JP7468242B2 - Method for impregnating a sample with resin, method for preparing a sample, and method for analyzing a sample - Google Patents

Method for impregnating a sample with resin, method for preparing a sample, and method for analyzing a sample Download PDF

Info

Publication number
JP7468242B2
JP7468242B2 JP2020137262A JP2020137262A JP7468242B2 JP 7468242 B2 JP7468242 B2 JP 7468242B2 JP 2020137262 A JP2020137262 A JP 2020137262A JP 2020137262 A JP2020137262 A JP 2020137262A JP 7468242 B2 JP7468242 B2 JP 7468242B2
Authority
JP
Japan
Prior art keywords
resin
sample
container
diameter
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020137262A
Other languages
Japanese (ja)
Other versions
JP2021036231A (en
Inventor
英治 横塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2021036231A publication Critical patent/JP2021036231A/en
Application granted granted Critical
Publication of JP7468242B2 publication Critical patent/JP7468242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、試料の樹脂含浸方法、試料の作製方法および試料の分析方法に属する。 The present invention relates to a method for impregnating a sample with resin, a method for preparing a sample, and a method for analyzing a sample.

走査型プローブ顕微鏡(Scanning Probe Microscope:SPM)は、試料にプローブを接近または接触させながら走査して、プローブに働く物理量の変化を捉える顕微鏡の総称である。SPMにおいては、捉える物理量に応じて異なるプローブが用いられることから、様々な種類のものが存在する。 Scanning Probe Microscope (SPM) is a general term for microscopes that capture changes in physical quantities acting on a probe by scanning it while bringing it close to or in contact with a sample. Since different probes are used in SPMs depending on the physical quantities to be captured, there are many different types.

SPMの中でも走査型広がり抵抗顕微鏡(Scanning Spreading Resistance Microscope:SSRM)や走査型静電容量顕微鏡(Scanning Capacitance Microscope:SCM)は、微小領域における電気特性の面内分布情報(例えば面内における抵抗値のマッピング)が得られることから、近年、微細化が進む半導体分野では、デバイスのキャリア濃度分布などの観察に欠かせないツールとなっている。また、微小領域における電気特性を二次元的な情報として得られることから、半導体材料に限らず様々な材料に応用され始めている。以下、SSRMを例に挙げて説明する。 Among SPMs, scanning spreading resistance microscopes (SSRMs) and scanning capacitance microscopes (SCMs) can obtain in-plane distribution information of electrical properties in a microscopic area (e.g., mapping of resistance values in the surface), and have become indispensable tools for observing the carrier concentration distribution of devices in the semiconductor field, where miniaturization is progressing in recent years. In addition, because they can obtain two-dimensional information on electrical properties in a microscopic area, they are beginning to be applied to a variety of materials, not just semiconductor materials. The following explanation takes SSRMs as an example.

本出願人による特許文献1には、容器に入れられた粉末試料に対して、容器の開口を通して導電膜をコーティングするコーティング工程と、コーティング工程後、容器に樹脂を入れて前記粉末試料を含有した状態で硬化させて試料含有硬化樹脂を得る硬化工程と、試料含有硬化樹脂に対して平滑化加工を行い、試料含有硬化樹脂の断面を表出させる平滑化工程と、を有する、走査型プローブ顕微鏡用の試料の作製方法が記載されている。 Patent Document 1 by the present applicant describes a method for preparing a sample for a scanning probe microscope, which includes a coating step in which a conductive film is coated onto a powder sample placed in a container through an opening of the container, a curing step in which, after the coating step, a resin is placed in the container and cured while containing the powder sample to obtain a sample-containing cured resin, and a smoothing step in which the sample-containing cured resin is smoothed to expose a cross section of the sample-containing cured resin.

特開2018-25547号公報JP 2018-25547 A

SSRMのみならず走査型プローブ顕微鏡用の試料を準備する際の知見として、以下のものが本発明者により得られた。 The inventor has gained the following knowledge regarding the preparation of samples for scanning probe microscopes as well as SSRM.

特許文献1に記載の手法だと、以下の考慮すべき点がある。すなわち、粉末試料を樹脂で包埋する際に、粉末試料の粒径や粒度分布によっては、樹脂が粉末試料中に十分に染み込まない場合がある。その場合、樹脂を染み込ませた粉末試料から自然に気泡が抜けるのを待つ手法、または、脱泡操作によって気泡を抜く手法を採用することが考えられる。 The method described in Patent Document 1 requires the following considerations. That is, when embedding a powder sample in resin, depending on the particle size and particle size distribution of the powder sample, the resin may not penetrate sufficiently into the powder sample. In such cases, it may be possible to adopt a method of waiting for air bubbles to escape naturally from the powder sample soaked in resin, or a method of removing air bubbles by a degassing operation.

ところが、この手法を採用した場合、気泡と一緒に粉末試料が容器から抜け出してしまうおそれがある。 However, when this method is used, there is a risk that the powder sample may escape from the container along with the air bubbles.

