JP7459774B2 - Energy storage cells and energy storage devices - Google Patents

Energy storage cells and energy storage devices Download PDF

Info

Publication number
JP7459774B2
JP7459774B2 JP2020198231A JP2020198231A JP7459774B2 JP 7459774 B2 JP7459774 B2 JP 7459774B2 JP 2020198231 A JP2020198231 A JP 2020198231A JP 2020198231 A JP2020198231 A JP 2020198231A JP 7459774 B2 JP7459774 B2 JP 7459774B2
Authority
JP
Japan
Prior art keywords
wall portion
thickness
storage cell
wall
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020198231A
Other languages
Japanese (ja)
Other versions
JP2022086298A (en
Inventor
有貴 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2020198231A priority Critical patent/JP7459774B2/en
Publication of JP2022086298A publication Critical patent/JP2022086298A/en
Application granted granted Critical
Publication of JP7459774B2 publication Critical patent/JP7459774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

本発明は、蓄電セル及び蓄電装置に関する。 The present invention relates to a power storage cell and a power storage device.

従来、特許文献1に記載される蓄電装置としての蓄電モジュールが知られている。
上記の蓄電モジュールは、電極ユニットが複数積層されることにより構成されている。電極ユニットは、バイポーラ電極と、隣り合うバイポーラ電極とともに空間を区画する樹脂枠とを備えている。空間には、電解液が収容されている。一対の電極が積層される第1方向で樹脂枠を平面視したとき、樹脂枠は、矩形環状をなしている。樹脂枠の1つの辺部には、空間に電解液を注入するための注入口が形成されている。樹脂枠を構成する4つの辺部のうち互いに隣り合う辺部は直交している。注入口は、空間にガスが発生したとき、ガスを蓄電セルの外部に排出する機能も有している。
BACKGROUND ART Conventionally, a power storage module as a power storage device described in Patent Document 1 has been known.
The above-mentioned power storage module is configured by laminating a plurality of electrode units. The electrode unit includes a bipolar electrode and a resin frame that partitions a space together with the adjacent bipolar electrodes. An electrolytic solution is contained in the space. When the resin frame is viewed from above in the first direction in which the pair of electrodes are stacked, the resin frame has a rectangular ring shape. An injection port for injecting electrolyte into the space is formed in one side of the resin frame. Among the four sides constituting the resin frame, adjacent sides are orthogonal to each other. The injection port also has the function of discharging gas to the outside of the electricity storage cell when gas is generated in the space.

特開2019-192584号公報JP 2019-192584 A

蓄電セルの空間に発生したガスを注入口から排出するとき、ガスは、注入口が設けられている樹脂枠の1つの辺部に向けて流動する。このとき、注入口が設けられた辺部と連続している各辺部と、注入口が設けられる辺部との境界にガスが溜まり易くなる虞がある。 When the gas generated in the space of the electricity storage cell is discharged from the injection port, the gas flows toward one side of the resin frame where the injection port is provided. At this time, there is a possibility that gas tends to accumulate at the boundary between each side continuous with the side where the injection port is provided and the side where the injection port is provided.

上記課題を解決する蓄電セルは、互いに対向する活物質層をそれぞれ有し、互いに重なり合う一対の電極と、前記一対の電極の間に介在し、前記活物質層を囲む矩形枠状をなし、且つ前記一対の電極とともに区画する空間を封止する樹脂枠と、を備える蓄電セルであって、前記樹脂枠に設けられ、前記空間と前記蓄電セルの外部とに延びる貫通部と、前記貫通部を閉塞する閉塞部とを備え、前記樹脂枠は、前記貫通部が設けられる第1壁部と、前記第1壁部に直交する方向に延びる第2壁部と、前記第1壁部と前記第2壁部とを接続する接続部と、を有し、前記第1壁部は、前記空間に臨む第1端面を有し、前記第2壁部は、前記空間に臨む第2端面を有し、前記接続部は、前記空間に臨み、且つ前記第1端面と前記第2端面とを接続する変化面を有し、前記変化面は、前記第1端面及び前記第2端面それぞれとなす角度が鈍角となるように前記第1端面及び前記第2端面の間に延びている。 A power storage cell that solves the above problems has active material layers facing each other, a pair of electrodes that overlap each other, and a rectangular frame shape that is interposed between the pair of electrodes and surrounds the active material layer, and A power storage cell comprising: a resin frame that seals a space partitioned together with the pair of electrodes; a penetration portion provided in the resin frame and extending to the space and the outside of the power storage cell; The resin frame includes a first wall portion provided with the penetration portion, a second wall portion extending in a direction perpendicular to the first wall portion, and a first wall portion and the first wall portion. a connecting portion connecting two wall portions, the first wall portion having a first end surface facing the space, and the second wall portion having a second end surface facing the space. , the connecting portion has a transition surface that faces the space and connects the first end surface and the second end surface, and the transition surface has an angle with each of the first end surface and the second end surface. It extends between the first end surface and the second end surface to form an obtuse angle.

これによれば、貫通部が閉塞部で閉塞されていない状態において、蓄電セルの空間に発生したガスを蓄電セルの外部に排出するとき、ガスは貫通部に向けて流動する。このとき、第2端面、変化面、及び第1端面に沿って流動するガスがある。第1端面と第2端面とが変化面で接続されていることから、ガスは、変化面により第2端面から第1端面に円滑に流動し易くなる。そのため、貫通部からガスを排出し易くなり、第1壁部と第2壁部との境界にガスが溜まることを抑制できる。 According to this, when gas generated in the space of the energy storage cell is discharged to the outside of the energy storage cell in a state where the through-hole is not blocked by the blocking portion, the gas flows toward the through-hole. At this time, some of the gas flows along the second end face, the change surface, and the first end face. Because the first end face and the second end face are connected by the change surface, the gas can easily flow smoothly from the second end face to the first end face due to the change surface. Therefore, it becomes easier to discharge the gas from the through-hole, and it is possible to suppress the accumulation of gas at the boundary between the first wall portion and the second wall portion.

上記の蓄電セルにおいて、前記第2壁部は、前記第1壁部が延びる方向である第1延設方向における前記第1壁部の第1端部寄り、及び前記第1延設方向における前記第1壁部の第2端部寄りにそれぞれ設けられ、前記第1端面と、前記第1端部寄りに設けられる前記第2壁部の前記第2端面とは、前記変化面により接続され、前記第1端面と、前記第2端部寄りに設けられる前記第2壁部の前記第2端面とは、前記変化面により接続されているとよい。 In the above-mentioned energy storage cell, the second wall portion is provided near a first end of the first wall portion in a first extension direction, which is a direction in which the first wall portion extends, and near a second end of the first wall portion in the first extension direction, and the first end face and the second end face of the second wall portion provided near the first end are connected by the changing surface, and the first end face and the second end face of the second wall portion provided near the second end are connected by the changing surface.

これによれば、貫通部が閉塞部で閉塞されていない状態において、蓄電セルの空間で発生したガスは、2つの第2壁部にそれぞれ対応して設けられた2つの変化面により第1端面に円滑に流動し易くなる。そのため、貫通部からガスを排出し易くなり、第1壁部と第2壁部との境界にガスが溜まることをより抑制できる。 With this, when the through-hole is not blocked by the blocking portion, gas generated in the space of the storage cell can flow smoothly to the first end face due to the two change surfaces provided corresponding to the two second wall portions, respectively. This makes it easier to exhaust gas from the through-hole, and can better prevent gas from accumulating at the boundary between the first wall portion and the second wall portion.

上記の蓄電セルにおいて、前記樹脂枠は、前記第2壁部の前記第1壁部とは反対側に連続し、前記一対の電極が重なり合う方向である積層方向で見た平面視において前記第1壁部が延びる第1延設方向に延びる第3壁部を有し、前記第1延設方向及び前記積層方向に直交する第1厚さ方向における前記第1壁部の厚さは、前記第2壁部が延びる第2延設方向及び前記積層方向に直交する第2厚さ方向における前記第2壁部の厚さ及び前記第1厚さ方向における前記第3壁部の厚さ以上であるとよい。 In the above-mentioned energy storage cell, the resin frame has a third wall portion that is continuous with the second wall portion on the opposite side to the first wall portion and extends in a first extension direction in which the first wall portion extends when viewed in a plan view in a stacking direction in which the pair of electrodes overlap, and the thickness of the first wall portion in a first thickness direction perpendicular to the first extension direction and the stacking direction is preferably equal to or greater than the thickness of the second wall portion in a second extension direction in which the second wall portion extends and a second thickness direction perpendicular to the stacking direction, and the thickness of the third wall portion in the first thickness direction.

これによれば、第1壁部の第1厚さ方向における厚さは、第2壁部の第2厚さ方向における厚さ及び第3壁部の第3厚さ方向における厚さ以上であり、蓄電セルの内圧に対する剛性が確保されている。そのため、貫通部からガスを排出する際、変化面により第1端面に向けてガスが流動し、貫通部にガスが集中しても、第1壁部の位置における封止性を、第2壁部及び第3壁部と同様に保持できる。 According to this, the thickness of the first wall in the first thickness direction is greater than or equal to the thickness of the second wall in the second thickness direction and the thickness of the third wall in the third thickness direction. , the rigidity against the internal pressure of the storage cell is ensured. Therefore, when gas is discharged from the penetration part, the gas flows toward the first end face due to the changing surface, and even if the gas concentrates in the penetration part, the sealing performance at the position of the first wall part is reduced by the second wall. and the third wall.

上記の蓄電セルにおいて、前記第1壁部は、前記第1壁部が延びる第1延設方向及び前記一対の電極が重なり合う方向である積層方向に直交する第1厚さ方向における厚さが変化しない板状をなし、前記第1延設方向において、前記接続部と前記貫通部とは前記貫通部の前記第1延設方向における幅以上の間隔を隔てて配置されているとよい。 In the above-mentioned energy storage cell, the first wall portion has a plate shape whose thickness does not change in a first thickness direction perpendicular to a first extension direction in which the first wall portion extends and a stacking direction in which the pair of electrodes overlap, and in the first extension direction, the connection portion and the through portion are disposed at a distance equal to or greater than the width of the through portion in the first extension direction.

これによれば、貫通部を設ける位置を第1延設方向においてずらし易くなる。よって、貫通部の配置の自由度が向上する。
上記の蓄電セルにおいて、前記変化面は、前記一対の電極が重なり合う方向である積層方向で見た平面視において、前記第1端面と前記第2端面との間で延びる傾斜面であるとよい。
According to this, it becomes easy to shift the position where the penetration part is provided in the first extension direction. Therefore, the degree of freedom in arranging the penetrating portions is improved.
In the above storage cell, the transition surface may be an inclined surface extending between the first end surface and the second end surface when viewed in plan in the stacking direction, which is the direction in which the pair of electrodes overlap.

これによれば、変化面を曲面とする場合と比較して、変化面を傾斜面とする場合の方が樹脂枠を製造し易い。そのため、蓄電セルの生産性を向上させることができる。よって、ガスを貫通部に誘導し易くしつつ蓄電セルの生産性が向上する。 According to this, it is easier to manufacture the resin frame when the changing surface is a sloped surface than when the changing surface is a curved surface. Therefore, productivity of power storage cells can be improved. Therefore, the productivity of the power storage cell is improved while making it easier to guide gas to the penetrating portion.

上記の蓄電セルにおいて、前記傾斜面は、前記貫通部に至るまで延びているとよい。
これによれば、傾斜面を伝って貫通部に直接的にガスを誘導することができるため、ガス抜きの効率を向上できる。
In the above-mentioned electricity storage cell, the inclined surface may extend up to the penetrating portion.
According to this, gas can be guided directly to the penetrating portion along the inclined surface, so that the efficiency of degassing can be improved.

上記課題を解決する蓄電装置は、複数の蓄電セルを備え、前記複数の蓄電セルは、上記のいずれかの蓄電セルを少なくとも含む。
これによれば、蓄電装置においても、貫通部からガスを排出し易くなり、第1壁部と第2壁部との境界にガスが溜まることを抑制できる。
The power storage device that solves the above problem includes a plurality of power storage cells, and the plurality of power storage cells includes at least any one of the power storage cells described above.
This makes it easier to discharge gas from the through-hole in the electricity storage device as well, and makes it possible to prevent gas from accumulating at the boundary between the first wall portion and the second wall portion.

