JP7468067B2 - Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery - Google Patents

Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7468067B2
JP7468067B2 JP2020060235A JP2020060235A JP7468067B2 JP 7468067 B2 JP7468067 B2 JP 7468067B2 JP 2020060235 A JP2020060235 A JP 2020060235A JP 2020060235 A JP2020060235 A JP 2020060235A JP 7468067 B2 JP7468067 B2 JP 7468067B2
Authority
JP
Japan
Prior art keywords
negative electrode
less
secondary battery
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020060235A
Other languages
Japanese (ja)
Other versions
JP2021158088A (en
Inventor
智洋 佐藤
寿子 近藤
博明 吉田
正和 横溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020060235A priority Critical patent/JP7468067B2/en
Publication of JP2021158088A publication Critical patent/JP2021158088A/en
Application granted granted Critical
Publication of JP7468067B2 publication Critical patent/JP7468067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水系電解液二次電池用負極および非水系電解液二次電池に関する。 The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.

近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、急速充放電特性に優れた非水系二次電池、とりわけリチウムイオン二次電池が注目されている。特に、リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPFやLiBF等のリチウム塩を溶解させた非水電解液からなる非水系リチウム二次電池が開発され、実用化されている。 In recent years, the demand for high-capacity secondary batteries has been increasing with the miniaturization of electronic devices. In particular, non-aqueous secondary batteries, especially lithium ion secondary batteries, have attracted attention because they have higher energy density and superior rapid charge/discharge characteristics than nickel-cadmium batteries and nickel-metal hydride batteries. In particular, non-aqueous lithium secondary batteries consisting of positive and negative electrodes capable of absorbing and releasing lithium ions, and a non-aqueous electrolyte solution in which lithium salts such as LiPF6 and LiBF4 are dissolved, have been developed and put to practical use.

この非水系リチウム二次電池の負極材としては種々のものが提案されているが、高容量であること、放電電位の平坦性に優れていること等の理由から、天然黒鉛やコークス等の黒鉛化で得られる人造黒鉛、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素材が用いられている。このように、黒鉛を使用した非水系リチウムイオン二次電池は、電極膨張が小さく、サイクル特性に優れる。しかしながら、入出力特性と高温保存特性の両立が課題となっており、これを解決するために黒鉛と結晶性(黒鉛化度)の低い炭素材料を組み合わせた負極材の検討が進んでいる。 Various materials have been proposed as anode materials for non-aqueous lithium secondary batteries, but graphitic carbon materials such as artificial graphite obtained by graphitizing natural graphite or coke, graphitized mesophase pitch, and graphitized carbon fiber are used because of their high capacity and excellent flatness of discharge potential. In this way, non-aqueous lithium ion secondary batteries that use graphite have small electrode expansion and excellent cycle characteristics. However, achieving both input/output characteristics and high-temperature storage characteristics is an issue, and to solve this problem, research is being conducted on anode materials that combine graphite with carbon materials with low crystallinity (degree of graphitization).

例えば、「X線回折法より求めた平均面間隔d002が0.335nm~0.340nm、体積平均粒子径(50%D)が1μm~40μm、最大粒子径Dmaxが74μm以下、及び、空気気流中における示差熱分析において、300℃以上1000℃以下の温度範囲に少なくとも二つの発熱ピークを有する炭素材料を含むリチウムイオン二次電池用負極材」を用いることにより、構造が異なる複数の炭素材料の分布又は配置に関して、ムラがなく均一になって、負極の入出力特性、寿命特性及び熱安定性が向上することが記載されている(特許文献1参照)。 For example, it is described that by using "a negative electrode material for lithium ion secondary batteries containing a carbon material having an average interplanar spacing d002 of 0.335 nm to 0.340 nm as determined by X-ray diffraction, a volume average particle size (50% D) of 1 μm to 40 μm, a maximum particle size Dmax of 74 μm or less, and at least two exothermic peaks in a temperature range of 300° C. to 1000° C. in differential thermal analysis in an air stream," the distribution or arrangement of multiple carbon materials with different structures becomes uniform and consistent, improving the input/output characteristics, life characteristics, and thermal stability of the negative electrode (see Patent Document 1).

また、「黒鉛粒子と1次粒子径3nm以上500nm以下の炭素微粒子との複合粒子であり、無作為に選んだ30個の複合粒子の顕微ラマンR値を顕微ラマン分光装置にて測定し、下記(式2)で表されるラマンR(90/10)値が1以上4.3以下であることを特徴とする非水系電解液二次電池用炭素材を用いることで、負極活物質表面に均一且つ連続的な微細流路が生成し、低温時における入出力特性を大幅に改善できることが記載されている(特許文献2参照)。
(式2):ラマンR(90/10)値=(顕微ラマンR値を小さい方から順に並べたときの顕微ラマンR値が小さいものから(測定粒子全個数×0.9)番目に小さい粒子の顕微ラマンR値)/(顕微ラマンR値を小さい方から順に並べたときの顕微ラマンR値が小さいものから(測定粒子全個数×0.1)番目に小さい粒子の顕微ラマンR値)
In addition, it is described that by using a carbon material for a non-aqueous electrolyte secondary battery, which is a composite particle of graphite particles and carbon fine particles having a primary particle diameter of 3 nm or more and 500 nm or less, and which is characterized in that the micro-Raman R value of 30 randomly selected composite particles is measured with a micro-Raman spectrometer and the Raman R (90/10) value represented by the following (Equation 2) is 1 or more and 4.3 or less, uniform and continuous fine flow paths are formed on the surface of the negative electrode active material, and input/output characteristics at low temperatures can be significantly improved (see Patent Document 2).
(Formula 2): Raman R(90/10) value=(the microscopic Raman R value of the (total number of measured particles×0.9)th smallest particle in terms of the microscopic Raman R value when the microscopic Raman R values are arranged in ascending order)/(the microscopic Raman R value of the (total number of measured particles×0.1)th smallest particle in terms of the microscopic Raman R value when the microscopic Raman R values are arranged in ascending order)

特開2016-131159号公報JP 2016-131159 A 特開2014-060148号公報JP 2014-060148 A

例えば、ハイブリッド自動車や電気自動車用に非水系リチウムイオン二次電池を使用する場合、自動車の発進・加速する際に大きなエネルギーを要し、且つ減速・停止する際の
エネルギーを効率良く回生させなければならないため、これまで携帯電話やノートパソコン用で求められてきた高い充放電容量や安全性や耐久性に加えて、非常に高い入出力特性が要求される。特に、非水系リチウムイオン二次電池は低温下において入出力特性が低下する傾向にあるため、低温下でも高い入出力特性を維持し、高温保存特性を両立させる技術が求められている。
For example, when a non-aqueous lithium ion secondary battery is used for a hybrid vehicle or an electric vehicle, a large amount of energy is required when the vehicle starts or accelerates, and the energy must be efficiently regenerated when the vehicle decelerates or stops, so that the battery must have extremely high input/output characteristics in addition to the high charge/discharge capacity, safety, and durability that have been required for mobile phones and notebook computers up to now. In particular, since the input/output characteristics of non-aqueous lithium ion secondary batteries tend to decrease at low temperatures, there is a demand for a technology that can maintain high input/output characteristics even at low temperatures while also achieving high-temperature storage characteristics.

本発明者らが検討した結果、特許文献1、2に開示されている発明では、入出力特性と高温保存特性のバランスを向上させることには限界があった。
即ち、本発明は入出力特性と高温保存特性のバランスがさらに向上した、非水系電解液二次電池を提供することを目的とする。
As a result of the studies conducted by the present inventors, it has been found that the inventions disclosed in Patent Documents 1 and 2 have limitations in terms of improving the balance between input/output characteristics and high-temperature storage characteristics.
That is, an object of the present invention is to provide a nonaqueous electrolyte secondary battery with an improved balance between input/output characteristics and high-temperature storage characteristics.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、負極表面の粒子間空隙の分布を特定の範囲とすることで、非水系電解液二次電池の低温時における入出力特性と高温保存特性のバランスを大幅に改善できることを見出し、本発明を完成させた。
本発明がこのような効果を奏する理由については、未だ明らかでないが、以下のとおり推察される。
すなわち、負極表面の粒子間空隙の分布を特定の範囲とすることで、空隙が均一に分布し、リチウムイオンの極板深さ方向への流路が均一となるとともに、粒子間の電子伝導性を確保しているため、活物質粒子群を均一に利用することが可能となり、本発明の効果を奏するものと推察される。
As a result of extensive research aimed at solving the above problems, the inventors have discovered that by setting the distribution of interparticle voids on the negative electrode surface within a specific range, the balance between the input/output characteristics at low temperatures and the high-temperature storage characteristics of a non-aqueous electrolyte secondary battery can be significantly improved, and have completed the present invention.
The reason why the present invention exhibits such an effect is not yet clear, but is presumed to be as follows.
In other words, by setting the distribution of interparticle voids on the negative electrode surface to a specific range, the voids are distributed uniformly, the flow paths of lithium ions in the depth direction of the electrode plate are made uniform, and electronic conductivity between particles is ensured, making it possible to utilize the active material particle group uniformly, and it is presumed that the effects of the present invention are achieved.

即ち、本発明は以下の通りである。
<1>集電体と集電体上に形成された負極活物質とを備える非水系電解液二次電池用負極であって、
該負極表面の異なる位置から取得した表面SEM画像を任意に15画像選択し、各画像それぞれを粒子領域と粒子間空隙領域に分け、各画像を二値化処理した処理画像から算出される粒子間空隙領域の、ボックスカウント法によって求めたフラクタル次元の標準偏差が0.1以下である、非水系電解液二次電池用負極。
<2>前記粒子間空隙領域のフラクタル次元の平均値が0.1以上、3以下である、<1>に記載の非水系電解液二次電池用負極。
<3>前記粒子間空隙領域の面積比率の平均値が0.01以上、0.2以下である、<1>または<2>に記載の非水系電解液二次電池用負極。
<4>前記負極活物質が、黒鉛とその表面を被覆する非晶質炭素層とを有する複合粒子を含む、<1>乃至<3>のいずれかに記載の非水系電解液二次電池用負極。
<5>前記負極活物質を構成する負極活物質粒子の体積基準平均粒径(D50)が、0.1μm以上、50μm以下である、<1>乃至<4>のいずれかに記載の非水系電解液二次電池用負極。
<6>前記負極活物質のBET比表面積(SA)が、1m/g以上、20m/g以下である、<1>乃至<5>のいずれかに記載の非水系電解液二次電池用負極。
<7>前記負極活物質のタップ密度が、0.1g/cm以上、2g/cm以下である、<1>乃至<6>のいずれかに記載の非水系電解液二次電池用負極。
<8>金属イオンを吸蔵・放出可能な正極及び負極、並びに電解液を備える非水系電解液二次電池であって、前記負極が<1>乃至<7>のいずれかに記載の負極である、非水系電解液二次電池。
That is, the present invention is as follows.
<1> A negative electrode for a non-aqueous electrolyte secondary battery comprising a current collector and a negative electrode active material formed on the current collector,
a negative electrode for a nonaqueous electrolyte secondary battery, wherein 15 surface SEM images obtained from different positions on the negative electrode surface are arbitrarily selected, each of the images is divided into a particle region and an interparticle void region, and each image is binarized to obtain a processed image, from which the standard deviation of the fractal dimension of the interparticle void region calculated by a box counting method is 0.1 or less.
<2> The negative electrode for a nonaqueous electrolyte secondary battery according to <1>, wherein an average value of a fractal dimension of the interparticle void regions is 0.1 or more and 3 or less.
<3> The negative electrode for a nonaqueous electrolyte secondary battery according to <1> or <2>, wherein an average area ratio of the interparticle void regions is 0.01 or more and 0.2 or less.
<4> The negative electrode for a nonaqueous electrolyte secondary battery according to any one of <1> to <3>, wherein the negative electrode active material contains composite particles having graphite and an amorphous carbon layer covering a surface of the graphite.
<5> The negative electrode for a nonaqueous electrolyte secondary battery according to any one of <1> to <4>, wherein the negative electrode active material particles constituting the negative electrode active material have a volume-based average particle size (D50) of 0.1 μm or more and 50 μm or less.
<6> The negative electrode for a nonaqueous electrolyte secondary battery according to any one of <1> to <5>, wherein the negative electrode active material has a BET specific surface area (SA) of 1 m 2 /g or more and 20 m 2 /g or less.
<7> The negative electrode for a nonaqueous electrolyte secondary battery according to any one of <1> to <6>, wherein the tap density of the negative electrode active material is 0.1 g/ cm3 or more and 2 g/ cm3 or less.
<8> A nonaqueous electrolyte secondary battery including a positive electrode and a negative electrode capable of absorbing and releasing metal ions, and an electrolyte, wherein the negative electrode is the negative electrode according to any one of <1> to <7>.

本発明によれば、低温下においても入出力特性に優れ、高温保存特性にも優れる非水系電解液二次電池を提供することができる。 The present invention provides a nonaqueous electrolyte secondary battery that has excellent input/output characteristics even at low temperatures and also has excellent high-temperature storage characteristics.

(a)取得SEM画像、(b)二値化処理画像、(b)フラクタル次元を求めるためのグラフ、の一例をそれぞれ示す。1A shows an example of an acquired SEM image, FIG. 1B shows an example of a binarized image, and FIG. 1C shows an example of a graph for determining a fractal dimension. 実施例、比較例、参考例に係る、高温保存特性と低温出力特性の相関を示すグラフである。1 is a graph showing the correlation between high-temperature storage characteristics and low-temperature output characteristics for an example, a comparative example, and a reference example.

以下、本発明の実施形態である非水系電解液二次電池用負極、並びに非水系電解液二次電池について詳細に説明するが、本発明の趣旨に反しない限り、これらの内容に限定されるものではない。 The negative electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery according to the embodiment of the present invention will be described in detail below, but the present invention is not limited to these details as long as they are not contrary to the spirit of the present invention.