また、樹脂が粉末試料中に十分に染み込んでいない状態を外観から判別することができない。そのため、気泡と一緒に粉末試料が容器から抜け出ないような措置を講じたとしても、樹脂硬化後に断面加工を実施した際に、樹脂の不十分な含浸のせいで中途半端に硬化した樹脂硬化試料から粉末試料が脱落するおそれがある。それに伴い、脱泡処理中に該粉末試料が容器から脱落するおそれがある。この樹脂の不十分な含浸の原因としては、容器内の粉末試料に樹脂を含浸させる際に、粉末試料のうち容器の樹脂注入口に近い側に樹脂が偏在することが挙げられる。この場合、樹脂注入口から遠い側の粉末試料には樹脂が十分に行きわたらず、粉末試料に樹脂が十分に含浸しない。しかも、容器の側壁に樹脂硬化試料が固定されすらしないおそれもある。 In addition, it is not possible to tell from the outside whether the resin has not soaked into the powder sample sufficiently. Therefore, even if measures are taken to prevent the powder sample from escaping from the container together with the air bubbles, when cross-section processing is performed after the resin has hardened, the powder sample may fall off from the partially hardened resin-cured sample due to insufficient resin impregnation. As a result, the powder sample may fall off from the container during the degassing process. The cause of this insufficient resin impregnation is that when the powder sample in the container is impregnated with resin, the resin is unevenly distributed on the side of the powder sample that is closer to the resin injection port of the container. In this case, the resin does not reach the powder sample farther from the resin injection port sufficiently, and the resin does not sufficiently impregnate the powder sample. Moreover, there is a risk that the resin-cured sample may not even be fixed to the side wall of the container.

上記のように本発明者の鋭意検討により得られた知見に鑑み、本発明は、脱泡しつつ試料に対して十分に樹脂を含浸させられる技術を提供することを目的とする。 In light of the findings obtained through the inventor's intensive research as described above, the present invention aims to provide a technique for sufficiently impregnating a sample with resin while degassing it.

本発明の第1の態様は、
樹脂注入口と樹脂吸引口とを有する容器内に配置された試料に対し、吸引により前記容器内を流動する樹脂を接触させる、試料の樹脂含浸方法である。
The first aspect of the present invention is a method for producing a cellular membrane comprising the steps of:
This is a method for impregnating a sample with resin, in which a sample placed in a container having a resin injection port and a resin suction port is brought into contact with resin flowing within the container by suction.

本発明の第2の態様は、第1の態様に記載の発明において、
前記樹脂吸引口は前記容器の底部に設けられる。
A second aspect of the present invention is the invention according to the first aspect,
The resin suction port is provided at the bottom of the container.

本発明の第3の態様は、第1または第2の態様に記載の発明において、
前記樹脂吸引口の径を前記樹脂注入口の径よりも小さく設定する。
A third aspect of the present invention is the invention according to the first or second aspect,
The diameter of the resin suction port is set smaller than the diameter of the resin injection port.

本発明の第4の態様は、第3の態様に記載の発明において、
前記樹脂注入口の径は1mm未満であり、前記樹脂吸引口の径は0.5mm未満である。
A fourth aspect of the present invention is the invention according to the third aspect,
The diameter of the resin injection port is less than 1 mm, and the diameter of the resin suction port is less than 0.5 mm.

本発明の第5の態様は、第1~第4のいずれかの態様に記載の樹脂含浸方法により得られた樹脂含浸試料を硬化させる硬化工程を有する、試料の作製方法である。 The fifth aspect of the present invention is a method for preparing a sample, comprising a curing step of curing a resin-impregnated sample obtained by the resin impregnation method described in any one of the first to fourth aspects.

本発明の第6の態様は、第5の態様に記載の発明において、
前記硬化工程後に得られる樹脂硬化試料に対して平滑化加工を行うことにより断面を表出させる平滑化工程と、
を更に有する。
A sixth aspect of the present invention is the fifth aspect of the invention,
a smoothing step of smoothing the resin cured sample obtained after the curing step to expose a cross section;
It further has:

本発明の第7の態様は、第5または第6の態様に記載の試料の作製方法により得られた試料の断面を走査型プローブ顕微鏡により分析する、試料の分析方法である。 A seventh aspect of the present invention is a method for analyzing a sample, in which a cross-section of a sample obtained by the method for preparing a sample according to the fifth or sixth aspect is analyzed by a scanning probe microscope.

本発明によれば、脱泡しつつ試料に対して十分に樹脂を含浸させられる。 According to the present invention, the sample can be sufficiently impregnated with resin while degassing.

本実施形態における試料の作製方法の概要を示す図である。1A to 1C are diagrams illustrating an outline of a method for preparing a sample according to an embodiment of the present invention. 変形例における試料の容器の断面概略図である。FIG. 11 is a schematic cross-sectional view of a sample container in a modified example.

