JP7463115B2 - Electrolyte supplement drink and method for producing same - Google Patents

Electrolyte supplement drink and method for producing same Download PDF

Info

Publication number
JP7463115B2
JP7463115B2 JP2020013671A JP2020013671A JP7463115B2 JP 7463115 B2 JP7463115 B2 JP 7463115B2 JP 2020013671 A JP2020013671 A JP 2020013671A JP 2020013671 A JP2020013671 A JP 2020013671A JP 7463115 B2 JP7463115 B2 JP 7463115B2
Authority
JP
Japan
Prior art keywords
mass
content
beverage
derived
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020013671A
Other languages
Japanese (ja)
Other versions
JP2021119748A (en
Inventor
勇樹 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2020013671A priority Critical patent/JP7463115B2/en
Publication of JP2021119748A publication Critical patent/JP2021119748A/en
Application granted granted Critical
Publication of JP7463115B2 publication Critical patent/JP7463115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)

Description

本発明は、電解質補給飲料及びその製造方法に関する。 The present invention relates to an electrolyte supplement drink and a method for producing the same.

電解質補給飲料は、水分と、発汗等で失われるナトリウムやカリウム等のミネラルを補給するのに好適な飲料であり、飲み易いことが求められる。
特許文献1には、食塩とクエン酸を含む電解質補給飲料の塩味を抑えて飲み易くするために、リン酸を含有させる方法が記載されている。
Electrolyte supplement drinks are suitable for replenishing fluids and minerals such as sodium and potassium that are lost through sweating and the like, and are required to be easy to drink.
Patent Document 1 describes a method of adding phosphoric acid to an electrolyte supplement drink that contains salt and citric acid in order to reduce the saltiness and make the drink easier to drink.

特開2019-76067号公報JP 2019-76067 A

しかし、リン酸を添加すると渋味が増強しやすいため、リン酸を使用しなくても塩味を抑制できる方法が望まれる。
本発明は、ミネラルを含み、塩味が抑えられた、新規な電解質補給飲料の提供を目的とする。
However, since the addition of phosphoric acid tends to increase the astringency, a method for suppressing the salty taste without using phosphoric acid is desired.
An object of the present invention is to provide a novel electrolyte supplement drink which contains minerals and has a reduced salty taste.

本発明は以下の態様を有する。
[1]ナトリウム、カリウム、カルシウム及びマグネシウムからなる群から選ばれる1種以上のミネラルの含有量が0.01質量%以上0.2質量%未満、クエン酸換算酸度が0.001質量%以上0.4質量%未満であり、乳蛋白質由来ペプチドを含む、電解質補給飲料。
[2]前記乳蛋白質由来ペプチドの含有量が0.001質量%以上0.5質量%以下である、[1]の電解質補給飲料。
[3]前記乳蛋白質由来ペプチドの含有量に対する、前記ミネラルの含有量の質量比を表す、ミネラル/乳蛋白質由来ペプチドの値が0.12~35である、[1]又は[2]の電解質補給飲料。
[4]甘味度が0.1質量%以上20質量%未満である、[1]~[3]のいずれかの電解質補給飲料。
The present invention has the following aspects.
[1] An electrolyte supplement beverage having a content of one or more minerals selected from the group consisting of sodium, potassium, calcium and magnesium of 0.01% by mass or more and less than 0.2% by mass, and an acidity equivalent to citric acid of 0.001% by mass or more and less than 0.4% by mass, and containing a peptide derived from milk protein.
[2] The electrolyte supplement drink of [1], wherein the content of the milk protein-derived peptide is 0.001% by mass or more and 0.5% by mass or less.
[3] The electrolyte supplement drink of [1] or [2], wherein the value of minerals/peptides derived from milk proteins, which represents the mass ratio of the content of the minerals to the content of the peptides derived from milk proteins, is 0.12 to 35.
[4] An electrolyte supplement drink according to any one of [1] to [3], wherein the sweetness is 0.1% by mass or more and less than 20% by mass.

[5]ナトリウム塩、カリウム塩、カルシウム塩及びマグネシウム塩からなる群から選ばれる1種以上であるミネラル源と、乳蛋白質由来ペプチドと、酸味料と、水を含む原料を、前記原料の総質量に対して、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群から選ばれる1種以上のミネラルの含有量が0.01質量%以上0.2質量%未満、クエン酸換算酸度が0.001質量%以上0.4質量%未満となるように混合する、電解質補給飲料の製造方法。
[6]前記乳蛋白質由来ペプチドの含有量が0.001質量%以上0.5質量%以下となるように混合する、[5]の電解質補給飲料の製造方法。
[7]前記原料が甘味料を含み、前記原料の総質量に対する甘味度が0.1質量%以上20質量%未満である、[5]又は[6]の電解質補給飲料の製造方法。
[5] A method for producing an electrolyte supplement beverage, comprising mixing raw materials including one or more mineral sources selected from the group consisting of sodium salts, potassium salts, calcium salts, and magnesium salts, a peptide derived from milk protein, an acidulant, and water, so that the content of one or more minerals selected from the group consisting of sodium, potassium, calcium, and magnesium is 0.01% by mass or more and less than 0.2% by mass, and the citric acid-equivalent acidity is 0.001% by mass or more and less than 0.4% by mass, relative to the total mass of the raw materials.
[6] The method for producing an electrolyte supplement beverage according to [5], further comprising mixing the milk protein-derived peptide so that the content of the peptide is 0.001% by mass or more and 0.5% by mass or less.
[7] A method for producing an electrolyte supplement beverage according to [5] or [6], wherein the raw material contains a sweetener and the sweetness level relative to the total mass of the raw material is 0.1% by mass or more and less than 20% by mass.

本発明によれば、ミネラルを含み、塩味が抑えられた電解質補給飲料が得られる。 The present invention provides an electrolyte supplement drink that contains minerals and has a reduced salty taste.

本明細書において、数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。
本明細書において、pHは特に断りがない限り20℃における値である。
In this specification, the use of "to" indicating a range of values means that the values before and after it are included as the lower and upper limits.
In this specification, pH is the value at 20° C. unless otherwise specified.

