JP7466471B2 - Flexible mesh gear device - Google Patents

Flexible mesh gear device Download PDF

Info

Publication number
JP7466471B2
JP7466471B2 JP2021000556A JP2021000556A JP7466471B2 JP 7466471 B2 JP7466471 B2 JP 7466471B2 JP 2021000556 A JP2021000556 A JP 2021000556A JP 2021000556 A JP2021000556 A JP 2021000556A JP 7466471 B2 JP7466471 B2 JP 7466471B2
Authority
JP
Japan
Prior art keywords
outer ring
external gear
region
surface roughness
vibration exciter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021000556A
Other languages
Japanese (ja)
Other versions
JP2022105919A (en
Inventor
智愛 久保
正幸 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2021000556A priority Critical patent/JP7466471B2/en
Publication of JP2022105919A publication Critical patent/JP2022105919A/en
Application granted granted Critical
Publication of JP7466471B2 publication Critical patent/JP7466471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Description

本発明は、撓み噛合い式歯車装置に関する。 The present invention relates to a flexible mesh gear device.

従来、撓み変形する外歯歯車を備えた撓み噛合い式歯車装置が知られている(例えば、特許文献1参照)。外歯歯車は、起振体軸受を介して内嵌された起振体が回転することで撓み変形する。 A flexible mesh gear device equipped with an external gear that undergoes flexural deformation is known (see, for example, Patent Document 1). The external gear undergoes flexural deformation when an exciter fitted inside the external gear rotates via an exciter bearing.

特許第5337008号公報Patent No. 5337008

撓み変形する外歯歯車と起振体軸受の外輪との間では、長軸側で強く接触して界面の潤滑剤が外部に漏れ出し、フレッチング等の摩耗が発生する場合がある。 When the external gear undergoes flexural deformation and the outer ring of the vibration exciter bearing comes into strong contact on the long shaft side, the lubricant at the interface can leak out, causing wear such as fretting.

本発明は、上記事情に鑑みてなされたもので、外歯歯車と起振体軸受の外輪との間の摩耗を抑制することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to suppress wear between the external gear and the outer ring of the vibration exciter bearing.

本発明は、起振体と、前記起振体により撓み変形する外歯歯車と、前記起振体と前記外歯歯車との間に配置される起振体軸受と、を備えた撓み噛合い式歯車装置であって、
前記起振体軸受は、前記外歯歯車の内周に嵌合する外輪を有し、
前記外歯歯車の内周面と前記外輪の外周面とのうち少なくとも一方の面は、軸方向外側領域の表面粗さが、軸方向内側領域の表面粗さよりも小さい構成とした。
The present invention provides a flexible mesh gear device including a vibration exciter, an external gear that is flexibly deformed by the vibration exciter, and a vibration exciter bearing disposed between the vibration exciter and the external gear,
the vibration exciter bearing has an outer ring that fits onto an inner periphery of the external gear,
At least one of the inner circumferential surface of the external gear and the outer circumferential surface of the outer ring has a surface roughness in an axially outer region that is smaller than the surface roughness in an axially inner region.

本発明によれば、外歯歯車と起振体軸受の外輪との間の摩耗を抑制することができる。 According to the present invention, it is possible to suppress wear between the external gear and the outer ring of the vibration exciter bearing.

実施形態に係る撓み噛合い式歯車装置を示す断面図である。FIG. 1 is a cross-sectional view showing a flexible mesh gear device according to an embodiment. 図1のE部を拡大した図である。FIG. 2 is an enlarged view of a portion E in FIG. 1 . 外歯歯車と起振体軸受の外輪との嵌合面の状態を模式的に示した図である。FIG. 4 is a diagram showing a schematic diagram of the state of the fitting surface between the external gear and the outer ring of the vibration exciter bearing. 外歯歯車の内周面と外輪の外周面の外側領域及び内側領域に形成する溝の組合せパターン例である。13 is an example of a combination pattern of grooves formed in the outer and inner regions of the inner circumferential surface of an external gear and the outer circumferential surface of an outer ring.

以下、本発明の実施形態について、図面を参照して詳細に説明する。 The following describes an embodiment of the present invention in detail with reference to the drawings.

[撓み噛合い式歯車装置の構成]
図1は、本発明に係る撓み噛合い式歯車装置1を示す断面図である。
この図に示すように、撓み噛合い式歯車装置1は、筒型の撓み噛合い式歯車装置であり、起振体軸10、外歯歯車11、第1内歯歯車31G及び第2内歯歯車32G、2つの起振体軸受12、ケーシング33、第1カバー34、第2カバー35を備える。
[Configuration of the flexure mesh gear device]
FIG. 1 is a cross-sectional view showing a flexible mesh gear device 1 according to the present invention.
As shown in this figure, the flexible mesh gear device 1 is a cylindrical flexible mesh gear device and comprises an oscillator shaft 10, an external gear 11, a first internal gear 31G and a second internal gear 32G, two oscillator bearings 12, a casing 33, a first cover 34, and a second cover 35.