以下、本発明の実施の形態について、以下の順に説明する。
1.走査型プローブ顕微鏡用の試料の作製方法
1-1.準備工程
1-2.充填工程
1-3.コーティング工程
1-4.樹脂含浸工程(樹脂含浸方法)
1-5.硬化工程
1-6.平滑化工程
2.試料の測定方法
3.変形例等
本明細書において「~」は所定の値以上かつ所定の値以下のことを指す。
また、本明細書に記載の無い内容は、特許文献1の記載を全て参照可能である。特に、1-2.充填工程、1-3.コーティング工程、1-5.硬化工程、および1-6.平滑化工程は特許文献3に記載の内容を全て援用可能であるため、記載を大幅に省略する。
Hereinafter, embodiments of the present invention will be described in the following order.
1. Method for preparing samples for scanning probe microscopes 1-1. Preparation process 1-2. Filling process 1-3. Coating process 1-4. Resin impregnation process (resin impregnation method)
1-5. Hardening process 1-6. Smoothing process 2. Sample measurement method 3. Modifications etc. In this specification, the symbol "to" indicates a value equal to or greater than a given value and equal to or less than a given value.
In addition, for the contents not described in this specification, the description in Patent Document 1 may be referred to in its entirety. In particular, the contents of 1-2. Filling step, 1-3. Coating step, 1-5. Hardening step, and 1-6. Smoothing step described in Patent Document 3 may be entirely adopted, and therefore the description will be largely omitted.

<1.走査型プローブ顕微鏡用の試料の作製方法>
図1は、本実施形態における試料の作製方法の概要を示す図である。符号1は、粉末試料を表す。符号2は、容器を表す。符号2aは、開口(樹脂注入口)を表す。符号2bは、樹脂吸引口を表す。符号3は、導電膜を表す。符号4aは、樹脂を表す。符号4bは、硬化樹脂を表す。符号5は、石英ウールを表す。符号6は、ポンプ連結チューブを表す。以降、符号の記載は省略する。
本実施形態においては、主に以下の工程を行う。以下、図1を基に、各工程について説明する。
1. Method for preparing a sample for scanning probe microscopy
1 is a diagram showing an outline of a method for preparing a sample in this embodiment. Reference numeral 1 represents a powder sample. Reference numeral 2 represents a container. Reference numeral 2a represents an opening (resin injection port). Reference numeral 2b represents a resin suction port. Reference numeral 3 represents a conductive film. Reference numeral 4a represents a resin. Reference numeral 4b represents a hardened resin. Reference numeral 5 represents quartz wool. Reference numeral 6 represents a pump connection tube. Hereinafter, descriptions of the reference numerals will be omitted.
In this embodiment, the following steps are mainly performed, each of which will be described below with reference to FIG.

1-1.準備工程
本工程においては、走査型プローブ顕微鏡用の試料の作製方法のための準備を行う。具体的に言うと、走査型プローブ顕微鏡の準備、走査型プローブ顕微鏡を用いた測定の対象となる粉末試料の準備、該粉末試料を入れる容器の準備、導電膜のコーティング用の装置の準備、平滑化のための研磨装置の準備等を本工程にて行う。
In this step, preparations are made for the method of producing a sample for a scanning probe microscope. Specifically, in this step, the scanning probe microscope is prepared, a powder sample to be measured using the scanning probe microscope is prepared, a container is prepared to hold the powder sample, a device for coating a conductive film is prepared, and a polishing device for smoothing is prepared.

なお、本実施形態においては走査型プローブ顕微鏡としては特に限定は無いが、走査型広がり抵抗顕微鏡(SSRM)を例示する。また、導電性プローブ等のような走査型プローブ顕微鏡の具体的な構成としては、先に述べた通りである。また、本実施形態にて用いる各装置(導電膜のコーティング用の装置、平滑化のための研磨装置)は公知のものを採用しても構わない。 In this embodiment, the scanning probe microscope is not particularly limited, but a scanning spreading resistance microscope (SSRM) is used as an example. The specific configuration of a scanning probe microscope such as a conductive probe is as described above. The devices used in this embodiment (devices for coating a conductive film, polishing device for smoothing) may be known devices.

本実施形態における粉末試料には特に限定は無く、例えば実施例の項目で述べるように、低抵抗(導電膜)~高抵抗(樹脂)の間にて粒子としての抵抗値が得られるような粉末試料であれば特に問題は無い。粉末試料を構成する各粒子の粒径や形状についても特に限定は無いが、本実施形態では最大幅1mm未満の開口から粉末試料を容器内に入れるため、例えば平均粒径が100μm以下(最大粒径1mm以下)の粉末試料であるのが好ましい。 There are no particular limitations on the powder sample in this embodiment, and as described in the Examples section, there is no problem as long as the powder sample is one that can obtain a particle resistance value between low resistance (conductive film) and high resistance (resin). There are no particular limitations on the particle size or shape of each particle that makes up the powder sample, but since the powder sample is placed in the container through an opening with a maximum width of less than 1 mm in this embodiment, it is preferable that the powder sample has an average particle size of 100 μm or less (maximum particle size of 1 mm or less), for example.

本実施形態において、該粉末試料を入れる容器には、樹脂注入口と樹脂吸引口とが設けられる。本実施形態では、該粉末試料を入れる開口が樹脂注入口を兼ねる。もちろん、該粉末試料を入れる開口と樹脂注入口とを別々に設けても構わない。容器自体の大きさには特に限定は無いが、例えば径10mm程度の円柱状容器であってもよい。容器の高さは適宜設定すればよいが、例えば10~20mm程度であってもよい。 In this embodiment, the container for putting the powder sample is provided with a resin injection port and a resin suction port. In this embodiment, the opening for putting the powder sample also serves as the resin injection port. Of course, the opening for putting the powder sample and the resin injection port may be provided separately. There is no particular limit to the size of the container itself, but it may be, for example, a cylindrical container with a diameter of about 10 mm. The height of the container may be set appropriately, but may be, for example, about 10 to 20 mm.