<測定方法>
本発明において以下の測定方法を用いる。
[ミネラル含有量]
質量基準のナトリウム(Na)含有量、カリウム(K)含有量、カルシウム(Ca)含有量及びマグネシウム(Mg)含有量は、ICP法(高周波誘導結合プラズマ法)により測定する。
[クエン酸換算酸度]
クエン酸換算酸度は、電解質補給飲料中に含まれる酸の濃度を、クエン酸相当量として換算した値(単位:質量%)である。下記の式により算出される。電解質補給飲料中に含まれる酸の含有量は中和滴定法(果実飲料の日本農林規格(最終改正令和元年6月27日農林水産省告示第475号))に準拠する方法で測定する。
200mL程度の容器に、電解質補給飲料5gを量りとり、pH計の電極を試料溶液中に挿入し、かき混ぜながら0.1mol/L水酸化ナトリウム溶液で滴定する(本試験)。終点は、pH8.1±0.2とし、その範囲内のpHが30秒以上持続することを確認する。空試験については、試料の代わりに同量の水を用いて同様に滴定する。クエン酸換算酸度は、下記式により求める。
クエン酸換算酸度(質量%)=0.0064×(T-B)×F×(1/W)×100
T:本試験における0.1mol/L水酸化ナトリウム溶液の滴定量(mL)
B:空試験における0.1mol/L水酸化ナトリウム溶液の滴定量(mL)
F:0.1mol/L水酸化ナトリウム溶液のファクター
W:試料重量(g)
0.0064:0.1mol/L水酸化ナトリウム溶液1mLに相当するクエン酸の重量(g)
[固形分]
固形分は常圧加熱乾燥法(日本食品標準成分表2015年版(七訂)分析マニュアル 第1章 一般成分及び関連成分に記載)に従って飲料100g中の水含有量を測定し、下記式により求める。
固形分の含有量(単位:質量%)=100-水分含有量(単位:質量%)。
<Measurement method>
In the present invention, the following measurement methods are used.
[Mineral content]
The sodium (Na) content, potassium (K) content, calcium (Ca) content and magnesium (Mg) content on a mass basis are measured by an ICP method (high-frequency inductively coupled plasma method).
[Citric acid equivalent acidity]
The citric acid equivalent acidity is the concentration of the acid contained in the electrolyte supplement drink converted into the citric acid equivalent amount (unit: mass %). It is calculated by the following formula. The content of the acid contained in the electrolyte supplement drink is measured by a method conforming to the neutralization titration method (Japanese Agricultural Standard for Fruit Drinks (Last revised June 27, 2019, Ministry of Agriculture, Forestry and Fisheries Notification No. 475)).
Weigh out 5g of electrolyte supplement drink into a container of about 200mL, insert the pH meter electrode into the sample solution, and titrate with 0.1 mol/L sodium hydroxide solution while stirring (main test). The end point is pH 8.1±0.2, and confirm that the pH remains within that range for 30 seconds or more. For a blank test, titrate in the same way using the same amount of water instead of the sample. The acidity converted to citric acid is calculated using the following formula.
Citric acid equivalent acidity (mass%)=0.0064×(T−B)×F×(1/W)×100
T: Titration amount (mL) of 0.1 mol/L sodium hydroxide solution in this test
B: Titration amount (mL) of 0.1 mol/L sodium hydroxide solution in blank test
F: factor of 0.1 mol/L sodium hydroxide solution W: sample weight (g)
0.0064: Weight (g) of citric acid equivalent to 1 mL of 0.1 mol/L sodium hydroxide solution
[Solid content]
The solids content is determined by measuring the water content in 100 g of beverage according to the normal pressure heat drying method (described in Chapter 1, General Components and Related Components, of the Analysis Manual of the Standard Tables of Food Composition in Japan, 2015 Edition (7th Revised Edition)) and calculating it using the following formula.
Solid content (unit: mass %)=100−moisture content (unit: mass %)

[乳蛋白質由来ペプチド含有量]
高速液体クロマトグラフ(HPLC)を用いて行うことができる。
[乳蛋白質由来ペプチドの数平均分子量]
質量分析計、たとえば、島津LCMS-2010AやサーモクエストLCQを用いて行うことができる。
乳蛋白質由来ペプチドの平均分子量(Da:ダルトン)は、以下の数平均分子量の概念により求めるものである。
数平均分子量(Number Average of Molecular Weight)は、例えば非特許文献(社団法人高分子学会編、「高分子科学の基礎」、第116~119頁、株式会社東京化学同人、1978年)に記載されているとおり、高分子化合物の分子量の平均値を次のとおり異なる指標に基づき示すものである。
すなわち、蛋白質加水分解物などの高分子化合物は不均一な物質であり、かつ分子量に分布があるため、蛋白質加水分解物の分子量は、物理化学的に取り扱うためには、平均分子量で示す必要があり、数平均分子量(以下、Mnと略記することがある。)は、分子の個数についての平均であり、ペプチド鎖iの分子量がMiであり、その分子数をNiとすると、次の数式(1)により定義される。
[Milk protein-derived peptide content]
This can be done using high performance liquid chromatography (HPLC).
[Number average molecular weight of peptides derived from milk proteins]
This can be carried out using a mass spectrometer, for example, Shimadzu LCMS-2010A or Thermoquest LCQ.
The average molecular weight (Da: Dalton) of the peptide derived from a milk protein is determined based on the following concept of number average molecular weight.
The number average molecular weight (Number Average of Molecular Weight), as described in a non-patent document ("Basics of Polymer Science," pp. 116-119, edited by the Society of Polymer Science, Tokyo Kagaku Dojin Co., Ltd., 1978), indicates the average value of the molecular weight of a polymer compound based on different indexes as follows:
That is, since polymeric compounds such as protein hydrolysates are heterogeneous substances and have a molecular weight distribution, the molecular weight of a protein hydrolysate must be expressed as an average molecular weight in order to handle it physicochemically. The number average molecular weight (hereinafter sometimes abbreviated as Mn) is the average for the number of molecules, and is defined by the following mathematical formula (1), where M is the molecular weight of peptide chain i and Ni is the number of molecules.

Figure 0007463115000001
Figure 0007463115000001

[甘味度]
各甘味料の甘味度は、ショ糖(スクロース)が標準物質として使用され、任意の濃度のスクロースと同等の甘味強度を示す濃度の比率、あるいは同条件で求めたスクロースの閾値との比率から判定される。例えば、ある甘味料Aがあり、スクロース1%溶液と同じ甘味強度を示すAの濃度を官能試験により測定する。そのときのAの濃度が0.5%だとすると、甘味料Aの甘味度は、スクロースの甘味度1に対して2となる。甘味料の甘味度は、例えば参考文献(伊藤汎、小林幹彦、早川幸男編、「食品と甘味料」、第305頁、株式会社光琳、2008年)に記載されている。
本明細書において、「飲料の甘味度」は、飲料中の甘味料の濃度を、同等の甘さを有するショ糖濃度に換算した値(ショ糖換算濃度ともいう)である。具体的には、飲料の甘味度(ショ糖換算濃度、単位:質量%)=飲料に含まれる甘味料の甘味度×甘味料の濃度(単位:質量%)で求める。飲料が甘味料を2種以上含む場合、各甘味料のショ糖換算濃度の合計を「飲料の甘味度」とする。同様に、本明細書において、「原料の総質量に対する甘味度」は、原料の総質量の甘味料の含有量を、同等の甘さを有するショ糖濃度に換算した値(ショ糖換算濃度)である。
[Sweetness]
The sweetness of each sweetener is determined by using sucrose as a standard substance, and by the ratio of the concentration that shows the same sweetness intensity as sucrose at an arbitrary concentration, or by the ratio to the threshold value of sucrose obtained under the same conditions. For example, a certain sweetener A is given, and the concentration of A that shows the same sweetness intensity as a 1% sucrose solution is measured by a sensory test. If the concentration of A at that time is 0.5%, the sweetness of sweetener A is 2 compared to the sweetness of sucrose, which is 1. The sweetness of sweeteners is described, for example, in a reference (Ito Hiroshi, Kobayashi Mikihiko, Hayakawa Yukio eds., "Food and Sweeteners," p. 305, Korin Co., Ltd., 2008).
In this specification, the "sweetness of a beverage" refers to the concentration of a sweetener in a beverage converted into a sucrose concentration having an equivalent sweetness (also referred to as a sucrose-equivalent concentration). Specifically, the sweetness of a beverage (sucrose-equivalent concentration, unit: mass%) is calculated as sweetness of a sweetener contained in a beverage x concentration of the sweetener (unit: mass%). When a beverage contains two or more kinds of sweeteners, the sum of the sucrose-equivalent concentrations of each sweetener is defined as the "sweetness of a beverage". Similarly, in this specification, the "sweetness relative to the total mass of raw materials" refers to the content of a sweetener in the total mass of raw materials converted into a sucrose concentration having an equivalent sweetness (sucrose-equivalent concentration).