起振体軸10は、回転軸O1を中心に回転する中空筒状の軸であり、回転軸O1に垂直な断面の外形が非円形(例えば楕円状)の起振体10Aと、起振体10Aの軸方向の両側に設けられた軸部10B、10Cとを有する。楕円状は、幾何学的に厳密な楕円に限定されるものではなく、略楕円を含む。軸部10B、10Cは、回転軸O1に垂直な断面の外形が円形の軸である。
なお、以下の説明では、回転軸O1に沿った方向を「軸方向」、回転軸O1に垂直な方向を「径方向」、回転軸O1を中心とする回転方向を「周方向」という。また、軸方向のうち、外部の被駆動部材と連結される側(図中の左側)を「出力側」といい、出力側とは反対側(図中の右側)を「反出力側」という。
The vibrator shaft 10 is a hollow cylindrical shaft that rotates around a rotation axis O1, and includes a vibrator 10A having a non-circular (e.g., elliptical) cross-sectional shape perpendicular to the rotation axis O1, and shaft portions 10B and 10C provided on both sides of the vibrator 10A in the axial direction. The elliptical shape is not limited to a geometrically strict ellipse, but includes an approximate ellipse. The shaft portions 10B and 10C are shafts having a circular cross-sectional shape perpendicular to the rotation axis O1.
In the following description, the direction along the rotation axis O1 is referred to as the "axial direction", the direction perpendicular to the rotation axis O1 is referred to as the "radial direction", and the direction of rotation about the rotation axis O1 is referred to as the "circumferential direction". In addition, in the axial direction, the side that is connected to an external driven member (left side in the figure) is referred to as the "output side", and the side opposite the output side (right side in the figure) is referred to as the "anti-output side".

外歯歯車11は、可撓性を有するとともに回転軸O1を中心とする円筒状の部材であり、外周に歯が設けられている。 The external gear 11 is a flexible cylindrical member centered on the rotation axis O1, with teeth on its outer periphery.

第1内歯歯車31Gと第2内歯歯車32Gは、回転軸O1を中心として起振体軸10の周囲で回転を行う。これら第1内歯歯車31Gと第2内歯歯車32Gは、軸方向に並んで設けられ、外歯歯車11と噛合している。具体的には、第1内歯歯車31G及び第2内歯歯車32Gの一方が、外歯歯車11の軸方向の中央より片側の歯部に噛合し、他方が、外歯歯車11の軸方向の中央よりもう一方の片側の歯部に噛合する。
このうち、第1内歯歯車31Gは、第1内歯歯車部材31の内周部の該当箇所に内歯が設けられて構成される。一方、第2内歯歯車32Gは、第2内歯歯車部材32の内周部の該当箇所に内歯が設けられて構成される。
The first internal gear 31G and the second internal gear 32G rotate around the vibration exciter shaft 10, centering on the rotation axis O1. The first internal gear 31G and the second internal gear 32G are arranged side by side in the axial direction and mesh with the external gear 11. Specifically, one of the first internal gear 31G and the second internal gear 32G meshes with teeth on one side of the axial center of the external gear 11, and the other meshes with teeth on the other side of the axial center of the external gear 11.
Of these, the first internal gear 31G is configured by providing internal teeth at a corresponding location on the inner periphery of the first internal gear member 31. On the other hand, the second internal gear 32G is configured by providing internal teeth at a corresponding location on the inner periphery of the second internal gear member 32.

2つの起振体軸受12は、例えばコロ軸受であり、起振体10Aと外歯歯車11との間に配置される。起振体10Aと外歯歯車11とは、2つの起振体軸受12を介して相対回転可能となっている。
各起振体軸受12は、外歯歯車11の内周に嵌入される外輪123と、複数の転動体(コロ)122と、複数の転動体122を保持する保持器121とを有する。複数の転動体122は、周方向に並べられ、起振体10Aの外周面と外輪123の内周面とを転走面として転動する。本実施形態においては、起振体10Aの外周面が内輪側転動面を構成しているが、これに限定されるものではなく、起振体に10Aとは別に内輪を有してもよい。
2つの起振体軸受12は、軸方向に並設されており、第1内歯歯車31Gの径方向内方に配置された第1起振体軸受12Aと、第2内歯歯車32Gの径方向内方に配置された第2起振体軸受12Bとを含む。以下、第1起振体軸受12Aの構成要素には「A」、第2起振体軸受12Bの構成要素には「B」の符号を末尾に付してこれらを識別する(図2参照)。
The two vibration exciter bearings 12 are, for example, roller bearings, and are disposed between the vibration exciter 10A and the external gear 11. The vibration exciter 10A and the external gear 11 are capable of relative rotation via the two vibration exciter bearings 12.
Each vibrator bearing 12 has an outer ring 123 fitted into the inner circumference of the external gear 11, a plurality of rolling elements (rollers) 122, and a cage 121 that holds the plurality of rolling elements 122. The plurality of rolling elements 122 are arranged in the circumferential direction and roll with the outer peripheral surface of the vibrator 10A and the inner peripheral surface of the outer ring 123 as rolling surfaces. In this embodiment, the outer peripheral surface of the vibrator 10A constitutes the inner ring side rolling surface, but this is not limited thereto, and the vibrator may have an inner ring in addition to 10A.
The two vibrator bearings 12 are arranged side by side in the axial direction and include a first vibrator bearing 12A arranged radially inward of the first internal gear 31G and a second vibrator bearing 12B arranged radially inward of the second internal gear 32G. Hereinafter, the components of the first vibrator bearing 12A will be identified by adding the suffix "A" to the components of the second vibrator bearing 12B, and the components of the second vibrator bearing 12B will be identified by adding the suffix "B" to the components (see FIG. 2).

起振体軸受12及び外歯歯車11の軸方向の両側には、これらに当接して、これらの軸方向の移動を規制する規制部材41、42が設けられている。 Regulating members 41, 42 are provided on both axial sides of the vibrator bearing 12 and the external gear 11 to abut against them and regulate their axial movement.

