5%以下
Niは、母材と継手の両方の靭性を大きく劣化させることなく厚鋼板を高強度化することができる元素である。一方でNi含有量が2.5%を超えると製造コストおよび環境負荷増加が問題となる。そのため、Ni含有量を2.5%以下に制限する。より好ましくは、2.0%以下である。一方、Niを添加する場合は0.1%以上が好ましい。
Ni: 2.5% or less Ni is an element that can increase the strength of thick steel plates without significantly deteriorating the toughness of both the base material and the joint. On the other hand, if the Ni content exceeds 2.5%, the manufacturing cost and the environmental load increase become problems. Therefore, the Ni content is limited to 2.5% or less. More preferably, it is 2.0% or less. On the other hand, when Ni is added, it is preferable that it is 0.1% or more.

Cu:2.0%以下
Cuは、母材、継手靭性を大きく劣化させることなく厚鋼板を高強度化することができる元素であるが、Cu含有量が2.0%を超えると、スケ-ル直下に生成するCu濃化層に起因する表面割れが問題となる。そのため、Cu含有量を2.0%以下に制限する。より好ましくは、1.8%以下である。一方、Cuを添加する場合は0.05%以上が好ましく、0.1%以上がより好ましい。
Cu: 2.0% or less Cu is an element that can increase the strength of thick steel plates without significantly deteriorating the base material and joint toughness, but if the Cu content exceeds 2.0%, surface cracking due to a Cu-enriched layer formed just below the scale becomes a problem. Therefore, the Cu content is limited to 2.0% or less, and more preferably to 1.8% or less. On the other hand, when Cu is added, it is preferably 0.05% or more, and more preferably 0.1% or more.

Cr:1.5%以下
Crは、鋼の焼入れ性の向上を介して強度を向上させる効果を有する元素であるが、Cr含有量が1.5%を超えると継手CTOD特性が低下するため、Cr含有量を1.5%以下に制限する。より好ましくは、1.3%以下である。一方、Crを添加する場合は0.05%以上が好ましく、0.1%以上がより好ましい。
Cr: 1.5% or less Cr is an element that has the effect of improving the strength by improving the hardenability of steel, but if the Cr content exceeds 1.5%, the joint CTOD characteristics deteriorate, so the Cr content is limited to 1.5% or less. More preferably, it is 1.3% or less. On the other hand, when Cr is added, it is preferably 0.05% or more, and more preferably 0.1% or more.

Mo:1.5%以下
Moは、鋼の焼入れ性の向上を介して強度を向上させる効果を有する元素であるが、Mo含有量が1.5%を超えると継手CTOD特性が低下するため、Mo含有量を1.5%以下に制限する。より好ましくは、1.3%以下である。一方、Moを添加する場合は0.05%以上が好ましく、0.1%以上がより好ましい。
Mo: 1.5% or less Mo is an element that has the effect of improving the strength by improving the hardenability of steel, but if the Mo content exceeds 1.5%, the joint CTOD characteristics deteriorate, so the Mo content is limited to 1.5% or less. More preferably, it is 1.3% or less. On the other hand, when Mo is added, it is preferably 0.05% or more, and more preferably 0.1% or more.

V:0.25%以下
Vは、母材の強度を向上させる元素であるが、V含有量が0.25%を超えるとHAZ靭性が低下し、継手CTOD特性が劣化するため、V含有量を0.25%以下に制限する。より好ましくは、0.20%以下である。一方、Vを添加する場合は0.01%以上が好ましく、0.03%以上がより好ましい。
V: 0.25% or less V is an element that improves the strength of the base metal, but if the V content exceeds 0.25%, the HAZ toughness decreases and the joint CTOD characteristics deteriorate, so the V content is limited to 0.25% or less. More preferably, it is 0.20% or less. On the other hand, when V is added, it is preferably 0.01% or more, and more preferably 0.03% or more.

W:0.45%以下
Wは、母材の強度を向上させる元素であるが、W含有量が0.45%を超えるとHAZ靭性が低下し、継手CTOD特性が劣化するため、W含有量を0.45%以下に制限する。より好ましくは、0.40%以下である。一方、Wを添加する場合は0.05%以上が好ましく、0.15%以上がより好ましい。
W: 0.45% or less W is an element that improves the strength of the base metal, but if the W content exceeds 0.45%, the HAZ toughness decreases and the joint CTOD characteristics deteriorate, so the W content is limited to 0.45% or less. More preferably, it is 0.40% or less. On the other hand, when W is added, it is preferably 0.05% or more, and more preferably 0.15% or more.

B:0.0045%以下
Bは、極微量の含有で焼入れ性を向上させ、それにより鋼板の強度を向上させることができる元素であるが、B含有量が0.0045%を超えるとHAZ靭性が低下し、継手CTOD特性が劣化するため、B含有量を0.0045%以下に制限する。より好ましくは、0.0040%以下である。一方、Bを添加する場合は0.0005%以上が好ましく、0.0010%以上がより好ましい。
B: 0.0045% or less Although B is an element that can improve hardenability with a very small amount of content, thereby improving the strength of the steel plate, if the B content exceeds 0.0045%, the HAZ toughness decreases and the joint CTOD characteristics deteriorate, so the B content is limited to 0.0045% or less, more preferably 0.0040% or less. On the other hand, if B is added, it is preferably 0.0005% or more, and more preferably 0.0010% or more.

REM:0.025%以下
REM(希土類金属)は、酸硫化物系介在物を形成することでHAZのオ-ステナイト粒成長を抑制し、HAZ靭性を向上させるが、REM含有量が0.025%を超えると、母材靭性およびHAZ靭性がかえって低下し、継手CTOD特性が劣化する。そのため、REM含有量は0.025%以下に制限する。より好ましくは、0.020%以下である。一方、REMを添加する場合は0.001%以上が好ましく、0.010%以上がより好ましい。
REM: 0.025% or less REM (rare earth metals) form oxysulfide inclusions to suppress the growth of austenite grains in the HAZ and improve HAZ toughness, but if the REM content exceeds 0.025%, the base material toughness and HAZ toughness decrease, and the joint CTOD characteristics deteriorate. Therefore, the REM content is limited to 0.025% or less. More preferably, it is 0.020% or less. On the other hand, when REM is added, it is preferably 0.001% or more, and more preferably 0.010% or more.

Mg:0.005%以下
Mgは、酸化物系介在物を形成することで溶接熱影響部においてオ-ステナイト粒の成長を抑制し、溶接熱影響部の靭性を改善する元素であるが、Mg含有量が0.005%を超えると添加効果が飽和し、含有量に見合う効果が期待できずに経済的に不利となる。そのため、Mg含有量を0.005%以下に制限する。より好ましくは、0.004%以下である。一方、Mgを添加する場合は0.0005%以上が好ましく、0.001%以上がより好ましい。
Mg: 0.005% or less Mg is an element that forms oxide-based inclusions to suppress the growth of austenite grains in the weld heat affected zone and improve the toughness of the weld heat affected zone, but if the Mg content exceeds 0.005%, the effect of adding it is saturated, and it is not possible to expect an effect commensurate with the content, which is economically disadvantageous. Therefore, the Mg content is limited to 0.005% or less, and more preferably 0.004% or less. On the other hand, when Mg is added, it is preferably 0.0005% or more, and more preferably 0.001% or more.