<電解質補給飲料>
本実施形態の電解質補給飲料(以下、単に「飲料」ともいう)は、ミネラルと水を含み、発汗等で失われたミネラルと水分を補給することができる。
本実施形態の飲料は、少なくとも、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群から選ばれる1種以上のミネラルを含む。
飲料中のミネラルの含有量は、飲料中のナトリウム(Na)含有量、カリウム(K)含有量、カルシウム(Ca)含有量及びマグネシウム(Mg)含有量の合計である。
飲料中のミネラルの含有量は、0.01質量%以上0.2質量%未満であり、0.03~0.16質量%が好ましく、0.03~0.12質量%がより好ましく、0.04~0.08質量%がさらに好ましい。上記範囲の下限値以上であると発汗等で失われたミネラルを効率よく補給することが可能であり、上限値未満であると塩味が抑えられた飲料が得られやすい。一般的に、塩味が強い飲料は飲み難い。
本実施形態の飲料は、清涼飲料に広く適用することができる。本明細書における「清涼飲料」は、酒精分1容量パーセント未満である飲料(ただし、乳酸菌飲料、乳及び乳製品を除く)を指す。
<Electrolyte supplement drink>
The electrolyte replenishment drink of this embodiment (hereinafter also simply referred to as "drink") contains minerals and water, and can replenish minerals and water lost through sweating or the like.
The beverage of the present embodiment contains at least one mineral selected from the group consisting of sodium, potassium, calcium, and magnesium.
The mineral content in a beverage is the sum of the sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) contents in the beverage.
The mineral content in the beverage is 0.01% by mass or more and less than 0.2% by mass, preferably 0.03 to 0.16% by mass, more preferably 0.03 to 0.12% by mass, and even more preferably 0.04 to 0.08% by mass. If the content is equal to or more than the lower limit of the above range, it is possible to efficiently replenish minerals lost through sweating, etc., and if the content is less than the upper limit, a beverage with a reduced saltiness is likely to be obtained. Generally, beverages with a strong saltiness are difficult to drink.
The beverage of the present embodiment can be widely applied to soft drinks. In this specification, the term "soft drink" refers to a beverage having an alcohol content of less than 1 volume percent (excluding lactobacillus beverages, milk and dairy products).

本実施形態の飲料は、乳蛋白質由来ペプチドを含む。乳蛋白質由来ペプチドは、ミネラルを含む飲料の塩味の抑制に寄与する。
乳蛋白質由来ペプチドは、乳蛋白質を加水分解して得られるぺプチドが好ましい。
乳蛋白質由来ペプチドの数平均分子量は1200ダルトン以下が好ましく1000ダルトン以下がより好ましく、800ダルトン以下がさらに好ましく、200~500ダルトンがより好ましい。上記範囲の内であるとより良好な塩味抑制の効果を発揮できる。
The beverage of the present embodiment contains a peptide derived from a milk protein. The peptide derived from a milk protein contributes to suppressing the salty taste of the beverage containing minerals.
The milk protein-derived peptide is preferably a peptide obtained by hydrolysis of a milk protein.
The number average molecular weight of the milk protein-derived peptide is preferably 1200 daltons or less, more preferably 1000 daltons or less, even more preferably 800 daltons or less, and even more preferably 200 to 500 daltons. Within the above range, a better salty taste suppressing effect can be exhibited.

乳蛋白質由来ペプチドは特に限定されないが、牛乳あるいは脱脂粉乳等の乳製品由来の乳蛋白質由来ペプチドが好ましい。乳蛋白質由来ペプチドとしては、例えば、カゼインペプチド、ホエイペプチド等が挙げられ、これらを1種又は2種以上選択することができる。本実施形態の飲料では、飲料の塩味を良好に抑制できる点でカゼインペプチドが好ましい。
カゼインペプチドは、乳由来のカゼイン原料を公知の方法で加水分解して得られる。加水分解は、例えば、酸加水分解、アルカリ加水分解、酵素加水分解等が挙げられる。カゼイン原料としては、乳酸カゼイン、硫酸カゼイン、塩酸カゼイン等の酸カゼイン、カゼインナトリウム、カゼインカリウム、カゼインカルシウム等のカゼイン塩、又はこれらの任意の混合物が挙げられる。カゼインペプチドは、市販品からも入手できる。
カゼインペプチドは、例えば特開2019-140923号公報に開示された製造方法にて製造することが可能である。
The peptide derived from milk protein is not particularly limited, but is preferably a peptide derived from milk protein derived from dairy products such as milk or skim milk powder. Examples of the peptide derived from milk protein include casein peptide and whey peptide, and one or more of these can be selected. In the beverage of this embodiment, casein peptide is preferred because it can effectively suppress the salty taste of the beverage.
Casein peptides are obtained by hydrolyzing milk-derived casein raw materials by known methods. Examples of hydrolysis include acid hydrolysis, alkali hydrolysis, and enzymatic hydrolysis. Examples of casein raw materials include acid caseins such as casein lactate, casein sulfate, and casein hydrochloride, casein salts such as sodium caseinate, potassium caseinate, and calcium caseinate, and any mixtures thereof. Casein peptides are also available commercially.
Casein peptides can be produced, for example, by the production method disclosed in JP 2019-140923 A.

飲料に含まれる乳蛋白質由来ペプチドは、1種でもよく、2種以上を併用してもよい。
飲料の総質量に対して、乳蛋白質由来ペプチドの含有量は0.001~0.5質量%が好ましく、0.002~0.5質量%がより好ましく、0.002質量%以上0.2質量%未満がさらに好ましく、0.005~0.1質量%が最も好ましい。乳蛋白質由来ペプチドの含有量が下限値以上であると塩味抑制効果が得られ、上限値以下又は未満であると乳蛋白質由来ペプチドの味が強調されすぎず、おいしい飲料が得られる。
The beverage may contain one type of milk protein-derived peptide, or two or more types of peptides in combination.
The content of the peptide derived from a milk protein relative to the total mass of the beverage is preferably 0.001 to 0.5% by mass, more preferably 0.002 to 0.5% by mass, even more preferably 0.002 to less than 0.2% by mass, and most preferably 0.005 to 0.1% by mass. When the content of the peptide derived from a milk protein is equal to or greater than the lower limit, a salty taste suppressing effect is obtained, whereas when the content is equal to or less than the upper limit, the taste of the peptide derived from a milk protein is not overly emphasized, resulting in a delicious beverage.

飲料中の、乳蛋白質由来ペプチドの含有量に対する、ミネラルの含有量の質量比を表す、ミネラル/乳蛋白質由来ペプチド(以下、ミネラル/ペプチド質量比ともいう。)の値は、0.12~35であることが好ましく、0.3より大きく35以下がより好ましく、0.3より大きく30以下がさらに好ましく、0.6~12が最も好ましい。上記範囲の下限値以上であると発汗等で失われたミネラルを効率よく補給することが可能であり、上限値以下であると塩味が抑えられた飲料が得られやすい。 The value of mineral/peptide derived from milk protein (hereinafter also referred to as mineral/peptide mass ratio), which represents the mass ratio of the mineral content to the peptide content derived from milk protein in the beverage, is preferably 0.12 to 35, more preferably greater than 0.3 and equal to or less than 35, even more preferably greater than 0.3 and equal to or less than 30, and most preferably 0.6 to 12. If it is equal to or greater than the lower limit of the above range, it is possible to efficiently replenish minerals lost through sweating, etc., and if it is equal to or less than the upper limit, a beverage with reduced saltiness is likely to be obtained.