<1.非水系電解液二次電池用負極>
本発明の一実施形態である非水系電解液二次電池用負極(以下、「本実施形態の負極」と略す場合がある。)は、集電体と集電体上に形成された負極活物質とを備える非水系電解液二次電池用負極である。本実施形態の負極は、負極表面の異なる位置から取得した表面SEM画像を任意に15画像選択し、各画像それぞれを粒子領域と粒子間空隙領域に分け、各画像を二値化処理した処理画像から算出される粒子間空隙領域の、ボックスカウント法によって求めたフラクタル次元の標準偏差が0.1以下である。粒子間空隙領域のフラクタル次元の標準偏差を0.1以下、すなわち電極表面に存在する粒子間空隙の分布を所望の範囲とすることにより、非水系電解液二次電池の低温下における入出力特性と高温保存特性のバランスを大幅に改善できることを本発明者らは見出した。
<1. Negative electrode for non-aqueous electrolyte secondary battery>
The negative electrode for a non-aqueous electrolyte secondary battery according to one embodiment of the present invention (hereinafter, sometimes abbreviated as "the negative electrode of this embodiment") comprises a current collector and a negative electrode active material formed on the current collector. The negative electrode of this embodiment is a negative electrode for a non-aqueous electrolyte secondary battery comprising a material. For the negative electrode of this embodiment, 15 surface SEM images obtained from different positions on the surface of the negative electrode are arbitrarily selected, and each image is classified into a particle region and a particle region. The standard deviation of the fractal dimension of the interparticle void region calculated from the processed images obtained by binarizing each image is 0.1 or less, as determined by a box counting method. By setting the standard deviation of the fractal dimension to 0.1 or less, that is, by setting the distribution of the interparticle voids present on the electrode surface within a desired range, the input/output characteristics at low temperatures and the high-temperature storage characteristics of the non-aqueous electrolyte secondary battery can be improved. The inventors have found that this balance can be significantly improved.

<1-1.フラクタル次元>
あるパターンが与えられたとして、そのパターンの一部を拡大してみても、もとのパターンと区別がつかないような性質を一種の対称性とみなし、自己相似性という。自己相似性を持つパターンのことを自己相似フラクタルといい、パターンの粗密や入込度合いの程度の差を定量化して数値化したものがフラクタル次元という量である。例えば、宮城県東部にある牡鹿半島の西海岸の海岸線を次々と拡大しても元のパターンと同じように見え、フラクタル次元として数値化することができる(例えば、裳華房フィジックスライブラリー出版「フラクタルの物理(I)基礎編」 ページ9、18、27等を参照)。
<1-1. Fractal dimension>
If a certain pattern is given, and even if you enlarge a part of the pattern, the property that it cannot be distinguished from the original pattern is considered a kind of symmetry, and is called self-similarity. A pattern with self-similarity is called a self-similar fractal, and the amount that quantifies and quantifies the difference in the density and degree of inclusion of the pattern is called fractal dimension. For example, even if you enlarge the coastline of the west coast of the Oshika Peninsula in eastern Miyagi Prefecture, it looks the same as the original pattern, and can be quantified as fractal dimension (for example, see pages 9, 18, 27 of "Physics of Fractals (I) Basics" published by Shokabo Physics Library).

<1-1-1.フラクタル次元の標準偏差>
フラクタル次元の標準偏差は、空隙の形状の分布の程度を表し、フラクタル次元の標準偏差が小さいことは、空隙の形状のバラツキが小さく、より均一に空隙が分布していることを意味する。フラクタル次元の標準偏差は0.1以下であり、好ましくは0.09以下、より好ましくは0.08以下、さらに好ましくは0.07以下、特に好ましくは0.06以下、最も好ましくは0.04以下であり、通常0以上、好ましくは0.001以上、より好ましくは、0.0015以上、さらに好ましくは0.01以上、特に好ましくは0.015以上であり、最も好ましくは0.018以上である。フラクタル次元の標準偏差が上記の範囲であれば、空隙の形状および分布のバラツキが少なくなり、低温入出力特性と高温保存特性のバランスが良好である。
<1-1-1. Standard deviation of fractal dimension>
The standard deviation of the fractal dimension represents the degree of distribution of the shape of the voids, and a small standard deviation of the fractal dimension means that the shape of the voids is less varied and the voids are more uniformly distributed. The standard deviation of the fractal dimension is 0.1 or less, preferably 0.09 or less, more preferably 0.08 or less, even more preferably 0.07 or less, particularly preferably 0.06 or less, and most preferably 0.04 or less, and is usually 0 or more, preferably 0.001 or more, more preferably 0.0015 or more, even more preferably 0.01 or more, particularly preferably 0.015 or more, and most preferably 0.018 or more. If the standard deviation of the fractal dimension is within the above range, the shape and distribution of the voids are less varied, and the balance between low-temperature input/output characteristics and high-temperature storage characteristics is good.

<1-1-2.フラクタル次元の平均値>
フラクタル次元の平均値は、空隙の形状分布の平均をあらわし、フラクタル次元の平均値が小さいことは、空隙の形状が凹凸の規則性の小さい曲線で囲まれていることを意味する。フラクタル次元の平均値は特に限定されないが0.1以上、3以下であることが好ましい。より好ましくは、0.5以上、さらに好ましくは1.0以上、特に好ましくは1.1以上であり、最も好ましくは1.18以上である。より好ましくは2.5以下、さらに好ましくは2以下、特に好ましくは1.5以下、最も好ましくは1.26以下である。フラクタル次元の平均値が上記の範囲であれば、粒子間の電子伝導性とリチウムイオンの極
板内拡散を両立させることができ、好ましい。
<1-1-2. Average value of fractal dimension>
The average value of the fractal dimension represents the average shape distribution of the voids, and a small average value of the fractal dimension means that the shape of the voids is surrounded by a curve with low regularity of unevenness. The average value of the fractal dimension is not particularly limited, but is preferably 0.1 or more and 3 or less. More preferably, it is 0.5 or more, even more preferably 1.0 or more, particularly preferably 1.1 or more, and most preferably 1.18 or more. More preferably, it is 2.5 or less, even more preferably 2 or less, particularly preferably 1.5 or less, and most preferably 1.26 or less. If the average value of the fractal dimension is in the above range, it is preferable because it is possible to achieve both electronic conductivity between particles and diffusion of lithium ions in the electrode plate.

<1-1-3.フラクタル次元、フラクタル次元の標準偏差の測定法>
フラクタル次元の数値化は、以下の手順で実施することができる。
(1)負極表面画像の取得
負極表面のSEM画像(二次電子像)を取得する。測定条件は以下とする。
測定条件:加速電圧5kV、倍率500倍、1280×960ピクセル、8ビット画像、
一画像中に粒子数が200以上含まれることとし、電極の異なる場所の表面画像を任意に15ヶ所以上取得する。
(2)二値化処理
各画像に対して、画像解析ソフトを用いて、粒子領域と粒子間空隙領域に二値化処理を行う。画像解析ソフトはImageJを用い、粒子及び粒子間空隙が明瞭に区別できる様に輝度の閾値を調整する。閾値の設定は、Othu法、Yen法が好適に使用できる。また手動で二値化処理することもできる。
(3)フラクタル次元および標準偏差の取得
二値化処理後の画像に対して、画像解析ソフトを用いてボックスカウント法によるフラクタル次元を求める。ボックスサイズ(ε)は2ピクセルから64ピクセルまでとし、横軸log(ε)、縦軸log(n)グラフの直線領域の傾きを-D(Dはフラクタル次元)とする。15の画像それぞれに対してフラクタル次元Dを求め、その標準偏差σをフラクタル次元の標準偏差とする。
図1に、取得SEM画像、二値化処理画像、フラクタル次元を求めるためのグラフの一例を示す。
<1-1-3. How to measure fractal dimension and standard deviation of fractal dimension>
The fractal dimension can be quantified by the following procedure.
(1) Acquiring an image of the negative electrode surface
An SEM image (secondary electron image) of the negative electrode surface is obtained under the following measurement conditions.
Measurement conditions: accelerating voltage 5 kV, magnification 500x, 1280 x 960 pixels, 8-bit image,
One image contains 200 or more particles, and surface images of different locations on the electrode are acquired at any desired 15 or more locations.
(2) Binarization process For each image, binarization process is performed on the particle region and the interparticle void region using image analysis software. ImageJ is used as the image analysis software, and the brightness threshold is adjusted so that the particles and the interparticle voids can be clearly distinguished. The Othu method and Yen method can be suitably used to set the threshold. Binarization process can also be performed manually.
(3) Obtaining fractal dimension and standard deviation The fractal dimension of the binarized image is obtained by the box counting method using image analysis software. The box size (ε) is set to 2 to 64 pixels, and the slope of the linear region of the graph with the horizontal axis log(ε) and the vertical axis log(n) is set to -D (D is the fractal dimension). The fractal dimension D is obtained for each of the 15 images, and its standard deviation σ is set to the standard deviation of the fractal dimension.
FIG. 1 shows an example of an acquired SEM image, a binarized image, and a graph for determining the fractal dimension.

<1-1-4.粒子間空隙領域の面積比率の標準偏差>
粒子間空隙領域の面積比率の標準偏差は、粒子間空隙面積が均一に分布していることをあらわし、粒子間空隙領域の面積比率の標準偏差は好ましくは0.8以下、より好ましくは0.7以下、さらに好ましくは0.6以下、特に好ましくは0.5以下、最も好ましくは0.4以下であり、通常0以上、好ましくは0.001以上、より好ましくは、0.0015以上、さらに好ましくは0.01以上、特に好ましくは0.015以上であり、最も好ましくは0.018以上である。粒子間空隙領域の面積比率の標準偏差が上記の範囲であれば、局所的な電流集中が起こりにくく活物質粒子群を均一に利用することができため、良好な出力が得られる。
<1-1-4. Standard deviation of area ratio of interparticle void regions>
The standard deviation of the area ratio of the interparticle void region indicates that the interparticle void area is uniformly distributed, and the standard deviation of the area ratio of the interparticle void region is preferably 0.8 or less, more preferably 0.7 or less, even more preferably 0.6 or less, particularly preferably 0.5 or less, and most preferably 0.4 or less, and is usually 0 or more, preferably 0.001 or more, more preferably 0.0015 or more, even more preferably 0.01 or more, particularly preferably 0.015 or more, and most preferably 0.018 or more. If the standard deviation of the area ratio of the interparticle void region is within the above range, local current concentration is unlikely to occur, and the active material particle group can be used uniformly, resulting in good output.

<1-1-5.粒子間空隙領域の面積比率の平均値>
粒子間空隙領域の面積比率の平均値は、電極表面のイオン輸送に係る入口の投影面積比率をあらわし、粒子間空隙領域の面積比率の平均値が小さいことは、極板内へのイオン輸送における電極表面の間口の総量が小さいことを意味する。粒子間空隙領域の面積比率の平均値は特に限定されないが0.01以上、0.2以下であることが好ましい。より好ましくは、0.04以上、さらに好ましくは0.08以上、特に好ましくは0.1以上であり、最も好ましくは0.11以上である。より好ましくは0.19以下、さらに好ましくは0.18以下、特に好ましくは0.17以下、最も好ましくは0.16以下である。粒子間空隙領域の面積比率の平均値が上記の範囲であれば、粒子間の電子伝導性とリチウムイオンの極板内への輸送を両立させることができるため好ましい。
<1-1-5. Average area ratio of interparticle void regions>
The average value of the area ratio of the interparticle void region represents the projected area ratio of the entrance for ion transport on the electrode surface, and a small average value of the area ratio of the interparticle void region means that the total amount of the opening of the electrode surface in ion transport into the electrode plate is small. The average value of the area ratio of the interparticle void region is not particularly limited, but is preferably 0.01 or more and 0.2 or less. More preferably, it is 0.04 or more, even more preferably 0.08 or more, particularly preferably 0.1 or more, and most preferably 0.11 or more. More preferably, it is 0.19 or less, even more preferably 0.18 or less, particularly preferably 0.17 or less, and most preferably 0.16 or less. If the average value of the area ratio of the interparticle void region is in the above range, it is preferable because it is possible to achieve both the electronic conductivity between the particles and the transport of lithium ions into the electrode plate.

<1-1-6.粒子間空隙領域の面積比率の平均値の測定法>
上記、粒子領域と粒子間空隙領域に二値化処理した画像を用い、粒子間空隙領域のピクセル数/総ピクセル数を、粒子間空隙領域の面積比率とし、15画像の平均を粒子間空隙領域の面積比率の平均値とする。
<1-1-6. Method for measuring the average area ratio of interparticle void regions>
Using the above images in which the particle regions and inter-particle void regions have been binarized, the number of pixels in the inter-particle void regions/total number of pixels is regarded as the area ratio of the inter-particle void regions, and the average of the 15 images is regarded as the average area ratio of the inter-particle void regions.

<1-1-7.フラクタル次元の数値、及び粒子間空隙領域の面積比率を所望の値とする
手段>
本実施形態において、負極のフラクタル次元の数値、具体的にはフラクタル次元の標準偏差、フラクタル次元の平均値を所望の値とすることは、活物質粒子の粒度、形状、非晶質炭素の被覆量、スラリー作成条件、塗布電極乾燥条件、プレス条件を適宜調整することにより達成できる。
また、粒子間空隙領域の面積比率の平均値を所望の値とすることは、活物質粒子の粒度、形状、非晶質炭素の被覆量、スラリー作成条件、塗布電極乾燥条件、プレス条件を適宜調整することにより達成できる。
<1-1-7. Means for setting the fractal dimension value and the area ratio of interparticle void regions to desired values>
In this embodiment, the fractal dimension of the negative electrode, specifically the standard deviation of the fractal dimension and the average value of the fractal dimension, can be set to a desired value by appropriately adjusting the particle size and shape of the active material particles, the amount of amorphous carbon coated thereon, the slurry preparation conditions, the coated electrode drying conditions, and the pressing conditions.
In addition, the average area ratio of the interparticle void regions can be adjusted to a desired value by appropriately adjusting the particle size and shape of the active material particles, the amount of amorphous carbon coated thereon, the slurry preparation conditions, the coated electrode drying conditions, and the pressing conditions.