本発明において、上記厚鋼板および素材の成分組成は、さらに以下に述べる4つの条件をそれぞれ満足する必要がある。
1.50≦[Ti]/[N]≦5.00 …(1)
[Ti]/[N]は、HAZにおける固溶N量とTiNの析出状態を制御する。[Ti]/[N]が1.50未満では、TiNとして固定されていない固溶Nの存在によりHAZ靭性が劣化し、継手CTOD特性が劣化する。一方、[Ti]/[N]が5.00より大きいと粗大TiNの析出によりHAZ靭性が劣化し、継手CTOD特性が劣化する。よって、[Ti]/[N]の範囲は1.50~5.00の範囲とする。なお、好ましくは、1.80以上、4.50以下である。より好ましくは、2.00以上、4.00以下である。
In the present invention, the chemical compositions of the above-mentioned steel plate and base material must further satisfy the following four conditions.
1.50≦[Ti]/[N]≦5.00 ... (1)
[Ti]/[N] controls the amount of solute N in the HAZ and the precipitation state of TiN. If [Ti]/[N] is less than 1.50, the presence of solute N that is not fixed as TiN deteriorates the HAZ toughness and deteriorates the joint CTOD characteristics. On the other hand, if [Ti]/[N] is greater than 5.00, the precipitation of coarse TiN deteriorates the HAZ toughness and deteriorates the joint CTOD characteristics. Therefore, the range of [Ti]/[N] is set to 1.50 to 5.00. Preferably, it is 1.80 or more and 4.50 or less. More preferably, it is 2.00 or more and 4.00 or less.

0≦{[Ca]-(0.18+130[Ca])×[O]}/1.25/[S]≦1.50 …(2)
{[Ca]-(0.18+130[Ca])×[O]}/1.25/[S]は、鋼中のCa,OおよびSの原子濃度比(ACR)である。かかるACRが0未満では硫化物系介在物の主要形態がMnSになる。MnSは、融点が低く、溶接時の溶接線近傍では溶解してしまうため、溶接線近傍でのオーステナイト粒粗大化抑制効果および溶接後の冷却時の変態効果が得られずに、継手CTOD特性が劣化する。一方、上記ACRが1.50を超えると、硫化物系介在物の主要形態はCaSとなる。CaSは、CaS周囲に変態核となるために必要なMn希薄層が形成されないため、変態核効果が得られず、継手CTOD特性が劣化する。従って、上記ACRの範囲を0以上、1.50以下とする。上記ACRの範囲は、好ましくは、0.20以上、1.40以下である。より好ましくは、0.40以上、1.20以下である。
0≦{[Ca]−(0.18+130[Ca])×[O]}/1.25/[S]≦1.50 … (2)
{[Ca]-(0.18+130[Ca])×[O]}/1.25/[S] is the atomic concentration ratio (ACR) of Ca, O and S in steel. When the ACR is less than 0, the main form of the sulfide-based inclusions is MnS. Since MnS has a low melting point and melts near the weld line during welding, the effect of suppressing austenite grain coarsening near the weld line and the transformation effect during cooling after welding cannot be obtained, and the CTOD characteristics of the joint deteriorate. On the other hand, when the ACR exceeds 1.50, the main form of the sulfide-based inclusions is CaS. Since CaS does not form a Mn-poor layer necessary for becoming a transformation nucleus around CaS, the transformation nucleus effect cannot be obtained, and the CTOD characteristics of the joint deteriorate. Therefore, the range of the ACR is set to 0 or more and 1.50 or less. The range of the ACR is preferably 0.20 or more and 1.40 or less. More preferably, it is 0.40 or more and 1.20 or less.

Ceq:0.280%以上、0.500%以下
以下の(3)式で定義される炭素当量Ceqが増加すると、HAZ組織中の島状マルテンサイトやベイナイトといった靭性の劣る組織量が増加する結果、HAZ靭性が劣化する。すなわち、Ceqが0.500%より大きいと、HAZの基地組織自体の靭性が劣化するため、複合介在物によるHAZ靭性向上技術を用いても必要な継手CTOD特性を満足できない。一方、Ceqが0.280%より小さいと、目標の強度を確保できなくなる。よって、Ceqの範囲は0.280~0.500%とする。なお、好ましくは、0.300%以上、0.490%以下である。より好ましくは、0.320%以上、0.480%以下である。
Ceq(%)=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 …(3)
Ceq: 0.280% or more, 0.500% or less When the carbon equivalent Ceq defined by the following formula (3) increases, the amount of structures with poor toughness such as island martensite and bainite in the HAZ structure increases, resulting in deterioration of HAZ toughness. That is, when Ceq is greater than 0.500%, the toughness of the HAZ base structure itself deteriorates, so that the necessary joint CTOD characteristics cannot be satisfied even if a HAZ toughness improvement technique using complex inclusions is used. On the other hand, when Ceq is less than 0.280%, the target strength cannot be secured. Therefore, the range of Ceq is set to 0.280 to 0.500%. Preferably, it is 0.300% or more, and 0.490% or less. More preferably, it is 0.320% or more, and 0.480% or less.
Ceq(%)=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 ... (3)

Pcm:0.240%以下
以下の(4)式で定義される溶接割れ感受性指数Pcmが増加すると、HAZ組織中の島状マルテンサイトやベイナイトなど靭性の劣る組織が増加する結果、HAZ靭性が劣化する。すなわちPcmが0.240%を超えると、HAZの基地組織自体の靭性劣化のため、必要な継手CTOD特性を得ることができない。そのため、Pcmを0.240%以下とする。好ましくは0.230%以下、より好ましくは0.210%以下である。一方、下限は特に限定されないが、過度にPcmを減少させようとすると、Ceqの値が低くなりすぎてしまうため、0.140%程度が好ましく、0.155%以上がより好ましい。
Pcm(%)=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]…(4)
Pcm: 0.240% or less When the weld crack susceptibility index Pcm defined by the following formula (4) increases, the amount of structures with poor toughness, such as island martensite and bainite, in the HAZ structure increases, resulting in deterioration of the HAZ toughness. In other words, when Pcm exceeds 0.240%, the necessary joint CTOD characteristics cannot be obtained due to the deterioration of the toughness of the HAZ base structure itself. Therefore, Pcm is set to 0.240% or less. It is preferably 0.230% or less, more preferably 0.210% or less. On the other hand, the lower limit is not particularly limited, but if an attempt is made to reduce Pcm excessively, the value of Ceq becomes too low, so that it is preferably about 0.140%, and more preferably 0.155% or more.
Pcm(%)=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]...(4)

なお、上記(1)~(4)式における括弧[]は、いずれも括弧内に示された元素の含有量(質量%)を表し、当該元素が含有されない場合にはゼロとする。In addition, the brackets [ ] in the above formulas (1) to (4) represent the content (mass%) of the element shown within the brackets, and are set to zero if the element is not contained.