樹脂注入口と樹脂吸引口とは相対する(すなわち直線上に両口が存在する)。そして、樹脂注入口と樹脂吸引口との間に粉末試料が配置される。そして、後述の1-4.樹脂含浸工程では、樹脂注入口を天地の天の方向(上方)、樹脂吸引口を天地の地の方向(下方)に設定する。つまり、樹脂吸引口は容器の底部に設ける。これにより、樹脂自身の自重のおかげで、粉末試料に樹脂を含浸させる際に樹脂を偏在させるおそれを低減できる。 The resin injection port and the resin suction port face each other (i.e., both ports are on a straight line). The powder sample is placed between the resin injection port and the resin suction port. In the resin impregnation process described below in 1-4, the resin injection port is set to face up (above) and the resin suction port is set to face down (below). In other words, the resin suction port is located at the bottom of the container. This reduces the risk of the resin being unevenly distributed when it is impregnated into the powder sample, thanks to the weight of the resin itself.

該粉末試料を入れる容器としては、最大幅1mm未満の開口(樹脂注入口)を有するものであるのが好ましい。そもそも走査型プローブ顕微鏡を用いた測定においては試料としては極めて少量で済むところであるが、このように開口(樹脂注入口)の幅を小さくしておけば、後述のコーティング工程を行う際に、試料粉末が飛散するのを効果的に抑制できる。この開口(樹脂注入口)の形状としては特に限定は無いが、本実施形態においては平面視円形の開口(樹脂注入口)を例示する。つまりこの場合だと開口(樹脂注入口)の直径は好ましくは1.5mm以下、より好ましくは1mm以下、更に好ましくは1mm未満、特に好ましくは0.5mm以下である。 The container for the powder sample preferably has an opening (resin inlet) with a maximum width of less than 1 mm. In the first place, a very small amount of sample is required for measurement using a scanning probe microscope, but by making the width of the opening (resin inlet) small in this way, scattering of the sample powder can be effectively suppressed when performing the coating process described below. There are no particular limitations on the shape of this opening (resin inlet), but in this embodiment, a circular opening (resin inlet) in a plan view is exemplified. In other words, in this case, the diameter of the opening (resin inlet) is preferably 1.5 mm or less, more preferably 1 mm or less, even more preferably less than 1 mm, and particularly preferably 0.5 mm or less.

なお、開口(樹脂注入口)と樹脂吸引口の径は以下のように規定するのが好ましい。
・樹脂吸引口の径を前記樹脂注入口の径よりも小さく設定する。
・その設定に加え、またはその代わりに、前記樹脂吸引口の径は0.8mm以下、より好適には0.5mm以下、更に好適には0.5mm未満、特に好適には0.3mm以下とする。
この設定により、粉末試料が樹脂吸引口から出にくくなり、且つ、吸引力が向上する。
The diameters of the opening (resin injection port) and the resin suction port are preferably specified as follows.
The diameter of the resin suction port is set smaller than the diameter of the resin injection port.
In addition to or instead of this setting, the diameter of the resin suction port is set to 0.8 mm or less, more preferably 0.5 mm or less, even more preferably less than 0.5 mm, and particularly preferably 0.3 mm or less.
This setting makes it difficult for the powder sample to escape from the resin suction port, and improves the suction force.

本明細書における「樹脂注入口の径」は、容器を平面視した際の径を意味する。「樹脂吸引口の径」は、吸引用器具の吸引管の開口と重なる部分の開口径を意味する。 In this specification, the "diameter of the resin injection port" refers to the diameter when the container is viewed in a plan view. The "diameter of the resin suction port" refers to the opening diameter of the part that overlaps with the opening of the suction tube of the suction instrument.

また、容器の開口の深さ(すなわち容器の容積の一要素)としては、後述の平滑化工程にて研磨しても試料含有硬化樹脂(後述)が残存する程度、詳しく言うとコーティング工程にて導電膜が形成された試料粉末の粒子が残存する程度の深さであればよく、例えば0.5~2mmの範囲であるのが好ましい。 The depth of the container opening (i.e., one element of the container volume) should be deep enough that the sample-containing cured resin (described below) remains even after polishing in the smoothing process described below, or more specifically, that the particles of the sample powder on which the conductive film is formed in the coating process remain, and is preferably in the range of 0.5 to 2 mm, for example.

また、容器の素材としては、平滑化工程にて、試料含有硬化樹脂とともに研磨可能な材質であれば特に限定は無いが、本実施形態においてはアルミニウムである場合を例示する。 The material of the container is not particularly limited as long as it can be polished together with the sample-containing cured resin in the smoothing process, but in this embodiment, aluminum is used as an example.

1-2.充填工程
本工程においては、上記の容器の開口から容器に粉末試料を入れて容器内を粉末試料にて充填させる(図1(a))。ここで充填というのは、例えば、貫通孔(樹脂注入口および樹脂吸引口)が形成された容器に対し、開口(樹脂注入口)から粉末試料を入れ、開口(樹脂注入口)から粉末試料があふれた状態において開口(樹脂注入口)にて擦り切った状態である。
In this step, the powder sample is poured into the container through the opening of the container to fill the container with the powder sample (FIG. 1(a)). Here, filling refers to, for example, a state in which a powder sample is poured into a container having through holes (resin injection port and resin suction port) through the opening (resin injection port) and the powder sample overflows from the opening (resin injection port) and is leveled off at the opening (resin injection port).