この発明によれば、貫通部からガスを排出し易くなり、第1壁部と第2壁部との境界にガスが溜まることを抑制できる。 This invention makes it easier to exhaust gas from the penetration, and prevents gas from accumulating at the boundary between the first wall and the second wall.

蓄電装置を示す断面図。FIG. 2 is a cross-sectional view showing a power storage device. 蓄電セルの断面図。FIG. 蓄電セルの斜視図。A perspective view of a power storage cell. 図2の4-4線で切断したときの断面図。4 is a cross-sectional view taken along line 4-4 in FIG. 2 . 図2の4-4線で切断したときの断面図。A sectional view taken along line 4-4 in FIG. 2. 図1の6-6線で切断したときの断面図。A sectional view taken along line 6-6 in FIG. 1. 変更例における樹脂枠の断面図。FIG. 11 is a cross-sectional view of a resin frame in a modified example. 図7の矢印Eで見た第1壁部の端面図。FIG. 8 is an end view of the first wall section taken along arrow E in FIG. 7; 変更例における樹脂枠の断面図。FIG. 11 is a cross-sectional view of a resin frame in a modified example. 変更例における蓄電セルの斜視図。The perspective view of the electrical storage cell in the example of a change.

以下、蓄電セル及び蓄電装置を具体化した一実施形態を図1~図6にしたがって説明する。
図1に示すように、蓄電装置1は、積層された複数の蓄電セル10により構成されるセルスタック2を含んでいる。複数の蓄電セル10が積層される方向を積層方向Cとする。
Hereinafter, an embodiment of a power storage cell and a power storage device will be described with reference to FIGS.
1, the energy storage device 1 includes a cell stack 2 configured with a plurality of stacked energy storage cells 10. The direction in which the plurality of energy storage cells 10 are stacked is referred to as a stacking direction C.

図2に示すように、蓄電セル10は、正極20と、負極30と、セパレータ40と、樹脂枠50とを備えている。積層方向Cにおいて蓄電セル10を外側から見ることを平面視と呼ぶ。 As shown in FIG. 2, the electricity storage cell 10 includes a positive electrode 20, a negative electrode 30, a separator 40, and a resin frame 50. Viewing the storage cell 10 from the outside in the stacking direction C is called a plan view.

正極20は、例えば矩形状の電極である。正極20は、平面視で矩形状の正極集電体21、及び活物質層としての正極活物質層22を有している。正極集電体21は、第1面21aと、第1面21aとは反対側に位置する第2面21bとを有している。正極活物質層22は、正極集電体21の第1面21aに設けられている。正極集電体21の第2面21bには、正極活物質層22は設けられていない。正極集電体21は、第1面21aにおける正極集電体21の外周縁21c寄りに位置し、正極活物質層22が設けられていない外周縁部21dを有する。 The positive electrode 20 is, for example, a rectangular electrode. The positive electrode 20 includes a positive electrode current collector 21 that is rectangular in plan view, and a positive electrode active material layer 22 as an active material layer. The positive electrode current collector 21 has a first surface 21a and a second surface 21b located on the opposite side of the first surface 21a. The positive electrode active material layer 22 is provided on the first surface 21a of the positive electrode current collector 21. The positive electrode active material layer 22 is not provided on the second surface 21 b of the positive electrode current collector 21 . The positive electrode current collector 21 has an outer peripheral edge portion 21d located near the outer peripheral edge 21c of the positive electrode current collector 21 on the first surface 21a, and on which the positive electrode active material layer 22 is not provided.

負極30は、例えば矩形状の電極である。負極30は、平面視で矩形状の負極集電体31、及び活物質層としての負極活物質層32を有している。負極集電体31は、第1面31aと、第1面31aとは反対側に位置する第2面31bとを有している。負極活物質層32は、負極集電体31の第1面31aに設けられている。負極集電体31の第2面31bには、負極活物質層32は設けられていない。負極集電体31は、第1面31aにおける負極集電体31の外周縁31c寄りに位置し、負極活物質層32が設けられていない外周縁部31dを有する。なお、正極20及び負極30は、活物質層を有する一対の電極の一例である。 The negative electrode 30 is, for example, a rectangular electrode. The negative electrode 30 includes a negative electrode current collector 31 that is rectangular in plan view, and a negative electrode active material layer 32 as an active material layer. The negative electrode current collector 31 has a first surface 31a and a second surface 31b located on the opposite side to the first surface 31a. The negative electrode active material layer 32 is provided on the first surface 31a of the negative electrode current collector 31. The negative electrode active material layer 32 is not provided on the second surface 31b of the negative electrode current collector 31. The negative electrode current collector 31 has an outer peripheral edge portion 31d located near the outer peripheral edge 31c of the negative electrode current collector 31 on the first surface 31a, and on which the negative electrode active material layer 32 is not provided. Note that the positive electrode 20 and the negative electrode 30 are an example of a pair of electrodes having an active material layer.

正極集電体21の第1面21aと負極集電体31の第1面31aとは対向している。すなわち、正極活物質層22と負極活物質層32とは互いに対向している。セパレータ40は、正極活物質層22と負極活物質層32との間に挟まれている。つまり、正極20と負極30とは、セパレータ40を介して重なり合っている。正極20と負極30とが重なり合う方向を積層方向Aとし、積層方向Aに直交し、正極集電体21(負極集電体31)の平面視中央から外周縁21c(外周縁31c)に向かう方向を放射方向Bとする。複数の蓄電セル10の積層方向Cと、正極20と負極30とが重なり合う積層方向Aとは一致している。このため、積層方向Aにおいて蓄電セル10を見ることも平面視と記載する。 The first surface 21a of the positive electrode collector 21 and the first surface 31a of the negative electrode collector 31 face each other. That is, the positive electrode active material layer 22 and the negative electrode active material layer 32 face each other. The separator 40 is sandwiched between the positive electrode active material layer 22 and the negative electrode active material layer 32. That is, the positive electrode 20 and the negative electrode 30 overlap with the separator 40 interposed therebetween. The direction in which the positive electrode 20 and the negative electrode 30 overlap is the stacking direction A, and the direction perpendicular to the stacking direction A and extending from the center of the positive electrode collector 21 (negative electrode collector 31) in a plan view toward the outer periphery 21c (outer periphery 31c) is the radial direction B. The stacking direction C of the multiple storage cells 10 and the stacking direction A in which the positive electrode 20 and the negative electrode 30 overlap each other coincide with each other. For this reason, the view of the storage cell 10 in the stacking direction A is also described as a plan view.

正極活物質層22及び負極活物質層32は、それぞれ矩形状に形成されている。負極活物質層32は、正極活物質層22よりも一回り大きく形成されている。平面視において、正極活物質層22の形成領域の全体が、負極活物質層32の形成領域の内側に位置している。 The positive electrode active material layer 22 and the negative electrode active material layer 32 are each formed in a rectangular shape. The negative electrode active material layer 32 is formed to be one size larger than the positive electrode active material layer 22. In plan view, the entire region where the positive electrode active material layer 22 is formed is located inside the region where the negative electrode active material layer 32 is formed.

セパレータ40は、平面視において、負極活物質層32の形成領域よりも大きい矩形状をなしている。セパレータ40は、平面視において、正極集電体21及び負極集電体31よりも小さい矩形状をなしている。セパレータ40は、積層方向Aにおいて、正極活物質層22及び負極活物質層32に対向していない非対向部41を有している。 In plan view, the separator 40 has a rectangular shape larger than the area in which the negative electrode active material layer 32 is formed. In plan view, the separator 40 has a rectangular shape smaller than the positive electrode current collector 21 and the negative electrode current collector 31. The separator 40 has a non-facing portion 41 that does not face the positive electrode active material layer 22 and the negative electrode active material layer 32 in the stacking direction A.

図2及び図3に示すように、樹脂枠50は、正極集電体21と負極集電体31との間に位置する。樹脂枠50は、絶縁材料を含み、正極集電体21と負極集電体31とを絶縁することにより正極集電体21と負極集電体31との短絡を防止する。本実施形態では、樹脂枠50の材料は、酸変性ポリエチレンである。なお、樹脂枠50の材料は、酸変性ポリプロピレンであってもよい。 As shown in FIGS. 2 and 3, the resin frame 50 is located between the positive electrode current collector 21 and the negative electrode current collector 31. The resin frame 50 includes an insulating material and prevents a short circuit between the positive electrode current collector 21 and the negative electrode current collector 31 by insulating the positive electrode current collector 21 and the negative electrode current collector 31. In this embodiment, the material of the resin frame 50 is acid-modified polyethylene. Note that the material of the resin frame 50 may be acid-modified polypropylene.

図2に示すように、樹脂枠50は、正極集電体21の外周縁部21dと、負極集電体31の外周縁部31dとの間に配置されている。樹脂枠50は、正極20と負極30との間に介在されるように設けられている。樹脂枠50は、正極活物質層22及び負極活物質層32を囲む矩形枠状をなしている。平面視において、樹脂枠50は、四角枠状をなしている。樹脂枠50は、正極集電体21の外周縁部21dと負極集電体31の外周縁部31dとの間に挟まれている部分と、正極集電体21の外周縁21c及び負極集電体31の外周縁31cよりも外側に位置する部分とを有している。 As shown in FIG. 2, the resin frame 50 is disposed between the outer peripheral edge 21d of the positive electrode current collector 21 and the outer peripheral edge 31d of the negative electrode current collector 31. The resin frame 50 is provided to be interposed between the positive electrode 20 and the negative electrode 30. The resin frame 50 has a rectangular frame shape surrounding the positive electrode active material layer 22 and the negative electrode active material layer 32. In plan view, the resin frame 50 has a rectangular frame shape. The resin frame 50 includes a portion sandwiched between the outer peripheral edge 21d of the positive electrode current collector 21 and the outer peripheral edge 31d of the negative electrode current collector 31, and the outer peripheral edge 21c of the positive electrode current collector 21 and the negative electrode current collector. It has a portion located outside the outer peripheral edge 31c of the body 31.

樹脂枠50は、積層方向Aの両端面のうち、正極集電体21寄りの端面に四角枠状の正極側端面50bを有し、負極集電体31寄りの端面に四角枠状の負極側端面50cを有する。 Of both end faces in the stacking direction A, the resin frame 50 has a square frame-shaped positive electrode side end face 50b on the end face closer to the positive electrode current collector 21, and a square frame-shaped negative electrode end face 50b on the end face closer to the negative electrode current collector 31. It has an end surface 50c.

樹脂枠50において、正極集電体21の外周縁部21dと負極集電体31の外周縁部31dとの間に挟まれている部分を介在部50aとする。樹脂枠50には、介在部50aと正極集電体21との間に非対向部41を挟む部分と、介在部50aと正極集電体21とが互いに溶着された第1接合部W1とが形成されている。非対向部41は、介在部50aに溶着されてもよい。 In the resin frame 50, a portion sandwiched between the outer peripheral edge 21d of the positive electrode current collector 21 and the outer peripheral edge 31d of the negative electrode current collector 31 is defined as an intervening portion 50a. The resin frame 50 includes a portion where the non-opposing portion 41 is sandwiched between the interposed portion 50a and the positive electrode current collector 21, and a first joint portion W1 where the interposed portion 50a and the positive electrode current collector 21 are welded to each other. It is formed. The non-opposing portion 41 may be welded to the intervening portion 50a.

第1接合部W1は、樹脂枠50の正極側端面50bにおける正極集電体21の外周縁部21dが重なり合う部分と、正極集電体21の外周縁部21dとが溶着されて形成されている。第1接合部W1において、正極側端面50bと、正極集電体21の外周縁部21dとは全周に亘って溶着されている。そのため、平面視において、第1接合部W1は、四角枠状をなしている。 The first joint W1 is formed by welding the overlapping portion of the outer peripheral edge 21d of the positive electrode collector 21 on the positive electrode side end surface 50b of the resin frame 50 to the outer peripheral edge 21d of the positive electrode collector 21. In the first joint W1, the positive electrode side end surface 50b and the outer peripheral edge 21d of the positive electrode collector 21 are welded around the entire circumference. Therefore, in a plan view, the first joint W1 has a rectangular frame shape.