[平均有効結晶粒径]
板厚中心部(板厚1/2位置を中心に鋼板両表面方向にそれぞれ板厚の10%の厚みをもった領域を意味する)での平均有効結晶粒径:20μm以下
本発明では、板厚100mm超の厚鋼板の板厚中心部におけるミクロ組織の平均有効結晶粒径を20μm以下とする。偏析が存在しやすい板厚中心の結晶粒を上記のように微細化して母材靭性を向上させることにより、SC/ICHAZ境界の継手CTOD特性を向上させることができる。一方、平均有効結晶粒径は小さいほど有利となるため、その下限は特に限定されないが、通常は、1μm程度である。
ここで、本発明における「有効結晶粒径」は、隣接する結晶粒との方位差が15°以上の粒界すなわち大角粒界によって囲まれた結晶粒の円相当直径として定義する。また、前記板厚中心部における平均有効結晶粒径は、後述する実施例に記載した方法で測定することができる。
[Average effective grain size]
Average effective grain size at the center of plate thickness (meaning a region having a thickness of 10% of the plate thickness in both directions of the steel plate from the 1/2 position of the plate thickness): 20 μm or less In the present invention, the average effective grain size of the microstructure at the center of plate thickness of a thick steel plate with a plate thickness of more than 100 mm is set to 20 μm or less. By refining the grains at the center of plate thickness where segregation is likely to exist as described above to improve the toughness of the base material, it is possible to improve the CTOD characteristics of the joint at the SC/ICHAZ boundary. On the other hand, since the smaller the average effective grain size, the more advantageous it is, the lower limit is not particularly limited, but it is usually about 1 μm.
Here, the "effective grain size" in the present invention is defined as the circle-equivalent diameter of a grain surrounded by a grain boundary having an orientation difference of 15° or more with adjacent grains, i.e., a high-angle grain boundary. The average effective grain size in the center of the sheet thickness can be measured by the method described in the examples below.

[最大有効結晶粒径]
本発明では、板厚中心部におけるミクロ組織の最大有効結晶粒径を150μm以下とする。例え、平均有効結晶粒径が20μm以下であっても、有効結晶粒径が150μmを超える粗大な結晶粒が板厚中心部に混在すると、かかる粗大な結晶粒が破壊起点となって板厚中心部の母材強度、母材靭性およびSCHAZ靭性の低下につながる。よって、最大有効結晶粒径を150μm以下にする。なお、最大有効結晶粒径は、後述する実施例に記載した方法で測定することができる。
[Maximum effective grain size]
In the present invention, the maximum effective grain size of the microstructure in the thickness center is set to 150 μm or less. Even if the average effective grain size is 20 μm or less, if coarse grains with an effective grain size exceeding 150 μm are mixed in the thickness center, such coarse grains become fracture origins, leading to a decrease in the base material strength, base material toughness, and SCHAZ toughness in the thickness center. Therefore, the maximum effective grain size is set to 150 μm or less. The maximum effective grain size can be measured by the method described in the examples below.

[複合介在物]
本発明では、板厚1/2位置における、円相当直径0.1μm以上の、CaおよびMnを含有する硫化物とAlを含有する酸化物とを含有する複合介在物の個数密度を25~250個/mmの範囲に限定する。
Mnを含有する硫化物が形成される場合、複合介在物周囲にMn希薄域が形成されることで変態核として有効となる。さらに、かかる硫化物にCaが含有されることで高融点化し、HAZの溶接線近傍部が達する温度に対しても残存することができる。その結果、オーステナイト粒成長抑制効果と変態核効果が発揮され、継手CTOD特性が向上する。上記効果を十分に発揮させるためには、板厚1/2位置における複合介在物の個数密度が25個/mm以上必要となる。一方、過剰な量の複合介在物の存在は、かえって継手CTOD特性を劣化させる。このため、円相当直径0.1μm以上の複合介在物の板厚1/2位置における個数密度は250個/mm以下とする。好ましくは、30個/mm以上、215個/mm以下であり、より好ましくは、50個/mm以上、200個/mm以下である。なお、上記個数密度は、後述する実施例に記載した方法で測定することができる。
[Composite inclusions]
In the present invention, the number density of composite inclusions containing sulfides containing Ca and Mn and oxides containing Al and having an equivalent circle diameter of 0.1 μm or more at the 1/2 sheet thickness position is limited to a range of 25 to 250 pieces/ mm2 .
When sulfides containing Mn are formed, Mn-poor regions are formed around the composite inclusions, making them effective as transformation nuclei. Furthermore, by including Ca in such sulfides, the melting point is increased, and they can remain at the temperature reached by the vicinity of the weld line of the HAZ. As a result, the austenite grain growth suppression effect and the transformation nuclei effect are exerted, and the joint CTOD characteristics are improved. In order to fully exert the above effects, the number density of the composite inclusions at the 1/2 plate thickness position must be 25 pieces/ mm2 or more. On the other hand, the presence of an excessive amount of composite inclusions rather deteriorates the joint CTOD characteristics. For this reason, the number density of composite inclusions having a circle equivalent diameter of 0.1 μm or more at the 1/2 plate thickness position is set to 250 pieces/ mm2 or less. Preferably, it is 30 pieces/ mm2 or more and 215 pieces/ mm2 or less, and more preferably, it is 50 pieces/ mm2 or more and 200 pieces/ mm2 or less. The number density can be measured by the method described in the examples described later.

ここで、かかる平均有効結晶粒径や最大有効結晶粒径、複合介在物の測定頻度は、素材の溶製条件が同一かつ圧延条件が同一の鋼板のうち、任意の1枚の鋼板の板厚中心部での1~2断面を測定すればよい。素材の溶製方法や圧延条件を変更しない限り、結晶粒径や複合介在物の個数密度を再現良く製造できるため、前記測定頻度での測定結果が全体を代表している。Here, the measurement frequency for the average effective grain size, maximum effective grain size, and complex inclusions can be achieved by measuring one or two cross sections at the center of the thickness of any one steel plate among steel plates that have the same melting conditions and rolling conditions. As long as the melting method and rolling conditions of the material are not changed, the grain size and number density of complex inclusions can be produced with good reproducibility, so the measurement results at the above measurement frequency represent the whole.

[製造方法]
次に、本発明における厚鋼板の製造方法について各条件の限定理由を以下に説明する。なお、以下の説明における温度は特に断らない限り、板厚中心の温度とする。また、かかる板厚中心温度は、後述する実施例のように実測することもできるが、実際の製造ラインなどにおいては、放射温度計で測定した鋼板表面温度から伝熱計算によって求めてもよい。
[Production method]
Next, the reasons for limiting each condition in the manufacturing method of the thick steel plate in the present invention will be described below. In the following description, the temperature is the temperature at the center of the plate thickness unless otherwise specified. The plate thickness center temperature can be actually measured as in the examples described later, but in an actual manufacturing line, it may be calculated by heat transfer calculation from the steel plate surface temperature measured by a radiation thermometer.