ケーシング33は、ボルト51により第1内歯歯車部材31と連結され、第2内歯歯車32Gの外径側を覆う。ケーシング33は、内周部に形成された主軸受38(例えばクロスローラ軸受)の外輪部を有しており、当該主軸受38を介して第2内歯歯車部材32を回転自在に支持している。撓み噛合い式歯車装置1が外部の相手装置と接続される際、ケーシング33と第1内歯歯車部材31は相手装置に共締めにより連結される。 The casing 33 is connected to the first internal gear member 31 by bolts 51 and covers the outer diameter side of the second internal gear 32G. The casing 33 has an outer ring portion of a main bearing 38 (e.g., a cross roller bearing) formed on the inner circumference, and rotatably supports the second internal gear member 32 via the main bearing 38. When the flexible mesh gear device 1 is connected to an external mating device, the casing 33 and the first internal gear member 31 are connected to the mating device by tightening them together.

第1カバー34は、ボルト52により第1内歯歯車部材31と連結され、外歯歯車11と第1内歯歯車31Gとの噛合い箇所を軸方向の反出力側から覆う。第1カバー34と起振体軸10の軸部10Bとの間には軸受36(例えば玉軸受)が配置されており、第1カバー34は、当該軸受36を介して起振体軸10を回転自在に支持している。 The first cover 34 is connected to the first internal gear member 31 by bolts 52, and covers the meshing point between the external gear 11 and the first internal gear 31G from the non-output side in the axial direction. A bearing 36 (e.g., a ball bearing) is arranged between the first cover 34 and the shaft portion 10B of the vibration exciter shaft 10, and the first cover 34 rotatably supports the vibration exciter shaft 10 via the bearing 36.

第2カバー35は、ボルト53により第2内歯歯車部材32と連結され、外歯歯車11と第2内歯歯車32Gとの噛合い箇所を軸方向の出力側から覆う。第2カバー35と起振体軸10の軸部10Cとの間には軸受37(例えば玉軸受)が配置されており、第2カバー35は、当該軸受37を介して起振体軸10を回転自在に支持している。撓み噛合い式歯車装置1が外部の相手装置と接続される際、第2カバー35と第2内歯歯車部材32は、相手装置の被駆動部材に共締めにより連結され、減速された回転を当該被駆動部材に出力する。 The second cover 35 is connected to the second internal gear member 32 by bolts 53, and covers the meshing point between the external gear 11 and the second internal gear 32G from the axial output side. A bearing 37 (e.g., a ball bearing) is arranged between the second cover 35 and the shaft portion 10C of the vibration exciter shaft 10, and the second cover 35 supports the vibration exciter shaft 10 rotatably via the bearing 37. When the flexible mesh gear device 1 is connected to an external mating device, the second cover 35 and the second internal gear member 32 are connected to a driven member of the mating device by being fastened together, and output reduced rotation to the driven member.

さらに、撓み噛合い式歯車装置1は、シール用のオイルシール43,44,45及びOリング46,47,48を備える。
オイルシール43は、軸方向の反出力側の端部で、起振体軸10の軸部10Bと第1カバー34との間に配置され、反出力側への潤滑剤の流出を抑制する。オイルシール44は、軸方向の出力側の端部で、起振体軸10の軸部10Cと第2カバー35との間に配置され、出力側への潤滑剤の流出を抑制する。オイルシール45は、ケーシング33と第2内歯歯車部材32との間に配置され、この部分からの潤滑剤の流出を抑制する。
Oリング46,47,48は、第1内歯歯車部材31と第1カバー34との間、第1内歯歯車部材31とケーシング33との間、第2内歯歯車部材32と第2カバー35との間にそれぞれ設けられ、これらの間で潤滑剤が移動することを抑制する。
これにより、潤滑剤は、オイルシール43~45とOリング46~48とでシールされた撓み噛合い式歯車装置1内部のシール空間S内に封入される。
Furthermore, the flexible mesh gear device 1 is provided with oil seals 43, 44, and 45 and O-rings 46, 47, and 48 for sealing purposes.
The oil seal 43 is disposed at the end on the non-output side in the axial direction, between the shaft portion 10B of the vibrator shaft 10 and the first cover 34, and prevents the outflow of lubricant to the non-output side. The oil seal 44 is disposed at the end on the output side in the axial direction, between the shaft portion 10C of the vibrator shaft 10 and the second cover 35, and prevents the outflow of lubricant to the output side. The oil seal 45 is disposed between the casing 33 and the second internal gear member 32, and prevents the outflow of lubricant from this portion.
O-rings 46, 47, 48 are respectively provided between the first internal gear member 31 and the first cover 34, between the first internal gear member 31 and the casing 33, and between the second internal gear member 32 and the second cover 35, and prevent the movement of lubricant between them.
As a result, the lubricant is sealed within the seal space S inside the flexible mesh gear device 1 which is sealed by the oil seals 43 to 45 and the O-rings 46 to 48 .

[外歯歯車と起振体軸受の外輪との嵌合状態]
図2は、図1のE部を拡大した図であり、図3は、外歯歯車11と起振体軸受12の外輪123との嵌合面の状態を模式的に示した図である。
外歯歯車11の内周には、起振体軸受12の外輪123が嵌合されている。撓み変形する外歯歯車11と起振体軸受12の外輪123とは、長軸側で強く接触して界面の潤滑剤が外部に漏れ出し、フレッチング等の摩耗が発生する場合がある。
そこで、本実施形態では、潤滑剤(例えばグリースや潤滑油)が外歯歯車11と起振体軸受12の外輪123との間から漏れにくくなるように、これらの嵌合面の表面粗さを、軸方向外側領域(以下、単に「外側領域」という。)と、それよりも内側の軸方向内側領域(以下、単に「内側領域」という。)とで異ならせている。
[Fitting state between the external gear and the outer ring of the vibration exciter bearing]
FIG. 2 is an enlarged view of a portion E in FIG. 1, and FIG. 3 is a schematic view showing the state of the fitting surfaces between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12. As shown in FIG.
An outer ring 123 of the vibration exciter bearing 12 is fitted onto the inner periphery of the external gear 11. The external gear 11, which is subject to flexural deformation, and the outer ring 123 of the vibration exciter bearing 12 come into strong contact on the long axis side, causing the lubricant at the interface to leak out, which may result in wear such as fretting.
Therefore, in this embodiment, in order to prevent lubricant (e.g., grease or lubricating oil) from leaking from between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12, the surface roughness of these mating surfaces is made different between the axially outer region (hereinafter simply referred to as the "outer region") and the axially inner region (hereinafter simply referred to as the "inner region") located further inside.