本実施形態の飲料は、飲料の総質量に対して、固形分の含有量が0.1~20質量%であることが好ましく、0.1~18質量%がより好ましく、0.2~18質量%がさらに好ましく、0.3~16質量%が特に好ましい。上記範囲の下限値以上であると電解質補給の目的に適した飲料を提供することができ、上限値以下であると風味の良い飲料を提供することができる。 The beverage of this embodiment preferably has a solids content of 0.1 to 20% by mass, more preferably 0.1 to 18% by mass, even more preferably 0.2 to 18% by mass, and particularly preferably 0.3 to 16% by mass, relative to the total mass of the beverage. If the solids content is equal to or greater than the lower limit of the above range, a beverage suitable for electrolyte supplementation can be provided, and if the solids content is equal to or less than the upper limit, a flavorful beverage can be provided.

本実施形態の飲料は、酸成分を含む。飲料のクエン酸換算酸度は0.001質量%以上0.4質量%未満であり、0.002質量%以上0.4質量%未満が好ましく、0.004質量%以上0.4質量%未満がより好ましく、0.01質量%以上0.4質量%未満がさらに好ましい。上記範囲の下限値以上であると、乳蛋白質分解ペプチドによる塩味抑制効果が得られやすく、上限値未満であると適度な酸味を呈する電解質補給飲料が得られる。 The beverage of this embodiment contains an acid component. The citric acid-equivalent acidity of the beverage is 0.001% by mass or more and less than 0.4% by mass, preferably 0.002% by mass or more and less than 0.4% by mass, more preferably 0.004% by mass or more and less than 0.4% by mass, and even more preferably 0.01% by mass or more and less than 0.4% by mass. If the acidity is equal to or more than the lower limit of the above range, the salty taste suppression effect of the milk protein hydrolyzed peptides is easily obtained, and if the acidity is less than the upper limit, an electrolyte supplement beverage with a moderate sour taste is obtained.

本実施形態の飲料は、甘味成分を含んでもよい。本実施形態の飲料は、発汗等で失われたミネラルと水分を補給する飲料であることから、継続的に何度も少量ずつ摂取する場合、一度に50~500mL程度摂取する場合などがある。飲料の甘味度が高すぎると、甘味に飽きてしまい、身体が必要とする量の飲料を摂取することが困難な場合がある。そのため、飲料の甘味度(ショ糖換算濃度)は0.1質量%以上20質量%未満が好ましく、0.1~18質量%がより好ましく、0.2~15質量%がさらに好ましい。上記範囲の甘味度であると程よい甘味を呈する電解質補給飲料が得られる。 The beverage of this embodiment may contain a sweetening component. Since the beverage of this embodiment is a beverage that replenishes minerals and water lost through sweating, etc., it may be ingested continuously in small amounts multiple times, or ingested in an amount of about 50 to 500 mL at a time. If the sweetness of the beverage is too high, the sweetness may become tiresome, and it may be difficult to ingest the amount of beverage required by the body. For this reason, the sweetness of the beverage (concentration in sucrose equivalent) is preferably 0.1% by mass or more and less than 20% by mass, more preferably 0.1 to 18% by mass, and even more preferably 0.2 to 15% by mass. A sweetness in the above range results in an electrolyte replenishment beverage that exhibits a moderate sweetness.

本実施形態の飲料は、pHが1.0~7.0であることが好ましく、2.0~6.0がより好ましく、2.0~4.6がさらに好ましい。上記範囲pHであると程よい酸味を呈する電解質補給飲料が得られる。
pHは、乳蛋白質由来ペプチドの含有量が多くなると高くなる傾向がある。
The beverage of this embodiment preferably has a pH of 1.0 to 7.0, more preferably 2.0 to 6.0, and even more preferably 2.0 to 4.6. A pH within this range results in an electrolyte supplement beverage that has a moderate sourness.
The pH tends to increase as the content of peptides derived from milk proteins increases.

<電解質補給飲料の製造方法>
本実施形態の電解質補給飲料の製造方法は、ミネラル源と、前記乳蛋白質由来ペプチドと、酸味料と、水を含む原料(以下、飲料の原料という。)を混合して、目的の飲料を得る。混合後、加熱殺菌することが好ましい。飲料の原料は、さらに甘味料を含んでもよい。
<Method of manufacturing electrolyte supplement drink>
In the method for producing an electrolyte supplement beverage of the present embodiment, a mineral source, the milk protein-derived peptide, an acidulant, and a raw material containing water (hereinafter referred to as a raw material for the beverage) are mixed to obtain a desired beverage. After mixing, the raw material for the beverage is preferably sterilized by heating. The raw material for the beverage may further contain a sweetener.

ミネラル源は、ナトリウム塩、カリウム塩、カルシウム塩及びマグネシウム塩からなる群から選ばれる1種以上である。これらの塩は食品添加物として許容されているものを使用する。ミネラル源と酸味料を兼ねる塩でもよい。
ナトリウム塩としては、塩化ナトリウム(精製塩)、グルタミン酸ナトリウム、クエン酸ナトリウム、コハク酸ナトリウム、乳酸ナトリウム、リンゴ酸ナトリウム、酢酸ナトリウム等が挙げられる。
カリウム塩としては、塩化カリウム、クエン酸一カリウム、クエン酸三カリウム、L-グルタミン酸カリウム、グルコン酸カリウム、炭酸カリウム等が挙げられる。
マグネシウム塩としては、硫酸マグネシウム、塩化マグネシウム、炭酸マグネシウム、酸化マグネシウム、グルタミン酸マグネシウム等が挙げられる。
カルシウム塩としては、乳酸カルシウム、グルコン酸カルシウム、パントテン酸カルシウム、塩化カルシウム、炭酸カルシウム、アスコルビン酸カルシウム、グルタミン酸カルシウム等が挙げられる。
これらのうち、水に溶けやすく臭いや味への影響の少ない点で塩化ナトリウム(精製塩)、クエン酸ナトリウム、塩化カリウム、グルコン酸カリウム、硫酸マグネシウム、塩化マグネシウム、乳酸カルシウムがより好ましい。
The mineral source is at least one selected from the group consisting of sodium salts, potassium salts, calcium salts and magnesium salts. These salts are permitted as food additives. Salts that serve both as a mineral source and an acidulant may also be used.
Examples of sodium salts include sodium chloride (purified salt), sodium glutamate, sodium citrate, sodium succinate, sodium lactate, sodium malate, and sodium acetate.
Examples of potassium salts include potassium chloride, monopotassium citrate, tripotassium citrate, potassium L-glutamate, potassium gluconate, and potassium carbonate.
Examples of magnesium salts include magnesium sulfate, magnesium chloride, magnesium carbonate, magnesium oxide, and magnesium glutamate.
Examples of calcium salts include calcium lactate, calcium gluconate, calcium pantothenate, calcium chloride, calcium carbonate, calcium ascorbate, and calcium glutamate.
Of these, sodium chloride (refined salt), sodium citrate, potassium chloride, potassium gluconate, magnesium sulfate, magnesium chloride, and calcium lactate are more preferred because they are easily soluble in water and have little effect on odor and taste.

酸味料は、食品添加物として許容されているものを適宜使用できる。
酸味料の具体例としては、クエン酸、乳酸、リンゴ酸、アスコルビン酸、酢酸、酒石酸、グルコノデルタラクトン、グルコン酸、フィチン酸、フマル酸、コハク酸、アジピン酸、又はそれらの塩(例えば、ナトリウム塩など)等が挙げられる。
これらのうち、程よい酸味の強さとバランスが得られる点でクエン酸、乳酸、リンゴ酸、アスコルビン酸、フマル酸から選択される1種又は2種以上がより好ましい。
As the acidulant, any acidulant permitted as a food additive can be used appropriately.
Specific examples of acidulants include citric acid, lactic acid, malic acid, ascorbic acid, acetic acid, tartaric acid, glucono-delta-lactone, gluconic acid, phytic acid, fumaric acid, succinic acid, adipic acid, or salts thereof (e.g., sodium salts, etc.).
Among these, one or more acids selected from citric acid, lactic acid, malic acid, ascorbic acid, and fumaric acid are more preferred, as they provide a good balance and strength of sourness.