・素材の加熱条件
本発明において、素材の溶製方法は特に限定されず、転炉、電気炉、真空溶解炉などの公知の溶製方法のいずれもが適合する。かかる素材は、例えば連続鋳造法によって製造される。また、かかる素材を溶製した溶鋼にはさらに、取鍋精錬などの二次精錬を施してもよい。
前述の成分組成を有し、上記の通り製造された素材を990℃以上1210℃以下に加熱する。加熱温度が990℃よりも低いと、後述する熱間圧延の条件を満足することができず、十分な効果が得られない。一方、加熱温度が1210℃よりも高くなると、オ-ステナイト粒が粗大化し、制御圧延後に所望の細粒組織が得られなくなる。このため、加熱温度の範囲は990℃以上1210℃以下とする。好ましくは、1010℃以上、1190℃以下、より好ましくは、1030℃以上、1170℃以下である。
Heating Conditions of the Material In the present invention, the method of melting the material is not particularly limited, and any of the known melting methods such as converter, electric furnace, and vacuum melting furnace are suitable. Such materials are produced, for example, by a continuous casting method. Furthermore, the molten steel used to melt such materials may be further subjected to secondary refining such as ladle refining.
The material having the above-mentioned composition and manufactured as described above is heated to 990°C or more and 1210°C or less. If the heating temperature is lower than 990°C, the conditions for hot rolling described later cannot be satisfied, and sufficient effects cannot be obtained. On the other hand, if the heating temperature is higher than 1210°C, the austenite grains become coarse, and the desired fine grain structure cannot be obtained after controlled rolling. For this reason, the heating temperature is set to a range of 990°C or more and 1210°C or less. It is preferably 1010°C or more and 1190°C or less, and more preferably 1030°C or more and 1170°C or less.

・熱間圧延条件
本発明では、熱間圧延において、下記式(5)によるT温度以上で定義される再結晶温度域と下記式(6)によるT温度以下で定義される未再結晶温度域との両方の圧延条件を制御した上で、再結晶粒と粗大な回復粒が生成される部分再結晶域温度(T1~T℃)での圧延を避けることが重要である。含有成分に応じて再結晶温度域と未再結晶温度域は変化するため、式(5)、式(6)によって鋼の成分組成ごとの再結晶温度域と未再結晶温度域を明確にすることも重要である。
Hot rolling conditions In the present invention, it is important to control the rolling conditions in both the recrystallization temperature range defined by the T1 temperature or higher according to the following formula (5) and the non-recrystallization temperature range defined by the T2 temperature or lower according to the following formula (6) in hot rolling, and to avoid rolling at the partial recrystallization temperature range ( T1 to T2 °C) where recrystallized grains and coarse recovered grains are generated. Since the recrystallization temperature range and the non-recrystallization temperature range change depending on the contained components, it is also important to clarify the recrystallization temperature range and the non-recrystallization temperature range for each component composition of the steel using formulas (5) and (6).

Figure 0007468800000004
(ここで、sol.[Nb]は(7)式による)
Figure 0007468800000004
(where sol.[Nb] is based on formula (7))

Figure 0007468800000005
Figure 0007468800000005

Figure 0007468800000006
(なお、式(5)、(7)における[C]、[N]はそれぞれC、Nの質量%を、Tは素材の加熱温度(℃)、sol.[Nb]はNbの固溶量(質量%)を表す。ただし、[Nb]を鋼板に含まれる総Nb含有量(質量%)とすると、sol.[Nb]は、常にsol.[Nb]≦[Nb]である。よって、式(7)の計算の結果がsol.[Nb]>[Nb]となる場合、式(7)のsol.[Nb]は[Nb]の値を用いる。)
Figure 0007468800000006
(Note that in formulas (5) and (7), [C] and [N] represent the mass% of C and N, respectively, T0 represents the heating temperature (°C) of the material, and sol.[Nb] represents the amount of Nb dissolved in solid solution (mass%). However, if [Nb] is the total Nb content (mass%) contained in the steel plate, then sol.[Nb] always satisfies sol.[Nb]≦[Nb]. Therefore, when the result of calculation of formula (7) is sol.[Nb]>[Nb], the value of [Nb] is used as sol.[Nb] in formula (7).)

板厚中心温度がT温度以上で定義される再結晶温度域における圧延を、平均圧下率/パスが3%以上、累積圧下率が25%以上となるように行う。 Rolling in the recrystallization temperature range defined by the sheet thickness center temperature being equal to or higher than the T1 temperature is performed so that the average reduction/pass is 3% or more and the cumulative reduction is 25% or more.

前記再結晶温度域で行う圧延の目的は、板厚100mm超の厚鋼板においても再結晶によって組織を微細化、整粒化するとともに、粗大な介在物を微細化、分散化することである。熱間圧延において、板厚中心温度T~T℃の範囲の部分再結晶温度域で圧延を行うと、再結晶粒と粗大な回復粒の混粒組織が形成され、所望の整粒組織を得ることができない。そのため、板厚中心温度でT1~T℃での圧延を避けた上で板厚中心温度T温度以上で圧延する必要がある。また、平均圧下率/パスが3%未満の圧下では、板厚100mm超の厚鋼板において、板厚中心部に十分なひずみを導入することができず、板厚中心部の組織を微細化することができない。また、平均圧下率/パスが3%以上であっても、累積圧下率が25%未満では再結晶が十分に進行せず、均一な微細組織を得ることができない。このため、前記再結晶温度域での圧延は、平均圧下率/パスを3%以上、累積圧下率を25%以上、好ましくは30%以上、より好ましくは35%以上とする。 The purpose of rolling in the recrystallization temperature range is to refine and granulate the structure of a thick steel plate having a thickness of more than 100 mm by recrystallization, and to refine and disperse coarse inclusions. In hot rolling, if rolling is performed in a partial recrystallization temperature range in the thickness center temperature range of T 1 to T 2 ° C., a mixed grain structure of recrystallized grains and coarse recovered grains is formed, and the desired granular structure cannot be obtained. Therefore, it is necessary to roll at the thickness center temperature T 1 temperature or higher while avoiding rolling at the thickness center temperature of T 1 to T 2 ° C. In addition, when the average reduction rate/pass is less than 3%, sufficient strain cannot be introduced into the thickness center in a thick steel plate having a thickness of more than 100 mm, and the structure in the thickness center cannot be refined. In addition, even if the average reduction rate/pass is 3% or more, recrystallization does not proceed sufficiently when the cumulative reduction rate is less than 25%, and a uniform fine structure cannot be obtained. For this reason, the rolling in the recrystallization temperature range is set to an average reduction/pass of 3% or more and a cumulative reduction of 25% or more, preferably 30% or more, and more preferably 35% or more.