なお、底部の樹脂吸引口から粉末試料が出ないように、容器内の底部に石英ウール等を敷いてから、容器に粉末試料を入れるのが好ましい。 In order to prevent the powder sample from escaping from the resin suction port at the bottom, it is preferable to place quartz wool or the like on the bottom of the container before placing the powder sample in the container.

1-3.コーティング工程
上記の充填工程に引き続き、後述の硬化工程ではなく、本工程であるところのコーティング工程を粉末試料に対して行う(図1(b))。本工程においては、容器に入れられた粉末試料に対して、容器の開口を通して導電膜をコーティングする。
Following the above-mentioned filling step, the powder sample is subjected to a coating step (not shown in FIG. 1(b)) instead of a curing step (described later). In this step, the powder sample placed in a container is coated with a conductive film through the opening of the container.

1-4.樹脂含浸工程(樹脂含浸方法)
本工程は、本実施形態の大きな特徴の一つである。本工程においては、樹脂注入口と樹脂吸引口とを有する容器内に配置された試料に対し、吸引により容器内を流動する樹脂を接触させる。この手法により、脱泡しつつ試料に対して十分に樹脂を含浸させられる。本工程により、樹脂含浸試料を作製する(図1(c))。
1-4. Resin impregnation process (resin impregnation method)
This step is one of the major features of this embodiment. In this step, a sample placed in a container having a resin injection port and a resin suction port is brought into contact with resin flowing in the container by suction. This method allows the sample to be sufficiently impregnated with resin while degassing. A resin-impregnated sample is produced by this step (FIG. 1(c)).

樹脂の注入は、シリンジ等を使用してもよい。シリンジのノズルを容器の樹脂注入口内またはその近傍に配置し、樹脂を滴下する(樹脂注入工程(図1(c-1)))。 A syringe or the like may be used to inject the resin. The nozzle of the syringe is placed inside or near the resin inlet of the container, and the resin is dripped (resin injection process (Figure 1 (c-1))).

この樹脂注入工程後に、底部の樹脂吸引口から樹脂の吸引を行う(樹脂吸引工程(図1(c-2)))。樹脂吸引工程は、樹脂注入工程前から行ってもよい、すなわち真空ポンプを稼働させてもよいし、樹脂注入工程中に行ってもよい。 After this resin injection process, the resin is sucked through the resin suction port at the bottom (resin suction process (Fig. 1(c-2))). The resin suction process may be performed before the resin injection process, i.e., by operating the vacuum pump, or may be performed during the resin injection process.

なお、本明細書における「容器内に配置された試料に対し、吸引により容器内を流動する樹脂を接触」とは、樹脂滴下時には樹脂注入口の近傍の試料は樹脂と既に接触している一方で、その後、樹脂吸引により、試料全体に対して流動樹脂を接触させることも含む。 In this specification, "contacting the resin flowing in the container by suction with the sample placed in the container" includes the case where the sample near the resin injection port is already in contact with the resin when the resin is dripped, and the case where the flowing resin is then brought into contact with the entire sample by suctioning the resin.

なお、樹脂の吸引は、公知の器具(ポンプやシリンジ等)を用いればよい。そして、本工程ならば、容器の底部から樹脂が染み出してくれば、粉末試料の空隙に樹脂が染み込んだことが容易に把握できる。更に、吸引しながら樹脂を粉末試料に染み込ませることは、脱泡を兼ねることを意味する。そのため、本工程を採用することにより、脱泡工程を省略できる。 The resin can be aspirated using known tools (such as a pump or syringe). With this process, if the resin seeps out from the bottom of the container, it is easy to tell that the resin has seeped into the voids in the powder sample. Furthermore, allowing the resin to seep into the powder sample while aspirating also serves as a degassing process. Therefore, by adopting this process, the degassing process can be omitted.

しかも、本実施形態では、樹脂注入口の径としては極めて小さな径を設定している。そのため、シリンジで樹脂を開口(樹脂注入口)に向けて滴下すると、図1(c-1)に示すように、樹脂が開口から溢れる、または溢れなくとも表面張力により開口から樹脂液滴が盛り上がる。この液滴の盛り上がりにより、粉末試料に対して新たに空気が入り込むのを抑止できる。また、樹脂吸引工程中においても同様に、吸引のせいで容器内に新たに空気が入り込みやすくなるところ、粉末試料に対して新たに空気が入り込むのを抑止できる。 Moreover, in this embodiment, the diameter of the resin injection port is set to be extremely small. Therefore, when resin is dropped toward the opening (resin injection port) using a syringe, as shown in FIG. 1(c-1), the resin will overflow from the opening, or even if it does not overflow, the resin droplets will rise from the opening due to surface tension. This rise of the droplets can prevent new air from entering the powder sample. Similarly, during the resin suction process, new air is likely to enter the container due to suction, but this can prevent new air from entering the powder sample.