樹脂枠50には、介在部50aと負極集電体31とが互いに溶着された第2接合部W2が形成されている。第2接合部W2は、樹脂枠50の負極側端面50cにおける負極集電体31の外周縁部31dが重なり合う部分と、負極集電体31の外周縁部31dとが溶着されて形成されている。第2接合部W2において、負極側端面50cと、負極集電体31の外周縁部31dとは全周に亘って溶着されている。そのため、平面視において、第2接合部W2は、四角枠状をなしている。介在部50aと正極集電体21との間に非対向部41を挟む場合、第2接合部W2は、第1接合部W1よりも溶着面積が大きく形成され得る。第1接合部W1及び第2接合部W2により蓄電セル10の正極20、負極30、及び樹脂枠50により区画される空間Sのシール性が保たれる。すなわち、樹脂枠50は、正極20及び負極30とともに区画する空間Sを封止している。具体的には、空間Sは正極集電体21、負極集電体31及び樹脂枠50により区画ならびに封止され、当該空間S内に正極活物質層22及び負極活物質層32が配置されている。 A second joint W2 is formed in the resin frame 50, in which the interposed part 50a and the negative electrode current collector 31 are welded to each other. The second joint W2 is formed by welding a portion of the negative electrode side end surface 50c of the resin frame 50 where the outer peripheral edge 31d of the negative electrode current collector 31 overlaps with the outer peripheral edge 31d of the negative electrode current collector 31. . In the second joint W2, the negative electrode side end surface 50c and the outer peripheral edge 31d of the negative electrode current collector 31 are welded over the entire circumference. Therefore, in plan view, the second joint portion W2 has a rectangular frame shape. When the non-opposed portion 41 is sandwiched between the intervening portion 50a and the positive electrode current collector 21, the second bonded portion W2 may be formed to have a larger welded area than the first bonded portion W1. The sealing performance of the space S defined by the positive electrode 20, the negative electrode 30, and the resin frame 50 of the power storage cell 10 is maintained by the first joint W1 and the second joint W2. That is, the resin frame 50 seals the space S defined together with the positive electrode 20 and the negative electrode 30. Specifically, the space S is divided and sealed by the positive electrode current collector 21, the negative electrode current collector 31, and the resin frame 50, and the positive electrode active material layer 22 and the negative electrode active material layer 32 are arranged within the space S. There is.

図1に示すように、セルスタック2において、複数の蓄電セル10は、積層方向Cに隣り合う一方の蓄電セル10の正極集電体21の第2面21bと負極集電体31の第2面31bとが互いに接するようにスタックされている。複数の蓄電セル10は電気的に直列に接続される。セルスタック2では、積層方向Cに隣り合う蓄電セル10により互いに接する正極集電体21及び負極集電体31を電極体とする疑似的なバイポーラ電極13が形成される。1つのバイポーラ電極13は、正極集電体21、負極集電体31、正極活物質層22、及び負極活物質層32を含む。なお、複数の蓄電セル10が備える樹脂枠50において、正極集電体21の外周縁21c及び負極集電体31の外周縁31cよりも外側に位置する部分は、互いに接合されて一体化している。これにより、蓄電装置1として、バイポーラ電極13を構成している正極集電体21と負極集電体31との間のシール性が確保される。セルスタック2における積層方向Cの第1端部11には、終端電極として正極集電体21と正極活物質層22が配置される。蓄電装置1における積層方向Cの第2端部12には、終端電極として負極集電体31と負極活物質層32が配置される。 As shown in FIG. 1, in the cell stack 2, the multiple storage cells 10 are stacked such that the second surface 21b of the positive electrode collector 21 and the second surface 31b of the negative electrode collector 31 of one storage cell 10 adjacent to each other in the stacking direction C are in contact with each other. The multiple storage cells 10 are electrically connected in series. In the cell stack 2, a pseudo bipolar electrode 13 is formed in which the positive electrode collector 21 and the negative electrode collector 31 that are in contact with each other are used as electrodes by the storage cells 10 adjacent to each other in the stacking direction C. One bipolar electrode 13 includes the positive electrode collector 21, the negative electrode collector 31, the positive electrode active material layer 22, and the negative electrode active material layer 32. In addition, in the resin frame 50 provided for the multiple storage cells 10, the parts located outside the outer periphery 21c of the positive electrode collector 21 and the outer periphery 31c of the negative electrode collector 31 are joined to each other and integrated. This ensures sealing between the positive electrode collector 21 and the negative electrode collector 31 that constitute the bipolar electrode 13 of the energy storage device 1. The positive electrode collector 21 and the positive electrode active material layer 22 are arranged as terminal electrodes at the first end 11 in the stacking direction C of the cell stack 2. The negative electrode collector 31 and the negative electrode active material layer 32 are arranged as terminal electrodes at the second end 12 in the stacking direction C of the energy storage device 1.

蓄電装置1は、積層方向Cにおいてセルスタック2を挟むように配置された、正極通電板71及び負極通電板81からなる一対の通電体を備えている。正極通電板71及び負極通電板81は、それぞれ良導電性材料で構成される。正極通電板71は、第1端部11において最も外側に配置された正極集電体21に電気的に接続されている。負極通電板81は、第2端部12において最も外側に配置された負極集電体31に電気的に接続されている。正極通電板71及び負極通電板81に設けられた図示しない端子を通じて蓄電装置1の充放電が行われる。正極通電板71及び負極通電板81を構成する材料としては、正極集電体21及び負極集電体31を構成する材料と同じ材料を用いることができる。正極通電板71及び負極通電板81は、蓄電セル10に用いられた正極集電体21及び負極集電体31よりも厚い金属板で構成してもよい。 The power storage device 1 includes a pair of current-carrying bodies including a positive electrode current-carrying plate 71 and a negative electrode current-carrying plate 81, which are arranged so as to sandwich the cell stack 2 in the stacking direction C. The positive electrode current-carrying plate 71 and the negative electrode current-carrying plate 81 are each made of a highly conductive material. The positive electrode current-carrying plate 71 is electrically connected to the positive electrode current collector 21 disposed at the outermost side at the first end portion 11 . The negative electrode current-carrying plate 81 is electrically connected to the negative electrode current collector 31 disposed on the outermost side at the second end portion 12 . The power storage device 1 is charged and discharged through terminals (not shown) provided on the positive electrode current-carrying plate 71 and the negative electrode current-carrying plate 81. As the material constituting the positive electrode current carrying plate 71 and the negative electrode current carrying plate 81, the same material as that forming the positive electrode current collector 21 and the negative electrode current collector 31 can be used. The positive electrode current-carrying plate 71 and the negative electrode current-carrying plate 81 may be made of metal plates that are thicker than the positive electrode current collector 21 and the negative electrode current collector 31 used in the electricity storage cell 10.

正極集電体21及び負極集電体31は、化学的に不活性な電気伝導体である。正極集電体21及び負極集電体31を構成する材料としては、例えば、金属材料、導電性樹脂材料、導電性無機材料等を用いることができる。導電性樹脂材料としては、例えば、導電性高分子材料又は非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂等が挙げられる。正極集電体21及び負極集電体31は、前述した金属材料又は導電性樹脂材料を含む1以上の層を含む複数層を備えてもよい。正極集電体21及び負極集電体31の表面には、メッキ処理又はスプレーコート等の公知の方法により被覆層を形成してもよい。正極集電体21及び負極集電体31は、例えば、板状、箔状、シート状、フィルム状、メッシュ状等の形態に形成されていてもよい。正極集電体21及び負極集電体31を金属箔とする場合、例えば、アルミニウム箔、銅箔、ニッケル箔、チタン箔、又はステンレス鋼箔等を用いることができる。正極集電体21及び負極集電体31としてステンレス鋼箔を用いる場合、例えばJIS G 4305:2015にて規定されるSUS304、SUS316、SUS301等を用いると、正極集電体21及び負極集電体31の機械的強度を確保できる。正極集電体21及び負極集電体31は、上記金属の合金箔又はクラッド箔であってもよい。本実施形態において、正極集電体21はアルミニウム箔であり、負極集電体31は銅箔である。正極集電体21及び負極集電体31は、箔状である場合、厚みを例えば、1μm~100μmとすればよい。 The positive electrode collector 21 and the negative electrode collector 31 are chemically inactive electrical conductors. Examples of materials that can be used for the positive electrode collector 21 and the negative electrode collector 31 include metal materials, conductive resin materials, and conductive inorganic materials. Examples of conductive resin materials include resins in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material as necessary. The positive electrode collector 21 and the negative electrode collector 31 may have multiple layers including one or more layers containing the above-mentioned metal material or conductive resin material. A coating layer may be formed on the surface of the positive electrode collector 21 and the negative electrode collector 31 by a known method such as plating or spray coating. The positive electrode collector 21 and the negative electrode collector 31 may be formed in the form of, for example, a plate, foil, sheet, film, mesh, or the like. When the positive electrode collector 21 and the negative electrode collector 31 are made of metal foil, for example, aluminum foil, copper foil, nickel foil, titanium foil, or stainless steel foil can be used. When using stainless steel foil as the positive electrode collector 21 and the negative electrode collector 31, for example, SUS304, SUS316, SUS301, etc., as specified in JIS G 4305:2015, can be used to ensure the mechanical strength of the positive electrode collector 21 and the negative electrode collector 31. The positive electrode collector 21 and the negative electrode collector 31 may be alloy foil or clad foil of the above metals. In this embodiment, the positive electrode collector 21 is aluminum foil, and the negative electrode collector 31 is copper foil. When the positive electrode collector 21 and the negative electrode collector 31 are foil-shaped, the thickness may be, for example, 1 μm to 100 μm.

正極活物質層22は、リチウムイオン等の電荷担体を吸蔵及び放出し得る正極活物質を含む、正極活物質としては、層状岩塩構造を有するリチウムイオン複合金属酸化物、スピネル構造の金属酸化物、ポリアニオン系化合物など、リチウムイオン二次電池の正極活物質として使用可能なものを採用すればよい。また、2種以上の正極活物質を併用してもよい。本実施形態において、正極活物質層22は、複合活物質としてのオリビン型リン酸鉄リチウム(LiFePO)を含む。 The positive electrode active material layer 22 includes a positive electrode active material that can insert and release charge carriers such as lithium ions. Examples of the positive electrode active material include a lithium ion composite metal oxide having a layered rock salt structure, a metal oxide having a spinel structure, Any material that can be used as a positive electrode active material for lithium ion secondary batteries, such as a polyanion compound, may be used. Furthermore, two or more types of positive electrode active materials may be used in combination. In this embodiment, the positive electrode active material layer 22 includes olivine-type lithium iron phosphate (LiFePO 4 ) as a composite active material.

負極活物質層32は、リチウムイオン等の電荷担体を吸蔵及び放出可能である単体、合金、又は、炭素、金属化合物、リチウムと合金化可能な元素もしくはその化合物等が挙げられる。炭素としては天然黒鉛、人造黒鉛、あるいはハードカーボン(難黒鉛化性炭素)又はソフトカーボン(易黒鉛化性炭素)が挙げられる。人造黒鉛としては、高配向性グラファイト、メソカーボンマイクロビーズ等が挙げられる。リチウムと合金化可能な元素の例としては、シリコン(ケイ素)及びスズが挙げられる。本実施形態において、負極活物質層32は炭素系材料としての黒鉛を含む。 Examples of the negative electrode active material layer 32 include a single substance, an alloy, carbon, a metal compound, an element that can be alloyed with lithium, or a compound thereof, which can insert and release charge carriers such as lithium ions. Examples of carbon include natural graphite, artificial graphite, hard carbon (non-graphitizable carbon), and soft carbon (easily graphitizable carbon). Examples of artificial graphite include highly oriented graphite and mesocarbon microbeads. Examples of elements that can be alloyed with lithium include silicon and tin. In this embodiment, the negative electrode active material layer 32 contains graphite as a carbon-based material.