その後、板厚中心温度がT温度以下で定義される未再結晶温度域において、累積圧下率が30%以上となるように圧延する。 Thereafter, the sheet is rolled to a cumulative reduction rate of 30% or more in a non-recrystallization temperature range defined as a temperature at the center of the sheet thickness being equal to or lower than the T2 temperature.

板厚中心温度が未再結晶温度域での圧延は、鋼組織に再結晶が起こり難いため、圧延によって導入されたひずみは再結晶に消費されずに蓄積され、後の冷却工程における核生成の駆動力になる。その結果、最終的に得られる厚鋼板の組織を微細化することができる。一方、板厚中心温度が未再結晶温度域における累積圧下率が30%未満では、結晶粒微細化効果が不十分となり、板厚中心部の平均有効結晶粒径を20μm以下にできない。このため、上記未再結晶温度域での圧延は、累積圧下率30%以上、好ましくは35%以上、より好ましくは40%以上とする。
なお、上記未再結晶温度域における圧延の条件は特に限定されないが、平均圧下率/パス(各パスの圧下率の平均値)は大きい方が好ましく、具体的には、平均圧下率/パスを3%以上とするのが好ましい。
In rolling at the plate thickness center temperature in the non-recrystallization temperature range, recrystallization is difficult to occur in the steel structure, so the strain introduced by rolling is not consumed in recrystallization but is accumulated, and becomes the driving force for nucleation in the subsequent cooling process. As a result, the structure of the finally obtained thick steel plate can be refined. On the other hand, if the cumulative reduction rate at the plate thickness center temperature in the non-recrystallization temperature range is less than 30%, the crystal grain refinement effect is insufficient, and the average effective crystal grain size at the plate thickness center cannot be made 20 μm or less. For this reason, the rolling in the non-recrystallization temperature range is set to a cumulative reduction rate of 30% or more, preferably 35% or more, and more preferably 40% or more.
The conditions for rolling in the non-recrystallization temperature region are not particularly limited, but a larger average reduction/pass (average value of the reduction in each pass) is preferable, and specifically, the average reduction/pass is preferably 3% or more.

[冷却]
上記熱間圧延終了後、得られた熱延鋼板を冷却する。かかる冷却は、以下に述べる条件を満たす限り、任意の方法で行うことができる。例えば、水冷によって行うことができる。
[cooling]
After the hot rolling is completed, the hot-rolled steel sheet is cooled. The cooling can be performed by any method as long as the following conditions are satisfied. For example, the cooling can be performed by water cooling.

平均冷却速度:1.0~50.0℃/s
板厚中心の平均冷却速度が1.0℃/s未満になると、母材組織に粗大なフェライト相が生じるため、母材強度や母材靭性の低下および、SC/ICHAZのCTOD特性が劣化する。一方、前記平均冷却速度が50.0℃/sよりも大きいと、硬質なベイナイト相が増加することで母材強度が高くなりSC/ICHAZのCTOD特性が劣化する。このため、板厚中心位置での平均冷却速度を1.0~50.0℃/sの範囲とする。好ましくは、1.2℃/s以上、45℃/s以下、より好ましくは、1.5℃/s以上、40℃/s以下である。
なお、冷却速度の測温範囲について、冷却停止温度が500℃以下の場合は700~500℃間とし、冷却停止温度が500℃よりも高い場合は700℃~冷却停止温度までの間とする。
Average cooling rate: 1.0 to 50.0 ° C./s
When the average cooling rate at the center of the plate thickness is less than 1.0°C/s, a coarse ferrite phase is generated in the base material structure, which reduces the base material strength and toughness, and deteriorates the CTOD characteristics of SC/ICHAZ. On the other hand, when the average cooling rate is greater than 50.0°C/s, the hard bainite phase increases, which increases the base material strength and deteriorates the CTOD characteristics of SC/ICHAZ. For this reason, the average cooling rate at the center of the plate thickness is set to a range of 1.0 to 50.0°C/s. It is preferably 1.2°C/s or more and 45°C/s or less, and more preferably 1.5°C/s or more and 40°C/s or less.
The temperature measurement range for the cooling rate is between 700 and 500°C when the cooling stop temperature is 500°C or lower, and between 700°C and the cooling stop temperature when the cooling stop temperature is higher than 500°C.

冷却停止温度:600℃以下
前記冷却では、前記熱延鋼板を、板厚中心温度が600℃以下の冷却停止温度となるまで冷却する。前記冷却停止温度が600℃より高いと、変態後の組織が粗大になり、母材強度が不足するとともに、母材靭性の低下および、SC/ICHAZのCTOD特性が劣化する。このため、冷却停止温度は板厚中心温度で600℃以下とし、好ましくは580℃以下、より好ましくは560℃以下とする。なお、かかる冷却停止温度の下限は、特に限定されないが200℃程度とすることが好ましい。
Cooling stop temperature: 600°C or less In the cooling, the hot-rolled steel sheet is cooled until the temperature at the center of the thickness reaches a cooling stop temperature of 600°C or less. If the cooling stop temperature is higher than 600°C, the structure after transformation becomes coarse, the strength of the base material is insufficient, the toughness of the base material decreases, and the CTOD characteristics of SC/ICHAZ deteriorate. For this reason, the cooling stop temperature is set to 600°C or less at the center of the thickness, preferably 580°C or less, more preferably 560°C or less. The lower limit of the cooling stop temperature is not particularly limited, but is preferably about 200°C.

[焼戻し処理]
焼戻し温度:700℃以下
前記冷却の停止後、さらに任意に焼戻し処理を行うことができる。焼戻し処理により、母材靭性をさらに向上させることができる。その際、焼戻し温度が700℃よりも高いと、粗大フェライト相が生成して、母材靭性およびSCHAZ靭性が劣化する。そのため、焼戻し温度は板厚中心温度で700℃以下とする。より好ましくは650℃以下である。なお、焼戻し温度の下限は、母材靭性の向上効果が得られれば特に限定されないが300℃程度とすることができる。
[Tempering treatment]
Tempering temperature: 700°C or less After the cooling is stopped, a further tempering treatment can be performed as desired. The tempering treatment can further improve the toughness of the base material. At that time, if the tempering temperature is higher than 700°C, a coarse ferrite phase is generated, and the base material toughness and SCHAZ toughness deteriorate. Therefore, the tempering temperature is set to 700°C or less at the plate thickness center temperature. More preferably, it is set to 650°C or less. The lower limit of the tempering temperature is not particularly limited as long as the effect of improving the base material toughness is obtained, but it can be set to about 300°C.

本発明に従う製造方法において、本明細書に記載のない項目は、いずれも常法を用いることができる。In the manufacturing method according to the present invention, any items not described in this specification can be performed using conventional methods.

次に、実施例に基づいて本発明をさらに具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。Next, the present invention will be described in more detail based on examples. The following examples are intended to illustrate preferred embodiments of the present invention, and the present invention is not limited to these examples.