甘味料の具体例としては、砂糖(グラニュー糖、上白糖、三温糖、黒砂糖など)、ブドウ糖、果糖、異性化糖(ブドウ糖果糖液糖、果糖ブドウ糖液糖、砂糖混合果糖ブドウ糖液糖など)、水あめ、粉飴、乳糖、麦芽糖、転化糖、還元麦芽水あめ、蜂蜜、ラクチュロース、マルトース、パラチノース、フラクトオリゴ糖、ガラクトオリゴ糖、マルトオリゴ糖、ラフィノース等の糖類;ソルビトール、マンニトール、マルチトール、キシリトール、エリスリトール等の糖アルコール;スクラロース、アセスルファムカリウム、サッカリン及びその塩、サイクラメート及びその塩、ソーマチン、アスパルテーム、アリテーム、ネオテーム、グリチルリチン、レバウディオサイド、ステビア抽出物に含まれるステビオサイド、甜茶抽出物、甘茶抽出物等の非糖質系甘味料が挙げられる。甘味料は1種を用いてもよく、2種以上を併用してもよい。
これらのうち、甘味の質と適度な浸透圧の電解質補給飲料が得られやすい点で砂糖、ブドウ糖、果糖、及び異性化糖からなる群から選ばれる1種又は2種以上の糖類と、スクラロース、アセスルファムカリウム、及びステビオサイドからなる群から選ばれる1種又は2種以上の高甘味度甘味料の併用がより好ましい。ステビオサイドはステビア抽出物に含まれる。
Specific examples of sweeteners include sugars (granulated sugar, white sugar, brown sugar, etc.), glucose, fructose, isomerized sugars (glucose-fructose liquid sugar, fructose-glucose liquid sugar, sugar-mixed fructose-glucose liquid sugar, etc.), starch syrup, powdered syrup, lactose, maltose, invert sugar, reduced malt syrup, honey, lactulose, maltose, palatinose, fructooligosaccharides, galactooligosaccharides, maltooligosaccharides, raffinose, and other sugars; sugar alcohols such as sorbitol, mannitol, maltitol, xylitol, and erythritol; and non-saccharide sweeteners such as sucralose, acesulfame potassium, saccharin and its salts, cyclamate and its salts, thaumatin, aspartame, alitame, neotame, glycyrrhizin, rebaudioside, stevioside contained in stevia extract, sweet tea extract, and sweet tea extract. One type of sweetener may be used, or two or more types may be used in combination.
Among these, it is more preferable to use one or more saccharides selected from the group consisting of sugar, glucose, fructose, and isomerized sugar in combination with one or more high-intensity sweeteners selected from the group consisting of sucralose, acesulfame potassium, and stevioside, in view of the ease of obtaining an electrolyte supplement beverage with good sweetness and appropriate osmotic pressure. Stevioside is contained in stevia extract.

飲料の原料は、ミネラル源、乳蛋白質由来ペプチド、酸味料、甘味料及び水以外の、その他の原料を含んでもよい。
その他の原料としては、例えば、果汁、野菜汁、乳成分、コーヒー、茶、ココア、チョコレート、キャラメル、ビタミン類、香料、色素類、酸化防止剤、保存料等が挙げられる。
飲料の原料は、風味の点でリン酸又はリン酸塩を含まない、または含む場合は少量であることが好ましい。例えば飲料の原料の総質量に対して、リン酸の含有量は0.01質量%未満が好ましく、0.005質量%未満がより好ましく、0.001質量%未満がさらに好ましい。ゼロが最も好ましい。
The ingredients of the beverage may include other ingredients in addition to the mineral source, the milk protein-derived peptides, the acidulant, the sweetener and the water.
Other raw materials include, for example, fruit juice, vegetable juice, dairy ingredients, coffee, tea, cocoa, chocolate, caramel, vitamins, flavorings, colorants, antioxidants, preservatives, etc.
In terms of flavor, it is preferable that the beverage raw material does not contain phosphoric acid or phosphates, or if it does contain them, it is preferable that the content of phosphoric acid is small, for example, less than 0.01% by mass, more preferably less than 0.005% by mass, and even more preferably less than 0.001% by mass, based on the total mass of the beverage raw material. Zero is most preferable.

飲料の原料の組成と、得られる飲料の組成は、熱による変性を除いて同じである。
飲料の原料の配合は、目的とする飲料の組成が得られるように設計する。
飲料の原料中のミネラルの含有量は、ミネラル源及びミネラル源以外の原料に由来する、ナトリウム(Na)含有量、カリウム(K)含有量、カルシウム(Ca)含有量及びマグネシウム(Mg)含有量の合計である。
The composition of the beverage ingredients and the resulting beverage are the same except for heat denaturation.
The blend of beverage ingredients is designed to obtain the desired beverage composition.
The mineral content in the ingredients of a beverage is the sum of the sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) contents derived from mineral sources and ingredients other than mineral sources.

加熱殺菌は公知の方法で実施できる。例えば、110~150℃の間の温度で1~120秒間加熱殺菌するか、又はこれと同等以上の殺菌効果を有する方法を用いることができる。
加熱殺菌後の飲料を、無菌的に保存容器に充填することで容器入り電解質補給飲料が得られる。加熱殺菌前の原料混合物を保存容器に充填し、レトルト殺菌法で加熱殺菌してもよい。
保存容器としては、缶、PETボトル、ガラス瓶又は紙パック等が例示できる。
保存容器の容量は特に限定されないが、例えば50~20000mLが好ましい。
Heat sterilization can be carried out by a known method, for example, heat sterilization at a temperature between 110 and 150° C. for 1 to 120 seconds, or a method having an equivalent or greater sterilization effect can be used.
The beverage after heat sterilization is aseptically filled into a storage container to obtain a packaged electrolyte supplement beverage. The raw material mixture before heat sterilization may be filled into a storage container and heat sterilized by retort sterilization.
Examples of storage containers include cans, PET bottles, glass bottles, and paper packs.
The capacity of the storage container is not particularly limited, but is preferably, for example, 50 to 20,000 mL.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.

[官能評価方法]
(1)パネラーの選出
塩味評価の均一化のために、0.05質量%塩化ナトリウム溶解液を基準液とし、これを日常的に確認し、塩味の判断基準について摺合せを行っている開発担当者7名(パネラーA~G)又は8名(パネラーA~H)を評価パネラーとして選出した。
(2)塩味の評価
評価パネラーが、対照試料を試飲し、塩味の基準点4点とした。次に試験試料を試飲し、塩味の強さを対照試料と比較し、下記の基準で7段階評価した。全員の評価点の平均を求めた。平均点が低いほど塩味抑制効果が高い。
(塩味の強さ)
1点:非常に弱い。
2点:弱い。
3点:少し弱い。
4点:どちらともいえない。
5点:少し強い。
6点:強い。
7点:非常に強い。
[Sensory evaluation method]
(1) Selection of Panelists In order to standardize the saltiness evaluation, a 0.05% by mass sodium chloride solution was used as a standard solution, which was checked on a daily basis. Seven (panelers A to G) or eight (panelers A to H) development staff members who had been fine-tuning the criteria for saltiness judgment were selected as evaluation panelists.
(2) Evaluation of saltiness The evaluation panel tasted the control sample and gave it a standard score of 4 points for saltiness. Next, they tasted the test sample, compared the saltiness intensity with the control sample, and rated it on a 7-point scale according to the following criteria. The average of all the evaluation points was calculated. The lower the average score, the higher the saltiness suppression effect.
(Saltiness)
1 point: Very weak.
2 points: Weak.
3 points: A little weak.
4 points: Neither.
5 points: A little strong.
6 points: Strong.
7 points: Very strong.