なお、本実施形態の場合、容器の径が10mm前後であることから、ポンプと連結したチューブ(図1(c-2)の符号6)に対し、容器の側壁の下方を嵌め入れ、その状態で吸引を行ってもよい。 In this embodiment, since the diameter of the container is approximately 10 mm, the lower part of the side wall of the container can be fitted into the tube connected to the pump (reference number 6 in FIG. 1(c-2)), and suction can be performed in this state.

ここで用いられる樹脂としては、走査型プローブ顕微鏡を用いた測定において、樹脂が硬化した後に探針が接触したとき硬化樹脂が変形しない程度の硬さを有するものを採用するのが好ましい。こうすることにより、安定して正確な測定結果をより確実に得られる。このような樹脂としては例えばアクリル樹脂が挙げられる。 The resin used here is preferably one that is hard enough that the cured resin will not deform when the probe comes into contact with it after it has hardened during measurements using a scanning probe microscope. This makes it possible to more reliably obtain stable and accurate measurement results. An example of such a resin is acrylic resin.

なお、本実施形態においては上記の開口から樹脂を含浸させる。上記の開口は好ましくは最大幅1mm未満という極めて小さな幅であるため、樹脂の粘度は低い方が好ましい。 In this embodiment, the resin is impregnated through the opening. The opening is preferably extremely small, with a maximum width of less than 1 mm, so it is preferable that the viscosity of the resin is low.

ちなみに、樹脂の硬化方法としては公知の手法を採用しても構わない。樹脂としては光硬化性樹脂であっても構わないし、熱硬化性樹脂であっても構わない。 The resin can be cured using any known method. The resin can be a photocurable resin or a thermosetting resin.

1-5.硬化工程
本工程においては、容器に樹脂を入れて粉末試料を含有した状態で硬化させ、樹脂に対して粉末試料を包埋かつ硬化させた試料含有硬化樹脂(樹脂硬化試料)を得る(図1(d))。
1-5. Hardening Step In this step, the resin is placed in a container and hardened while containing the powder sample, to obtain a sample-containing hardened resin (resin-hardened sample) in which the powder sample is embedded in the resin and hardened (FIG. 1(d)).

1-6.平滑化工程
本工程においては、試料含有硬化樹脂に対して平滑化加工を行い、試料含有硬化樹脂の断面(すなわち導電膜がコーティングされた粉末試料の断面)を表出させる(図1(e))。
ちなみに、本工程の具体的な手法としては公知の研磨手法を採用しても構わず、例えば鏡面研磨やイオンミリング等の手法を用いても構わない。
1-6. Smoothing Step In this step, the sample-containing cured resin is smoothed to expose a cross section of the sample-containing cured resin (i.e., a cross section of the powder sample coated with a conductive film) (FIG. 1(e)).
As a specific technique for this step, a known polishing technique may be used, such as mirror polishing or ion milling.

以上の工程を実施し、走査型プローブ顕微鏡用の試料を作製する。なお、上記以外の工程についても、公知の工程を適宜採用しても構わない。 The above steps are carried out to prepare a sample for a scanning probe microscope. Note that other steps may also be carried out by using known processes as appropriate.

<2.試料の測定方法>
上記のように作製された走査型プローブ顕微鏡用の試料における研磨面に対し、走査型プローブ顕微鏡にて測定を行う。なお、測定手法については公知の装置を使用して公知の手法を用いて構わない。
2. Sample measurement method
The polished surface of the sample for scanning probe microscopy prepared as described above is measured by a scanning probe microscope. Note that the measurement method may be a known method using a known device.

<3.変形例>
本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
3. Modifications
The technical scope of the present invention is not limited to the above-described embodiments, but also includes forms in which various modifications and improvements are made within the scope that can derive specific effects obtained by the constituent elements of the invention and their combinations.

本実施形態では粉末試料に対して樹脂含浸させる例を挙げたが、本発明はそれに限定されない。例えば、本明細書で記載した径100μm以上の粒子を含有する試料であってもよい。また、粒子でなくともよく、例えば、粉末ではない多孔質物体を試料としてもよい。 In this embodiment, an example is given of impregnating a powder sample with resin, but the present invention is not limited to this. For example, the sample may contain particles with a diameter of 100 μm or more as described in this specification. Also, the sample does not have to be particles, and for example, a porous object that is not a powder may be used as the sample.

本実施形態では、樹脂吸引口は容器の底部に設けられる例を挙げたが、本発明はそれに限定されない。例えば、容器の底部近傍の下方側壁に樹脂吸引口を設けてもよい。但し、樹脂を偏在しにくくすることを鑑みると、樹脂注入口と樹脂吸引口とが、試料(すなわち試料載置部)を挟んで相対する(すなわち直線状に両口が存在する)のが好ましい。 In this embodiment, an example has been given in which the resin suction port is provided at the bottom of the container, but the present invention is not limited thereto. For example, the resin suction port may be provided on the lower side wall near the bottom of the container. However, in order to prevent uneven distribution of the resin, it is preferable that the resin injection port and the resin suction port face each other with the sample (i.e., the sample placement portion) in between (i.e., both ports are in a straight line).