表1に示す成分組成の素材を用いて、表2に示す製造条件で厚鋼板を製造した。T℃以上の圧延は、平均圧下率/パス≧3%で行った。なお、熱間圧延時には、圧延される鋼材の長手方向、幅方向、および板厚方向の中心位置に熱電対を取り付け、板厚中心の温度を実測した。併せて、鋼材の表面温度を放射温度計で測定した。
得られた厚鋼板のそれぞれについて、平均有効結晶粒径、最大有効結晶粒径、CaとMnを含む硫化物およびAlを含む酸化物を含有する複合介在物の個数密度、降伏強度、靭性およびCTOD特性を以下の方法で測定した。
Steel plates were manufactured under the manufacturing conditions shown in Table 2 using materials with the chemical composition shown in Table 1. Rolling to T 1 °C or higher was performed with an average reduction rate/pass of 3% or more. During hot rolling, thermocouples were attached to the center positions of the steel material being rolled in the longitudinal direction, width direction, and plate thickness direction, and the temperature at the plate thickness center was measured. Additionally, the surface temperature of the steel material was measured with a radiation thermometer.
For each of the obtained thick steel plates, the average effective crystal grain size, the maximum effective crystal grain size, the number density of complex inclusions containing sulfides containing Ca and Mn and oxides containing Al, the yield strength, the toughness and the CTOD characteristics were measured by the following methods.

[平均有効結晶粒径・最大有効結晶粒径]
得られた鋼板から、該鋼板の長手方向、幅方向、および板厚方向における中心が測定位置となって板厚中心部が含まれるようにサンプルを採取した。次いで、前記サンプルの表面を鏡面研磨した後、下記の条件でEBSP(後方散乱電子回折像)解析を行った。得られた結晶方位マップより、隣接する結晶粒との方位差が15°以上の大角粒界で囲まれた組織の円相当直径を求め、以下の解析領域における円相当直径の平均値を平均有効結晶粒径とし、かかる円相当直径の最大値を最大有効結晶粒径とした。
EBSP解析条件
・解析領域:板厚中心の1mm×1mm領域
・ステップサイズ:0.4μm
[Average effective grain size/Maximum effective grain size]
From the obtained steel sheet, a sample was taken so that the center of the steel sheet in the longitudinal direction, width direction, and sheet thickness direction was the measurement position and the sheet thickness center was included. Next, the surface of the sample was mirror-polished, and then EBSP (electron backscatter diffraction pattern) analysis was performed under the following conditions. From the obtained crystal orientation map, the circle equivalent diameter of the structure surrounded by high-angle grain boundaries with an orientation difference of 15° or more with adjacent crystal grains was obtained, and the average value of the circle equivalent diameter in the following analysis region was defined as the average effective crystal grain size, and the maximum value of the circle equivalent diameter was defined as the maximum effective crystal grain size.
EBSP analysis conditions: Analysis area: 1 mm x 1 mm area at the center of plate thickness; Step size: 0.4 μm

[CaおよびMnを含有する硫化物とAlを含有する酸化物とを含有する複合介在物の個数密度]
該鋼板の長手方向、幅方向、および板厚方向の中心よりサンプルを採取し、ダイヤモンドバフ+アルコールで鏡面研磨仕上げを行った後、電界放出型走査電子顕微鏡(FE-SEM:Field Emission-Scanning Electron Microscope)を用いて、前記中心が領域の中心となる1mm×1mmの評価領域に存在する、円相当直径0.1μm以上の複合介在物をEDX(Energy Dispersive X-ray spectroscopy)分析により同定し、併せて前記複合介在物の個数密度を評価した。なお、介在物種類の評価は、ZAF法で定量化した介在物の化学組成に対し、各種元素が原子分率で3%以上含まれる場合、その元素が含まれる介在物であると判断した。
[Number density of composite inclusions containing sulfides containing Ca and Mn and oxides containing Al]
Samples were taken from the center of the longitudinal direction, width direction, and thickness direction of the steel plate, and mirror polished with a diamond buff + alcohol. Then, using a field emission scanning electron microscope (FE-SEM: Field Emission-Scanning Electron Microscope), composite inclusions with a circle equivalent diameter of 0.1 μm or more present in an evaluation region of 1 mm × 1 mm, the center of which is the center of the region, were identified by EDX (Energy Dispersive X-ray spectroscopy) analysis, and the number density of the composite inclusions was also evaluated. In addition, the evaluation of the type of inclusion was performed by determining that the inclusion contained various elements in an atomic fraction of 3% or more of the chemical composition of the inclusion quantified by the ZAF method.

[降伏強度]
EN10002-1に従って引張試験を行い、厚鋼板の板厚(t)の1/2位置における降伏強度(YS)を求めた。前記引張試験には、板厚の1/2位置から板幅方向に平行となるよう採取した、平行部直径14mm、平行部長さ70mmの丸棒引張試験片を使用した。前記引張試験において上降伏点が現れた場合は上降伏応力を降伏強度とし、上降伏点が現れなかった場合には0.2%耐力を降伏強度とした。
[Yield strength]
A tensile test was carried out in accordance with EN10002-1 to determine the yield strength (YS) at 1/2 the thickness (t) of the thick steel plate. For the tensile test, a round bar tensile test piece with a parallel part diameter of 14 mm and a parallel part length of 70 mm, taken parallel to the plate width direction from the 1/2 position of the plate thickness, was used. When an upper yield point appeared in the tensile test, the upper yield stress was taken as the yield strength, and when an upper yield point did not appear, the 0.2% proof stress was taken as the yield strength.

[母材靭性]
鋼板の板厚1/2位置から試験片の長手方向が鋼板の圧延方向と垂直になるようにJIS Z2242に規定されたVノッチ試験片を3本採取し、シャルピー衝撃試験で-40℃における吸収エネルギーvE-40℃を測定した。かかる3本の平均vE-40℃が100J以上であったものを母材靭性が良好であるとした。
[Base material toughness]
Three V-notch test pieces as specified in JIS Z2242 were taken from the 1/2 position of the plate thickness of the steel plate so that the longitudinal direction of the test piece was perpendicular to the rolling direction of the steel plate, and the absorbed energy vE -40°C at -40°C was measured in a Charpy impact test. Those having an average vE -40°C of 100 J or more were deemed to have good base material toughness.

次に、上記厚鋼板それぞれを用いて多層盛溶接継手を作製した。得られた多層盛溶接継手それぞれについて継手CTOD試験を行い、CGHAZにおけるき裂開口変位量およびSC/ICHAZにおけるき裂開口変位量を測定した。多層盛溶接継手の作製条件と、継手CTOD試験の条件を以下に説明する。Next, multi-layer welded joints were fabricated using each of the thick steel plates. A joint CTOD test was performed on each of the resulting multi-layer welded joints to measure the crack opening displacement in the CGHAZ and the crack opening displacement in the SC/ICHAZ. The fabrication conditions for the multi-layer welded joints and the joint CTOD test conditions are described below.