<1-2.負極活物質>
本実施形態の負極を形成する負極活物質は限定されないが、特に黒鉛質炭素材粒子であることが好ましい。黒鉛としては、天然黒鉛、人造黒鉛の何れであってもよい。天然黒鉛としては、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の何れであってもよいが、不純物の少ない黒鉛が好ましく、必要に応じて公知の精製処理を施して用いることが好ましい。人造黒鉛としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等の有機物を、通常2500℃以上、通常3200℃以下の範囲の温度で焼成し、黒鉛化したものが挙げられる。この際、珪素含有化合物やホウ素含有化合物などを黒鉛化触媒として用いることもできる。
<1-2. Negative electrode active material>
The negative electrode active material forming the negative electrode of this embodiment is not limited, but is preferably a graphitic carbon material particle. The graphite may be either natural graphite or artificial graphite. The natural graphite is, for example, Any of flake graphite, lump graphite, and amorphous graphite may be used, but graphite with few impurities is preferred, and it is preferable to use it after subjecting it to a known purification treatment as necessary. Pitch, coal-based heavy oil, atmospheric residual oil, petroleum-based heavy oil, aromatic hydrocarbons, nitrogen-containing cyclic compounds, sulfur-containing cyclic compounds, polyphenylene, polyvinyl chloride, polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural Examples of such graphitized materials include organic materials such as polymers, polyphenylene silicide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin that are baked at a temperature usually in the range of 2500° C. or higher and usually 3200° C. or lower. In this case, a silicon-containing compound, a boron-containing compound, or the like can be used as a graphitization catalyst.

黒鉛質炭素材粒子は、一部若しくは全面を非晶質炭素が被覆した複層構造炭素材であることが好ましい。複層構造炭素材である場合の非晶質炭素の厚みは、通常0.1nm以上、好ましくは1nm以上、より好ましくは3nm以上であり、通常3μm以下、好ましくは1μm以下、さらに好ましくは100nm以下、特に好ましくは50nm以下である。なお、黒鉛粒子の粒径や非晶質炭素の厚みは、SEMやTEM等の電子顕微鏡観察によって測定することができる。また、非晶質炭素の存在の有無は、ラマン分光分析や真密度等々の測定にて存在の有無・量を確認することができる。 The graphite carbon particles are preferably a multi-layered carbon material partially or entirely coated with amorphous carbon. In the case of a multi-layered carbon material, the thickness of the amorphous carbon is usually 0.1 nm or more, preferably 1 nm or more, more preferably 3 nm or more, and usually 3 μm or less, preferably 1 μm or less, even more preferably 100 nm or less, and particularly preferably 50 nm or less. The particle size of the graphite particles and the thickness of the amorphous carbon can be measured by observation with an electron microscope such as SEM or TEM. The presence or absence of amorphous carbon can be confirmed by Raman spectroscopy, true density measurement, etc., to confirm its presence and amount.

負極活物質を構成する粒子の形状は特に限定されないが、球状、紡錘状、棒状、柱状のものを使用することができ、球状であることが好ましい。黒鉛質粒子を球状化する方法として、周知の技術を用いて球形化処理を施すことが可能である。例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いて行うことが挙げられる。また、造粒剤を用いて黒鉛質原料を造粒し球形に賦形することが挙げられる。
負極活物質の表面に凹部あるいは凸部を形成してもよい。複雑な凹凸をもつ活物質の場合、本実施形態明の負極における粒子間空隙部のフラクタル次元の絶対値は大きくなる傾向がある。
The shape of the particles constituting the negative electrode active material is not particularly limited, but spherical, spindle-shaped, rod-shaped, and columnar ones can be used, and spherical is preferable. As a method for spheroidizing the graphite particles, it is possible to carry out a spheroidizing process using a well-known technique. For example, it can be carried out using a device that repeatedly applies mechanical actions such as compression, friction, shear force, etc., including particle interactions, mainly impact force, to the particles. In addition, it can be granulated by using a granulating agent to form the graphite raw material into a spherical shape.
Concave or convex portions may be formed on the surface of the negative electrode active material. In the case of an active material having complex concave and convex portions, the absolute value of the fractal dimension of the interparticle voids in the negative electrode of this embodiment tends to be large.

負極活物質を構成する粒子の平均円形度は通常0.7以上1.0以下、好ましくは0.8以上0.97以下、さらに好ましくは0.85以上0.95以下である。平均円形度がこの範囲にあると、負極極板内の粒子間の空隙が均一になりやすい傾向があり、上記粒子間空隙領域の面積比率を適切な範囲としやすくなる。 The average circularity of the particles constituting the negative electrode active material is usually 0.7 to 1.0, preferably 0.8 to 0.97, and more preferably 0.85 to 0.95. When the average circularity is within this range, the gaps between the particles in the negative electrode plate tend to be uniform, and the area ratio of the interparticle gap region is easily within an appropriate range.

負極活物質を構成する粒子の体積基準平均粒径(D50)は、通常0.1μm以上、好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、特に好ましくは4μm以上、最も好ましくは5μm以上、また通常50μm以下、好ましくは30μm以下、より好ましくは25μm以下、更に好ましくは20μm以下、特に好ましくは15μm以下、最も好ましくは10μm以下である。上記範囲を下回ると、不可逆容量が
大きくなり、容量低下するおそれがある。一方、上記範囲を上回ると、入出力特性が低下する傾向があると同時に、極板化した際に、筋引きなどの工程上の不都合が出ることが多く、さらに集電体上に塗布する際に膜厚のむらが生じ易くなる。
The volume-based average particle size (D50) of the particles constituting the negative electrode active material is usually 0.1 μm or more, preferably 1 μm or more, more preferably 2 μm or more, even more preferably 3 μm or more, particularly preferably 4 μm or more, most preferably 5 μm or more, and usually 50 μm or less, preferably 30 μm or less, more preferably 25 μm or less, even more preferably 20 μm or less, particularly preferably 15 μm or less, and most preferably 10 μm or less. If it is below the above range, the irreversible capacity may increase and the capacity may decrease. On the other hand, if it exceeds the above range, the input/output characteristics tend to decrease, and at the same time, when it is made into an electrode plate, there are often process problems such as streaking, and further, when it is applied to a current collector, unevenness in the film thickness is easily generated.

負極活物質を構成する粒子の体積基準粒径(D10)は、通常0.1μm以上、好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、特に好ましくは4μm以上、最も好ましくは5μm以上、また通常30μm以下、好ましくは20μm以下、より好ましくは15μm以下、更に好ましくは10μm以下、特に好ましくは9μm以下、最も好ましくは8μm以下である。上記範囲を下回ると、不可逆容量が大きくなり、容量低下するおそれがある。一方、上記範囲を上回ると、入出力特性が低下する傾向があると同時に、極板化した際に、筋引きなどの工程上の不都合が出ることが多く、さらに集電体上に塗布する際に膜厚のむらが生じ易くなる。 The particle size (D10) based on volume of the particles constituting the negative electrode active material is usually 0.1 μm or more, preferably 1 μm or more, more preferably 2 μm or more, even more preferably 3 μm or more, particularly preferably 4 μm or more, and most preferably 5 μm or more, and usually 30 μm or less, preferably 20 μm or less, more preferably 15 μm or less, even more preferably 10 μm or less, particularly preferably 9 μm or less, and most preferably 8 μm or less. If it is below the above range, the irreversible capacity increases and there is a risk of capacity reduction. On the other hand, if it exceeds the above range, the input/output characteristics tend to decrease, and at the same time, when it is made into an electrode plate, there are often process problems such as streaking, and furthermore, when it is applied to the current collector, unevenness in the film thickness is easily generated.

負極活物質を構成する粒子の体積基準粒径(D90)は、通常0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは8μm以上、特に好ましくは10μm以上、最も好ましくは12μm以上、また通常50μm以下、好ましくは30μm以下、より好ましくは25μm以下、更に好ましくは20μm以下、特に好ましくは18μm以下、最も好ましくは15μm以下である。上記範囲を下回ると、不可逆容量が大きくなり、容量低下するおそれがある。一方、上記範囲を上回ると、入出力特性が低下する傾向があると同時に、極板化した際に、筋引きなどの工程上の不都合が出ることが多く、さらに集電体上に塗布する際に膜厚のむらが生じ易くなる。 The particle size (D90) based on volume of the particles constituting the negative electrode active material is usually 0.1 μm or more, preferably 1 μm or more, more preferably 5 μm or more, even more preferably 8 μm or more, particularly preferably 10 μm or more, and most preferably 12 μm or more, and usually 50 μm or less, preferably 30 μm or less, more preferably 25 μm or less, even more preferably 20 μm or less, particularly preferably 18 μm or less, and most preferably 15 μm or less. If it is below the above range, the irreversible capacity increases and there is a risk of capacity reduction. On the other hand, if it exceeds the above range, the input/output characteristics tend to decrease, and at the same time, when it is made into an electrode plate, there are often process problems such as streaking, and furthermore, when it is applied to the current collector, unevenness in the film thickness is easily generated.

負極活物質を構成する粒子の体積基準粒径(Dmax)は、通常0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上、特に好ましくは15μm以上、最も好ましくは20μm以上、また通常60μm以下、好ましくは55μm以下、より好ましくは50μm以下、更に好ましくは45μm以下、特に好ましくは40μm以下、最も好ましくは35μm以下である。上記範囲を下回ると、不可逆容量が大きくなり、容量低下するおそれがある。一方、上記範囲を上回ると、入出力特性が低下する傾向があると同時に、極板化した際に、筋引きなどの工程上の不都合が出ることが多く、さらに集電体上に塗布する際に膜厚のむらが生じ易くなる。 The particle size (Dmax) of the particles constituting the negative electrode active material is usually 0.1 μm or more, preferably 1 μm or more, more preferably 5 μm or more, even more preferably 10 μm or more, particularly preferably 15 μm or more, and most preferably 20 μm or more, and usually 60 μm or less, preferably 55 μm or less, more preferably 50 μm or less, even more preferably 45 μm or less, particularly preferably 40 μm or less, and most preferably 35 μm or less. If it is below the above range, the irreversible capacity increases and there is a risk of capacity reduction. On the other hand, if it exceeds the above range, the input/output characteristics tend to decrease, and at the same time, when it is made into an electrode plate, there are often process problems such as streaking, and furthermore, when it is applied to the current collector, unevenness in the film thickness is easily generated.

負極活物質を構成する粒子の体積基準粒径(D10)と(D90)の比(D90/D10)は、通常1以上、好ましくは1.5以上、より好ましくは1.8以上、更に好ましくは2以上、特に好ましくは2.2以上、最も好ましくは2.4以上、また通常10以下、好ましくは5以下、より好ましくは4以下、更に好ましくは3.5以下、特に好ましくは3以下、最も好ましくは2.8以下である。上記範囲を下回ると、不可逆容量が大きくなり、容量低下するおそれがある。一方、上記範囲を上回ると、入出力特性が低下する傾向があると同時に、極板化した際に、筋引きなどの工程上の不都合が出ることが多く、さらに集電体上に塗布する際に膜厚のむらが生じ易くなる。
なお、体積基準平均粒径は、測定対象に界面活性剤水溶液(約1mL)を混合し、イオン交換水を分散媒としてレーザー回折式粒度分布計(例えば、堀場製作所社製「LA-920」)にて、体積基準の粒径(D10、メジアン径D50、D90、Dmax)を測定した値を用いる。
The ratio (D90/D10) of the volumetric particle diameter (D10) and (D90) of the particles constituting the negative electrode active material is usually 1 or more, preferably 1.5 or more, more preferably 1.8 or more, even more preferably 2 or more, particularly preferably 2.2 or more, most preferably 2.4 or more, and usually 10 or less, preferably 5 or less, more preferably 4 or less, even more preferably 3.5 or less, particularly preferably 3 or less, most preferably 2.8 or less. If it is below the above range, the irreversible capacity increases and the capacity may decrease. On the other hand, if it exceeds the above range, the input/output characteristics tend to decrease, and at the same time, when it is made into an electrode plate, there are often process problems such as streaking, and further, when it is applied to the current collector, unevenness in the film thickness is easily generated.
The volume-based average particle size is determined by mixing the measurement target with an aqueous surfactant solution (about 1 mL), measuring the volume-based particle size (D10, median diameter D50, D90, Dmax) using a laser diffraction particle size distribution analyzer (for example, HORIBA, Ltd.'s "LA-920") with ion-exchanged water as a dispersion medium.

負極活物質は、平均円形度、体積基準平均粒径の異なる活物質粒子を混合して用いてもよい。負極内の活物質比率を上げることができ、粒子間の空隙の分布が均一になる場合があり、負極を形成する上で好ましい。 The negative electrode active material may be a mixture of active material particles with different average circularity and volume-based average particle size. This can increase the ratio of active material in the negative electrode and may result in a more uniform distribution of voids between particles, which is preferable for forming the negative electrode.

負極活物質を構成する粒子のBET比表面積(SA)は、通常1m/g以上、好ましくは2m/g以上、より好ましくは3m/g以上、更に好ましくは4m/g以上、
特に好ましくは4.5m/g以上、また、上限に関しては、特に限定されないが、通常は20m/g以下、好ましくは15m/g以下、より好ましくは10m/g以下、更に好ましくは6m/g以下、特に好ましくは5m/g以下の範囲である。上記範囲であれば、電池の充放電効率および放電容量が高く、高速充放電においてリチウムイオンの出し入れが速く、レート特性に優れるので好ましい。
なお、BET比表面積は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なった値を用いる。
The BET specific surface area (SA) of the particles constituting the negative electrode active material is usually 1 m 2 /g or more, preferably 2 m 2 /g or more, more preferably 3 m 2 /g or more, and further preferably 4 m 2 /g or more.
Particularly preferably, the surface area is 4.5 m 2 /g or more, and although there is no particular upper limit, the surface area is usually 20 m 2 /g or less, preferably 15 m 2 /g or less, more preferably 10 m 2 /g or less, even more preferably 6 m 2 /g or less, and particularly preferably 5 m 2 /g or less. If the surface area is in the above range, the charge/discharge efficiency and discharge capacity of the battery are high, lithium ions are quickly absorbed and released during high-speed charge/discharge, and the rate characteristics are excellent, which is preferable.
The BET specific surface area is measured by a surface area meter (automatic surface area measurement device manufactured by Ohkura Riken) after pre-drying a sample at 350° C. for 15 minutes under a nitrogen flow, and then measuring the value by a nitrogen adsorption BET single-point method using a gas flow method, using a nitrogen-helium mixed gas accurately adjusted so that the relative pressure of nitrogen to atmospheric pressure is 0.3.