具体的には、図2及び図3に示すように、2つの起振体軸受12の外輪123(第1外輪123A、第2外輪123B)の各外周面124(124A、124B)は、両端部の外側領域124a、124bの表面粗さが内側領域124cの表面粗さよりも小さい。内側領域124cは、両外側領域124a、124bの間の領域をいう。一方の外側領域124aは2つの外輪123全体における外側の端部であり、他方の外側領域124bは2つの外輪123全体における内側の端部である。
一方、外歯歯車11の内周面110は、第1外輪123Aの両外側領域124a、124bに対応する領域110a、110bと、第2外輪123Bの両外側領域124a、124bに対応する領域110a、110bとの表面粗さが、第1外輪123Aの内側領域124cに対応する内側領域110cと、第2外輪123Bの内側領域124cに対応する内側領域110cとの表面粗さよりも小さい。外歯歯車11の領域110aは、外歯歯車11の内周面110における外側領域である。
なお、本実施形態における「表面粗さ」とは、軸方向に測定した粗さに基づいて算出したRa(算術平均粗さ)をいう。ただし、算出するパラメータはRaに限定されず、例えばRz(最大高さ粗さ)、Rsk(スキューネス(歪度))、Rku(クルトシス(尖度))等であってもよい。つまり、これらの粗さ指標のいずれかについて、上述した外側領域の粗さが内側領域の粗さより小さければよい
Specifically, as shown in Figures 2 and 3, the outer peripheral surfaces 124 (124A, 124B) of the outer rings 123 (first outer ring 123A, second outer ring 123B) of the two vibrator bearings 12 have outer regions 124a, 124b at both ends with a surface roughness smaller than that of an inner region 124c. The inner region 124c refers to the region between the two outer regions 124a, 124b. One outer region 124a is the outer end of the two outer rings 123 as a whole, and the other outer region 124b is the inner end of the two outer rings 123 as a whole.
On the other hand, in the inner circumferential surface 110 of the external gear 11, the surface roughness of regions 110a, 110b corresponding to the two outer regions 124a, 124b of the first outer ring 123A and the region 110a, 110b corresponding to the two outer regions 124a, 124b of the second outer ring 123B is smaller than the surface roughness of an inner region 110c corresponding to the inner region 124c of the first outer ring 123A and an inner region 110c corresponding to the inner region 124c of the second outer ring 123B. The region 110a of the external gear 11 is the outer region of the inner circumferential surface 110 of the external gear 11.
In this embodiment, the "surface roughness" refers to Ra (arithmetic mean roughness) calculated based on the roughness measured in the axial direction. However, the parameter to be calculated is not limited to Ra, and may be, for example, Rz (maximum height roughness), Rsk (skewness), Rku (kurtosis), etc. In other words, it is sufficient that the roughness of the outer region described above is smaller than the roughness of the inner region for any of these roughness indices.

また、外歯歯車11の内周面110と外輪123の各外周面124のうち、相対的に表面粗さの小さい外側領域124a、124b、110a及び領域110bは、外輪123の軸方向への移動可能寸法よりも軸方向寸法が大きい。本実施形態では、各外輪123は、最大で、規制部材41、42の間の軸方向距離Dと2つの外輪123の軸方向長さLとの差分寸法(D-L)だけ移動可能となっており、外側領域124a、124b、110a及び領域110bは軸方向寸法がこの差分寸法よりも大きい。
これにより、外輪123が軸方向に最も移動した場合でも、外歯歯車11の内周面110と外輪123の外周面124とで、相対的に表面粗さの小さい外側領域124a、124b、110a及び領域110bの少なくとも一部は、互いの軸方向位置が必ず重なる。
Furthermore, of the inner peripheral surface 110 of the external gear 11 and each outer peripheral surface 124 of the outer ring 123, outer regions 124a, 124b, 110a and region 110b having relatively small surface roughness have a larger axial dimension than the axial movable dimension of the outer ring 123. In this embodiment, each outer ring 123 is movable at most by the differential dimension (D-L) between the axial distance D between the regulating members 41, 42 and the axial length L of the two outer rings 123, and the axial dimensions of the outer regions 124a, 124b, 110a and region 110b are larger than this differential dimension.
As a result, even when the outer ring 123 moves the most in the axial direction, at least a portion of the outer regions 124a, 124b, 110a and region 110b, which have relatively small surface roughness, on the inner surface 110 of the external gear 11 and the outer surface 124 of the outer ring 123 will always overlap in the axial direction.