正極活物質層22及び負極活物質層32それぞれは、必要に応じて電気伝導性を高めるための導電助剤、結着剤、電解質(ポリマーマトリクス、イオン伝導性ポリマー、電解液等)、イオン伝導性を高めるための電解質支持塩(リチウム塩)等をさらに含み得る。活物質層に含まれる成分又は成分の配合比及び活物質層の厚さは特に限定されず、リチウムイオン二次電池についての公知の知見が適宜参照され得る。活物質層の厚みは、例えば2μm~150μmである。正極集電体21及び負極集電体31の表面に活物質層を形成させるために、ロールコート法等の公知の方法を用いてもよい。正極20又は負極30の熱安定性を向上させるために、正極集電体21及び負極集電体31の表面(片面又は両面)又は正極活物質層22及び負極活物質層32の表面に耐熱層を設けてもよい。耐熱層は、例えば、無機粒子と結着剤とを含み、その他に増粘剤等の添加剤を含んでもよい。 The positive electrode active material layer 22 and the negative electrode active material layer 32 each contain a conductive agent, a binder, an electrolyte (a polymer matrix, an ion-conductive polymer, an electrolytic solution, etc.), and an ion-conductive material to improve electrical conductivity as necessary. The electrolyte may further contain an electrolyte supporting salt (lithium salt), etc. to improve the properties. The components contained in the active material layer or the blending ratio of the components and the thickness of the active material layer are not particularly limited, and known knowledge regarding lithium ion secondary batteries may be appropriately referred to. The thickness of the active material layer is, for example, 2 μm to 150 μm. In order to form an active material layer on the surfaces of the positive electrode current collector 21 and the negative electrode current collector 31, a known method such as a roll coating method may be used. In order to improve the thermal stability of the positive electrode 20 or the negative electrode 30, a heat-resistant layer is provided on the surfaces of the positive electrode current collector 21 and the negative electrode current collector 31 (on one side or both sides) or on the surfaces of the positive electrode active material layer 22 and the negative electrode active material layer 32. may be provided. The heat-resistant layer contains, for example, inorganic particles and a binder, and may also contain additives such as a thickener.

導電助剤は、例えば、アセチレンブラック、カーボンブラック、グラファイト等である。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂が挙げられる。また、結着剤としては、ポリイミド、ポリアミド等のイミド系樹脂、アルコキシシリル基含有樹脂、アクリル酸やメタクリル酸などのモノマー単位を含むアクリル系樹脂、スチレン-ブタジエンゴム(SBR)が挙げられる。さらに、結着剤としては、カルボキシメチルセルロース、アルギン酸ナトリウム、アルギン酸アンモニウム等のアルギン酸塩、水溶性セルロースエステル架橋体、デンプン-アクリル酸グラフト重合体が挙げられる。これらの結着剤は、単独で又は複数で用いられ得る。溶媒としては、例えば、水、N-メチル-2-ピロドリン(NMP)等が用いられる。 Examples of the conductive aid include acetylene black, carbon black, and graphite. Examples of the binder include fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluorinated rubber, and thermoplastic resins such as polypropylene and polyethylene. Examples of the binder include imide resins such as polyimide and polyamide, alkoxysilyl group-containing resins, acrylic resins containing monomer units such as acrylic acid and methacrylic acid, and styrene-butadiene rubber (SBR). Furthermore, examples of the binder include alginates such as carboxymethyl cellulose, sodium alginate, and ammonium alginate, water-soluble cellulose ester crosslinked products, and starch-acrylic acid graft polymers. These binders may be used alone or in combination. As the solvent, for example, water, N-methyl-2-pyrodrine (NMP), etc. are used.

セパレータ40は、正極20と負極30とを隔離することで両極の接触による短絡を防止しつつ、リチウムイオン等の電荷担体を通過させる。セパレータ40は、例えば、電解質を吸収保持するポリマーを含む多孔性シート又は不織布であってもよい。セパレータ40を構成する材料としては、例えば、ポリプロピレン、ポリエチレン、ポリオレフィン、ポリエステル等が挙げられる。セパレータ40は、単層構造又は多層構造を有してもよい。多層構造は、例えば、接着層、耐熱層としてのセラミック層等を有してもよい。セパレータ40自体を高分子ゲル電解質又は電解質等の電解質で構成してもよい。 The separator 40 allows charge carriers such as lithium ions to pass through while isolating the positive electrode 20 and the negative electrode 30 to prevent short circuits caused by contact between the two electrodes. The separator 40 may be, for example, a porous sheet or nonwoven fabric containing a polymer that absorbs and retains an electrolyte. Examples of materials that constitute the separator 40 include polypropylene, polyethylene, polyolefin, polyester, and the like. The separator 40 may have a single-layer structure or a multi-layer structure. The multi-layer structure may have, for example, an adhesive layer, a ceramic layer as a heat-resistant layer, and the like. The separator 40 itself may be composed of an electrolyte such as a polymer gel electrolyte or an electrolyte.

セパレータ40に含浸される電解質としては、例えば、非水溶媒と非水溶媒に溶解した電解質塩とを含む液体電解質(電解液)、又はポリマーマトリックス中に保持された電解質を含む高分子ゲル電解質等が挙げられる。 The electrolyte impregnated into the separator 40 may be, for example, a liquid electrolyte (electrolyte) containing a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent, or a polymer gel electrolyte containing an electrolyte held in a polymer matrix. can be mentioned.

セパレータ40に電解液が含浸される場合、その電解質塩として、LiClO、LiAsF6、LiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、等の公知のリチウム塩を使用できる。また、非水溶媒として、環状カーボネート類、環状エステル類、鎖状カーボネート類、鎖状エステル類、エーテル類等の公知の溶媒を使用できる。なお、これら公知の溶媒材料を二種以上組み合わせて用いてもよい。 When the separator 40 is impregnated with an electrolyte solution, known lithium salts such as LiClO4 , LiAsF6 , LiPF6 , LiBF4 , LiCF3SO3 , LiN( FSO2 ) 2 , LiN( CF3SO2 ) 2 , etc. can be used as the electrolyte salt. In addition, known solvents such as cyclic carbonates, cyclic esters, chain carbonates, chain esters , ethers, etc. can be used as the non-aqueous solvent. Two or more of these known solvent materials may be used in combination.

図3に示すように、樹脂枠50は、4つの壁部と、2つの接続部54とを有している。樹脂枠50が有する4つの壁部は、第1壁部51と、2つの第2壁部52と、第3壁部53とである。第1壁部51には、2つの接続部54が連続している。2つの接続部54それぞれには、第2壁部52が連続している。2つの第2壁部52の第1壁部51とは反対側には、第3壁部53が連続している。平面視において、第1壁部51と第3壁部53とは平行に延びている。平面視において、2つの第2壁部52は、平行に延びている。 As shown in FIG. 3, the resin frame 50 has four walls and two connection portions 54. The four walls of the resin frame 50 are a first wall 51, two second walls 52, and a third wall 53. The first wall 51 is continuous with two connection portions 54. The second wall 52 is continuous with each of the two connection portions 54. The third wall 53 is continuous with the two second walls 52 on the side opposite the first wall 51. In a plan view, the first wall 51 and the third wall 53 extend in parallel. In a plan view, the two second walls 52 extend in parallel.

平面視において、2つの第2壁部52の間で、第1壁部51が延びる方向を第1延設方向D1とし、第3壁部53が延びる方向を第3延設方向D3とする。平面視において、第1壁部51と第3壁部53との間で、2つの第2壁部52が延びる方向を第2延設方向D2とする。第1延設方向D1と第2延設方向D2とは直交している。すなわち、2つの第2壁部52は、第1壁部51に直交する方向に延びている。第1延設方向D1と第3延設方向D3とは平行をなしている。すなわち、第1延設方向D1と第3延設方向D3は同じ方向であり、第3壁部53は、第1延設方向D1に延びている。第2延設方向D2と第3延設方向D3とは直交している。2つの第2壁部52の一方は、第1延設方向D1における第1壁部51の第1端部寄りに設けられている。2つの第2壁部52の他方は、第1延設方向D1における第1壁部51の第2端部寄りに設けられている。 In plan view, between the two second walls 52, the direction in which the first wall 51 extends is defined as a first extension direction D1, and the direction in which the third wall 53 extends is defined as a third extension direction D3. In plan view, the direction in which the two second wall parts 52 extend between the first wall part 51 and the third wall part 53 is defined as a second extension direction D2. The first extending direction D1 and the second extending direction D2 are orthogonal to each other. That is, the two second wall portions 52 extend in a direction perpendicular to the first wall portion 51. The first extending direction D1 and the third extending direction D3 are parallel to each other. That is, the first extending direction D1 and the third extending direction D3 are the same direction, and the third wall portion 53 extends in the first extending direction D1. The second extending direction D2 and the third extending direction D3 are orthogonal to each other. One of the two second wall portions 52 is provided near the first end of the first wall portion 51 in the first extension direction D1. The other of the two second wall portions 52 is provided closer to the second end of the first wall portion 51 in the first extending direction D1.

第1壁部51と、2つの第2壁部52と、第3壁部53と、2つの接続部54との積層方向Aにおける厚さは全て同じである。そのため、第1壁部51と、2つの第2壁部52と、第3壁部53と、2つの接続部54との積層方向Aにおける両端面のうちの一端面により正極側端面50bが形成され、他端面により負極側端面50cが形成されている。 The first wall portion 51, the two second wall portions 52, the third wall portion 53, and the two connection portions 54 all have the same thickness in the stacking direction A. Therefore, one of both end faces in the stacking direction A of the first wall portion 51, the two second wall portions 52, the third wall portion 53, and the two connection portions 54 forms the positive electrode side end face 50b, and the other end face forms the negative electrode side end face 50c.

図3及び図4に示すように、第1延設方向D1及び積層方向Aに直交する方向を第1厚さ方向Dt1とし、第1厚さ方向Dt1への第1壁部51の寸法を厚さT1とする。第1壁部51は、厚さT1が変化しない板状をなしている。第1壁部51は、蓄電セル10の空間Sに臨む第1内面51aを有している。第1内面51aは、第1厚さ方向Dt1に直交する面であり、平面視において第1延設方向D1に延びる面である。第1壁部51は、第1厚さ方向Dt1において、第1内面51aとは反対側に位置する第1外面51bを有している。第1内面51a及び第1外面51bは平行である。第1内面51aは、第1壁部51の第1端面の一例である。 As shown in FIGS. 3 and 4, the direction perpendicular to the first extension direction D1 and the stacking direction A is the first thickness direction Dt1, and the dimension of the first wall portion 51 in the first thickness direction Dt1 is the thickness. Let it be T1. The first wall portion 51 has a plate shape in which the thickness T1 does not change. The first wall portion 51 has a first inner surface 51a facing the space S of the power storage cell 10. The first inner surface 51a is a surface that is perpendicular to the first thickness direction Dt1 and extends in the first extension direction D1 in plan view. The first wall portion 51 has a first outer surface 51b located on the opposite side to the first inner surface 51a in the first thickness direction Dt1. The first inner surface 51a and the first outer surface 51b are parallel. The first inner surface 51a is an example of the first end surface of the first wall portion 51.

第2延設方向D2及び積層方向Aに直交する方向を第2厚さ方向Dt2とし、第2厚さ方向Dt2への第2壁部52の寸法を厚さT2とする。第2壁部52は、厚さT2が変化しない板状をなしている。第2壁部52は、蓄電セル10の空間Sに臨む第2内面52aを有している。第2内面52aは、第2厚さ方向Dt2に直交する面であり、平面視において第2延設方向D2に延びる面である。第2壁部52は、第2厚さ方向Dt2において、第2内面52aとは反対側に位置する第2外面52bを有している。第2内面52a及び第2外面52bは平行である。第2内面52aは、第2壁部52の第2端面の一例である。 The direction perpendicular to the second extending direction D2 and the stacking direction A is defined as a second thickness direction Dt2, and the dimension of the second wall portion 52 in the second thickness direction Dt2 is defined as a thickness T2. The second wall portion 52 has a plate shape in which the thickness T2 does not change. The second wall portion 52 has a second inner surface 52a facing the space S of the power storage cell 10. The second inner surface 52a is a surface that is perpendicular to the second thickness direction Dt2 and extends in the second extension direction D2 in plan view. The second wall portion 52 has a second outer surface 52b located on the opposite side to the second inner surface 52a in the second thickness direction Dt2. The second inner surface 52a and the second outer surface 52b are parallel. The second inner surface 52a is an example of the second end surface of the second wall portion 52.