(3)おいしさの評価
評価パネラー間のおいしさの均一化のため、苦味に由来する後味が持続することなく、かつ、繰り返し飲料を摂取することが許容できる味(飽きにくい味)が感じられる場合を「おいしい」とし、おいしさの判断基準について摺合せをした。
(3) Evaluation of Palatability In order to standardize the palatability among the evaluation panelists, a beverage was rated as "delicious" if it had no lingering aftertaste due to bitterness and was tolerable for repeated consumption (a taste that one does not tire of), and the panelists refined the criteria for judging palatability.

評価パネラーが、対照試料を試飲し、おいしさの基準点4点とした。次に試験試料を試飲し、おいしさを対照試料と比較し、下記の基準で7段階評価した。全員の評価点の平均を求めた。平均点が高いほどおいしさに優れる。
(おいしさ)
1点:非常においしくない。
2点:おいしくない。
3点:少しおいしくない。
4点:どちらともいえない。
5点:少しおいしい。
6点:おいしい。
7点:非常においしい。
The evaluation panel tasted the control sample and gave it a standard score of 4 points for palatability. Next, they tasted the test sample, compared it with the control sample, and rated it on a 7-point scale using the following criteria. The average of all the evaluation points was calculated. The higher the average score, the better the palatability.
(Taste)
1 point: Not very tasty.
2 points: Not tasty.
3 points: Not very tasty.
4 points: Neither.
5 points: Somewhat tasty.
6 points: Delicious.
7 points: Very delicious.

[実施例・比較例・試験例・製造例]
下記の表に示す原料は以下の通りである。
<原料>
カゼインペプチド:森永乳業社製、数平均分子量337。
砂糖混合果糖ブドウ糖液糖:昭和産業社製。甘味度1のものを用いた。
グラニュー糖:三井製糖社製。
塩化ナトリウム:精製塩。
塩化カリウム:富田製薬社製。
硫酸マグネシウム:富田製薬社製。
乳酸カルシウム:太陽化学産業社製。
クエン酸:扶桑化学工業社製。
香料:グレープフルーツ香料、長谷川香料社製。
[Examples, Comparative Examples, Test Examples, and Manufacturing Examples]
The raw materials shown in the table below are as follows:
<Ingredients>
Casein peptide: Morinaga Milk Industry Co., Ltd., number average molecular weight 337.
Sugar mixed fructose glucose liquid sugar: Produced by Showa Sangyo Co., Ltd. Sweetness level 1 was used.
Granulated sugar: manufactured by Mitsui Sugar Co., Ltd.
Sodium chloride: refined salt.
Potassium chloride: manufactured by Tomita Pharmaceutical Co., Ltd.
Magnesium sulfate: manufactured by Tomita Pharmaceutical Co., Ltd.
Calcium lactate: manufactured by Taiyo Kagaku Sangyo Co., Ltd.
Citric acid: manufactured by Fuso Chemical Industry Co., Ltd.
Fragrance: Grapefruit fragrance, manufactured by Hasegawa Fragrance Co., Ltd.

<実施例1・比較例1>
(1)目的
乳蛋白質由来ペプチドの塩味抑制効果を調べる。
(2)飲料の調製
表1に示す処方の飲料を調製した。具体的には、表に示す配合の全原料を混合して混合液を調製した。この混合液をUHT殺菌機を用いて110℃で2秒間殺菌処理をした。殺菌処理後、10℃以下に冷却して飲料を得た。
表1には、飲料の固形分、クエン酸換算酸度、甘味度、20℃におけるpH、ミネラル含有量、ミネラル/ペプチド質量比を示す(以下、同様)。
(3)評価
上記評価方法に基づいて塩味の強さを評価した。比較例1の飲料を対照試料、実施例1の飲料を試験試料とした。試料はいずれも10℃とした(以下、同様)。結果を表2に示す。表2には各評価パネラーの評価点と、その平均点を示す。
<Example 1 and Comparative Example 1>
(1) Purpose To investigate the salty taste suppressing effect of peptides derived from milk proteins.
(2) Preparation of beverages Beverages were prepared according to the formula shown in Table 1. Specifically, all ingredients shown in the table were mixed to prepare a mixed liquid. This mixed liquid was sterilized at 110°C for 2 seconds using a UHT sterilizer. After sterilization, the liquid was cooled to 10°C or less to obtain a beverage.
Table 1 shows the solid content, citric acid equivalent acidity, sweetness, pH at 20°C, mineral content, and mineral/peptide mass ratio of the beverage (the same applies below).
(3) Evaluation The strength of saltiness was evaluated based on the above evaluation method. The beverage of Comparative Example 1 was used as a control sample, and the beverage of Example 1 was used as a test sample. All samples were kept at 10°C (hereinafter the same). The results are shown in Table 2. Table 2 shows the evaluation scores of each evaluation panelist and their average scores.

Figure 0007463115000002
Figure 0007463115000002

Figure 0007463115000003
Figure 0007463115000003

表2の結果に示されるように、乳蛋白質由来ペプチドを含む実施例1は、乳蛋白質由来ペプチドを含まない比較例1と比較して塩味が抑制された。 As shown in the results in Table 2, Example 1, which contains peptides derived from milk proteins, had a reduced salty taste compared to Comparative Example 1, which does not contain peptides derived from milk proteins.

<試験例1>
(1)目的
乳蛋白質由来ペプチドの含有量の好適な範囲を調べる。
(2)試料の調製
表3に示す処方の飲料A0及びA1~A8を調製した。飲料A0は乳蛋白質由来ペプチドを含まない対照試料である。飲料A3は実施例1と同じ処方である。
具体的には、表に示す配合の全原料を混合して混合液を調製した。この混合液を、実施例1と同様にして殺菌処理し、冷却して飲料を得た。
(3)評価
上記評価方法に基づいて塩味の強さ及びおいしさを評価した。飲料A0を対照試料として飲料A1~A8を評価した。結果を表4、5に示す。
<Test Example 1>
(1) Purpose To investigate the optimum range of the content of peptides derived from milk proteins.
(2) Preparation of Samples Beverages A0 and A1 to A8 were prepared according to the formulations shown in Table 3. Beverage A0 was a control sample that did not contain any peptides derived from milk proteins. Beverage A3 had the same formulation as in Example 1.
Specifically, all the ingredients shown in the table were mixed to prepare a mixture, which was then sterilized and cooled in the same manner as in Example 1 to obtain a beverage.
(3) Evaluation The strength of saltiness and deliciousness were evaluated based on the above evaluation method. Drinks A1 to A8 were evaluated using drink A0 as a control sample. The results are shown in Tables 4 and 5.

Figure 0007463115000004
Figure 0007463115000004

Figure 0007463115000005
Figure 0007463115000005

Figure 0007463115000006
Figure 0007463115000006

表4の結果に示されるように、乳蛋白質由来ペプチドを0.002~0.5質量%含む飲料A1~A8は、乳蛋白質由来ペプチドを含まない飲料A0と比較して塩味が抑制された。
表5の結果に示されるように、乳蛋白質由来ペプチドの含有量が0.002質量%以上0.2質量%未満である飲料A1~A6は、乳蛋白質由来ペプチドを含まない飲料A0と比較しておいしさが向上した。
As shown by the results in Table 4, beverages A1 to A8 containing 0.002 to 0.5% by mass of peptides derived from milk proteins had a reduced salty taste compared to beverage A0 which did not contain peptides derived from milk proteins.
As shown in the results in Table 5, beverages A1 to A6, which contain 0.002% by mass or more and less than 0.2% by mass of peptides derived from milk proteins, had improved flavor compared to beverage A0, which does not contain peptides derived from milk proteins.