[継手CTOD試験]
継手CTOD試験に用いる溶接継手は、K開先形状、入熱量5.0kJ/mmのサブマ-ジア-ク溶接(多層盛溶接)により作製した。試験方法は、BS規格EN10225-4(2019)に準拠し、断面がt×t(tは板厚)の正方形となる試験片を用いて、試験温度-20℃におけるき裂開口変位量(CTOD値(δ))を評価した。
[Joint CTOD test]
The welded joints used in the joint CTOD test were prepared by submerged arc welding (multi-layer welding) with a K groove shape and a heat input of 5.0 kJ/mm. The test method conformed to BS standard EN10225-4 (2019), and a test piece with a square cross section of t x t (t is plate thickness) was used to evaluate the crack opening displacement (CTOD value (δ)) at a test temperature of -20°C.

切欠位置をK開先の直線形状側のCGHAZとした試験と、SC/ICHAZ境界とした試験を行い、CGHAZのδとSC/ICHAZ境界のδをそれぞれ測定した。なお、厚鋼板それぞれについて、切欠位置ごとに3本の試験片を用いて試験を行い、測定値の最低値をδとした。
CTOD値(δ)が大きいほど、脆性破壊が起こり難いことを示す。
A test was conducted in which the notch was located at the CGHAZ on the linear side of the K groove, and a test was conducted in which the notch was located at the SC/ICHAZ boundary, and δ of the CGHAZ and δ of the SC/ICHAZ boundary were measured. Note that for each steel plate, the test was conducted using three test pieces for each notch position, and the minimum measured value was recorded as δ.
A larger CTOD value (δ) indicates that brittle fracture is less likely to occur.

さらに、前記試験後、試験片破面において疲労予亀裂の先端がEN10225-4(2019)で規定するCGHAZと、SC/ICHAZ境界とそれぞれにあることを確認した。なお、多層盛溶接での継手CTOD試験の場合、切欠位置がCGHAZであっても一定量のICCGHAZが含まれるため、試験結果にはCGHAZとICCGHAZの両方の靭性が反映される。
表2に測定結果を併記する。
Furthermore, after the test, it was confirmed that the tip of the fatigue pre-crack on the fracture surface of the test specimen was located in the CGHAZ and the SC/ICHAZ boundary as specified in EN10225-4 (2019). In the case of a joint CTOD test in multi-pass welding, even if the notch position is in the CGHAZ, a certain amount of ICCGHAZ is included, so the test results reflect the toughness of both the CGHAZ and the ICCGHAZ.
The measurement results are shown in Table 2.

Figure 0007468800000007
Figure 0007468800000008
Figure 0007468800000009
Figure 0007468800000007
Figure 0007468800000008
Figure 0007468800000009

Figure 0007468800000010
Figure 0007468800000011
Figure 0007468800000012
Figure 0007468800000010
Figure 0007468800000011
Figure 0007468800000012

表2の記載通り、本発明の条件を満たす厚鋼板(発明例)は、製造条件、母材の平均有効結晶粒径、最大有効結晶粒径、CaおよびMnを含有する硫化物とAlを含有する酸化物とを含有する複合介在物の個数密度のいずれもが本発明の範囲を満たしていた。その結果、降伏強度が325MPa、母材のvE-40℃が100J以上と、優れた母材特性を発揮し、さらには、CGHAZのCTOD値とSC/ICHAZ境界のCTOD値(δ)との両方が-20℃において0.40mm以上と、優れた継手CTOD特性を備えていた。
これに対して、本発明の条件を満たさない厚鋼板(比較例)は、母材特性および継手CTOD特性のどちらか一方またはその両方において上記発明例の厚鋼板よりも劣っていた。
As shown in Table 2, the steel plate (invention example) satisfying the conditions of the present invention had manufacturing conditions, average effective crystal grain size of the base material, maximum effective crystal grain size, and number density of composite inclusions containing sulfides containing Ca and Mn and oxides containing Al that all satisfied the ranges of the present invention. As a result, the yield strength was 325 MPa, and the vE -40°C of the base material was 100 J or more, demonstrating excellent base material properties, and furthermore, the CTOD value of the CGHAZ and the CTOD value (δ) of the SC/ICHAZ boundary were both 0.40 mm or more at -20°C, providing excellent joint CTOD properties.
In contrast, the steel plates (comparative examples) not satisfying the conditions of the present invention were inferior to the steel plates of the above-mentioned invention examples in either or both of the base material properties and the joint CTOD properties.

Claims (4)