また、外歯歯車11の内周面110と外輪123の各外周面124には、微細な溝が形成されていてもよい。図4にこの溝等の組合せパターン例を示す。
この図に示すように、外歯歯車11の内周面110と外輪123の各外周面124のうち、相対的に表面粗さの小さい外側領域124a、124、110a(領域110bを含む)と、相対的に表面粗さの大きい内側領域124c、110cとには、所定の方向に沿った多数の溝等を配列してもよい。ここで、「溝」とは、例えば数十μm以下の微細な溝をいい、「梨地」とは、微細な凹凸(面)をいう。
図4の組合せパターンのうち、外側領域と内側領域のいずれにも周方向に沿った溝を設けるパターン1が、界面に潤滑剤を保持する点において最も望ましい。ここでの「周方向」とは、正確に回転軸O1回りの円周方向でなくともよく、例えばその±30度の範囲内であればよい(周方向に対して傾いていてもよい)。
また、外側領域と内側領域の全てに図4に示す溝等を形成しなくともよく、これらの少なくとも一部に当該溝等が形成されればよい。
Furthermore, fine grooves may be formed on the inner peripheral surface 110 of the external gear 11 and on each outer peripheral surface 124 of the outer ring 123. An example of a combination pattern of such grooves or the like is shown in FIG.
As shown in this figure, a large number of grooves or the like may be arranged along a predetermined direction in outer regions 124a, 124, 110a (including region 110b) having a relatively small surface roughness and inner regions 124c, 110c having a relatively large surface roughness among the inner peripheral surface 110 of the external gear 11 and each outer peripheral surface 124 of the outer ring 123. Here, "groove" refers to a fine groove of, for example, several tens of μm or less, and "matt finish" refers to a fine unevenness (surface).
4, pattern 1, in which grooves are provided along the circumferential direction in both the outer and inner regions, is the most desirable in terms of retaining the lubricant at the interface. The "circumferential direction" here does not have to be exactly the circumferential direction around the rotation axis O1, but may be within a range of ±30 degrees (it may be inclined with respect to the circumferential direction).
Furthermore, the grooves and the like shown in FIG. 4 do not have to be formed in the entire outer region and the inner region, but may be formed in at least a part of these regions.

なお、外歯歯車11と起振体軸受12の外輪123との嵌合面の状態は、上記構成に限定されず、外歯歯車11の内周面110と外輪123の外周面124とのうち少なくとも一方の面において、軸方向における外側領域の表面粗さが、その内側領域の表面粗さよりも小さければよい。したがって、例えば、外歯歯車11の内周面110と外輪123の外周面124とのいずれか一方だけが上記構成であってもよいし、2つの外輪123のいずれか一方だけが上記構成であってもよいし、外歯歯車11の内周面110のうちの外側領域110aがそれ以外の領域よりも表面粗さが小さい構成であってもよい(つまり、領域110bは、領域110cと同様に表面粗さが大きい構成であってもよい)。また、この場合における相対的な表面粗さの小さい外側領域と、相対的な表面粗さの大きい内側領域とに、図4に示す溝等を形成してもよい。また、この場合でも、相対的に表面粗さの小さい外側領域は、軸方向寸法が外輪123の軸方向への移動可能寸法よりも大きいことが望ましい。また、外輪123の領域124bは、内側領域124cと同様に表面粗さが大きい構成であってもよい。
また、起振体軸受12の外輪123は軸方向に分割されていなくともよく、2つの外輪123が一体的であってもよい。
The state of the mating surface between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12 is not limited to the above configuration, and it is sufficient that the surface roughness of the outer region in the axial direction of at least one of the inner circumferential surface 110 of the external gear 11 and the outer circumferential surface 124 of the outer ring 123 is smaller than the surface roughness of the inner region. Therefore, for example, only one of the inner circumferential surface 110 of the external gear 11 and the outer circumferential surface 124 of the outer ring 123 may have the above configuration, only one of the two outer rings 123 may have the above configuration, or the outer region 110a of the inner circumferential surface 110 of the external gear 11 may have a smaller surface roughness than the other regions (i.e., the region 110b may have a larger surface roughness like the region 110c). In this case, grooves or the like shown in FIG. 4 may be formed in the outer region with a relatively smaller surface roughness and the inner region with a relatively larger surface roughness. Even in this case, it is desirable that the axial dimension of the outer region having a relatively small surface roughness is larger than the axial movement dimension of the outer ring 123. Moreover, the region 124b of the outer ring 123 may be configured to have a large surface roughness, similar to the inner region 124c.
Furthermore, the outer ring 123 of the vibration exciter bearing 12 does not have to be divided in the axial direction, and the two outer rings 123 may be integral with each other.

[撓み噛合い式歯車装置の減速動作]
続いて、撓み噛合い式歯車装置1の減速動作について説明する。
モータ等の駆動源により起振体軸10の回転駆動が行われると、起振体10Aの運動が外歯歯車11に伝わる。このとき、外歯歯車11は、起振体10Aの外周面に沿った形状に規制され、軸方向から見て、長軸部分と短軸部分とを有する楕円形状に撓んでいる。さらに、外歯歯車11は、固定された第1内歯歯車31Gと長軸部分で噛合っている。このため、外歯歯車11は起振体10Aと同じ回転速度で回転することはなく、外歯歯車11の内側で起振体10Aが相対的に回転する。そして、この相対的な回転に伴って、外歯歯車11は長軸位置と短軸位置とが周方向に移動するように撓み変形する。この変形の周期は、起振体軸10の回転周期に比例する。
[Deceleration Operation of Flexible Mesh Gear Device]
Next, the deceleration operation of the flexible mesh gear device 1 will be described.
When the vibration exciter shaft 10 is rotated by a driving source such as a motor, the motion of the vibration exciter 10A is transmitted to the external gear 11. At this time, the external gear 11 is restricted to a shape that conforms to the outer circumferential surface of the vibration exciter 10A, and is bent into an elliptical shape having a major axis portion and a minor axis portion when viewed from the axial direction. Furthermore, the external gear 11 is meshed with the fixed first internal gear 31G at the major axis portion. Therefore, the external gear 11 does not rotate at the same rotation speed as the vibration exciter 10A, and the vibration exciter 10A rotates relatively inside the external gear 11. Then, with this relative rotation, the external gear 11 is bent and deformed so that the major axis position and the minor axis position move in the circumferential direction. The period of this deformation is proportional to the rotation period of the vibration exciter shaft 10.