第3延設方向D3及び積層方向Aに直交する方向を第3厚さ方向Dt3とし、第3厚さ方向Dt3における第3壁部53の寸法を厚さT3とする。第1厚さ方向Dt1と第3厚さ方向Dt3とは平行をなしている。すなわち、第1厚さ方向Dt1と第3厚さ方向Dt3は同じ方向であり、厚さT3は、第1厚さ方向Dt1における第3壁部53の寸法である。第3壁部53は、厚さT3が変化しない板状をなしている。第3壁部53は、蓄電セル10の空間Sに臨む第3内面53aを有している。第3内面53aは、第3厚さ方向Dt3に直交する面であり、平面視において第3延設方向D3に延びる面である。第3壁部53は、第3厚さ方向Dt3において、第3内面53aとは反対側に位置する第3外面53bを有している。第3内面53a及び第3外面53bは平行である。第3内面53aは、2つの第2壁部52の第2内面52aと直交している。第3外面53bは、2つの第2壁部52の第2外面52bと直交している。 A direction perpendicular to the third extending direction D3 and the stacking direction A is a third thickness direction Dt3, and a dimension of the third wall portion 53 in the third thickness direction Dt3 is a thickness T3. The first thickness direction Dt1 and the third thickness direction Dt3 are parallel to each other. That is, the first thickness direction Dt1 and the third thickness direction Dt3 are the same direction, and the thickness T3 is the dimension of the third wall portion 53 in the first thickness direction Dt1. The third wall portion 53 has a plate shape in which the thickness T3 does not change. The third wall portion 53 has a third inner surface 53a facing the space S of the power storage cell 10. The third inner surface 53a is a surface that is perpendicular to the third thickness direction Dt3 and extends in the third extension direction D3 in plan view. The third wall portion 53 has a third outer surface 53b located on the opposite side to the third inner surface 53a in the third thickness direction Dt3. The third inner surface 53a and the third outer surface 53b are parallel. The third inner surface 53a is perpendicular to the second inner surfaces 52a of the two second wall portions 52. The third outer surface 53b is perpendicular to the second outer surfaces 52b of the two second walls 52.

2つの接続部54の各々は、蓄電セル10の空間Sに臨み、且つ第1内面51aと第2内面52aとを接続する傾斜面55を有している。第1内面51aと、第1壁部51の第1延設方向D1における第1端部寄りに設けられる第2内面52aとは傾斜面55により接続されている。第1内面51aと、第1壁部51の第1延設方向D1における第2端部寄りに設けられる第2内面52aとは傾斜面55により接続されている。 Each of the two connection parts 54 faces the space S of the storage cell 10 and has an inclined surface 55 that connects the first inner surface 51a and the second inner surface 52a. The first inner surface 51a and the second inner surface 52a provided near the first end of the first wall part 51 in the first extension direction D1 are connected by the inclined surface 55. The first inner surface 51a and the second inner surface 52a provided near the second end of the first wall part 51 in the first extension direction D1 are connected by the inclined surface 55.

平面視において、傾斜面55は、第1内面51aと第2内面52aとの間で直線状に延びている。傾斜面55は、第1内面51aとなす角度θ1が鈍角となっている。傾斜面55は、第2内面52aとなす角度θ2が鈍角となっている。傾斜面55は、第1内面51a及び第2内面52aとなす角度が鈍角となる変化面の一例である。 In a plan view, the inclined surface 55 extends linearly between the first inner surface 51a and the second inner surface 52a. The angle θ1 between the inclined surface 55 and the first inner surface 51a is an obtuse angle. The angle θ2 between the inclined surface 55 and the second inner surface 52a is an obtuse angle. The inclined surface 55 is an example of a transition surface in which the angles between the first inner surface 51a and the second inner surface 52a are obtuse angles.

2つの接続部54の各々は、第1延設方向D1及び積層方向Aに延び、且つ第1壁部51の第1外面51bと滑らかに連続する第1接続面54aを有している。2つの接続部54の各々は、第2延設方向D2及び積層方向Aに延び、且つ第2壁部52の第2外面52bと滑らかに連続する第2接続面54bを有している。第1接続面54aと第2接続面54bとは直交している。 Each of the two connecting portions 54 has a first connecting surface 54a that extends in the first extending direction D1 and the stacking direction A and smoothly continues with the first outer surface 51b of the first wall portion 51. Each of the two connecting portions 54 has a second connecting surface 54b that extends in the second extending direction D2 and the stacking direction A and smoothly continues with the second outer surface 52b of the second wall portion 52. The first connection surface 54a and the second connection surface 54b are orthogonal.

樹脂枠50は、第1壁部51の第1外面51bと2つの接続部54の第1接続面54aとにより構成される第1側面51sを有する。第1側面51sは、第1延設方向D1に長辺が延び、且つ積層方向Aに短辺が延びる矩形状の面である。 The resin frame 50 has a first side surface 51s formed by a first outer surface 51b of the first wall portion 51 and a first connecting surface 54a of the two connecting portions 54. The first side surface 51s is a rectangular surface with a long side extending in the first extension direction D1 and a short side extending in the stacking direction A.

樹脂枠50は、第2壁部52の第2外面52bと1つの接続部54の第2接続面54bとにより構成される2つの第2側面52sを有する。第2側面52sは、第2延設方向D2に長辺が延び、かつ積層方向Aに短辺が延びる矩形状の面である。 The resin frame 50 has two second side surfaces 52s formed by the second outer surface 52b of the second wall portion 52 and the second connection surface 54b of one connection portion 54. The second side surface 52s is a rectangular surface with a long side extending in the second extension direction D2 and a short side extending in the stacking direction A.

第3外面53bは、第3延設方向D3に長辺が延び、かつ積層方向Aに短辺が延びる矩形状の面である。
第1壁部51の厚さT1は、第2壁部52の厚さT2と同じである。第1壁部51の厚さT1は、第3壁部53の厚さT3と同じである。第2壁部52の厚さT2は、第3壁部53の厚さT3と同じである。第1壁部51の厚さT1は、第2壁部52の厚さT2よりも厚くても良い。第1壁部51の厚さT1は、第3壁部53の厚さT3よりも厚くても良い。
The third outer surface 53b is a rectangular surface with long sides extending in the third extension direction D3 and short sides extending in the stacking direction A.
The thickness T1 of the first wall portion 51 is the same as the thickness T2 of the second wall portion 52. The thickness T1 of the first wall portion 51 is the same as the thickness T3 of the third wall portion 53. The thickness T2 of the second wall portion 52 is the same as the thickness T3 of the third wall portion 53. The thickness T1 of the first wall portion 51 may be thicker than the thickness T2 of the second wall portion 52. The thickness T1 of the first wall portion 51 may be thicker than the thickness T3 of the third wall portion 53.

図4に示すように、平面視において、2つの接続部54の第1厚さ方向Dt1への厚さは、第1壁部51の厚さT1以上である。平面視において、2つの接続部54は、第1延設方向D1で第2壁部52から第1壁部51に向かうほど、第1厚さ方向Dt1における厚さが第1壁部51の厚さT1と一致するように薄くなる。 As shown in FIG. 4, the thickness of the two connecting portions 54 in the first thickness direction Dt1 is greater than or equal to the thickness T1 of the first wall portion 51 in plan view. In plan view, the thickness of the two connecting portions 54 in the first thickness direction Dt1 increases from the thickness of the first wall portion 51 as it goes from the second wall portion 52 to the first wall portion 51 in the first extension direction D1. It becomes thinner to match T1.

平面視において、2つの接続部54の第2厚さ方向Dt2への厚さは、第2壁部52の厚さT2以上である。平面視において、2つの接続部54は、第2延設方向D2で第1壁部51から第2壁部52に向かうほど、第2厚さ方向Dt2における厚さが第2壁部52の厚さT2と一致するように薄くなる。 In plan view, the thickness of the two connecting portions 54 in the second thickness direction Dt2 is greater than or equal to the thickness T2 of the second wall portion 52. In plan view, the thickness of the two connecting portions 54 in the second thickness direction Dt2 increases from the thickness of the second wall portion 52 as it goes from the first wall portion 51 to the second wall portion 52 in the second extending direction D2. It becomes thinner to match T2.

すなわち、2つの傾斜面55の各々は、平面視において、第1延設方向D1で第2壁部52から第1壁部51に向かうほど第1厚さ方向Dt1における接続部54の厚さが薄くなるように設けられている。また、2つの傾斜面55の各々は、平面視において、第2延設方向D2で第1壁部51から第2壁部52に向かうほど第2厚さ方向Dt2における接続部54の厚さが薄くなるように設けられている。蓄電セル10を第1厚さ方向Dt1で見たとき、2つの傾斜面55の各々と第1内面51aとの境界と、負極活物質層32の第1延設方向D1における両端縁とは一致する。 That is, each of the two inclined surfaces 55 is provided so that the thickness of the connection portion 54 in the first thickness direction Dt1 becomes thinner in the first extension direction D1 from the second wall portion 52 toward the first wall portion 51. Also, each of the two inclined surfaces 55 is provided so that the thickness of the connection portion 54 in the second thickness direction Dt2 becomes thinner in the second extension direction D2 from the first wall portion 51 toward the second wall portion 52. When the storage cell 10 is viewed in the first thickness direction Dt1, the boundaries between each of the two inclined surfaces 55 and the first inner surface 51a coincide with both end edges of the negative electrode active material layer 32 in the first extension direction D1.

図2及び図3に示すように、樹脂枠50は、貫通部60と、閉塞部70とを備えている。貫通部60は、第1壁部51に設けられている。貫通部60は、第1壁部51を貫通する貫通孔である。貫通部60は、第1壁部51を第1厚さ方向Dt1に貫通している。本実施形態では、第1壁部51における貫通部60の貫通方向Dpは、第1厚さ方向Dt1と一致する。なお、第1延設方向D1は、貫通方向Dpに直交する。第2延設方向D2は、貫通方向Dpと一致している。そのため、一対の第2壁部52は、貫通方向Dpに延びている。第3延設方向D3は、貫通方向Dpに直交する。貫通部60は、積層方向Aにおいて、セパレータ40よりも負極30側に設けられる。したがって、貫通部60は、貫通方向Dpにおいて負極活物質層32と対向している。なお、貫通部60は、積層方向Aにおいて、セパレータ40よりも正極20側に設けられても良い。 2 and 3, the resin frame 50 has a through portion 60 and a blocking portion 70. The through portion 60 is provided in the first wall portion 51. The through portion 60 is a through hole that penetrates the first wall portion 51. The through portion 60 penetrates the first wall portion 51 in the first thickness direction Dt1. In this embodiment, the through direction Dp of the through portion 60 in the first wall portion 51 coincides with the first thickness direction Dt1. The first extension direction D1 is perpendicular to the through direction Dp. The second extension direction D2 coincides with the through direction Dp. Therefore, the pair of second wall portions 52 extend in the through direction Dp. The third extension direction D3 is perpendicular to the through direction Dp. The through portion 60 is provided on the negative electrode 30 side relative to the separator 40 in the stacking direction A. Therefore, the through portion 60 faces the negative electrode active material layer 32 in the through direction Dp. The through-hole 60 may be provided closer to the positive electrode 20 than the separator 40 in the stacking direction A.