負極活物質を構成する粒子の、以下で算出されるラマンR値は0.35以上1以下であることが好ましい。
ラマンR値=(ラマンスペクトル分析における1360cm-1付近のピークPBの強度IB)/(1580cm-1付近のピークPAの強度IA)
また、ラマンR値は、より好ましくは0.40以上、さらに好ましくは0.45以上であり、特に好ましくは0.48以上であり、より好ましくは0.8以下、さらに好ましくは0.6以下である。上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、高密度化した場合に電極板と平行方向に結晶が配向し易くなり、入出力特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶が乱れ、電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く場合がある。
The particles constituting the negative electrode active material preferably have a Raman R value calculated as follows of 0.35 or more and 1 or less.
Raman R value=(Intensity IB of peak PB at about 1360 cm −1 in Raman spectrum analysis)/(Intensity IA of peak PA at about 1580 cm −1 )
The Raman R value is more preferably 0.40 or more, even more preferably 0.45 or more, particularly preferably 0.48 or more, more preferably 0.8 or less, and even more preferably 0.6 or less. If it is below the above range, the crystallinity of the particle surface becomes too high, and when densified, the crystals tend to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in input/output characteristics. On the other hand, if it exceeds the above range, the crystals on the particle surface are disturbed, and the reactivity with the electrolyte increases, which may lead to a decrease in charge/discharge efficiency and an increase in gas generation.

負極活物質を構成する粒子のタップ密度は、通常0.1g/cm以上、好ましくは0.5g/cm以上、より好ましくは0.7g/cm以上であり、更に好ましくは0.9g/cm以上であり、通常2g/cm以下、好ましくは1.8g/cm以下、より好ましくは1.6g/cm以下、更に好ましくは1.4g/cm以下、特に好ましくは1.2g/cm以下、最も好ましくは1.1g/cm以下である。上記範囲を下回ると、負極とした場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
なお、タップ密度は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から測定した値を用いている。
The tap density of the particles constituting the negative electrode active material is usually 0.1 g/cm 3 or more, preferably 0.5 g/cm 3 or more, more preferably 0.7 g/cm 3 or more, and even more preferably 0.9 g/cm 3 or more, and usually 2 g/cm 3 or less, preferably 1.8 g/cm 3 or less, more preferably 1.6 g/cm 3 or less, even more preferably 1.4 g/cm 3 or less, particularly preferably 1.2 g/cm 3 or less, and most preferably 1.1 g/cm 3 or less. If it is below the above range, it is difficult to increase the packing density when used as a negative electrode, and a high-capacity battery may not be obtained. Also, if it exceeds the above range, the gap between the particles in the electrode becomes too small, making it difficult to ensure the conductivity between the particles, and it may be difficult to obtain preferable battery characteristics.
The tap density is measured by passing a sample through a sieve with 300 μm openings, dropping the sample into a 20 cm3 tapping cell to fill the cell up to the upper end surface of the cell with the sample, and then tapping 1000 times with a stroke length of 10 mm using a powder density meter (e.g., Tap Denser manufactured by Seishin Enterprise Co., Ltd.), and measuring the volume and mass of the sample at that time.

負極活物質が黒鉛質である場合、結晶性(黒鉛化度)は比較的に高い炭素粒子であればその種類や物性は特に限定されないが、具体的にはX線広角回折法による(002)面の面間隔(d002)が、0.335nm以上0.340nm未満の炭素粒子を意味するものとする。また、d002値は0.338nm以下であることが好ましく、0.337nm以下であることがより好ましく、0.336nm以下であることが更に好ましい。 When the negative electrode active material is graphitic, the type and physical properties are not particularly limited as long as the crystallinity (degree of graphitization) is relatively high, but specifically, it means carbon particles in which the interplanar spacing (d002) of the (002) plane measured by wide-angle X-ray diffraction method is 0.335 nm or more and less than 0.340 nm. In addition, the d002 value is preferably 0.338 nm or less, more preferably 0.337 nm or less, and even more preferably 0.336 nm or less.

<1-3.負極の製造方法>
本実施形態の負極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。なお負極とは集電体と集電体上に形成された負極活物質とを備えた状態にあるものを意味するものとする。例えば、負極活物質に、結着剤、溶媒、必要に応じて増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
<1-3. Method for manufacturing negative electrode>
The negative electrode of this embodiment can be manufactured by any known method as long as it does not significantly impair the effects of the present invention. The negative electrode means a state in which a current collector and a negative electrode active material formed on the current collector are provided. For example, the negative electrode can be formed by adding a binder, a solvent, and if necessary, a thickener, a conductive material, a filler, etc. to the negative electrode active material to form a slurry, which is applied to a current collector, dried, and then pressed.

負極の製造に使用する結着剤(バインダー)としては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリ
メチルメタクリレート、芳香族ポリアミド、ポリイミド、ポリアクリル酸、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
The binder used in the production of the negative electrode is not particularly limited as long as it is a material that is stable to the nonaqueous electrolyte solution and the solvent used in the production of the electrode.
Specific examples include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, polyimide, polyacrylic acid, cellulose, and nitrocellulose; rubber-like polymers such as SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluororubber, NBR (acrylonitrile-butadiene rubber), and ethylene-propylene rubber; styrene-butadiene-styrene block copolymers or hydrogenated products thereof; thermoplastic elastomeric polymers such as EPDM (ethylene-propylene-diene terpolymer), styrene-ethylene-butadiene-styrene copolymer, and styrene-isoprene-styrene block copolymer or hydrogenated products thereof; soft resin-like polymers such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene-vinyl acetate copolymer, and propylene-α-olefin copolymer; fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, and polytetrafluoroethylene-ethylene copolymer; and polymer compositions having ionic conductivity for alkali metal ions (particularly lithium ions). These may be used alone or in any combination of two or more in any ratio.

負極活物質に対する結着剤(バインダー)の割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対する結着剤の割合が、上記範囲を上回ると、結着剤量が電池容量に寄与しない結着剤割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。 The ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 0.6% by mass or more, and is preferably 20% by mass or less, more preferably 15% by mass or less, even more preferably 10% by mass or less, and particularly preferably 8% by mass or less. If the ratio of the binder to the negative electrode active material exceeds the above range, the ratio of the binder that does not contribute to the battery capacity increases, which may lead to a decrease in the battery capacity. Also, if it is below the above range, it may lead to a decrease in the strength of the negative electrode.

特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対する結着剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常6質量%以下であり、5質量%以下が好ましく、4質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。 In particular, when the main component is a rubber-like polymer such as SBR, the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 6% by mass or less, preferably 5% by mass or less, and more preferably 4% by mass or less. When the main component is a fluorine-based polymer such as polyvinylidene fluoride, the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more, and usually 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.

スラリーを形成するための溶媒としては、負極活物質、結着剤、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
The solvent for forming the slurry is not particularly limited as long as it is capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and conductive material used as needed, and either an aqueous solvent or an organic solvent may be used.
Examples of the aqueous solvent include water and alcohol, and examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N,N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphatamide, dimethylsulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, and hexane.
In particular, when an aqueous solvent is used, it is preferable to add a dispersant together with the thickener and form a slurry using a latex such as SBR. These solvents may be used alone or in any combination and ratio of two or more.

増粘剤は、通常、スラリーの粘度を調整するために使用される。増粘剤としては特に限定されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。 Thickeners are usually used to adjust the viscosity of the slurry. There are no particular limitations on the thickeners, but specific examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphated starch, casein, and salts thereof. These may be used alone or in any combination and ratio of two or more.

さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量
%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
Furthermore, when a thickener is used, the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less. If the ratio of the thickener to the negative electrode active material is below the above range, the coating property may be significantly reduced. If the ratio exceeds the above range, the ratio of the negative electrode active material in the negative electrode active material layer may be reduced, causing a problem of a decrease in the capacity of the battery and an increase in the resistance between the negative electrode active materials.

導電剤は、充放電電位において、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ-ボンブラック類、炭素繊維、気相成長炭素繊維(VGCF)、金属繊維等の導電性繊維類、フッ化カーボン、銅等の金属粉末類等を単独又はこれらの混合物として含ませることができる。これらの導電剤のなかで、アセチレンブラック、VGCFが特に好ましい。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。導電剤の添加量は、特に限定されないが、負極活物質に対して、1~30質量%が好ましく、特に1~15質量%が好ましい。 The conductive agent may be any electronically conductive material that does not undergo chemical changes at the charge/discharge potential. For example, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, conductive fibers such as carbon fiber, vapor-grown carbon fiber (VGCF), and metal fiber, metal powders such as carbon fluoride, and copper, may be included alone or as a mixture of these. Among these conductive agents, acetylene black and VGCF are particularly preferred. These may be used alone or in combination of two or more. The amount of conductive agent added is not particularly limited, but is preferably 1 to 30% by mass, and more preferably 1 to 15% by mass, based on the negative electrode active material.

負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。 Any known current collector can be used to hold the negative electrode active material. Examples of current collectors include metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel, with copper being particularly preferred in terms of ease of processing and cost.

また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常500μm以下、好ましくは30μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
When the current collector is made of a metal material, the shape of the current collector may be, for example, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punched metal, a foamed metal, etc. Among these, a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil produced by a rolling method and an electrolytic copper foil produced by an electrolytic method are further preferable, and either of them can be used as the current collector.
The thickness of the current collector is usually 1 μm or more, preferably 5 μm or more, and usually 500 μm or less, preferably 30 μm or less. If the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be too low, and conversely, if it is too thin, handling may be difficult.

負極の空隙率は、通常10%以上、好ましくは20%以上、また通常50%以下、好ましくは40%以下である。負極の空隙率がこの範囲を下回ると、負極中の空隙が少なく電解液が浸透し難くなり、好ましい電池特性を得難い場合もある。一方、この範囲を上回ると、負極中の空隙が多く負極強度が弱くなりすぎて、好ましい電池特性を得難い場合もある。負極の空隙率は、負極の水銀ポロシメータによる細孔分布測定によって得られる全細孔容積を、集電体を除いた負極活物質層の見掛け体積で割った値の百分率を用いる。 The porosity of the negative electrode is usually 10% or more, preferably 20% or more, and usually 50% or less, preferably 40% or less. If the porosity of the negative electrode is below this range, the voids in the negative electrode are small, making it difficult for the electrolyte to penetrate, and it may be difficult to obtain desirable battery characteristics. On the other hand, if the porosity exceeds this range, the voids in the negative electrode are large, making the negative electrode strength too weak, and it may be difficult to obtain desirable battery characteristics. The porosity of the negative electrode is calculated as a percentage by dividing the total pore volume obtained by measuring the pore distribution of the negative electrode using a mercury porosimeter by the apparent volume of the negative electrode active material layer excluding the current collector.

集電体上に形成される負極活物質の重量は、片面あたり通常1mg/cm以上であることが好ましい。より好ましくは3mg/cm以上であり、更に好ましくは5mg/cm以上である。また、通常30mg/cm以下であり、より好ましくは20mg/cmであり、更に好ましくは15mg/cm以下であり、最も好ましくは12mg/cm以下である。負極活物質の重量がこの範囲を下回ると、活物質の充填量が低くなり、電池の容量が小さくなる。負極活物質の重量がこの範囲を上回ると、負極内のイオン拡散距離が大きくなるため高レートでの容量が小さくなる場合もある。 The weight of the negative electrode active material formed on the current collector is preferably 1 mg/ cm2 or more per side. More preferably, it is 3 mg/ cm2 or more, and even more preferably, it is 5 mg/ cm2 or more. Also, it is usually 30 mg/ cm2 or less, more preferably, it is 20 mg/ cm2 or less, even more preferably, it is 15 mg/ cm2 or less, and most preferably, it is 12 mg/ cm2 or less. If the weight of the negative electrode active material is below this range, the filling amount of the active material is low, and the capacity of the battery is small. If the weight of the negative electrode active material exceeds this range, the ion diffusion distance in the negative electrode is large, and the capacity at high rates may be small.

<2.非水系二次電池>
本実施形態の負極は、非水系電解液二次電池用負極として有用であることを前述したが、本実施形態の負極を用いた非水系電解液二次電池もまた本発明の一態様である(以下、「本実施形態の非水系電解液二次電池」と略す場合がある。)。なお、本実施形態の非水系電解液二次電池、特にリチウムイオン二次電池の基本的構成は、従来公知のリチウムイオン二次電池と同様であり、通常、金属イオンを吸蔵・放出可能な正極及び負極、並びに電解液を備える。負極としては、前述した本実施形態の負極を用いる。
<2. Non-aqueous secondary battery>
The negative electrode of this embodiment is useful as a negative electrode for a nonaqueous electrolyte secondary battery as described above. A nonaqueous electrolyte secondary battery using the negative electrode of this embodiment is also one aspect of the present invention. (Hereinafter, this may be abbreviated as "the nonaqueous electrolyte secondary battery of this embodiment.") The basic structure of the nonaqueous electrolyte secondary battery of this embodiment, particularly the lithium ion secondary battery, is as follows: The lithium ion secondary battery is similar to a conventionally known lithium ion secondary battery, and generally includes a positive electrode and a negative electrode capable of absorbing and releasing metal ions, and an electrolyte. The negative electrode of the present embodiment described above is used as the negative electrode.

<2-1.正極>
正極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、正極活物質に、結着剤、溶媒、導電材、増粘剤等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることにより形成する方法も用いてもよい。
<2-1. Positive electrode>
The positive electrode can be manufactured by any known method as long as it does not significantly impair the effects of the present invention. For example, a binder, a solvent, a conductive material, a thickener, etc. are added to a positive electrode active material to form a slurry. This may be applied to the current collector, dried, and then pressed to form the current collector.