外歯歯車11が撓み変形する際、その長軸位置が移動することで、外歯歯車11と第1内歯歯車31Gとの噛合う位置が回転方向に変化する。ここで、例えば、外歯歯車11の歯数が100で、第1内歯歯車31Gの歯数が102だとすると、噛合う位置が一周するごとに、外歯歯車11と第1内歯歯車31Gとの噛合う歯がずれていき、これにより外歯歯車11が回転(自転)する。上記の歯数であれば、起振体軸10の回転運動は減速比100:2で減速されて外歯歯車11に伝達される。この場合、減速比は「50」となる。 When the external gear 11 flexes and deforms, its major axis position moves, causing the meshing position between the external gear 11 and the first internal gear 31G to change in the rotational direction. For example, if the number of teeth of the external gear 11 is 100 and the number of teeth of the first internal gear 31G is 102, the meshing teeth of the external gear 11 and the first internal gear 31G shift each time the meshing position rotates around once, causing the external gear 11 to rotate (spin). With the above number of teeth, the rotational motion of the vibration exciter shaft 10 is reduced at a reduction ratio of 100:2 and transmitted to the external gear 11. In this case, the reduction ratio is "50".

一方、外歯歯車11は第2内歯歯車32Gとも噛合っているため、起振体軸10の回転によって外歯歯車11と第2内歯歯車32Gとの噛合う位置も回転方向に変化する。ここで、第2内歯歯車32Gの歯数と外歯歯車11の歯数とが同数であるとすると、外歯歯車11と第2内歯歯車32Gとは相対的に回転せず、外歯歯車11の回転運動が減速比1:1で第2内歯歯車32Gへ伝達される。これらによって、起振体軸10の回転運動が減速比100:2で減速されて、第2内歯歯車部材32及び第2カバー35へ伝達され、この回転運動が被駆動部材に出力される。 Meanwhile, because the external gear 11 is also meshed with the second internal gear 32G, the meshing position between the external gear 11 and the second internal gear 32G also changes in the rotational direction due to the rotation of the vibration exciter shaft 10. If the number of teeth of the second internal gear 32G and the number of teeth of the external gear 11 are the same, the external gear 11 and the second internal gear 32G do not rotate relative to each other, and the rotational motion of the external gear 11 is transmitted to the second internal gear 32G at a reduction ratio of 1:1. As a result, the rotational motion of the vibration exciter shaft 10 is decelerated at a reduction ratio of 100:2 and transmitted to the second internal gear member 32 and the second cover 35, and this rotational motion is output to the driven member.

ここで、本実施形態の撓み噛合い式歯車装置1では、外歯歯車11の内周面110と外輪123の外周面124とのうち少なくとも一方の面において、軸方向における外側領域の表面粗さが、その内側領域の表面粗さよりも小さくなっている。
そのため、外歯歯車11と起振体軸受12の外輪123との間の界面からの潤滑剤の軸方向(外側)への移動が抑制され、当該界面に潤滑剤が保持されやすくなる。これにより、外歯歯車11と起振体軸受12の外輪123との間でのフレッチング等の摩耗を抑制できる。
Here, in the flexible meshing gear device 1 of this embodiment, the surface roughness of the outer region in the axial direction of at least one of the inner surface 110 of the external gear 11 and the outer surface 124 of the outer ring 123 is smaller than the surface roughness of the inner region.
This suppresses the axial (outward) movement of the lubricant from the interface between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12, making it easier for the lubricant to be retained at the interface. This makes it possible to suppress wear such as fretting between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12.

[本実施形態の技術的効果]
以上のように、本実施形態によれば、外歯歯車11の内周面110と外輪123の外周面124とのうち少なくとも一方の面は、軸方向における外側領域の表面粗さが、内側領域の表面粗さよりも小さい。
これにより、外歯歯車11と起振体軸受12の外輪123との間の界面に潤滑剤が保持されやすくなり、外歯歯車11と起振体軸受12の外輪123との間の摩耗を抑制することができる。
[Technical effect of the present embodiment]
As described above, according to this embodiment, at least one of the inner circumferential surface 110 of the external gear 11 and the outer circumferential surface 124 of the outer ring 123 has a smaller surface roughness in the axial outer region than in the axial inner region.
This makes it easier for lubricant to be retained at the interface between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12, thereby suppressing wear between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12.

また、本実施形態によれば、外歯歯車11の内周面110と外輪123の外周面124との双方は、軸方向における外側領域の表面粗さが、内側領域の表面粗さよりも小さい。
これにより、外歯歯車11と起振体軸受12の外輪123との間の摩耗をさらに抑制することができる。
Furthermore, according to this embodiment, the surface roughness of the outer regions in the axial direction of both the inner circumferential surface 110 of the external gear 11 and the outer circumferential surface 124 of the outer ring 123 is smaller than the surface roughness of the inner regions.
This makes it possible to further suppress wear between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12.

また、本実施形態によれば、外歯歯車11の内周面110と外輪123の外周面124とのうち少なくとも一方の面には、外側領域及び内側領域に、周方向に沿った溝が設けられる。
これにより、外歯歯車11と起振体軸受12の外輪123との間での潤滑剤の軸方向への移動をより好適に抑制し、外歯歯車11と起振体軸受12の外輪123との間の摩耗をより一層抑制することができる。
Furthermore, according to this embodiment, at least one of the inner circumferential surface 110 of the external gear 11 and the outer circumferential surface 124 of the outer ring 123 has grooves formed in the outer and inner regions along the circumferential direction.
This more effectively suppresses the axial movement of lubricant between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12, and further suppresses wear between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12.