貫通部60は、第1延設方向D1及び積層方向Aに延びる仮想面で切断したときの断面は、矩形状をなしている。貫通部60は、第1厚さ方向Dt1において、蓄電セル10の空間Sと蓄電セル10の外部との間で放射方向Bに延びている。貫通部60は、蓄電セル10の空間Sに電解質を注入した後、蓄電セル10の内部に発生するガスを蓄電セル10の外部に排出するガス排出口としての機能を有している。なお、貫通部60は、蓄電セル10の空間Sに電解質を注入するために設けられた注入口としての機能も有してもよい。蓄電セル10の内部に発生するガスとしては、蓄電セル10の内部に電解質を注入する前に残存していた空気や、蓄電装置1の初期充放電時に発生するガスを示している。なお、貫通部60を第1延設方向D1及び積層方向Aに延びる仮想面で切断したときの断面は、矩形状に限らず、円形状をなしていてもよい。貫通部60の形状は、適宜変更してもよい。 The through-hole 60 has a rectangular cross section when cut along a virtual plane extending in the first extension direction D1 and the stacking direction A. The through-hole 60 extends in the radial direction B between the space S of the storage cell 10 and the outside of the storage cell 10 in the first thickness direction Dt1. The through-hole 60 has a function as a gas outlet that discharges gas generated inside the storage cell 10 to the outside of the storage cell 10 after the electrolyte is injected into the space S of the storage cell 10. The through-hole 60 may also have a function as an injection port provided for injecting the electrolyte into the space S of the storage cell 10. The gas generated inside the storage cell 10 refers to air remaining before the electrolyte is injected into the storage cell 10 and gas generated during the initial charge and discharge of the storage device 1. The cross section when the through-hole 60 is cut along a virtual plane extending in the first extension direction D1 and the stacking direction A is not limited to a rectangular shape and may be a circular shape. The shape of the through-hole 60 may be changed as appropriate.

閉塞部70は、樹脂部材である。閉塞部70は、貫通部60を閉塞している。閉塞部70は、蓄電セル10の内部に注入された電解質が蓄電セル10の外部に漏れ出すことを防止する封止部材である。そのため、電解質は、閉塞部70により貫通部60を閉塞する前の状態において蓄電セル10の空間Sに注入される。また、蓄電セル10の内部に発生したガスは、閉塞部70により貫通部60を閉塞する前の状態において蓄電セル10の外部に排出される。 The blocking portion 70 is a resin member. The blocking portion 70 blocks the through portion 60. The blocking portion 70 is a sealing member that prevents the electrolyte injected into the inside of the storage cell 10 from leaking out to the outside of the storage cell 10. Therefore, the electrolyte is injected into the space S of the storage cell 10 before the through portion 60 is blocked by the blocking portion 70. In addition, gas generated inside the storage cell 10 is discharged to the outside of the storage cell 10 before the through portion 60 is blocked by the blocking portion 70.

図3及び図4に示すように、平面視において、貫通部60の第1延設方向D1における幅は、第1壁部51における2つの接続部54間の長さよりも小さい。平面視において、2つの接続部54の各々と、貫通部60とは、第1延設方向D1で貫通部60の第1延設方向D1における幅以上の間隔を隔てて配置されている。具体的には、第1延設方向D1において、貫通部60から2つの接続部54の各々までの第1壁部51の長さは、貫通部60の第1延設方向D1における幅以上である。なお、本実施形態の作用の説明の便宜上、図3及び図4には、閉塞部70をあえて記載していない。 As shown in FIGS. 3 and 4, in plan view, the width of the penetrating portion 60 in the first extending direction D1 is smaller than the length between the two connecting portions 54 in the first wall portion 51. In plan view, each of the two connecting portions 54 and the penetrating portion 60 are spaced apart from each other in the first extending direction D1 by a distance greater than the width of the penetrating portion 60 in the first extending direction D1. Specifically, in the first extending direction D1, the length of the first wall portion 51 from the penetrating portion 60 to each of the two connecting portions 54 is greater than or equal to the width of the penetrating portion 60 in the first extending direction D1. be. Note that, for convenience of explanation of the operation of this embodiment, the closing portion 70 is intentionally not shown in FIGS. 3 and 4.

図4に示すように、本実施形態において、蓄電装置1を構成するための蓄電セル10は、3種類採用されている。3種類の蓄電セル10の違いは、図4の破線で示すように第1延設方向D1における貫通部60の位置の違いである。図4の破線で示される貫通部60のうち、第1壁部51の第1端部寄りに位置する貫通部を貫通部60aとし、第1壁部51の第2端部寄りに位置する貫通部を貫通部60bとする。平面視において、貫通部60,60a,60bは互いに重なっていない。蓄電装置1は、貫通部60を有する蓄電セル10と、貫通部60aを有する蓄電セル10と、貫通部60bを有する蓄電セル10との3種類の蓄電セル10が積層されることにより構成されている。 As shown in FIG. 4, in this embodiment, three types of storage cells 10 are used to configure the energy storage device 1. The difference between the three types of storage cells 10 is the difference in the position of the through-hole 60 in the first extension direction D1, as shown by the dashed lines in FIG. 4. Of the through-holes 60 shown by the dashed lines in FIG. 4, the through-hole located near the first end of the first wall portion 51 is referred to as through-hole 60a, and the through-hole located near the second end of the first wall portion 51 is referred to as through-hole 60b. In a plan view, the through-holes 60, 60a, and 60b do not overlap with each other. The energy storage device 1 is configured by stacking three types of storage cells 10: a storage cell 10 having a through-hole 60, a storage cell 10 having a through-hole 60a, and a storage cell 10 having a through-hole 60b.

貫通部60aを有する蓄電セル10では、第1延設方向D1において、第1壁部51の第2端部寄りの接続部54と、貫通部60aとは、貫通部60の第1延設方向D1における幅以上の間隔を隔てて配置されている。貫通部60bを有する蓄電セル10では、第1延設方向D1において、第1壁部51の第1端部寄りの接続部54と、貫通部60bとは、貫通部60の第1延設方向D1における幅以上の間隔を隔てて配置されている。具体的には、貫通部60aを有する蓄電セル10では、第1延設方向D1において、貫通部60aから第1壁部51の第2端部寄りの接続部54までの第1壁部51の長さは、貫通部60の第1延設方向D1における幅と、貫通部60bの第1延設方向D1における幅との和以上である。貫通部60bを有する蓄電セル10では、第1延設方向D1において、貫通部60bから第1壁部51の第1端部寄りの接続部54までの第1壁部51の長さは、貫通部60の第1延設方向D1における幅と、貫通部60aの第1延設方向D1における幅との和以上である。 In the power storage cell 10 having the penetration part 60a, the connection part 54 near the second end of the first wall part 51 and the penetration part 60a are connected in the first extension direction D1 of the penetration part 60. They are arranged at intervals equal to or greater than the width in D1. In the power storage cell 10 having the penetration part 60b, the connection part 54 near the first end of the first wall part 51 and the penetration part 60b are connected in the first extension direction D1 of the penetration part 60. They are arranged at intervals equal to or greater than the width in D1. Specifically, in the energy storage cell 10 having the penetration part 60a, the length of the first wall part 51 from the penetration part 60a to the connection part 54 near the second end of the first wall part 51 in the first extension direction D1. The length is greater than or equal to the sum of the width of the penetrating portion 60 in the first extending direction D1 and the width of the penetrating portion 60b in the first extending direction D1. In the energy storage cell 10 having the penetration part 60b, the length of the first wall part 51 from the penetration part 60b to the connection part 54 near the first end of the first wall part 51 in the first extension direction D1 is The width is greater than or equal to the sum of the width of the portion 60 in the first extending direction D1 and the width of the penetrating portion 60a in the first extending direction D1.

第1延設方向D1において、第1壁部51の第1端部寄りの接続部54と、貫通部60aとは、貫通部60の第1延設方向D1における幅以上の間隔を隔てて配置されていなくてもよい。貫通部60bを有する蓄電セル10では、第1延設方向D1において、第1壁部51の第2端部寄りの接続部54と、貫通部60bとは、貫通部60の第1延設方向D1における幅以上の間隔を隔てて配置されていなくてもよい。なお、貫通部60,60a,60bの第1延設方向D1における幅は同じである。 In the first extending direction D1, the connecting portion 54 near the first end of the first wall portion 51 and the penetrating portion 60a are spaced apart from each other by a distance greater than the width of the penetrating portion 60 in the first extending direction D1. It doesn't have to be done. In the power storage cell 10 having the penetration part 60b, the connection part 54 near the second end of the first wall part 51 and the penetration part 60b are connected in the first extension direction D1 of the penetration part 60. They do not need to be arranged at intervals equal to or greater than the width in D1. Note that the widths of the penetrating portions 60, 60a, and 60b in the first extending direction D1 are the same.

図6に示すように、蓄電装置1において、隣り合う蓄電セル10が有する貫通部60,60a,60bは、積層方向Cで重ならないように配置されている。
本実施形態の作用を説明する。
As shown in FIG. 6 , in the energy storage device 1 , the through portions 60 , 60 a , 60 b of adjacent energy storage cells 10 are arranged so as not to overlap in the stacking direction C.
The operation of this embodiment will now be described.

図4に示すように、貫通部60が閉塞部70で閉塞されていない状態において、蓄電セル10の空間Sには、貫通部60を介して電解質が注入される。注入された電解質は、図4中の矢印で示すように、空間Sを第3壁部53に向けて流動し、電解質の一部は、第1壁部51の第1内面51aと、2つの傾斜面55と、2つの第2内面52aとを伝う。空間Sに充填された電解質は、負極活物質層32に含侵しつつ図2に示すセパレータ40にも含侵される。セパレータ40に含侵された電解質は、正極活物質層22にも含侵される。 As shown in FIG. 4 , an electrolyte is injected into the space S of the electricity storage cell 10 through the penetration part 60 in a state where the penetration part 60 is not closed by the closure part 70 . The injected electrolyte flows through the space S toward the third wall 53, as shown by the arrow in FIG. It runs along the inclined surface 55 and the two second inner surfaces 52a. The electrolyte filled in the space S impregnates the negative electrode active material layer 32 and also the separator 40 shown in FIG. 2 . The electrolyte impregnated into the separator 40 is also impregnated into the positive electrode active material layer 22.

図5に示すように、蓄電セル10の内部にガスが発生した場合、貫通部60が閉塞部70によって閉塞されていない状態において、ガス抜き装置を用いて貫通部60から蓄電セル10の外部にガスを吸引する。蓄電セル10の内部のガスは、図5の矢印で示すように、空間Sを第1壁部51に向けて流動し、ガスの一部は2つの第2内面52a、及び2つの傾斜面55を伝って第1壁部51に向けて吸引される。第1壁部51に向けて吸引されたガスは、貫通部60を介して蓄電セル10の外部に排出される。第1壁部51と、2つの第2壁部52との間には、傾斜面55を有する接続部54が設けられているため、ガスが第1壁部51と第2壁部52との境界に溜まり難い。 As shown in FIG. 5, when gas is generated inside the electricity storage cell 10, a gas venting device is used to remove gas from the penetration part 60 to the outside of the electricity storage cell 10 while the penetration part 60 is not closed by the closing part 70. Inhale the gas. The gas inside the electricity storage cell 10 flows through the space S toward the first wall 51, as shown by the arrows in FIG. and is sucked toward the first wall portion 51. The gas sucked toward the first wall portion 51 is discharged to the outside of the power storage cell 10 via the penetration portion 60. Since a connecting portion 54 having an inclined surface 55 is provided between the first wall portion 51 and the two second wall portions 52, the gas flows between the first wall portion 51 and the second wall portion 52. Difficult to accumulate on the border.

本実施形態の効果を説明する。
(1)貫通部60が閉塞部70で閉塞されていない状態において、蓄電セル10の空間Sに発生したガスを蓄電セル10の外部に排出するとき、ガスは貫通部60に向けて流動する。このとき、第2内面52a、傾斜面55、及び第1内面51aに沿って流動するガスがある。第1内面51aと第2内面52aとが傾斜面55で接続されていることから、ガスは、傾斜面55により第2内面52aから第1内面51aに円滑に流動し易くなる。そのため、貫通部60からガスを排出し易くなり、第1壁部51と第2壁部52との境界にガスが溜まることを抑制できる。
The effects of this embodiment will be described.
(1) In a state where the through-hole 60 is not blocked by the blocking portion 70, when gas generated in the space S of the energy storage cell 10 is discharged to the outside of the energy storage cell 10, the gas flows toward the through-hole 60. At this time, some of the gas flows along the second inner surface 52a, the inclined surface 55, and the first inner surface 51a. Since the first inner surface 51a and the second inner surface 52a are connected by the inclined surface 55, the gas can be easily caused to flow smoothly from the second inner surface 52a to the first inner surface 51a by the inclined surface 55. Therefore, the gas can be easily discharged from the through-hole 60, and accumulation of gas at the boundary between the first wall portion 51 and the second wall portion 52 can be suppressed.