<試験例2>
(1)目的
甘味度およびクエン酸換算酸度が低い場合の、乳蛋白質由来ペプチドの効果を調べる。
(2)試料の調製
表6に示す処方の飲料B0、B1及びC0、C1を調製した。具体的には、表に示す配合の全原料を混合して混合液を調製した。この混合液を、実施例1と同様にして殺菌処理し、冷却して飲料を得た。
(3)評価
上記評価方法に基づいて塩味の強さ及びおいしさを評価した。飲料B0を対照試料として飲料B1を評価し、飲料C0を対照試料として飲料C1を評価した。結果を表7、8に示す。
<Test Example 2>
(1) Objective To investigate the effect of peptides derived from milk proteins when sweetness and acidity (equivalent to citric acid) are low.
(2) Preparation of Samples Beverages B0, B1, C0, and C1 were prepared according to the formulations shown in Table 6. Specifically, all ingredients shown in the table were mixed to prepare a mixture. This mixture was sterilized and cooled in the same manner as in Example 1 to obtain a beverage.
(3) Evaluation The saltiness and deliciousness were evaluated based on the above evaluation method. Drink B1 was evaluated using drink B0 as a control sample, and drink C1 was evaluated using drink C0 as a control sample. The results are shown in Tables 7 and 8.

Figure 0007463115000007
Figure 0007463115000007

Figure 0007463115000008
Figure 0007463115000008

Figure 0007463115000009
Figure 0007463115000009

表7の結果に示されるように、乳蛋白質由来ペプチドを含む飲料B1、C1は、乳蛋白質由来ペプチドを含まない飲料B0、C0と比較して塩味が抑制された。
表8の結果に示されるように、乳蛋白質由来ペプチドを含む飲料B1、C1は、乳蛋白質由来ペプチドを含まない飲料B0、C0と比較しておいしさが向上した。
As shown by the results in Table 7, beverages B1 and C1 containing peptides derived from milk proteins had a suppressed salty taste compared to beverages B0 and C0 not containing peptides derived from milk proteins.
As shown by the results in Table 8, beverages B1 and C1 containing peptides derived from milk proteins had improved palatability compared with beverages B0 and C0 not containing peptides derived from milk proteins.

<試験例3>
(1)目的
飲料に添加するミネラルの種類を変えた場合、クエン酸換算酸度を高めた場合、又はミネラル含有量を高めた場合の、乳蛋白質由来ペプチドの効果を調べる。
(2)試料の調製
表9に示す処方の飲料D0及びD1~D5を調製した。具体的には、表に示す配合の全原料を混合して混合液を調製した。この混合液を、実施例1と同様にして殺菌処理し、冷却して飲料を得た。
(3)評価
上記評価方法に基づいて塩味の強さ、おいしさを評価した。飲料D0を対照試料として飲料D1~D5を評価した。結果を表10~11に示す。
<Test Example 3>
(1) Objective To investigate the effects of peptides derived from milk proteins when changing the type of minerals added to beverages, increasing the acidity in terms of citric acid, or increasing the mineral content.
(2) Preparation of Samples Beverages D0 and D1 to D5 were prepared according to the formulations shown in Table 9. Specifically, all ingredients shown in the table were mixed to prepare a mixture. This mixture was sterilized and cooled in the same manner as in Example 1 to obtain a beverage.
(3) Evaluation The strength of saltiness and deliciousness were evaluated based on the above evaluation method. Drinks D1 to D5 were evaluated using drink D0 as a control sample. The results are shown in Tables 10 to 11.

Figure 0007463115000010
Figure 0007463115000010

Figure 0007463115000011
Figure 0007463115000011

Figure 0007463115000012
Figure 0007463115000012

表10の結果に示されるように、乳蛋白質由来ペプチドを含む飲料D1、D2は、ミネラルの種類を変えても、乳蛋白質由来ペプチドを含まない飲料D0と比較して塩味が抑制された。
飲料D3、D4は、乳蛋白質由来ペプチド含有量及びミネラル含有量は飲料D1と同じであり、クエン酸換算酸度が飲料D1より高い。クエン酸換算酸度が0.3質量%である飲料D3では良好な塩味抑制効果が得られたが、クエン酸換算酸度が0.4質量%である飲料D4では塩味の抑制が不充分であった。
飲料D5は、乳蛋白質由来ペプチド含有量及びクエン酸換算酸度は飲料D1と同じであり、ミネラル含有量が飲料D1より高い。ミネラルを0.2質量%含む飲料D5では塩味の抑制が不充分であった。
表11の結果に示されるように、飲料D1、D2、D3は、乳蛋白質由来ペプチドを含まない飲料D0と比較しておいしさが向上した。
As shown in the results in Table 10, beverages D1 and D2 containing peptides derived from milk proteins had a suppressed salty taste compared to beverage D0 not containing peptides derived from milk proteins, even when the type of mineral was changed.
Drinks D3 and D4 had the same milk protein-derived peptide content and mineral content as drink D1, but had a higher citric acid-equivalent acidity than drink D1. Drink D3, which had a citric acid-equivalent acidity of 0.3% by mass, had a good salty taste suppression effect, but drink D4, which had a citric acid-equivalent acidity of 0.4% by mass, did not sufficiently suppress the salty taste.
Drink D5 has the same milk protein-derived peptide content and citric acid-equivalent acidity as drink D1, but has a higher mineral content than drink D1. Drink D5, which contains 0.2% by mass of minerals, was insufficiently suppressed in terms of saltiness.
As shown by the results in Table 11, beverages D1, D2, and D3 had improved palatability compared with beverage D0, which did not contain any peptides derived from milk proteins.

[製造例]
カゼインペプチド0.4g、塩化ナトリウム1g、グルコン酸カリウム(扶桑化学工業社製)0.5g、乳酸カルシウム0.5g、砂糖混合果糖ぶどう糖液糖35g、アセスルファムカリウム(三栄源FFI社製)0.09g、スクラロース(三栄源FFI社製)0.03g、クエン酸2.5g、グレープフルーツ6倍濃縮果汁(Cape Fruit Processors社製)15g、ライチ5倍濃縮果汁(果香社製)10g、グレープフルーツ香料1gを、全量が1000gとなるようイオン交換水に溶解し、混合した。混合液を110℃で2秒間殺菌処理を行い、330mLのキャップ付き紙容器に無菌的に充填し、電解質補給飲料を得た。
[Production Example]
0.4g of casein peptide, 1g of sodium chloride, 0.5g of potassium gluconate (manufactured by Fuso Chemical Co., Ltd.), 0.5g of calcium lactate, 35g of sugar mixed fructose glucose liquid sugar, 0.09g of acesulfame potassium (manufactured by San-Ei Gen FFI Co., Ltd.), 0.03g of sucralose (manufactured by San-Ei Gen FFI Co., Ltd.), 2.5g of citric acid, 15g of grapefruit 6-fold concentrated juice (manufactured by Cape Fruit Processors Co., Ltd.), 10g of lychee 5-fold concentrated juice (manufactured by Kako Co., Ltd.), and 1g of grapefruit flavoring were dissolved in ion-exchanged water to a total amount of 1000g and mixed. The mixture was sterilized at 110°C for 2 seconds and aseptically filled into a 330mL paper container with a cap to obtain an electrolyte supplement drink.