また、本実施形態によれば、第1外輪123A及び第2外輪123Bの各外周面124は、外側領域124a、124bの表面粗さが内側領域124cの表面粗さよりも小さい。また、外歯歯車11の内周面110は、第1外輪123Aの外側領域124a、124bに対応する領域110a、110bと、第2外輪123Bの外側領域124a、124bに対応する領域110a、110bとの表面粗さが、第1外輪123Aの内側領域124cに対応する内側領域110cと、第2外輪123Bの内側領域124cに対応する内側領域110cとの表面粗さよりも小さい。
これにより、2つの外輪123の各外周面124において、外歯歯車11との間に潤滑剤が保持されやすくなり、2つの外輪123の間への潤滑剤の漏れを抑制することができる。
According to this embodiment, the surface roughness of the outer regions 124a, 124b of each of the outer peripheral surfaces 124 of the first outer ring 123A and the second outer ring 123B is smaller than the surface roughness of the inner region 124c. Also, in the inner peripheral surface 110 of the external gear 11, the surface roughness of the regions 110a, 110b corresponding to the outer regions 124a, 124b of the first outer ring 123A and the regions 110a, 110b corresponding to the outer regions 124a, 124b of the second outer ring 123B is smaller than the surface roughness of the inner region 110c corresponding to the inner region 124c of the first outer ring 123A and the inner region 110c corresponding to the inner region 124c of the second outer ring 123B.
This makes it easier for lubricant to be retained between the external gear 11 and each outer peripheral surface 124 of the two outer rings 123, and makes it possible to suppress leakage of lubricant between the two outer rings 123.

また、本実施形態によれば、外歯歯車11の内周面110と外輪123の外周面124とのうち少なくとも一方の面のうち、相対的に表面粗さの小さい外側領域は、軸方向寸法が外輪123の軸方向への移動可能寸法よりも大きい。
これにより、外輪123が軸方向に最も移動した場合でも、外歯歯車11の内周面110と外輪123の外周面124とで、相対的に表面粗さの小さい外側領域の少なくとも一部は互いの軸方向位置が必ず重なる。したがって、外歯歯車11と起振体軸受12の外輪123との間の摩耗をより確実に抑制することができる。
In addition, according to this embodiment, the outer region of at least one of the inner surface 110 of the external gear 11 and the outer surface 124 of the outer ring 123, which has a relatively small surface roughness, has an axial dimension that is larger than the axial movement dimension of the outer ring 123.
As a result, even when the outer ring 123 moves the most in the axial direction, the inner circumferential surface 110 of the external gear 11 and the outer circumferential surface 124 of the outer ring 123 always overlap in the axial direction at least in part in their outer regions with relatively small surface roughness. Therefore, wear between the external gear 11 and the outer ring 123 of the vibration exciter bearing 12 can be more reliably suppressed.

[その他]
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限られない。
例えば、上記実施形態では、撓み噛合い式歯車装置1として筒型の噛合い式歯車装置を例に挙げて説明した。しかし、本発明は、これに限定されず、例えばカップ型又はシルクハット型の撓み噛合い式歯車装置などにも好適に適用できる。
その他、上記実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
[others]
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
For example, in the above embodiment, a cylindrical meshing gear device has been described as an example of the flexible meshing gear device 1. However, the present invention is not limited to this, and can also be suitably applied to, for example, a cup-type or top hat-type flexible meshing gear device.
In addition, the details shown in the above embodiment can be modified as appropriate without departing from the spirit of the invention.

1 撓み噛合い式歯車装置
10 起振体軸
10A 起振体
11 外歯歯車
110 内周面
110a 外側領域
110b 領域
110c 内側領域
12 起振体軸受
12A 第1起振体軸受
12B 第2起振体軸受
123 外輪
123A 第1外輪
123B 第2外輪
124 外周面
124a、124b 外側領域
124c 内側領域
41、42 規制部材
D 規制部材の間の軸方向距離
L 2つの外輪の軸方向長さ
O1 回転軸
1 Flexible mesh gear device 10 Vibrator shaft 10A Vibrator 11 External gear 110 Inner peripheral surface 110a Outer region 110b Region 110c Inner region 12 Vibrator bearing 12A First vibrator bearing 12B Second vibrator bearing 123 Outer ring 123A First outer ring 123B Second outer ring 124 Outer peripheral surface 124a, 124b Outer region 124c Inner region 41, 42 Regulating member D Axial distance L between regulating members Axial length O1 of two outer rings Rotating shaft

Claims (6)