本実施形態では、樹脂吸引口の径を前記樹脂注入口の径よりも小さく設定する例を挙げたが、本発明はそれに限定されない。同様に、樹脂注入口の径および樹脂吸引口の径の具体的な数値および/または形状により、本発明は限定されない。 In this embodiment, an example is given in which the diameter of the resin suction port is set smaller than the diameter of the resin injection port, but the present invention is not limited to this. Similarly, the present invention is not limited by the specific numerical values and/or shapes of the diameter of the resin injection port and the diameter of the resin suction port.

図2は、変形例における試料の容器の断面概略図である。 Figure 2 is a schematic cross-sectional view of a sample container in a modified example.

例えば、図2(a)に示すように、樹脂吸引口が、樹脂注入口の径から連続的に径を減少させた後の径を有するようにしてもよい。つまり、容器内の底(試料載置部)に設けた開口から樹脂吸引口まで連続的に径を減少させ、断面視でテーパ形状の連通孔を設けてもよい。 For example, as shown in FIG. 2(a), the resin suction port may have a diameter that is continuously reduced from the diameter of the resin injection port. In other words, the diameter may be continuously reduced from an opening at the bottom (sample placement portion) of the container to the resin suction port, providing a tapered through hole in cross section.

また、図2(b)に示すように、容器内の底に設けた開口から樹脂吸引口まで連続的に径を減少させた後、連続的に径を増加させ、最終的に樹脂注入口の径よりも樹脂吸引口の径を大きくしても構わない。 Also, as shown in FIG. 2(b), the diameter may be continuously decreased from the opening at the bottom of the container to the resin suction port, and then the diameter may be continuously increased until the diameter of the resin suction port is finally larger than the diameter of the resin injection port.

また、図2(c)に示すように、樹脂注入口に対向する側の容器の底に、ポンプ連結チューブをはめ込むための溝を設け、該溝内に設けられた樹脂吸引口から樹脂の吸引を行っても構わない。 Also, as shown in FIG. 2(c), a groove for fitting the pump connection tube may be provided on the bottom of the container opposite the resin injection port, and the resin may be sucked through a resin suction port provided in the groove.

また、図2(d)に示すように、粉末試料を構成する粒子の径が、樹脂吸引口よりも大きい場合、石英ウールのようなフィルターを用いずとも構わない。 Also, as shown in Figure 2(d), if the diameter of the particles that make up the powder sample is larger than the resin suction port, it is not necessary to use a filter such as quartz wool.

また、両口の径を等しくしてもよい。但し、粉末試料を採用する場合、粉末試料が樹脂吸引口から出にくくすること、そして吸引力を向上させることを鑑みると、本実施形態の態様が好ましい。 The diameters of both ports may also be the same. However, when using a powdered sample, this embodiment is preferred in order to make it more difficult for the powdered sample to escape from the resin suction port and to improve suction power.

なお、走査型プローブ顕微鏡用の試料以外(例えば走査型電子顕微鏡(SEM)用の試料や電子線後方散乱回折分析(EBSD)用の試料など)においても、該試料の断面を観察する際に上記の課題が生じるという知見も新たに得られており、且つ、その課題は本実施形態により解決される。そのため、本発明はSSRM用の試料作製に限定されない。 It has also been newly discovered that the above-mentioned problems arise when observing the cross-section of samples other than those for scanning probe microscopes (such as samples for scanning electron microscopes (SEMs) and samples for electron backscatter diffraction analysis (EBSD)), and this problem is solved by this embodiment. Therefore, the present invention is not limited to preparing samples for SSRMs.

本発明は、試料の樹脂含浸装置としても技術的特徴がある。その構成は以下のとおりである。
「樹脂注入口と樹脂吸引口とを有し、両口の間に試料配置部を備える、試料の樹脂含浸装置。」
なお、該装置の好適な条件(例:両口径等)は、上記に記載のとおりである。
The present invention also has a technical feature as a resin impregnation device for a sample. The configuration is as follows.
"An apparatus for impregnating a sample with resin, having a resin injection port and a resin suction port, and a sample placement section between the two ports."
The preferred conditions of the apparatus (e.g., diameter of both apertures, etc.) are as described above.

1……粉末試料
2……容器
2a……開口(樹脂注入口)
2b……樹脂吸引口
3……導電膜
4a……樹脂
4b……硬化樹脂
5……石英ウール
6……ポンプ連結チューブ
1: Powder sample 2: Container 2a: Opening (resin injection port)
2b: Resin suction port 3: Conductive film 4a: Resin 4b: Hardened resin 5: Quartz wool 6: Pump connection tube

Claims (6)