以下に正極に使用される正極活物質(リチウム遷移金属系化合物)について述べる。リチウム遷移金属系化合物とは、リチウムイオンを吸蔵・放出することが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物などが挙げられる。硫化物としては、TiSやMoSなどの二次元層状構造をもつ化合物や、一般式MeMo(MeはPb,Ag,Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物などが挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO、LiCoPO、LiNiPO、LiMnPOなどが挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn、LiCoMnO、LiNi0.5Mn1.5、LiCoVOなどが挙げられる。層状構造を有するものは、一般的にLiMeO(Meは少なくとも1種以上の遷移金属)と表される。具体的にはLiCoO、LiNiO、LiNi1-xCo、LiNi1-x-yCoMn、LiNi0.5Mn0.5、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiMnOなどが挙げられる。 The positive electrode active material (lithium transition metal compound) used in the positive electrode will be described below. The lithium transition metal compound is a compound having a structure capable of absorbing and releasing lithium ions, and examples thereof include sulfides, phosphate compounds, and lithium transition metal composite oxides. Examples of sulfides include compounds having a two-dimensional layered structure such as TiS 2 and MoS 2 , and Chevrel compounds having a strong three-dimensional skeletal structure represented by the general formula Me x Mo 6 S 8 (Me is various transition metals including Pb, Ag, and Cu). Examples of phosphate compounds include those belonging to an olivine structure, generally represented by LiMePO 4 (Me is at least one or more transition metals), and specifically LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 , and the like. Examples of lithium transition metal composite oxides include those belonging to a spinel structure capable of three-dimensional diffusion and a layered structure that enables two-dimensional diffusion of lithium ions. Those having a spinel structure are generally represented as LiMe2O4 (Me is at least one or more transition metals), and specific examples include LiMn2O4 , LiCoMnO4 , LiNi0.5Mn1.5O4 , and LiCoVO4 . Those having a layered structure are generally represented as LiMeO2 (Me is at least one or more transition metals). Specific examples include LiCoO2 , LiNiO2 , LiNi1 - xCoxO2 , LiNi1 - xyCoxMnyO2 , LiNi0.5Mn0.5O2 , Li1.2Cr0.4Mn0.4O2 , Li1.2Cr0.4Ti0.4O2 , and LiMnO2 .

また、リチウム含有遷移金属化合物は、例えば、下記組成式(A)または(B)で示されるリチウム遷移金属系化合物であることが挙げられる。
1)下記組成式(A)で示されるリチウム遷移金属系化合物である場合
Li1+xMO ・・・(A)
ただし、xは通常0以上、0.5以下である。Mは、Ni及びMn、或いは、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は通常0.1以上、5以下である。Ni/Mモル比は通常0以上、0.5以下である。Co/Mモル比は通常0以上、0.5以下である。なお、xで表されるLiのリッチ分は、遷移金属サイトMに置換している場合もある。
The lithium-containing transition metal compound may be, for example, a lithium transition metal compound represented by the following composition formula (A) or (B).
1) In the case of a lithium transition metal compound represented by the following composition formula (A): Li1 +xMO2 ... (A)
However, x is usually 0 or more and 0.5 or less. M is an element composed of Ni and Mn, or Ni, Mn and Co, and the Mn/Ni molar ratio is usually 0.1 or more and 5 or less. The Ni/M molar ratio is usually 0 or more and 0.5 or less. The Co/M molar ratio is usually 0 or more and 0.5 or less. The Li-rich portion represented by x may be substituted with the transition metal site M.

なお、上記組成式(A)においては、酸素量の原子比は便宜上2と記載しているが、多少の不定比性があってもよい。また、上記組成式中のxは、リチウム遷移金属系化合物の製造段階での仕込み組成である。通常、市場に出回る電池は、電池を組み立てた後に、エージングを行っている。そのため、充放電に伴い、正極のLi量は欠損している場合がある。その場合、組成分析上、3Vまで放電した場合のxが-0.65以上、1以下に測定されることがある。
また、リチウム遷移金属系化合物は、正極活物質の結晶性を高めるために酸素含有ガス雰囲気下で高温焼成を行って焼成されたものが電池特性に優れる。
In the above composition formula (A), the atomic ratio of the oxygen amount is described as 2 for convenience, but some non-stoichiometry is acceptable. In addition, x in the above composition formula is the composition charged at the manufacturing stage of the lithium transition metal compound. Usually, batteries on the market are aged after assembly. Therefore, the amount of Li in the positive electrode may be lost due to charging and discharging. In that case, in the composition analysis, x may be measured to be -0.65 or more and 1 or less when discharged to 3V.
Furthermore, the lithium transition metal compound has excellent battery characteristics when it is sintered at a high temperature in an oxygen-containing gas atmosphere in order to increase the crystallinity of the positive electrode active material.

さらに、組成式(A)で示されるリチウム遷移金属系化合物は、以下一般式(A’)のとおり、213層と呼ばれるLiMOとの固溶体であってもよい。
αLiMO・(1-α)LiM’O・・・(A’)
一般式中、αは、0<α<1を満たす数である。Mは、平均酸化数が4である少なくとも一種の金属元素であり、具体的には、Mn、Zr、Ti、Ru、Re及びPtからな
る群より選択される少なくとも一種の金属元素である。M’は、平均酸化数が3である少なくとも一種の金属元素であり、好ましくは、V、Mn、Fe、Co及びNiからなる群より選択される少なくとも一種の金属元素であり、より好ましくは、Mn、Co及びNiからなる群より選択される少なくとも一種の金属元素である。
Furthermore, the lithium transition metal compound represented by the composition formula (A) may be a solid solution with Li 2 MO 3 , which is called the 213 layer, as shown in the following general formula (A′).
αLi2MO3 . (1-α) LiMO2 ...(A')
In the general formula, α is a number satisfying 0<α<1. M is at least one metal element having an average oxidation number of 4+ , specifically at least one metal element selected from the group consisting of Mn, Zr, Ti, Ru, Re and Pt. M′ is at least one metal element having an average oxidation number of 3+ , preferably at least one metal element selected from the group consisting of V, Mn, Fe, Co and Ni, more preferably at least one metal element selected from the group consisting of Mn, Co and Ni.

2)下記一般式(B)で表されるリチウム遷移金属系化合物である場合
Li[LiaMn2-b-a]O4+δ・・・(B)
ただし、Mは、Ni、Cr、Fe、Co、Cu、Zr、AlおよびMgから選ばれる遷移金属のうちの少なくとも1種から構成される元素である。
bの値は通常0.4以上、0.6以下である。bの値がこの範囲であれば、リチウム遷移金属系化合物における単位重量当たりのエネルギー密度が高い。また、aの値は通常0以上、0.3以下である。また、上記組成式中のaは、リチウム遷移金属系化合物の製造段階での仕込み組成である。通常、市場に出回る電池は、電池を組み立てた後に、エージングを行っている。そのため、充放電に伴い、正極のLi量は欠損している場合がある。その場合、組成分析上、3Vまで放電した場合のaが-0.65以上、1以下に測定されることがある。aの値がこの範囲であれば、リチウム遷移金属系化合物における単位重量当たりのエネルギー密度を大きく損なわず、かつ、良好な負荷特性が得られる。さらに、δの値は通常±0.5の範囲である。δの値がこの範囲であれば、結晶構造としての安定性が高く、このリチウム遷移金属系化合物を用いて作製した電極を有する電池のサイクル特性や高温保存が良好である。
2) In the case of a lithium transition metal compound represented by the following general formula (B): Li[Li a M b Mn 2-b-a ]O 4+δ (B)
Here, M is an element composed of at least one transition metal selected from Ni, Cr, Fe, Co, Cu, Zr, Al and Mg.
The value of b is usually 0.4 or more and 0.6 or less. If the value of b is in this range, the energy density per unit weight in the lithium transition metal compound is high. The value of a is usually 0 or more and 0.3 or less. In addition, a in the above composition formula is the composition at the manufacturing stage of the lithium transition metal compound. Usually, batteries on the market are aged after assembling the battery. Therefore, the amount of Li in the positive electrode may be missing due to charging and discharging. In that case, in the composition analysis, a may be measured to be -0.65 or more and 1 or less when discharged to 3V. If the value of a is in this range, the energy density per unit weight in the lithium transition metal compound is not significantly impaired and good load characteristics are obtained. Furthermore, the value of δ is usually in the range of ±0.5. If the value of δ is in this range, the stability as a crystal structure is high, and the cycle characteristics and high-temperature storage of a battery having an electrode made using this lithium transition metal compound are good.

ここでリチウム遷移金属系化合物の組成であるリチウムニッケルマンガン系複合酸化物におけるリチウム組成の化学的な意味について、以下により詳細に説明する。上記リチウム遷移金属系化合物の組成式のa、bを求めるには、各遷移金属とリチウムを誘導結合プラズマ発光分光分析装置(ICP-AES)で分析して、Li/Ni/Mnの比を求める事で計算される。構造的視点では、aに係るリチウムは、同じ遷移金属サイトに置換されて入っていると考えられる。ここで、aに係るリチウムによって、電荷中性の原理によりMとマンガンの平均価数が3.5価より大きくなる。また、上記リチウム遷移金属系化合物は、フッ素置換されていてもよく、LiMn4-x2xと表記される。 Here, the chemical meaning of the lithium composition in the lithium nickel manganese composite oxide, which is the composition of the lithium transition metal compound, will be described in more detail below. To obtain the a and b in the composition formula of the lithium transition metal compound, each transition metal and lithium are analyzed by an inductively coupled plasma atomic emission spectrometry (ICP-AES) and the Li/Ni/Mn ratio is calculated. From a structural viewpoint, it is considered that the lithium related to a is substituted and inserted into the same transition metal site. Here, the lithium related to a causes the average valence of M and manganese to be greater than 3.5 due to the principle of charge neutrality. In addition, the lithium transition metal compound may be fluorine-substituted and is represented as LiMn 2 O 4-x F 2x .

上記の組成のリチウム遷移金属系化合物の具体例としては、例えば、Li1+xNi0.5Mn0.5、Li1+xNi0.85Co0.10Al0.05、Li1+xNi0.33Mn0.33Co0.33、Li1+xNi0.45Mn0.45Co0.1、Li1+xMn1.8Al0.2、Li1+xMn1.5Ni0.5等が挙げられる。これらのリチウム遷移金属系化合物は、一種を単独で用いてもよく、二種以上をブレンドして用いてもよい。 Specific examples of the lithium transition metal compound having the above composition include Li1 + xNi0.5Mn0.5O2 , Li1 + xNi0.85Co0.10Al0.05O2 , Li1 + xNi0.33Mn0.33Co0.33O2 , Li1 + xNi0.45Mn0.45Co0.1O2 , Li1 +xMn1.8Al0.2O4, Li1+ xMn1.5Ni0.5O4 , etc. These lithium transition metal compounds may be used alone or in combination of two or more.

また、リチウム遷移金属系化合物は、異元素が導入されてもよい。異元素としては、B,Na,Mg,Al,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,I,As,Ge,P,Pb,Sb,SiおよびSnの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。 In addition, a foreign element may be introduced into the lithium transition metal compound. The foreign element is selected from one or more of B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru, Rh, Pd, Ag, In, Sb, Te, Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, N, F, S, Cl, Br, I, As, Ge, P, Pb, Sb, Si, and Sn. These foreign elements may be incorporated into the crystal structure of the lithium transition metal compound, or may be unevenly distributed as a single element or compound on the particle surface or grain boundary without being incorporated into the crystal structure of the lithium transition metal compound.

正極活物質層中のリチウム遷移金属系化合物粉体の含有割合は、通常10重量%以上、99.9重量%以下である。正極活物質層中のリチウム遷移金属系化合物粉体の割合が多すぎると正極の強度が不足する傾向にあり、少なすぎると容量の面で不十分となることが
ある。
The content of the lithium transition metal compound powder in the positive electrode active material layer is usually 10% by weight or more and 99.9% by weight or less. If the content of the lithium transition metal compound powder in the positive electrode active material layer is too high, the strength of the positive electrode tends to be insufficient, and if the content is too low, the capacity may be insufficient.

正極活物質層の製造に用いる結着剤(バインダー)としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して安定な材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよい、2種以上を任意の組み合わせ及び比率で併用してもよい。 There are no particular limitations on the binder used in the manufacture of the positive electrode active material layer. In the case of the coating method, any material that is stable in the liquid medium used in the manufacture of the electrode may be used. Specific examples include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, and nitrocellulose; rubber-like polymers such as SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluororubber, isoprene rubber, butadiene rubber, and ethylene-propylene rubber; styrene-butadiene-styrene block copolymers and their hydrogenated products; and EPDM (ethylene polypropylene dipropylene glycol). Examples of such materials include thermoplastic elastomer-like polymers such as styrene-ethylene-butadiene-ethylene copolymers, styrene-isoprene-styrene block copolymers and hydrogenated products thereof, soft resin-like polymers such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene-vinyl acetate copolymers, and propylene-α-olefin copolymers, fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, and polytetrafluoroethylene-ethylene copolymers, and polymer compositions having ionic conductivity for alkali metal ions (especially lithium ions). These substances may be used alone or in any combination and ratio of two or more.

正極活物質層中の結着剤の割合は、通常0.1重量%以上、80重量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう可能性がある一方で、高すぎると、電池容量や導電性の低下につながる可能性がある。 The proportion of the binder in the positive electrode active material layer is usually 0.1% by weight or more and 80% by weight or less. If the proportion of the binder is too low, the positive electrode may not be able to sufficiently retain the positive electrode active material, resulting in insufficient mechanical strength of the positive electrode and possibly deteriorating battery performance such as cycle characteristics, while if the proportion is too high, it may lead to a decrease in battery capacity and conductivity.

スラリーを形成するための液体媒体としては、リチウム遷移金属系化合物粉体、結着剤、並びに必要に応じて使用される導電材及び増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒の例としては水、アルコールなどが挙げられ、有機系溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。特に水系溶媒を用いる場合、増粘剤に併せて分散剤を加え、SBR等のラテックスを用いてスラリー化する。なお、これらの溶媒は、1種を単独で用いてもよい、2種以上を任意の組み合わせ及び比率で併用してもよい。 The liquid medium for forming the slurry is not particularly limited as long as it is a solvent capable of dissolving or dispersing the lithium transition metal compound powder, the binder, and the conductive material and thickener used as necessary, and either an aqueous solvent or an organic solvent may be used. Examples of aqueous solvents include water and alcohol, and examples of organic solvents include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N,N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF), toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphatamide, dimethylsulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, and hexane. In particular, when an aqueous solvent is used, a dispersant is added together with the thickener, and a slurry is formed using a latex such as SBR. Note that these solvents may be used alone or in any combination and ratio of two or more.