起振体と、前記起振体により撓み変形する外歯歯車と、前記起振体と前記外歯歯車との間に配置される起振体軸受と、を備えた撓み噛合い式歯車装置であって、
前記起振体軸受は、前記外歯歯車の内周に嵌合する外輪を有し、
前記外歯歯車の内周面と前記外輪の外周面とのうち少なくとも一方の面は、軸方向外側領域の表面粗さが、軸方向内側領域の表面粗さよりも小さい、
撓み噛合い式歯車装置。
A flexible mesh gear device including a vibration exciter, an external gear that is flexibly deformed by the vibration exciter, and a vibration exciter bearing disposed between the vibration exciter and the external gear,
the vibration exciter bearing has an outer ring that fits onto an inner periphery of the external gear,
At least one of the inner circumferential surface of the external gear and the outer circumferential surface of the outer ring has a surface roughness in an axially outer region that is smaller than the surface roughness in an axially inner region.
Flexible mesh gear device.
前記外歯歯車の内周面と前記外輪の外周面との双方は、軸方向外側領域の表面粗さが、軸方向内側領域の表面粗さよりも小さい、
請求項1に記載の撓み噛合い式歯車装置。
The surface roughness of an axially outer region of each of the inner peripheral surface of the external gear and the outer peripheral surface of the outer ring is smaller than the surface roughness of an axially inner region of each of the inner peripheral surface of the external gear.
2. The flexible mesh gear device according to claim 1.
前記少なくとも一方の面には、軸方向外側領域及び軸方向内側領域に、周方向に沿った溝が設けられる、
請求項1又は請求項2に記載の撓み噛合い式歯車装置。
At least one of the surfaces has grooves extending in a circumferential direction in an axially outer region and an axially inner region.
3. The flexible mesh gear device according to claim 1 or 2.
前記外輪は、軸方向に分割された第1外輪と第2外輪を有し、
前記第1外輪及び前記第2外輪の各外周面は、軸方向両外側領域の表面粗さが、軸方向内側領域の表面粗さよりも小さい、
請求項1から請求項3のいずれかに記載の撓み噛合い式歯車装置。
The outer ring has a first outer ring and a second outer ring which are divided in an axial direction,
The surface roughness of each of the outer peripheral surfaces of the first outer ring and the second outer ring in both axially outer regions is smaller than the surface roughness of an axially inner region.
The flexible mesh gear device according to any one of claims 1 to 3.
前記外輪は、軸方向に分割された第1外輪と第2外輪を有し、
前記外歯歯車の内周面は、前記第1外輪の軸方向両外側領域に対応する領域と、前記第2外輪の軸方向両外側領域に対応する領域との表面粗さが、前記第1外輪の軸方向内側領域に対応する領域と、前記第2外輪の軸方向内側領域に対応する領域との表面粗さよりも小さい、
請求項1から請求項4のいずれかに記載の撓み噛合い式歯車装置。
The outer ring has a first outer ring and a second outer ring which are divided in an axial direction,
In the inner circumferential surface of the external gear, a surface roughness of a region corresponding to both axially outer regions of the first outer ring and a region corresponding to both axially outer regions of the second outer ring is smaller than a surface roughness of a region corresponding to an axially inner region of the first outer ring and a region corresponding to an axially inner region of the second outer ring.
The flexible mesh gear device according to any one of claims 1 to 4.
前記外輪は、所定寸法だけ軸方向に移動可能に構成され、
前記少なくとも一方の面のうち、相対的に表面粗さの小さい軸方向外側領域は、軸方向寸法が前記所定寸法よりも大きい、
請求項1から請求項5のいずれかに記載の撓み噛合い式歯車装置。
The outer ring is configured to be movable in the axial direction by a predetermined dimension,
an axially outer region of the at least one surface, which has a relatively small surface roughness, has an axial dimension larger than the predetermined dimension;
The flexible mesh gear device according to any one of claims 1 to 5.
JP2021000556A 2021-01-05 2021-01-05 Flexible mesh gear device Active JP7466471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000556A JP7466471B2 (en) 2021-01-05 2021-01-05 Flexible mesh gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000556A JP7466471B2 (en) 2021-01-05 2021-01-05 Flexible mesh gear device

Publications (2)

Publication Number Publication Date
JP2022105919A JP2022105919A (en) 2022-07-15
JP7466471B2 true JP7466471B2 (en) 2024-04-12

Family

ID=82365617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000556A Active JP7466471B2 (en) 2021-01-05 2021-01-05 Flexible mesh gear device

Country Status (1)

Country Link
JP (1) JP7466471B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279301A (en) 2000-03-31 2001-10-10 Nippon Kagaku Yakin Co Ltd Method of manufacturing sintered oil retaining bearing
WO2020105186A1 (en) 2018-11-22 2020-05-28 株式会社ハーモニック・ドライブ・システムズ Strain wave gearing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279301A (en) 2000-03-31 2001-10-10 Nippon Kagaku Yakin Co Ltd Method of manufacturing sintered oil retaining bearing
WO2020105186A1 (en) 2018-11-22 2020-05-28 株式会社ハーモニック・ドライブ・システムズ Strain wave gearing device

Also Published As

Publication number Publication date
JP2022105919A (en) 2022-07-15

Similar Documents

Publication Publication Date Title
KR101651549B1 (en) Wave generator of strain wave gearing
KR101266266B1 (en) Reduction apparatus
JP6723657B2 (en) Reducer
JP6909141B2 (en) Flexible meshing gear device
JP7340937B2 (en) reduction gear
JP7145616B2 (en) flexural mesh gearbox
JP7419193B2 (en) Flexible mesh gear system
JP2018132188A (en) Rolling element bearing transmission
JP7199147B2 (en) Eccentric oscillating speed reducer and lubricating method
JP7466471B2 (en) Flexible mesh gear device
US11493112B2 (en) Speed reducer
CN113357317A (en) Flexible engagement type gear device
JP7033995B2 (en) Gear device
WO2017094231A1 (en) Rotary table device
JP7454946B2 (en) Flexible mesh gear system
CN111336219A (en) Flexible engagement type gear device
JP7282053B2 (en) Flexible meshing gearbox, series of gearboxes, manufacturing method and designing method thereof
JP7414379B2 (en) Flexible mesh gear system
JP2020159463A (en) Power transmission device
JP7462412B2 (en) Flexible mesh gear device
CN115638212A (en) Eccentric oscillating gear device
JP7455687B2 (en) Flexible mesh gear system
WO2024127779A1 (en) Eccentric oscillation-type gear device
JP7221077B2 (en) Flexible mesh gear device and manufacturing method thereof
JP2022105356A (en) Deflection engagement type gear device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230612

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240402

R150 Certificate of patent or registration of utility model

Ref document number: 7466471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150