質量%で、
C :0.03~0.13%、
Si:0.60%以下、
Mn:0.9~2.7%、
P :0.050%以下、
S :0.0050%以下、
Al:0.002~0.100%、
Ti:0.004~0.055%、
Nb:0.005~0.070%、
Ca:0.0008~0.0200%、
N :0.0120%以下および
O :0.0070%以下を含み、
残部がFeおよび不可避的不純物であって、下記(1)~(4)式を満たす成分組成を有し:
1.50≦[Ti]/[N]≦5.00 …(1)
0≦{[Ca]-(0.18+130[Ca])×[O]}/1.25/[S]≦1.50 …(2)
0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.500% …(3)
Pcm(=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.231% …(4)
(上記(1)~(4)式における括弧は、括弧内の元素の含有量(質量%)を表し、当該元素を含有しない場合にはゼロとする)、
板厚中心部において、平均有効結晶粒径が20μm以下であって最大有効結晶粒径が150μm以下であり、かつ
板厚1/2位置において、CaおよびMnを含有する硫化物とAlを含有する酸化物とを含有する円相当直径0.1μm以上の複合介在物を25~250個/mm含む、板厚100mm超の鋼板。
In mass percent,
C: 0.03 to 0.13%,
Si: 0.60% or less,
Mn: 0.9 to 2.7%,
P: 0.050% or less,
S: 0.0050% or less,
Al: 0.002 to 0.100%,
Ti: 0.004 to 0.055%,
Nb: 0.005 to 0.070%,
Ca: 0.0008 to 0.0200%,
N: 0.0120% or less and O: 0.0070% or less;
The balance is Fe and unavoidable impurities, and has a composition satisfying the following formulas (1) to (4):
1.50≦[Ti]/[N]≦5.00 ... (1)
0≦{[Ca]−(0.18+130[Ca])×[O]}/1.25/[S]≦1.50 … (2)
0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.500% ... (3)
Pcm(=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦ 0.231 % … (4)
(The brackets in the above formulas (1) to (4) represent the content (mass%) of the element in the brackets, and are set to zero when the element is not contained.)
A steel plate having a thickness of more than 100 mm, in which, at the center portion of the plate thickness, an average effective crystal grain size is 20 μm or less and a maximum effective crystal grain size is 150 μm or less, and at a 1/2 position of the plate thickness, there are 25 to 250 composite inclusions/ mm2 having a circle equivalent diameter of 0.1 μm or more which contain sulfides containing Ca and Mn and oxides containing Al.
前記成分組成が、さらに、質量%で、
Ni:2.5%以下、
Cu:2.0%以下、
Cr:1.3%以下、
Mo:1.3%以下、
V :0.20%以下、
W :0.40%以下、
B :0.0045%以下、
REM:0.022%以下および
Mg:0.005%以下からなる群より選択される1種以上を含む、請求項1に記載の鋼板。
The composition further comprises, in mass%,
Ni: 2.5% or less,
Cu: 2.0% or less,
Cr: 1.3 % or less,
Mo: 1.3 % or less,
V: 0.20 % or less,
W: 0.40 % or less,
B: 0.0045% or less,
The steel plate according to claim 1, comprising at least one selected from the group consisting of REM: 0.022 % or less, and Mg: 0.005% or less.
請求項1または2に記載の成分組成を有する素材を、990℃以上1210℃以下に加熱した後、板厚中心温度が下記式(5)で定義するT℃以上において平均圧下率/パスが3%以上で累積圧下率:25%以上の圧延を施し、板厚中心温度が下記式(6)で定義するT℃以下において累積圧下率:30%以上の圧延を施したのち、板厚中心の平均冷却速度1.0~50.0℃/sにて600℃以下の冷却停止温度まで冷却して、板厚中心部において、平均有効結晶粒径が20μm以下であって最大有効結晶粒径が150μm以下であり、かつ板厚1/2位置において、CaおよびMnを含有する硫化物とAlを含有する酸化物とを含有する円相当直径0.1μm以上の複合介在物を25~250個/mm 含む、板厚100mm超の鋼板を得る、鋼板の製造方法。
(ここで、sol.[Nb]は(7)式による)
(上記式(5)および(7)において、[C]および[N]はそれぞれCおよびNの含有量(質量%)を、Tは素材の加熱温度(℃)、sol.[Nb]はNbの固溶量(質量%)を表す。ただし、[Nb]を鋼板に含まれる総Nb含有量(質量%)とするとsol.[Nb]≦[Nb]である。)
A method for producing a steel plate, comprising heating a raw material having the composition according to claim 1 or 2 to 990°C or higher and rolling it at an average reduction/pass of 3% or higher and a cumulative reduction of 25% or higher when the plate thickness center temperature is T1 °C or higher as defined by the following formula (5), rolling it at a cumulative reduction of 30% or higher when the plate thickness center temperature is T2 °C or lower as defined by the following formula (6), and then cooling it at an average cooling rate of 1.0 to 50.0°C/s at the plate thickness center to a cooling stop temperature of 600°C or lower to obtain a steel plate having a thickness of more than 100 mm, which has an average effective grain size of 20 μm or lower and a maximum effective grain size of 150 μm or lower at the plate thickness center, and which contains 25 to 250 composite inclusions/mm2 having a circle equivalent diameter of 0.1 μm or higher containing sulfides containing Ca and Mn and oxides containing Al at a 1/2 plate thickness position .
(where sol.[Nb] is based on formula (7))
(In the above formulas (5) and (7), [C] and [N] respectively represent the C and N contents (mass%), T0 represents the heating temperature (°C) of the material, and sol.[Nb] represents the amount of Nb in solid solution (mass%). However, if [Nb] is the total Nb content (mass%) contained in the steel plate, then sol.[Nb]≦[Nb].)
前記冷却停止温度まで冷却した後、700℃以下の温度で焼戻し処理を行う、請求項3に記載の鋼板の製造方法。 The method for manufacturing steel sheet according to claim 3, in which, after cooling to the cooling stop temperature, tempering is performed at a temperature of 700°C or less.
JP2023553725A 2022-05-12 2023-05-11 Steel plate and its manufacturing method Active JP7468800B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022079060 2022-05-12
JP2022079060 2022-05-12
PCT/JP2023/017811 WO2023219146A1 (en) 2022-05-12 2023-05-11 Steel sheet and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2023219146A1 JPWO2023219146A1 (en) 2023-11-16
JP7468800B2 true JP7468800B2 (en) 2024-04-16

Family

ID=88730290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023553725A Active JP7468800B2 (en) 2022-05-12 2023-05-11 Steel plate and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7468800B2 (en)
WO (1) WO2023219146A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118313A1 (en) 2011-02-15 2013-08-15 Jfeスチール株式会社 High tensile steel plate having excellent low-temperature toughness in weld heat-affected zones, and method for producing same
WO2014141632A1 (en) 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014155440A1 (en) 2013-03-26 2014-10-02 Jfeスチール株式会社 High strength thick steel plate for high heat input welding with excellent brittle crack arrestability and manufacturing method therefor
WO2015151519A1 (en) 2014-03-31 2015-10-08 Jfeスチール株式会社 High-tensile-strength steel plate and process for producing same
WO2020255993A1 (en) 2019-06-17 2020-12-24 日本製鉄株式会社 Steel sheet
WO2021054345A1 (en) 2019-09-20 2021-03-25 Jfeスチール株式会社 Thick steel sheet, and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118313A1 (en) 2011-02-15 2013-08-15 Jfeスチール株式会社 High tensile steel plate having excellent low-temperature toughness in weld heat-affected zones, and method for producing same
WO2014141632A1 (en) 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014155440A1 (en) 2013-03-26 2014-10-02 Jfeスチール株式会社 High strength thick steel plate for high heat input welding with excellent brittle crack arrestability and manufacturing method therefor
WO2015151519A1 (en) 2014-03-31 2015-10-08 Jfeスチール株式会社 High-tensile-strength steel plate and process for producing same
WO2020255993A1 (en) 2019-06-17 2020-12-24 日本製鉄株式会社 Steel sheet
WO2021054345A1 (en) 2019-09-20 2021-03-25 Jfeスチール株式会社 Thick steel sheet, and method for producing same

Also Published As

Publication number Publication date
WO2023219146A1 (en) 2023-11-16
JPWO2023219146A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
KR100506967B1 (en) High-tensile-strength steel and method of manufacturing the same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
US10450627B2 (en) Thick steel plate having good multipass weld joint CTOD characteristics and method for manufacturing the same
JP5434145B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP6108116B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JP5618037B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
CN110651059B (en) Thick steel plate and method for producing same
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP6024928B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP6112265B2 (en) High-strength extra heavy steel plate and method for producing the same
WO2013175745A1 (en) High-strength thick steel plate for structural use which has excellent brittle crack arrestability, and method for producing same
JP7468800B2 (en) Steel plate and its manufacturing method
JP7493140B2 (en) Steel plate and its manufacturing method
KR20180104095A (en) High Strength Extra Long Steel Sheet Excellent in Brittle Crack Propagation Stopping Characteristics and Manufacturing Method Thereof
JP2023067193A (en) High strength steel sheet and method for producing the same
JP2019183205A (en) Steel sheet and manufacturing method therefor
KR20240059623A (en) Steel plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230904

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7468800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150