正極を保持させる集電体としては、公知のものを任意に用いることができる。正極の集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特にアルミニウムが好ましい。正極活物質と集電体の導電性を向上させるため炭素材料を集電体上に形成してもよい。
正極活物質層の厚さは、通常10~200μm程度である。正極のプレス後の電極密度としては、通常、2.2g/cm以上、4.2g/cm以下である。なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。
Any known current collector can be used to hold the positive electrode. Examples of the current collector for the positive electrode include metal materials such as aluminum, stainless steel, and nickel-plated steel, and aluminum is particularly preferred in terms of ease of processing and cost. A carbon material may be formed on the current collector to improve the conductivity of the positive electrode active material and the current collector.
The thickness of the positive electrode active material layer is usually about 10 to 200 μm. The electrode density after pressing of the positive electrode is usually 2.2 g/cm 3 or more and 4.2 g/cm 3 or less. The positive electrode active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material.

<2-2.非水電解質>
非水電解質としては、例えば公知の非水系電解液、高分子固体電解質、ゲル状電解質、無機固体電解質等を用いることができるが、中でも非水系電解液が好ましい。非水系電解液は、非水系溶媒に溶質(電解質)を溶解させて構成される。
<2-2. Nonaqueous electrolyte>
As the non-aqueous electrolyte, for example, a known non-aqueous electrolyte solution, a polymer solid electrolyte, a gel electrolyte, an inorganic solid electrolyte, etc. can be used, among which a non-aqueous electrolyte solution is preferable. It is composed of a solute (electrolyte) dissolved in a solvent.

(電解質)
非水系電解液に用いられる電解質には制限はなく、電解質として用いられる公知のものを任意に採用して含有させることができる。非水系電解液を非水系電解液二次電池に用いる場合には、電解質はリチウム塩が好ましい。電解質の具体例としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、フルオロスルホン酸リチウム等が挙げられる。これらの電解質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Electrolytes)
There is no limitation on the electrolyte used in the non-aqueous electrolyte, and any known electrolyte may be used and contained. When the non-aqueous electrolyte is used in a non-aqueous electrolyte secondary battery, the electrolyte is preferably a lithium salt. Specific examples of the electrolyte include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , lithium bis(oxalato)borate, lithium difluorooxalatoborate, lithium tetrafluorooxalatophosphate, lithium difluorobis(oxalato)phosphate, and lithium fluorosulfonate. These electrolytes may be used alone or in any combination and ratio of two or more.

リチウム塩の電解液中の濃度は任意であるが、通常0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.8mol/L以上、また、通常3mol/L以下、好ましくは2mol/L以下、より好ましくは1.5mol/L以下の範囲である。リチウムの総モル濃度が上記範囲内にあることにより、電解液の電気伝導率が十分となり、一方、粘度上昇による電気伝導度の低下、電池性能の低下を防ぐことができる。 The concentration of the lithium salt in the electrolyte is arbitrary, but is usually 0.5 mol/L or more, preferably 0.6 mol/L or more, more preferably 0.8 mol/L or more, and is usually 3 mol/L or less, preferably 2 mol/L or less, more preferably 1.5 mol/L or less. By having the total molar concentration of lithium within the above range, the electrical conductivity of the electrolyte is sufficient, while at the same time, a decrease in electrical conductivity due to an increase in viscosity and a decrease in battery performance can be prevented.

(非水系溶媒)
非水系電解液が含有する非水系溶媒は、電池として使用した際に、電池特性に対して悪影響を及ぼさない溶媒であれば特に制限されないが、通常使用される非水系溶媒の例としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート、エチレンカーボネート、フルオロエチレンカーボネート、エチニルエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル等の鎖状カルボン酸エステル、γ-ブチロラクトン等の環状カルボン酸エステル、ジメトキシエタン、ジエトキシエタン等の鎖状エーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル、アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル等のニトリル、リン酸トリメチル、リン酸トリエチル等のリン酸エステル、エチレンサルファイト、1,3-プロパンスルトン、メタンスルホン酸メチル、スルホラン、ジメチルスルホン等の含硫黄化合物等が挙げられ、これら化合物は、水素原子が一部ハロゲン原子で置換されていてもよい。これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用することが好ましい。例えば、環状カーボネートや環状カルボン酸エステル等の高誘電率溶媒と、鎖状カーボネートや鎖状カルボン酸エステル等の低粘度溶媒とを併用するのが好ましい。
(Non-aqueous solvent)
The non-aqueous solvent contained in the non-aqueous electrolyte solution is not particularly limited as long as it is a solvent that does not adversely affect the battery characteristics when used as a battery. Examples of commonly used non-aqueous solvents include chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate, cyclic carbonates such as ethylene carbonate, fluoroethylene carbonate, ethynylethylene carbonate, propylene carbonate, and butylene carbonate, chain carboxylate esters such as methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate, and γ-butyrolactone. Examples of the solvent include cyclic carboxylates such as cyclic carboxylates, chain ethers such as dimethoxyethane and diethoxyethane, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, and tetrahydropyran, nitriles such as acetonitrile, propionitrile, benzonitrile, butyronitrile, and valeronitrile, phosphates such as trimethyl phosphate and triethyl phosphate, and sulfur-containing compounds such as ethylene sulfite, 1,3-propane sultone, methyl methanesulfonate, sulfolane, and dimethylsulfone, and the hydrogen atoms of these compounds may be partially substituted with halogen atoms. These may be used alone or in combination of two or more kinds, but it is preferable to use two or more kinds of compounds in combination. For example, it is preferable to use a high-dielectric constant solvent such as a cyclic carbonate or a cyclic carboxylate in combination with a low-viscosity solvent such as a chain carbonate or a chain carboxylate.

ここで、高誘電率溶媒とは、25℃における比誘電率が20以上の化合物を意味する。高誘電率溶媒の中でも、エチレンカーボネート、プロピレンカーボネート、及び、それらの水素原子をハロゲン等の他の元素又はアルキル基等で置換した化合物が、電解液中に含まれることが好ましい。高誘電率溶媒の電解液に占める割合は、好ましくは15重量%以上、更に好ましくは20重量%以上、最も好ましくは25重量%以上である。高誘電率溶媒の含有量が上記範囲よりも少ないと、所望の電池特性が得られない場合がある。 Here, a high dielectric constant solvent means a compound with a relative dielectric constant of 20 or more at 25°C. Among high dielectric constant solvents, ethylene carbonate, propylene carbonate, and compounds in which the hydrogen atoms of these solvents are substituted with other elements such as halogens or alkyl groups are preferably contained in the electrolyte. The proportion of the high dielectric constant solvent in the electrolyte is preferably 15% by weight or more, more preferably 20% by weight or more, and most preferably 25% by weight or more. If the content of the high dielectric constant solvent is less than the above range, the desired battery characteristics may not be obtained.

(助剤)
非水系電解液には、上述の電解質、非水系溶媒以外に、目的に応じて適宜助剤を配合してもよい。負極表面に皮膜を形成するため、電池の寿命を向上させる効果を有する助剤としては、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネート等の不飽和環状カーボネート、フルオロエチレンカーボネート等のフッ素原子を有する環状カーボネート、4-フルオロビニレンカーボネート等のフッ素化不飽和環状カーボネート等が挙げられる。電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制する過充電防止剤として、ビフェニル、シクロヘキシルベンゼン、ジフェニルエー
テル、t-ブチルベンゼン、t-ペンチルベンゼン、ジフェニルカーボネート、メチルフェニルカーボネート等の芳香族化合物等が挙げられる。サイクル特性や低温放電特性を向上させる助剤として、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム、フルオロスルホン酸リチウム、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビス(オキサラト)フォスフェート等のリチウム塩等が挙げられる。高温保存後の容量維持特性やサイクル特性を向上させることができる助剤として、エチレンサルファイト、プロパンスルトン、プロペンスルトン等の含硫黄化合物、無水コハク酸、無水マレイン酸、無水シトラコン酸等のカルボン酸無水物、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル等のニトリル化合物が挙げられる。これら助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
(Auxiliary Agent)
In addition to the above-mentioned electrolyte and non-aqueous solvent, the non-aqueous electrolyte may contain an auxiliary agent according to the purpose. Examples of the auxiliary agent that has the effect of improving the life of the battery by forming a film on the surface of the negative electrode include unsaturated cyclic carbonates such as vinylene carbonate, vinylethylene carbonate, and ethynylethylene carbonate, cyclic carbonates having fluorine atoms such as fluoroethylene carbonate, and fluorinated unsaturated cyclic carbonates such as 4-fluorovinylene carbonate. Examples of the overcharge inhibitor that effectively suppresses the explosion and ignition of the battery when the battery is in an overcharged state include aromatic compounds such as biphenyl, cyclohexylbenzene, diphenyl ether, t-butylbenzene, t-pentylbenzene, diphenyl carbonate, and methylphenyl carbonate. Examples of the auxiliary agent for improving the cycle characteristics and low-temperature discharge characteristics include lithium salts such as lithium monofluorophosphate, lithium difluorophosphate, lithium fluorosulfonate, lithium bis(oxalato)borate, lithium difluorooxalatoborate, lithium tetrafluorooxalatophosphate, and lithium difluorobis(oxalato)phosphate. Examples of the auxiliary agent for improving the capacity maintenance characteristics and cycle characteristics after high-temperature storage include sulfur-containing compounds such as ethylene sulfite, propane sultone, and propene sultone, carboxylic acid anhydrides such as succinic anhydride, maleic anhydride, and citraconic anhydride, and nitrile compounds such as succinonitrile, glutaronitrile, adiponitrile, and pimelonitrile. The blending amount of these auxiliary agents is not particularly limited and may be any amount as long as it does not significantly impair the effects of the present invention.

非水系電解液は、電解液中に有機高分子化合物を含ませ、ゲル状または、ゴム状、或いは固体シート状の固体電解質としてもよい。この場合、有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピークロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω-メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω-メトキシオリゴオキシエチレンメタクリレート-co-メチルメタクリレート)等のポリマー共重合体などが挙げられる。 The non-aqueous electrolyte may contain an organic polymer compound to form a gel-like, rubber-like, or solid sheet-like solid electrolyte. In this case, specific examples of the organic polymer compound include polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide; crosslinked polymers of polyether-based polymer compounds; vinyl alcohol-based polymer compounds such as polyvinyl alcohol and polyvinyl butyral; insolubilized vinyl alcohol-based polymer compounds; polyepoxy chlorohydrin; polyphosphazene; polysiloxane; vinyl-based polymer compounds such as polyvinylpyrrolidone, polyvinylidene carbonate, and polyacrylonitrile; and polymer copolymers such as poly(ω-methoxyoligooxyethylene methacrylate) and poly(ω-methoxyoligooxyethylene methacrylate-co-methyl methacrylate).

<2-3.セパレータ>
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、非水系電解液は、通常はこのセパレータに含浸させて用いる。
<2-3. Separator>
A separator is usually interposed between the positive electrode and the negative electrode to prevent short circuiting. In this case, the non-aqueous electrolyte is usually impregnated into the separator before use.

セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。 There are no particular limitations on the material or shape of the separator, and any known material may be used as long as it does not significantly impair the effects of the present invention. Among these, it is preferable to use materials that are stable against non-aqueous electrolytes, such as resins, glass fibers, and inorganic substances, and to use porous sheets or nonwoven fabrics with excellent liquid retention.

樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Materials that can be used for the resin and glass fiber separator include, for example, polyolefins such as polyethylene and polypropylene, aromatic polyamides, polytetrafluoroethylene, polyethersulfone, and glass filters. Among these, glass filters and polyolefins are preferred, and polyolefins are even more preferred. These materials may be used alone or in any combination and ratio of two or more.

セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。 The thickness of the separator is arbitrary, but is usually 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, and is usually 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less. If the separator is thinner than the above range, the insulation properties and mechanical strength may decrease. Furthermore, if the separator is thicker than the above range, not only may the battery performance such as rate characteristics decrease, but the energy density of the nonaqueous electrolyte secondary battery as a whole may decrease.

さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強
度が低下し、絶縁性が低下する傾向にある。
Furthermore, when a porous material such as a porous sheet or nonwoven fabric is used as the separator, the porosity of the separator is optional, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, and is usually 90% or less, preferably 85% or less, more preferably 75% or less. If the porosity is too small, the membrane resistance tends to increase and the rate characteristics tend to deteriorate. If the porosity is too large, the mechanical strength of the separator tends to decrease and the insulating properties tend to decrease.

また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。 The average pore size of the separator can also be any size, but is usually 0.5 μm or less, preferably 0.2 μm or less, and usually 0.05 μm or more. If the average pore size exceeds the above range, short circuits are more likely to occur. If the average pore size is below the above range, the membrane resistance increases and the rate characteristics may deteriorate.

一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。 On the other hand, inorganic materials include, for example, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate, and are used in particulate or fibrous form.

形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着材を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として多孔層を形成させることが挙げられる。 As for the form, a thin film such as a nonwoven fabric, woven fabric, or microporous film is used. In the thin film form, a film with a pore size of 0.01 to 1 μm and a thickness of 5 to 50 μm is preferably used. In addition to the above independent thin film form, a separator can be used in which a composite porous layer containing the above inorganic particles is formed on the surface layer of the positive electrode and/or negative electrode using a resin binder. For example, a porous layer can be formed on both sides of the positive electrode using alumina particles with a 90% particle size of less than 1 μm and a fluororesin as a binder.

セパレータの非電解液二次電池における特性を、ガーレ値で把握することができる。ガーレ値とは、フィルム厚さ方向の空気の通り抜け難さを示し、100mlの空気が該フィルムを通過するのに必要な秒数で表されるため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚さ方向の連通性がよいことを意味し、その数値が大きい方がフィルムの厚さ方向の連通性が悪いことを意味する。連通性とは、フィルム厚さ方向の孔のつながり度合いである。本発明のセパレータのガーレ値が低ければ、様々な用途に使用することが出来る。例えば非水系リチウム二次電池のセパレータとして使用した場合、ガーレ値が低いということは、リチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。セパレータのガーレ値は、任意ではあるが、好ましくは10~1000秒/100mlであり、より好ましくは15~800秒/100mlであり、更に好ましくは20~500秒/100mlである。ガーレ値が1000秒/100ml以下であれば、実質的には電気抵抗が低く、セパレータとしては好ましい。 The characteristics of the separator in a non-electrolyte secondary battery can be understood by the Gurley value. The Gurley value indicates the difficulty of air passing through in the film thickness direction, and is expressed as the number of seconds required for 100 ml of air to pass through the film, so a smaller value means that air passes through easily, and a larger value means that air passes through less easily. In other words, a smaller value means that the film has better interconnectivity in the thickness direction, and a larger value means that the film has worse interconnectivity in the thickness direction. Interconnectivity is the degree of connection of pores in the film thickness direction. If the separator of the present invention has a low Gurley value, it can be used for various purposes. For example, when used as a separator for a non-aqueous lithium secondary battery, a low Gurley value means that lithium ions are easily transferred, and is preferable because it provides excellent battery performance. The Gurley value of the separator is arbitrary, but is preferably 10 to 1000 seconds/100 ml, more preferably 15 to 800 seconds/100 ml, and even more preferably 20 to 500 seconds/100 ml. If the Gurley value is 1000 seconds/100 ml or less, the electrical resistance is substantially low and it is preferable as a separator.