Claims (6)

ナトリウム、カリウム、カルシウム及びマグネシウムからなる群から選ばれる1種以上のミネラルの含有量が0.01質量%以上0.2質量%未満、クエン酸換算酸度が0.001質量%以上0.4質量%未満、乳蛋白質由来ペプチドの含有量が0.001質量%以上0.1質量%以下であり、かつ前記乳蛋白質由来ペプチドの含有量に対する、前記ミネラルの含有量の質量比を表す、ミネラル/乳蛋白質由来ペプチドの値が0.6~35である、電解質補給飲料。 The electrolyte supplement drink has a content of one or more minerals selected from the group consisting of sodium, potassium, calcium and magnesium of from 0.01% by mass to less than 0.2% by mass, a citric acid-equivalent acidity of from 0.001% by mass to less than 0.4% by mass, a content of peptides derived from milk protein of from 0.001% by mass to 0.1% by mass, and a mineral/peptide derived from milk protein value representing the mass ratio of the content of the minerals to the content of the peptides derived from milk protein of from 0.6 to 35. 前記乳蛋白質由来ペプチドが、カゼインペプチドである、請求項1に記載の電解質補給飲料。2. The electrolyte supplement drink according to claim 1, wherein the milk protein-derived peptide is a casein peptide. 甘味度が0.1質量%以上20質量%未満である、請求項1又は2に記載の電解質補給飲料。 3. The electrolyte supplement drink according to claim 1 , having a sweetness of 0.1% by mass or more and less than 20% by mass. ナトリウム塩、カリウム塩、カルシウム塩及びマグネシウム塩からなる群から選ばれる1種以上であるミネラル源と、乳蛋白質由来ペプチドと、酸味料と、水を含む原料を、
前記原料の総質量に対して、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群から選ばれる1種以上のミネラルの含有量が0.01質量%以上0.2質量%未満、クエン酸換算酸度が0.001質量%以上0.4質量%未満、乳蛋白質由来ペプチドの含有量が0.001質量%以上0.1質量%以下、かつ前記乳蛋白質由来ペプチドの含有量に対する、前記ミネラルの含有量の質量比を表す、ミネラル/乳蛋白質由来ペプチドの値が0.6~35となるように混合する、電解質補給飲料の製造方法。
A raw material including a mineral source selected from the group consisting of sodium salts, potassium salts, calcium salts, and magnesium salts, a peptide derived from a milk protein, an acidulant, and water,
The raw materials are mixed so that, relative to the total mass of the raw materials, the content of one or more minerals selected from the group consisting of sodium, potassium, calcium and magnesium is from 0.01% by mass to less than 0.2% by mass, the acidity equivalent to citric acid is from 0.001% by mass to less than 0.4% by mass, the content of peptides derived from milk proteins is from 0.001% by mass to 0.1% by mass, and the value of mineral/peptide derived from milk proteins, which represents the mass ratio of the content of the minerals to the content of the peptides derived from milk proteins, is 0.6 to 35 .
前記乳蛋白質由来ペプチドが、カゼインペプチドである、請求項4に記載の電解質補給飲料の製造方法。The method for producing an electrolyte supplement drink according to claim 4, wherein the peptide derived from milk protein is a casein peptide. 前記原料が甘味料を含み、前記原料の総質量に対する甘味度が0.1質量%以上20質量%未満である、請求項4又は5に記載の電解質補給飲料の製造方法。 The method for producing an electrolyte supplement beverage according to claim 4 or 5 , wherein the raw material contains a sweetener, and the sweetness level relative to the total mass of the raw material is 0.1 mass% or more and less than 20 mass%.
JP2020013671A 2020-01-30 2020-01-30 Electrolyte supplement drink and method for producing same Active JP7463115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020013671A JP7463115B2 (en) 2020-01-30 2020-01-30 Electrolyte supplement drink and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020013671A JP7463115B2 (en) 2020-01-30 2020-01-30 Electrolyte supplement drink and method for producing same

Publications (2)

Publication Number Publication Date
JP2021119748A JP2021119748A (en) 2021-08-19
JP7463115B2 true JP7463115B2 (en) 2024-04-08

Family

ID=77269621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013671A Active JP7463115B2 (en) 2020-01-30 2020-01-30 Electrolyte supplement drink and method for producing same

Country Status (1)

Country Link
JP (1) JP7463115B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7190253B2 (en) * 2016-09-26 2022-12-15 アサヒ飲料株式会社 Dairy beverage and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785566A (en) 2010-01-22 2010-07-28 北京康比特体育科技股份有限公司 Sports beverage containing HMB
WO2013133442A1 (en) 2012-03-09 2013-09-12 株式会社明治 Food or beverage that allows high degree of absorption of water
CN103976023A (en) 2014-05-26 2014-08-13 程礼华 Okra yogurt beverage and preparation method thereof
JP2017535616A (en) 2014-11-19 2017-11-30 カルマーナ・リミテッド Oral rehydration composition and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785566A (en) 2010-01-22 2010-07-28 北京康比特体育科技股份有限公司 Sports beverage containing HMB
WO2013133442A1 (en) 2012-03-09 2013-09-12 株式会社明治 Food or beverage that allows high degree of absorption of water
CN103976023A (en) 2014-05-26 2014-08-13 程礼华 Okra yogurt beverage and preparation method thereof
JP2017535616A (en) 2014-11-19 2017-11-30 カルマーナ・リミテッド Oral rehydration composition and method

Also Published As

Publication number Publication date
JP2021119748A (en) 2021-08-19

Similar Documents

Publication Publication Date Title
AU2010219684B2 (en) Milk-flavoured beverage
JP3562785B2 (en) Low calorie acidic protein beverage and method for producing the same
US20110081473A1 (en) Food ingredient having milk taste-enhancing action, production method thereof, method of enhancing milk taste of food or seasoning and milk taste-enhanced milk-based hard candy
JP3702176B2 (en) Milk coffee drink
US20120183672A1 (en) Process for production of composition containing collagen peptide
JPH08187067A (en) Calcium reinforcement drink
JP2004073197A (en) Sweetening composition and food containing the same
JP2012520079A (en) A composition comprising monatin and calcium
JP6994354B2 (en) Beverage
JP7463115B2 (en) Electrolyte supplement drink and method for producing same
JP2016077253A (en) Milk flavor-imparting agent
JP6377431B2 (en) Beverage composition
JP4217851B2 (en) Improvement of sweetness quality by beet oligosaccharide.
JP2000175648A (en) Sweetener composition containing whey mineral
TWI765055B (en) Carbonated beverage, packaged carbonated beverage and enhancing method for yoghurt flavor of carbonated beverage
JP2020127372A (en) Packaged beverage of powdered green tea flavor and method for enhancing powdered green tea flavor of beverage
JP6283716B2 (en) Method for improving aftertaste of yogurt-like high-definition beverage and yogurt-like high-definition beverage
WO2019151002A1 (en) Beverage and method for imparting milk flavor to beverage
JP4196144B2 (en) Gluconic acid-containing sweetening composition
JP7469038B2 (en) Cocoa-flavored beverages and methods for enhancing the cocoa flavor of beverages
JP7262178B2 (en) Beverage and method for imparting milk flavor to beverage
JP6915021B2 (en) How to improve the aftertaste of yogurt-like beverages, packaged beverages and yogurt-like beverages
JP7408285B2 (en) Coffee drinks and methods for improving the flavor of coffee drinks
TWI755504B (en) Yogurt flavor beverage, packaged beverage and aftertaste improving method of yogurt flavor beverage
JP7010657B2 (en) How to enhance the yogurt flavor of carbonated drinks, packaged carbonated drinks and carbonated drinks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240327

R150 Certificate of patent or registration of utility model

Ref document number: 7463115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150