樹脂注入口と樹脂吸引口とを有する容器内に配置された試料に対し、吸引により前記容器内を流動する樹脂を接触させる試料の樹脂含浸方法であって、
吸引により前記容器の底部に設けた前記樹脂吸引口から樹脂を染み出させ、且つ、前記樹脂注入口への樹脂の滴下の際に表面張力により前記樹脂注入口から樹脂液滴を盛り上がらせる、試料の樹脂含浸方法。
1. A method for impregnating a sample with resin, comprising contacting a sample placed in a container having a resin injection port and a resin suction port with a resin flowing in the container by suction, comprising the steps of:
A method for impregnating a sample with resin, comprising: suctioning resin to cause it to seep out from the resin suction port provided at the bottom of the container; and, when the resin is dripped into the resin injection port, surface tension causes the resin droplets to rise from the resin injection port .
前記樹脂吸引口の径を前記樹脂注入口の径よりも小さく設定する、請求項に記載の試料の樹脂含浸方法。 2. The method for resin impregnation of a specimen according to claim 1 , wherein a diameter of said resin suction port is set smaller than a diameter of said resin injection port. 前記樹脂注入口の径は1mm未満であり、前記樹脂吸引口の径は0.5mm未満である、請求項に記載の試料の樹脂含浸方法。 3. The method for resin impregnation of a specimen according to claim 2 , wherein the diameter of said resin injection port is less than 1 mm, and the diameter of said resin suction port is less than 0.5 mm. 請求項1~のいずれかに記載の樹脂含浸方法により得られた樹脂含浸試料を硬化させる硬化工程を有する、試料の作製方法。 A method for preparing a sample, comprising a curing step of curing a resin-impregnated sample obtained by the resin impregnation method according to any one of claims 1 to 3 . 前記硬化工程後に得られる樹脂硬化試料に対して平滑化加工を行うことにより断面を表出させる平滑化工程と、
を更に有する、請求項に記載の試料の作製方法。
a smoothing step of smoothing the resin cured sample obtained after the curing step to expose a cross section;
The method of claim 4 further comprising:
請求項またはに記載の試料の作製方法により得られた試料の断面を走査型プローブ顕微鏡により分析する、試料の分析方法。 6. A method for analyzing a sample, comprising analyzing a cross section of the sample obtained by the method for preparing a sample according to claim 4 or 5 with a scanning probe microscope.
JP2020137262A 2019-08-21 2020-08-17 Method for impregnating a sample with resin, method for preparing a sample, and method for analyzing a sample Active JP7468242B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019150860 2019-08-21
JP2019150860 2019-08-21

Publications (2)

Publication Number Publication Date
JP2021036231A JP2021036231A (en) 2021-03-04
JP7468242B2 true JP7468242B2 (en) 2024-04-16

Family

ID=74716859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020137262A Active JP7468242B2 (en) 2019-08-21 2020-08-17 Method for impregnating a sample with resin, method for preparing a sample, and method for analyzing a sample

Country Status (1)

Country Link
JP (1) JP7468242B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185544A (en) 2001-12-20 2003-07-03 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing microscope observation sample mount in porous body
JP2005331251A (en) 2004-05-18 2005-12-02 Tdk Corp Preparation method of sample for observation, observation method of sample, baking method of molding, sample for observation, and observation device
JP2018025547A (en) 2016-07-29 2018-02-15 住友金属鉱山株式会社 Method of making cross-sectional sample and method of measuring cross-sectional sample

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185544A (en) 2001-12-20 2003-07-03 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing microscope observation sample mount in porous body
JP2005331251A (en) 2004-05-18 2005-12-02 Tdk Corp Preparation method of sample for observation, observation method of sample, baking method of molding, sample for observation, and observation device
JP2018025547A (en) 2016-07-29 2018-02-15 住友金属鉱山株式会社 Method of making cross-sectional sample and method of measuring cross-sectional sample

Also Published As

Publication number Publication date
JP2021036231A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
Drelich Guidelines to measurements of reproducible contact angles using a sessile-drop technique
Liimatainen et al. Mapping microscale wetting variations on biological and synthetic water-repellent surfaces
WO2015096672A1 (en) Detection device
Reising et al. Larger voids in mechanically stable, loose packings of 1.3 μm frictional, cohesive particles: their reconstruction, statistical analysis, and impact on separation efficiency
JP2015529799A (en) Surface treatment apparatus and surface treatment method for micro liquid
US20180073964A1 (en) Biological specimen handling apparatus and method
JP7468242B2 (en) Method for impregnating a sample with resin, method for preparing a sample, and method for analyzing a sample
JP6860129B2 (en) Method for measuring pore distribution of electrodes for secondary batteries
JP6863139B2 (en) Method of preparing a cross-section sample and method of measuring a cross-section sample
KR101265776B1 (en) Nano electrode and method for manutacturing of the same
CN103063498B (en) Prepare the two benches vacuum impregnation colouring method of concrete micro-analysis sample
JP2014149272A (en) Producing method of thin sample, and observation method of sample
CN105467489B (en) A kind of silicon substrate micro-structure metal fill method for preparing grating
CN112189142B (en) Analysis method of battery electrode
CN103323315B (en) Undisturbed soil vacuum soaking device and method for preparing sheet for SEM analysis
CN103543044A (en) Preparation method for section shape analyzing sample of MEMS (micro electro mechanical systems) device
DE102018121948B4 (en) Method and means for fixing particles on a substrate
US20100001730A1 (en) Enhanced fill-factor nmr coils and associated methods
CN116642915B (en) Bearing device, sample preparation equipment and sample preparation method
CN117347401B (en) Multidimensional quantitative characterization method for damage to coal macro-micro structure by embedding propping agent
CN105547686A (en) Method for determining microfluid channel conductivity
Rodriguez et al. Electron microscopy approach to the wetting dynamics of single organosilanized mesopores
JP6996614B2 (en) Sampling device
JP2019082458A (en) Water quality evaluation device and water quality evaluation method
Spomer et al. A Low-Tech Approach to Serial Section Arrays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7468242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150