<2-4.電池設計>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
<2-4. Battery Design>
The electrode group may have a laminated structure in which the positive electrode plate and the negative electrode plate are sandwiched between the separator, or a structure in which the positive electrode plate and the negative electrode plate are spirally wound with the separator between them. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupancy rate) is usually 40% or more, preferably 50% or more, and usually 90% or less, and preferably 80% or less. % or less is preferable.

電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。 If the electrode group occupancy rate falls below the above range, the battery capacity will be small. If it exceeds the above range, there will be little void space, and the battery will become hot, causing the components to expand and the vapor pressure of the electrolyte liquid components to increase, resulting in an increase in internal pressure. This will reduce the battery's various characteristics, such as repeated charge/discharge performance and high-temperature storage, and may even activate the gas release valve that releases internal pressure to the outside.

<2-5.外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属
、ラミネートフィルムが好適に用いられる。
<2-5. Outer case>
The material of the exterior case is not particularly limited as long as it is a material that is stable against the non-aqueous electrolyte used.Specifically, metals such as nickel-plated steel sheet, stainless steel, aluminum or aluminum alloy, magnesium alloy, or a laminate film of resin and aluminum foil (laminate film) are used.From the viewpoint of weight reduction, metals such as aluminum or aluminum alloy, and laminate film are preferably used.

金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。 In the case of an exterior case using metals, the metals are welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed structure, or the metals are used via a resin gasket to form a crimped structure. In the case of an exterior case using the above-mentioned laminate film, the resin layers are heat-sealed together to form a sealed structure. In order to improve the sealing properties, a resin different from the resin used in the laminate film may be interposed between the resin layers. In particular, when the resin layers are heat-sealed via a current collecting terminal to form a sealed structure, a resin having a polar group or a modified resin into which a polar group has been introduced is preferably used as the interposed resin, since the metal and resin are joined.

<2-6.保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<2-6. Protection elements>
As the protective element, a PTC (Positive Temperature Coefficient) whose resistance increases when abnormal heat generation or excessive current flows, a temperature fuse, a thermistor, a valve (current cutoff valve) that cuts off the current flowing in the circuit due to a sudden increase in the internal pressure or temperature of the battery when abnormal heat generation occurs, etc. It is preferable to select the above protective element under conditions that do not operate under normal use at high current, and it is more preferable to design it so that abnormal heat generation or thermal runaway does not occur even without the protective element.

<2-7.外装体>
本実施形態の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
<2-7. Exterior body>
The nonaqueous electrolyte secondary battery of this embodiment is usually configured by housing the above-mentioned nonaqueous electrolyte, negative electrode, positive electrode, separator, etc. in an exterior body. This exterior body is not particularly limited, and any known exterior body can be used as long as it does not significantly impair the effects of the present invention. Specifically, the material of the exterior body is arbitrary, but usually, for example, nickel-plated iron, stainless steel, aluminum or its alloy, nickel, titanium, etc. are used.
The shape of the exterior body may also be arbitrary, and may be, for example, cylindrical, rectangular, laminated, coin-shaped, large, or the like.

次に実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例によって何ら限定されるものではない。 The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples in any way as long as the gist of the invention is not exceeded.

[画像解析]
実施例/比較例/参考例で得られた負極表面の画像解析は以下のように行った。
(1)負極表面画像の取得
走査型顕微鏡を用いて、負極表面のSEM画像(二次電子像)を取得した。測定条件は以下とする。一画像中に粒子数が200以上含まれるように、電極表面の異なる場所の表面SEM画像を任意に15ヶ所取得した。
条件:加速電圧5kV、倍率500倍、1280×960ピクセル、8ビット画像、
(2)二値化処理
各画像に対して、画像解析ソフト(ImageJ)を用い、粒子及び粒子間空隙が明瞭に区別できるように、Yen法により輝度の閾値を調整し、二値化処理した。
(3)フラクタル次元および標準偏差の取得
二値化処理後の画像に対して、ボックスカウント法によるフラクタル次元を求めた。画像解析ソフトは同様にImage Jを用いた。ボックスサイズ(ε)は2ピクセルから64ピクセルまでとし、横軸log(ε)、縦軸log(n)グラフの直線領域の傾きを-D(Dはフラクタル次元)とした。取得した15画像それぞれに対してフラクタル次元Dを求め、その標準偏差σをフラクタル次元の標準偏差とした。
[Image analysis]
Image analysis of the negative electrode surfaces obtained in the Examples, Comparative Examples, and Reference Examples was carried out as follows.
(1) Acquiring an image of the negative electrode surface
A scanning electron microscope was used to obtain an SEM image (secondary electron image) of the negative electrode surface. The measurement conditions were as follows: 15 surface SEM images were obtained at random from different locations on the electrode surface so that each image contained 200 or more particles.
Conditions: Acceleration voltage 5 kV, magnification 500x, 1280 x 960 pixels, 8-bit image,
(2) Binarization process Each image was binarized using image analysis software (ImageJ) by adjusting the brightness threshold value according to the Yen method so that particles and interparticle voids could be clearly distinguished.
(3) Obtaining Fractal Dimension and Standard Deviation The fractal dimension was obtained by the box counting method for the binarized image. Image J was used as the image analysis software. The box size (ε) was set to 2 to 64 pixels, and the slope of the linear region of the graph with the horizontal axis log(ε) and the vertical axis log(n) was set to -D (D is the fractal dimension). The fractal dimension D was obtained for each of the 15 images obtained, and the standard deviation σ was set to the standard deviation of the fractal dimension.

[比較例1]
<負極活物質の作成>
球形化天然黒鉛と非晶質炭素前駆体としてナフサ熱分解時に得られる石油系重質油を混合し、不活性ガス中で1100℃熱処理を施した後、焼成物を粉砕・分級処理することにより、体積基準平均粒径(D50)が11.6μm、BET比表面積(SA)が4.2m/g、タップ密度が1.08g/cmの、黒鉛とその表面を被覆する非晶質炭素層を有する複合粒子(複層構造炭素材)を得た。焼成収率から、得られた複層構造炭素材は、黒鉛100質量部に対して3.5質量部の非晶質炭素で被覆されていることが確認された。結果を表1に示す。
[Comparative Example 1]
<Preparation of negative electrode active material>
Spheroidized natural graphite was mixed with petroleum-based heavy oil obtained during naphtha pyrolysis as an amorphous carbon precursor, and the mixture was subjected to heat treatment at 1100°C in an inert gas. The fired product was then pulverized and classified to obtain composite particles (multilayered carbon material) having a volume-based average particle size (D50) of 11.6 μm, a BET specific surface area (SA) of 4.2 m 2 /g, and a tap density of 1.08 g/cm 3 , which include graphite and an amorphous carbon layer covering the surface of the graphite. From the firing yield, it was confirmed that the obtained multilayered carbon material was covered with 3.5 parts by mass of amorphous carbon per 100 parts by mass of graphite. The results are shown in Table 1.

<負極シートの作製>
前述の比較例1で作成した複層構造炭素材を負極活物質として用い、活物質層密度1.20±0.03g/cmの活物質層を有する極板を作製した。具体的には、複層構造炭素材20.00±0.02gに、1質量%カルボキシメチルセルロースナトリウム塩水溶液を20.00±0.02g(固形分換算で0.200g)、及び重量平均分子量27万のスチレン・ブタジエンゴム水性ディスパージョン0.50±0.05g(固形分換算で0.2g)を加えて、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た。このスラリーを、集電体である厚さ10μmの銅箔上に、負極活物質が6.0±0.3mg/cm付着するように、ダイコーターで幅5cmに塗布し、熱風乾燥を行った。乾燥後、直径20cmのローラを用いて、プレス荷重(線圧)331kgf/5cmでロールプレスして、活物質層の密度が1.20±0.03g/cmになるよう調整し電極シートを得た。
<Preparation of negative electrode sheet>
The multilayer carbon material prepared in the above Comparative Example 1 was used as the negative electrode active material, and an electrode plate having an active material layer with an active material layer density of 1.20±0.03 g/cm 3 was prepared. Specifically, 20.00±0.02 g of a 1% by mass carboxymethylcellulose sodium salt aqueous solution (0.200 g in terms of solid content) and 0.50±0.05 g of a styrene-butadiene rubber aqueous dispersion with a weight average molecular weight of 270,000 (0.2 g in terms of solid content) were added to 20.00±0.02 g of the multilayer carbon material, and the mixture was stirred for 5 minutes with a Keyence hybrid mixer and degassed for 30 seconds to obtain a slurry. This slurry was applied to a width of 5 cm with a die coater on a copper foil with a thickness of 10 μm, which is a current collector, so that the negative electrode active material adhered to 6.0±0.3 mg/cm 2 , and then dried with hot air. After drying, the active material layer was roll pressed using a roller having a diameter of 20 cm at a press load (linear pressure) of 331 kgf/5 cm to adjust the density of the active material layer to 1.20±0.03 g/cm 3 , thereby obtaining an electrode sheet.

プレス後の得られた電極シート表面の異なる15ヶ所を任意に選択し、前述の測定条件で表面SEM像を取得した。得られたSEM画像それぞれに対し、前述の画像解析ソフトを用いて二値化し、ボックスカウント法によりフラクタル次元およびフラクタル次元の標準偏差を求めた。結果を表2に示す。 Fifteen different locations on the surface of the electrode sheet obtained after pressing were randomly selected, and surface SEM images were obtained under the measurement conditions described above. Each of the obtained SEM images was binarized using the image analysis software described above, and the fractal dimension and the standard deviation of the fractal dimension were determined using the box counting method. The results are shown in Table 2.

<正極シートの作製>
正極は、正極活物質としてのニッケル-マンガンーコバルト酸リチウム(LiNiMnCoO)90質量%と、導電材としてのアセチレンブラック7質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)3質量%とを、N-メチルピロリドン溶媒中で混合してスラリーを得た。
このスラリーを、集電体である厚さ15μmのアルミニウム箔上に正極活物質が13.7±0.5mg/cm付着するように、塗布し、乾燥した。更にロールプレスを行い、正極密度が2.60±0.05g/cmになるよう調整し電極シートを得た。
<Preparation of Positive Electrode Sheet>
The positive electrode was prepared by mixing 90% by mass of lithium nickel-manganese-cobalt oxide (LiNiMnCoO 2 ) as a positive electrode active material, 7% by mass of acetylene black as a conductive material, and 3% by mass of polyvinylidene fluoride (PVdF) as a binder in an N-methylpyrrolidone solvent to obtain a slurry.
This slurry was applied onto a 15 μm thick aluminum foil current collector so that the positive electrode active material was attached at 13.7±0.5 mg/cm 2 , and then dried. Further, roll pressing was performed to adjust the positive electrode density to 2.60±0.05 g/cm 3 , thereby obtaining an electrode sheet.

<非水電解液二次電池(ラミネート型電池)の作製>
上記方法で作製した正極シートと負極シート、及びポリエチレン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素を筒状のアルミニウムラミネートフィルムで包み込み、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の混合溶媒(体積比=3:7)に、LiPFを1mol/Lになるように溶解させ、さらにビニレンカーボネート(VC)とリチウムビス(オキサラト)ボレート(LiBOB)を添加した電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
<Preparation of non-aqueous electrolyte secondary battery (laminated type battery)>
The positive electrode sheet and the negative electrode sheet prepared by the above method, and the polyethylene separator were laminated in the order of the negative electrode, the separator, and the positive electrode. The battery element thus obtained was wrapped in a cylindrical aluminum laminate film, and LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio = 3: 7) so as to be 1 mol / L, and an electrolyte solution containing vinylene carbonate (VC) and lithium bis (oxalato) borate (LiBOB) was further injected, followed by vacuum sealing to prepare a sheet-shaped non-aqueous electrolyte secondary battery. Furthermore, in order to increase the adhesion between the electrodes, the sheet-shaped battery was sandwiched between glass plates and pressure was applied.

<低温出力特性>
上記作製したラミネート型非水電解液二次電池を用いて、下記の測定方法で低温出力特性を測定した。
充放電サイクルを経ていない非水電解液二次電池に対して、25℃で電圧範囲4.1V
~3.0V、電流値0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)にて3サイクル初期充放電を行った。3サイクル目の放電容量を初期容量とした。
<Low temperature output characteristics>
Using the laminate type nonaqueous electrolyte secondary battery prepared above, low-temperature output characteristics were measured by the following measurement method.
For a non-aqueous electrolyte secondary battery that has not undergone charge/discharge cycles, the voltage range is 4.1 V at 25°C.
Three cycles of initial charge and discharge were performed at up to 3.0 V and a current value of 0.2 C (the current value at which the rated capacity based on the discharge capacity at a one-hour rate is discharged in one hour is defined as 1 C, the same applies below). The discharge capacity at the third cycle was defined as the initial capacity.

さらに、SOC(充電率)50%まで電流値0.2Cで充電を行った後、-30℃の低温環境下で、1/8C、1/4C、1/2C、1.5C、2.5C、3.5C、5Cの各電流値で10秒間定電流放電させ、各々の条件の充電における2秒後の電池電圧の降下を測定し、それらの測定値から放電下限電圧を3.0Vとした際に、2秒間に流すことのできる電流値Iを算出し、3.0×I(W)という式で計算される値をそれぞれの電池の低温出力特性とした。比較例1の電池の低温出力値を100とし、後述の実施例および参考例の電池は低温出力比で示した。 Furthermore, after charging at a current value of 0.2C up to an SOC (charge rate) of 50%, constant current discharge was performed for 10 seconds at current values of 1/8C, 1/4C, 1/2C, 1.5C, 2.5C, 3.5C, and 5C in a low-temperature environment of -30°C, and the drop in battery voltage after 2 seconds of charging under each condition was measured. From these measurements, the current value I that could be passed for 2 seconds when the lower discharge voltage limit was set to 3.0V was calculated, and the value calculated using the formula 3.0 x I (W) was used as the low-temperature output characteristic of each battery. The low-temperature output value of the battery in Comparative Example 1 was set to 100, and the batteries in the Examples and Reference Examples described below were shown as low-temperature output ratios.