(2)蓄電セル10の内部で発生したガスは、2つの第2壁部52にそれぞれ対応して設けられた2つの傾斜面55により第1内面51aに向けて円滑に流動し易くなる。そのため、貫通部60からガスを排出し易くなり、第1壁部51と第2壁部52との境界にガスが溜まることをより抑制できる。 (2) The gas generated inside the electricity storage cell 10 easily flows smoothly toward the first inner surface 51a due to the two inclined surfaces 55 provided correspondingly to the two second walls 52. Therefore, gas can be easily discharged from the penetrating portion 60, and accumulation of gas at the boundary between the first wall portion 51 and the second wall portion 52 can be further suppressed.

(3)第1壁部51の厚さT1は、第2壁部52の厚さT2及び第3壁部53の厚さT3以上であり、蓄電セル10の内圧に対する剛性が確保されている。そのため、貫通部60からガスを排出する際、傾斜面55により第1内面51aに向けてガスが流動し、貫通部60にガスが集中しても、第1壁部51の位置における封止性を、第2壁部52及び第3壁部53と同様に保持できる。 (3) The thickness T1 of the first wall portion 51 is greater than or equal to the thickness T2 of the second wall portion 52 and the thickness T3 of the third wall portion 53, and rigidity against the internal pressure of the electricity storage cell 10 is ensured. Therefore, when gas is discharged from the penetration part 60, even if the gas flows toward the first inner surface 51a due to the inclined surface 55 and concentrates in the penetration part 60, the sealing property at the position of the first wall part 51 is maintained. can be held in the same way as the second wall portion 52 and the third wall portion 53.

(4)平面視において、第1壁部51は、厚さT1が変化しない板状をなしている。そして、平面視において、2つの接続部54と、貫通部60とは、第1延設方向D1で貫通部60の第1延設方向D1における幅以上の間隔を隔てて配置されている。そのため、貫通部60を設ける位置を第1延設方向D1においてずらし易くなる。よって、貫通部60の配置の自由度が向上する。 (4) In plan view, the first wall portion 51 is in the form of a plate whose thickness T1 does not change. In plan view, the two connection portions 54 and the through portion 60 are disposed in the first extension direction D1 at a distance equal to or greater than the width of the through portion 60 in the first extension direction D1. This makes it easier to shift the position at which the through portion 60 is disposed in the first extension direction D1. This improves the degree of freedom in arranging the through portion 60.

(5)変化面を曲面とする場合と比較して、変化面を傾斜面55とする場合の方が樹脂枠50を製造し易い。そのため、蓄電セルの生産性を向上させることができる。よって、ガスを貫通部に誘導し易くしつつ蓄電セルの生産性が向上する。 (5) Compared to the case where the changing surface is a curved surface, it is easier to manufacture the resin frame 50 when the changing surface is the sloped surface 55. Therefore, productivity of power storage cells can be improved. Therefore, the productivity of the power storage cell is improved while making it easier to guide gas to the penetrating portion.

(6)本実施形態では、第1壁部51と第2壁部52との境界にガスが溜まることが抑制されることで、例えば蓄電装置1の製造時において、ガスの排出にかかる時間を短縮し、生産性を向上できる。また、蓄電セル10の内部にガスが残った状態であると、電池反応が阻害されて電池性能が低下するおそれがある一方、本実施形態の蓄電装置1及び蓄電セル10によればガスが溜まることを抑制できる。そのため、電池性能の低下を抑制できる。特に、ガスの排出を促すために貫通部60が設けられた第1壁部51周辺を除いて蓄電セル10を積層方向Aに拘束しながらガスの排出を行う場合、第1壁部51と第2壁部52との境界にガスが溜まって内圧が上昇し、正極集電体21、負極集電体31、及び樹脂枠50に応力がかかることを抑制できる。 (6) In the present embodiment, by suppressing the accumulation of gas at the boundary between the first wall portion 51 and the second wall portion 52, the time required for discharging the gas is reduced, for example, when manufacturing the power storage device 1. It can be shortened and productivity can be improved. Further, if gas remains inside the electricity storage cell 10, the battery reaction may be inhibited and the battery performance may deteriorate. However, according to the electricity storage device 1 and the electricity storage cell 10 of the present embodiment, the gas may accumulate can be suppressed. Therefore, deterioration in battery performance can be suppressed. In particular, when gas is discharged while restraining the electricity storage cell 10 in the stacking direction A except for the vicinity of the first wall 51 where the penetration part 60 is provided to promote gas discharge, the first wall 51 and the first wall 51 are It is possible to suppress stress from being applied to the positive electrode current collector 21, the negative electrode current collector 31, and the resin frame 50 due to gas accumulation at the boundary between the two wall portions 52 and an increase in internal pressure.

(7)蓄電装置1において、積層方向Cで隣り合う蓄電セル10の有する貫通部60は、第1壁部51に配置されているが、積層方向Cで重なり合っていない。そのため、蓄電装置1において、貫通部60を介してガスを排出するときや電解液を注入するときに、それぞれの貫通部60に接続されるノズル等が互いに干渉し難くなる。したがって、蓄電装置1の生産性を向上できる。 (7) In the power storage device 1, the penetration parts 60 of the power storage cells 10 adjacent in the stacking direction C are arranged in the first wall part 51, but do not overlap in the stacking direction C. Therefore, in the power storage device 1, when discharging gas or injecting electrolyte through the penetration parts 60, the nozzles and the like connected to the respective penetration parts 60 are less likely to interfere with each other. Therefore, productivity of power storage device 1 can be improved.

なお、本実施形態は、以下のように変更して実施できる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。
○ 蓄電セル10の樹脂枠50は、図7及び図8のように変更してもよい。
This embodiment can be modified as follows: This embodiment and the following modifications can be combined with each other to the extent that there is no technical contradiction.
The resin frame 50 of the energy storage cell 10 may be modified as shown in FIGS.

図7及び図8に示すように、傾斜面55を貫通部60に至るまで延ばしてもよい。この場合、第1壁部51の第1延設方向D1における幅は、貫通部60の第1延設方向D1における幅とほぼ等しくなる。蓄電セル10を第1厚さ方向Dt1で見たとき、第1延設方向D1において、2つの傾斜面55の各々と第1内面51aとの境界は、負極活物質層32の第1延設方向D1における両端縁よりも内側に位置している。 As shown in Figures 7 and 8, the inclined surface 55 may be extended up to the through-hole 60. In this case, the width of the first wall portion 51 in the first extension direction D1 is approximately equal to the width of the through-hole 60 in the first extension direction D1. When the storage cell 10 is viewed in the first thickness direction Dt1, the boundaries between each of the two inclined surfaces 55 and the first inner surface 51a in the first extension direction D1 are located inside both end edges of the negative electrode active material layer 32 in the first extension direction D1.

このように変更することにより、傾斜面55を伝って貫通部60に直接的にガスを誘導することができるため、ガス抜きの効率を向上できる。
○ 平面視において、2つの接続部54の空間Sに臨む面の形状を図9のように変更してもよい。
By making this change, gas can be guided directly to the penetrating portion 60 along the inclined surface 55, so that the efficiency of degassing can be improved.
○ In plan view, the shapes of the surfaces of the two connecting portions 54 facing the space S may be changed as shown in FIG. 9.

図9に示すように、平面視において、2つの接続部54の空間Sに臨む面は、曲面56を含んでいる。曲面56は、平面視において、第1延設方向D1で第2壁部52から第1壁部51に向かうほど第1厚さ方向Dt1における接続部54の厚さが第1壁部51の厚さT1と一致するように薄くなるように設けられている。また、曲面56は、平面視において、第2延設方向D2で第1壁部51から第2壁部52に向かうほど第2厚さ方向Dt2における接続部54の厚さが第2壁部52の厚さT2と一致するように薄くなるように設けられている。 As shown in FIG. 9, the surfaces of the two connecting portions 54 facing the space S include a curved surface 56 in plan view. In plan view, the thickness of the connecting portion 54 in the first thickness direction Dt1 increases from the thickness of the first wall portion 51 toward the first wall portion 51 from the second wall portion 52 in the first extending direction D1. It is provided so that it becomes thin so as to match the length T1. Further, in plan view, the thickness of the connecting portion 54 in the second thickness direction Dt2 increases from the first wall portion 51 to the second wall portion 52 in the second extension direction D2. It is provided to be thin so as to match the thickness T2 of.

曲面56は、接続部54の空間Sに臨む面のうち、平面視において、第1壁部51の第1内面51aと、曲面56上の任意の位置Pを通過しつつ曲面56に接する仮想面Lとのなす角度θ1が鈍角をなす部位である。また、曲面56は、接続部54の空間Sに臨む面のうち、平面視において、第2壁部52の第2内面52aと、曲面56上の任意の位置Pを通過しつつ曲面56に接する仮想面Lとのなす角度θ2が鈍角をなす部位である。 The curved surface 56 is a portion of the surface of the connection portion 54 facing the space S, where the angle θ1 between the first inner surface 51a of the first wall portion 51 and an imaginary surface L that passes through an arbitrary position P on the curved surface 56 and touches the curved surface 56 is an obtuse angle in a plan view. The curved surface 56 is a portion of the surface of the connection portion 54 facing the space S, where the angle θ2 between the second inner surface 52a of the second wall portion 52 and an imaginary surface L that passes through an arbitrary position P on the curved surface 56 and touches the curved surface 56 is an obtuse angle in a plan view.

○ 貫通部60は、第1壁部51を第1厚さ方向Dt1に貫通している貫通孔であったが、これに限らない。例えば、図10のように変更してもよい。
図10に示すように、貫通部60は、負極側端面50cから凹む凹状の溝であってもよい。貫通部60は、放射方向Bにおいて、蓄電セル10の空間Sから蓄電セル10の外部に延びている。貫通部60の積層方向Aにおける開口の一部は、負極集電体31の第1面31aにより閉塞されている。すなわち、貫通部60と負極集電体31の第1面31aとにより放射方向Bに延びる貫通孔が形成されている。貫通部60には、筒部材90が設けられている。筒部材90の第1端は、蓄電セル10の空間Sに位置し、筒部材90の第2端は、蓄電セル10の外部に延びている。筒部材90の内部は、封止樹脂91により閉塞されている。すなわち、筒部材90及び封止樹脂91は、閉塞部の一例である。なお、本変更例において、蓄電セル10の空間Sに電解質を注入する場合、封止樹脂91が筒部材90を閉塞していない状態で、筒部材90の内部に注入ノズルを挿入する。そして、注入ノズル及び筒部材90を介して蓄電セル10の空間Sに電解質が注入される。また、蓄電セル10の内部に発生したガスを、蓄電セル10の外部に排出する場合、筒部材90を介して蓄電セル10の外部にガスを排出する。
Although the penetrating portion 60 is a through hole penetrating the first wall portion 51 in the first thickness direction Dt1, the present invention is not limited thereto. For example, it may be changed as shown in FIG.
As shown in FIG. 10, the penetrating portion 60 may be a concave groove recessed from the negative electrode side end surface 50c. Penetration portion 60 extends in radial direction B from space S of power storage cell 10 to the outside of power storage cell 10 . A part of the opening of the penetrating portion 60 in the stacking direction A is closed by the first surface 31a of the negative electrode current collector 31. That is, a through hole extending in the radial direction B is formed by the through part 60 and the first surface 31a of the negative electrode current collector 31. A cylindrical member 90 is provided in the penetrating portion 60 . A first end of the cylindrical member 90 is located in the space S of the power storage cell 10 , and a second end of the cylindrical member 90 extends outside the power storage cell 10 . The inside of the cylindrical member 90 is closed with a sealing resin 91. That is, the cylinder member 90 and the sealing resin 91 are an example of a closing part. In this modification, when injecting the electrolyte into the space S of the electricity storage cell 10, the injection nozzle is inserted into the cylindrical member 90 while the sealing resin 91 does not close the cylindrical member 90. Then, the electrolyte is injected into the space S of the electricity storage cell 10 via the injection nozzle and the cylindrical member 90. Further, when gas generated inside the power storage cell 10 is discharged to the outside of the power storage cell 10, the gas is discharged to the outside of the power storage cell 10 via the cylindrical member 90.