<高温保存特性>
低温出力測定を実施した電池を25℃の環境下で、SOC80%まで電流値0.2Cで充電を行った後、60℃の環境下で2週間保存を行った。保存後の電池を25℃の環境下で電流値0.2Cで、3.0Vまで放電したときの容量(残存容量)と、さらに電流値0.2Cで4.1V~3.0Vで充放電を行ったときの放電容量(回復容量)を測定した。
60℃保存後の回復容量/初期容量の比を計算し、高温保存容量維持率とした。比較例1の電池の高温保存容量維持率を100とし、後述の実施例および参考例の電池は高温保存容量維持率比で示した。結果を表2に示す。また、図2に高温保存特性と低温出力特性の相関を示す。
<High temperature storage characteristics>
The battery for which the low-temperature output measurement was performed was charged to 80% SOC at a current value of 0.2 C in an environment of 25° C., and then stored for 2 weeks in an environment of 60° C. After storage, the battery was discharged to 3.0 V at a current value of 0.2 C in an environment of 25° C., and the capacity (remaining capacity) was measured, and further charging and discharging was performed from 4.1 V to 3.0 V at a current value of 0.2 C to measure the discharge capacity (recovery capacity).
The ratio of the recovered capacity after storage at 60°C to the initial capacity was calculated and taken as the high-temperature storage capacity retention rate. The high-temperature storage capacity retention rate of the battery of Comparative Example 1 was set to 100, and the batteries of the Examples and Reference Examples described below were shown in terms of the high-temperature storage capacity retention rate ratio. The results are shown in Table 2. Also, Fig. 2 shows the correlation between high-temperature storage characteristics and low-temperature output characteristics.

<実施例1>
体積基準平均粒径(D50)が10.6μm、BET比表面積(SA)が4.6m/g、タップ密度が1.07g/cmの、黒鉛とその表面を被覆する非晶質炭素層を有する複合粒子を使用し、プレス荷重(線圧)272kgf/5cmでロールプレスしたこと以外は、比較例1と同様の方法で非水系二次電池を作製し、作製した非水系二次電池に対し比較例1と同様の評価を行った。結果を表2に示す。
Example 1
A nonaqueous secondary battery was fabricated in the same manner as in Comparative Example 1, except that composite particles having graphite with a volume-based average particle size (D50) of 10.6 μm, a BET specific surface area (SA) of 4.6 m 2 /g, and a tap density of 1.07 g/cm 3 and an amorphous carbon layer covering the surface of the graphite were used and roll pressed with a press load (linear pressure) of 272 kgf/5 cm. The fabricated nonaqueous secondary battery was evaluated in the same manner as in Comparative Example 1. The results are shown in Table 2.

<実施例2>
体積基準平均粒径(D50)が8.2μm、BET比表面積(SA)が4.8m/g、タップ密度が1.06g/cmの、黒鉛100質量部に対して4.1質量部の非晶質炭素で被覆されている複合粒子を使用し、プレス荷重(線圧)397kgf/5cmでロールプレスしたこと以外は、比較例1と同様の方法で非水系二次電池を作製し、作製した非水系二次電池に対し比較例1と同様の評価を行った。結果を表2に示す。
Example 2
A nonaqueous secondary battery was fabricated in the same manner as in Comparative Example 1 , except that composite particles coated with 4.1 parts by mass of amorphous carbon per 100 parts by mass of graphite, with a volume-based average particle size (D50) of 8.2 μm, a BET specific surface area (SA) of 4.8 m 2 /g, and a tap density of 1.06 g/cm 3, were used and roll pressed with a press load (linear pressure) of 397 kgf/5 cm, and the fabricated nonaqueous secondary battery was evaluated in the same manner as in Comparative Example 1. The results are shown in Table 2.

<参考例1>
体積基準平均粒径(D50)が11.6μm、BET比表面積(SA)が5.3m/g、タップ密度が0.96g/cmの、黒鉛100質量部に対して4.3質量部の非晶質炭素と3質量部のカーボンブラックで被覆されている複合粒子を使用し、プレス荷重(線圧)495kgf/5cmでロールプレスしたこと以外は、比較例1と同様の方法で非水系二次電池を作製し、作製した非水系二次電池に対し比較例と同様の評価を行った。結果を表2に示す。
<Reference Example 1>
A nonaqueous secondary battery was fabricated in the same manner as in Comparative Example 1, except that composite particles having a volume-based average particle diameter (D50) of 11.6 μm, a BET specific surface area (SA) of 5.3 m 2 /g, and a tap density of 0.96 g/cm 3 , which were coated with 4.3 parts by mass of amorphous carbon and 3 parts by mass of carbon black per 100 parts by mass of graphite, were used and roll pressed with a press load (linear pressure) of 495 kgf/5 cm, and the fabricated nonaqueous secondary battery was evaluated in the same manner as in Comparative Example 1. The results are shown in Table 2.

<参考例2>
体積基準平均粒径(D50)が8.1μm、BET比表面積(SA)が5.2m/g、タップ密度が1.06g/cmの,黒鉛100質量部に対して3.7質量部の非晶質炭素で被覆されている複合粒子を使用し、プレス荷重(線圧)300kgf/5cmでロールプレスしたこと以外は、比較例1と同様の方法で非水系二次電池を作製し、作製した非水系二次電池に対し比較例と同様の評価を行った。結果を表2に示す。
<Reference Example 2>
A nonaqueous secondary battery was fabricated in the same manner as in Comparative Example 1, except that composite particles having a volume-based average particle diameter (D50) of 8.1 μm, a BET specific surface area (SA) of 5.2 m2 /g, and a tap density of 1.06 g/ cm3 , coated with 3.7 parts by mass of amorphous carbon per 100 parts by mass of graphite, were used and roll pressed with a press load (linear pressure) of 300 kgf/5 cm. The fabricated nonaqueous secondary battery was evaluated in the same manner as in Comparative Example 1. The results are shown in Table 2.

Figure 0007468067000001
Figure 0007468067000001

Figure 0007468067000002
Figure 0007468067000002

図2、表2から明らかな様に、電池の高温保存特性と低温出力特性は相反する特性であり、実施例で作製した非水系二次電池は、比較例および参考例で作製した二次電池に対し、高温保存特性と低温出力特性のバランスを向上させている。 As is clear from Figure 2 and Table 2, the high-temperature storage characteristics and low-temperature output characteristics of a battery are contradictory characteristics, and the nonaqueous secondary battery produced in the examples has an improved balance between high-temperature storage characteristics and low-temperature output characteristics compared to the secondary batteries produced in the comparative examples and reference examples.

本発明の実施形態である負極を用いることにより、高温保存に優れ、低温下においても出力特性に優れる非水系電解液二次電池を実現することができるため、大型の高入出力特性が必要とされ、低温下でも使用される自動車用の二次電池の分野において好適に利用可能である。 By using the negative electrode according to the embodiment of the present invention, a non-aqueous electrolyte secondary battery that is excellent in high-temperature storage and has excellent output characteristics even at low temperatures can be realized, making it suitable for use in the field of automobile secondary batteries, which require large-scale high-input/output characteristics and are used even at low temperatures.

Claims (8)

集電体と集電体上に形成された負極活物質とを備える非水系電解液二次電池用負極であって、
前記非水系電解液二次電池用負極は粒子間空隙を有し、
該負極表面の異なる位置から取得した表面SEM画像を任意に15画像選択し、各画像それぞれを粒子領域と粒子間空隙領域に分け、各画像を二値化処理した処理画像から算出される粒子間空隙領域の、ボックスカウント法によって求めたフラクタル次元の標準偏差が0.1以下である、非水系電解液二次電池用負極。
(ただし、1画像からフラクタル次元を求める場合、前記表面SEM画像の倍率は500倍、及び前記ボックスカウント法のボックスサイズ(ε)は2ピクセルから64ピクセル、並びにnは粒子領域を含むボックスの数とし、横軸log(ε)、縦軸log(n)グラフの直線の傾きに-1を乗じたものをフラクタル次元とする。)
A negative electrode for a non-aqueous electrolyte secondary battery comprising a current collector and a negative electrode active material formed on the current collector,
The negative electrode for a non-aqueous electrolyte secondary battery has interparticle voids,
a negative electrode for a nonaqueous electrolyte secondary battery, wherein 15 surface SEM images obtained from different positions on the negative electrode surface are arbitrarily selected, each of the images is divided into a particle region and an interparticle void region, and each image is binarized to obtain a processed image, from which the standard deviation of the fractal dimension of the interparticle void region calculated by a box counting method is 0.1 or less.
(However, when the fractal dimension is calculated from one image, the magnification of the surface SEM image is 500 times, the box size (ε) of the box counting method is 2 pixels to 64 pixels, and n is the number of boxes including particle regions, and the fractal dimension is calculated by multiplying the slope of the straight line of the graph of horizontal axis log(ε) and vertical axis log(n) by -1.)
前記粒子間空隙領域のフラクタル次元の平均値が0.1以上、3以下である、請求項1に記載の非水系電解液二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the average value of the fractal dimension of the interparticle void regions is 0.1 or more and 3 or less. 前記粒子間空隙領域の面積比率の平均値が0.01以上、0.2以下である、請求項1または2に記載の非水系電解液二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the average area ratio of the interparticle void regions is 0.01 or more and 0.2 or less. 前記負極活物質が、黒鉛とその表面を被覆する非晶質炭素層とを有する複合粒子を含む、請求項1乃至3のいずれか一項に記載の非水系電解液二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the negative electrode active material includes composite particles having graphite and an amorphous carbon layer covering the surface of the graphite. 前記負極活物質を構成する負極活物質粒子の体積基準平均粒径(D50)が、0.1μm以上、50μm以下である、請求項1乃至4のいずれか一項に記載の非水系電解液二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the negative electrode active material particles constituting the negative electrode active material have a volume-based average particle size (D50) of 0.1 μm or more and 50 μm or less. 前記負極活物質を構成する負極活物質粒子のBET比表面積(SA)が、1m/g以上、20m/g以下である、請求項1乃至5のいずれか一項に記載の非水系電解液二次電池用負極。 6. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material particles constituting the negative electrode active material have a BET specific surface area (SA) of 1 m2 /g or more and 20 m2 /g or less. 前記負極活物質を構成する負極活物質粒子のタップ密度が、0.1g/cm以上、2g/cm以下である、請求項1乃至6のいずれか一項に記載の非水系電解液二次電池用負極。 7. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the tap density of the negative electrode active material particles constituting the negative electrode active material is 0.1 g/ cm3 or more and 2 g/ cm3 or less. 金属イオンを吸蔵・放出可能な正極及び負極、並びに電解液を備える非水系電解液二次電池であって、前記負極が請求項1乃至7のいずれか一項に記載の負極である、非水系電解液二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of absorbing and releasing metal ions, and an electrolyte, the negative electrode being the negative electrode according to any one of claims 1 to 7.
JP2020060235A 2020-03-30 2020-03-30 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Active JP7468067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020060235A JP7468067B2 (en) 2020-03-30 2020-03-30 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020060235A JP7468067B2 (en) 2020-03-30 2020-03-30 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2021158088A JP2021158088A (en) 2021-10-07
JP7468067B2 true JP7468067B2 (en) 2024-04-16

Family

ID=77918734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060235A Active JP7468067B2 (en) 2020-03-30 2020-03-30 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7468067B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526993A (en) 2001-02-07 2004-09-02 コーニング インコーポレイテッド Self-aligned shadow mask with high definition aperture
WO2011002013A1 (en) 2009-06-30 2011-01-06 日本ゼオン株式会社 Active material for electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP2017054581A (en) 2015-09-07 2017-03-16 三菱化学株式会社 Carbon material and nonaqueous secondary battery
JP2018147684A (en) 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
WO2019239947A1 (en) 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526993A (en) 2001-02-07 2004-09-02 コーニング インコーポレイテッド Self-aligned shadow mask with high definition aperture
WO2011002013A1 (en) 2009-06-30 2011-01-06 日本ゼオン株式会社 Active material for electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP2017054581A (en) 2015-09-07 2017-03-16 三菱化学株式会社 Carbon material and nonaqueous secondary battery
JP2018147684A (en) 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
WO2019239947A1 (en) 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2021158088A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7118926B2 (en) Carbon material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing carbon material for non-aqueous electrolyte secondary battery
US9263734B2 (en) Multilayer-structured carbon material for nonaqueous electrolytic solution secondary battery negative electrode, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and process for producing multilayer-structured carbon material for nonaqueous electrolytic solution secondary battery negative electrode
JP6119800B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode using the same, and non-aqueous electrolyte secondary battery
US9240587B2 (en) Carbon material for nonaqueous-electrolyte secondary-battery negative electrode and process for producing the same, negative electrode including the same for nonaqueous secondary battery, and nonaqueous-electrolyte secondary battery
JP6127370B2 (en) Carbon material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and lithium ion secondary battery
JP5671770B2 (en) Lithium secondary battery
JP6627904B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP5514394B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP6627221B2 (en) Method for producing carbon material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and carbon material for non-aqueous secondary battery
JP6413294B2 (en) Non-aqueous electrolyte and battery using the same
JP5874390B2 (en) Non-aqueous electrolyte secondary battery
JP5903959B2 (en) Non-aqueous secondary battery carbon material, non-aqueous secondary battery anode and non-aqueous secondary battery
JP2007165297A (en) Lithium secondary battery
JP2007165299A (en) Lithium secondary battery
JP2010282761A (en) Lithium secondary battery
JP2007165298A (en) Lithium secondary battery
JP2007180016A (en) Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery using it
JP2012084520A (en) Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP7468067B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
JP6992580B2 (en) Active material and lithium-ion secondary battery using it
JP2017183236A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7468067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150