○ 本実施形態において、平面視において、2つの接続部54の厚さを常に一定にしてもよい。2つの接続部54の空間Sに臨む面が傾斜面55もしくは曲面56であればよい。この場合、第1接続面54a及び第2接続面54bが傾斜面55もしくは曲面56に沿う傾斜面もしくは曲面として形成される。 In the present embodiment, the thickness of the two connecting portions 54 may always be constant in plan view. It is only necessary that the surfaces of the two connecting portions 54 facing the space S be the inclined surfaces 55 or the curved surfaces 56. In this case, the first connecting surface 54a and the second connecting surface 54b are formed as inclined surfaces or curved surfaces along the inclined surface 55 or the curved surface 56.

○ 樹脂枠50は、2つの接続部54を有していたが、いずれか一方を割愛してもよい。
○ 貫通部60は、第1厚さ方向Dt1において第1壁部51を貫通していたが、これに限らない。例えば、第1厚さ方向Dt1と貫通部60の貫通方向Dpが一致しなくてもよい。また、第1延設方向D1と貫通方向Dpとが直交しなくてもよい。すなわち、貫通部60が延びる方向は、貫通部60が空間Sと蓄電セル10の外部とに延びていれば、第1厚さ方向Dt1に交差する方向に延びていてもよい。
Although the resin frame 50 had two connecting parts 54, one of them may be omitted.
Although the penetrating portion 60 penetrates the first wall portion 51 in the first thickness direction Dt1, the present invention is not limited thereto. For example, the first thickness direction Dt1 and the penetration direction Dp of the penetration portion 60 may not match. Further, the first extending direction D1 and the penetration direction Dp do not need to be orthogonal to each other. That is, the direction in which the penetrating portion 60 extends may extend in a direction intersecting the first thickness direction Dt1, as long as the penetrating portion 60 extends into the space S and the outside of the power storage cell 10.

○ 本実施形態において、蓄電装置1は、上記変更例に記載した蓄電セル10を含むように構成してもよい。
○ 本実施形態において、バイポーラ電極13を構成する上で、正極集電体21の第2面21bと負極集電体31の第2面31bとを重ね合わせていたが、例えば、正極集電体21と負極集電体31とを一体的に構成してもよい。
In the present embodiment, the energy storage device 1 may be configured to include the energy storage cell 10 described in the above modified example.
In the present embodiment, the bipolar electrode 13 is formed by overlapping the second surface 21b of the positive electrode collector 21 and the second surface 31b of the negative electrode collector 31. However, for example, the positive electrode collector 21 and the negative electrode collector 31 may be integrally formed.

○ 正極集電体21と負極集電体31とは異なる材質で構成されていたが、これに限らない。正極集電体21と負極集電体31とが同じ材質で構成されていてもよい。
○ 上記の実施形態は、本発明の一態様を説明したものである。したがって、本発明は、上記態様に限定されることなく、任意に変形され得る。
Although the positive electrode current collector 21 and the negative electrode current collector 31 are made of different materials in the above embodiment, the present invention is not limited to this. The positive electrode current collector 21 and the negative electrode current collector 31 may be made of the same material.
The above embodiment describes one aspect of the present invention. Therefore, the present invention is not limited to the above aspect and may be modified in any manner.

1…蓄電装置、10…蓄電セル、20…正極、21…正極集電体、21a…第1面、21d…外周縁部、22…正極活物質層、30…負極、31…負極集電体、31a…第1面、31d…外周縁部、32…負極活物質層、40…セパレータ、41…非対向部、50…樹脂枠、51…第1壁部、51a…第1面、52…第2壁部、52a…第1面、53…第3壁部、54…接続部、55…傾斜面、56…曲面、60,60a,60b…貫通部、70…閉塞部、90…フィルム、91…封止樹脂、θ1,θ2…角度、S…空間、T1…第1壁部の厚さ、T2…第2壁部の厚さ、T3…第3壁部の厚さ、A…積層方向、B…放射方向、D1…第1延設方向、D2…第2延設方向、D3…第3延設方向、Dt1…第1厚さ方向、Dt2…第2厚さ方向、Dt3…第3厚さ方向、Dp…貫通方向。 1...electricity storage device, 10...electricity storage cell, 20...positive electrode, 21...positive electrode collector, 21a...first surface, 21d...outer peripheral portion, 22...positive electrode active material layer, 30...negative electrode, 31...negative electrode collector, 31a...first surface, 31d...outer peripheral portion, 32...negative electrode active material layer, 40...separator, 41...non-facing portion, 50...resin frame, 51...first wall portion, 51a...first surface, 52...second wall portion, 52a...first surface, 53...third wall portion, 54...connection portion, 55...inclined surface, 56...curved surface, 60, 60a, 60b...penetration portion, 70...blocking portion, 90...film, 91...sealing resin, θ1, θ2...angle, S...space, T1...thickness of first wall portion, T2...thickness of second wall portion, T3...thickness of third wall portion, A...stacking direction, B...radiation direction, D1...first extension direction, D2...second extension direction, D3...third extension direction, Dt1...first thickness direction, Dt2...second thickness direction, Dt3...third thickness direction, Dp...penetration direction.

Claims (7)

互いに対向する活物質層をそれぞれ有し、互いに重なり合う一対の電極と、
前記一対の電極の間に介在し、前記活物質層を囲む矩形枠状をなし、且つ前記一対の電極とともに区画する空間を封止する樹脂枠と、を備える蓄電セルであって、
前記樹脂枠に設けられ、前記空間と前記蓄電セルの外部とに延びる貫通部と、
前記貫通部を閉塞する閉塞部とを備え、
前記樹脂枠は、
前記貫通部が設けられる第1壁部と、
前記第1壁部に直交する方向に延びる第2壁部と、
前記第1壁部と前記第2壁部とを接続する接続部と、を有し、
前記第1壁部は、前記空間に臨む第1端面を有し、
前記第2壁部は、前記空間に臨む第2端面を有し、
前記接続部は、前記空間に臨み、且つ前記第1端面と前記第2端面とを接続する変化面を有し、
前記変化面は、前記第1端面及び前記第2端面それぞれとなす角度が鈍角となるように前記第1端面及び前記第2端面の間に延びていることを特徴とする蓄電セル。
A pair of electrodes each having an active material layer facing each other and overlapping each other;
a resin frame interposed between the pair of electrodes, forming a rectangular frame shape surrounding the active material layer, and sealing a space partitioned together with the pair of electrodes,
a through-hole provided in the resin frame and extending between the space and an outside of the energy storage cell;
A blocking portion that blocks the through-hole,
The resin frame is
A first wall portion in which the through portion is provided;
a second wall portion extending in a direction perpendicular to the first wall portion;
a connection portion that connects the first wall portion and the second wall portion,
The first wall portion has a first end surface facing the space,
the second wall portion has a second end surface facing the space,
the connection portion has a transition surface that faces the space and connects the first end surface and the second end surface,
The energy storage cell, wherein the transition surface extends between the first end surface and the second end surface so as to form obtuse angles with the first end surface and the second end surface.
前記第2壁部は、前記第1壁部が延びる方向である第1延設方向における前記第1壁部の第1端部寄り、及び前記第1延設方向における前記第1壁部の第2端部寄りにそれぞれ設けられ、
前記第1端面と、前記第1端部寄りに設けられる前記第2壁部の前記第2端面とは、前記変化面により接続され、
前記第1端面と、前記第2端部寄りに設けられる前記第2壁部の前記第2端面とは、前記変化面により接続されていることを特徴とする請求項1に記載の蓄電セル。
The second wall portion is located near the first end of the first wall portion in the first extending direction, which is the direction in which the first wall portion extends, and near the first end of the first wall portion in the first extending direction. Each is provided near the two ends,
The first end surface and the second end surface of the second wall provided near the first end are connected by the transition surface,
The electricity storage cell according to claim 1, wherein the first end surface and the second end surface of the second wall portion provided near the second end are connected by the transition surface.
前記樹脂枠は、前記第2壁部の前記第1壁部とは反対側に連続し、前記一対の電極が重なり合う方向である積層方向で見た平面視において前記第1壁部が延びる第1延設方向に延びる第3壁部を有し、
前記第1延設方向及び前記積層方向に直交する第1厚さ方向における前記第1壁部の厚さは、前記第2壁部が延びる第2延設方向及び前記積層方向に直交する第2厚さ方向における前記第2壁部の厚さ及び前記第1厚さ方向における前記第3壁部の厚さ以上であることを特徴とする請求項1又は請求項2に記載の蓄電セル。
The resin frame is continuous with the second wall on the opposite side of the first wall, and the first wall extends in a plan view in a stacking direction, which is a direction in which the pair of electrodes overlap. It has a third wall portion extending in the extension direction,
The thickness of the first wall portion in the first thickness direction perpendicular to the first extending direction and the laminating direction is the same as the thickness of the first wall portion in the first thickness direction perpendicular to the first extending direction and the laminating direction. The electricity storage cell according to claim 1 or 2, characterized in that the thickness is greater than or equal to the thickness of the second wall portion in the thickness direction and the thickness of the third wall portion in the first thickness direction.
前記第1壁部は、前記第1壁部が延びる第1延設方向及び前記一対の電極が重なり合う方向である積層方向に直交する第1厚さ方向における厚さが変化しない板状をなし、
前記第1延設方向において、前記接続部と前記貫通部とは前記貫通部の前記第1延設方向における幅以上の間隔を隔てて配置されていることを特徴とする請求項1~請求項3のいずれか一項に記載の蓄電セル。
the first wall portion has a plate shape whose thickness does not change in a first thickness direction perpendicular to a first extension direction in which the first wall portion extends and a stacking direction in which the pair of electrodes overlap each other,
The storage cell according to any one of claims 1 to 3, characterized in that, in the first extension direction, the connection portion and the through portion are arranged at a distance equal to or greater than the width of the through portion in the first extension direction.
前記変化面は、前記一対の電極が重なり合う方向である積層方向で見た平面視において、前記第1端面と前記第2端面との間で延びる傾斜面であることを特徴とする請求項1~請求項4のいずれか一項に記載の蓄電セル。 10. The changing surface is an inclined surface extending between the first end surface and the second end surface when viewed in plan in a stacking direction, which is a direction in which the pair of electrodes overlap. The electricity storage cell according to claim 4. 前記傾斜面は、前記貫通部に至るまで延びていることを特徴とする請求項5に記載の蓄電セル。 The electricity storage cell according to claim 5, wherein the inclined surface extends to the penetration portion. 複数の蓄電セルを備え、
前記複数の蓄電セルは、請求項1~請求項6のいずれか一項に記載の蓄電セルを少なくとも含むことを特徴とする蓄電装置。
Equipped with multiple energy storage cells,
A power storage device, wherein the plurality of power storage cells include at least the power storage cell according to any one of claims 1 to 6.
JP2020198231A 2020-11-30 2020-11-30 Energy storage cells and energy storage devices Active JP7459774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020198231A JP7459774B2 (en) 2020-11-30 2020-11-30 Energy storage cells and energy storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020198231A JP7459774B2 (en) 2020-11-30 2020-11-30 Energy storage cells and energy storage devices

Publications (2)

Publication Number Publication Date
JP2022086298A JP2022086298A (en) 2022-06-09
JP7459774B2 true JP7459774B2 (en) 2024-04-02

Family

ID=81894336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020198231A Active JP7459774B2 (en) 2020-11-30 2020-11-30 Energy storage cells and energy storage devices

Country Status (1)

Country Link
JP (1) JP7459774B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222872A (en) 2004-02-09 2005-08-18 Toyota Motor Corp Laminated battery
JP2018101586A (en) 2016-12-21 2018-06-28 株式会社豊田自動織機 Power storage device
JP2018125124A (en) 2017-01-31 2018-08-09 株式会社豊田自動織機 Power storage device
JP2020532835A (en) 2017-10-17 2020-11-12 エルジー・ケム・リミテッド Pouch type battery case including crack prevention structure and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222872A (en) 2004-02-09 2005-08-18 Toyota Motor Corp Laminated battery
JP2018101586A (en) 2016-12-21 2018-06-28 株式会社豊田自動織機 Power storage device
JP2018125124A (en) 2017-01-31 2018-08-09 株式会社豊田自動織機 Power storage device
JP2020532835A (en) 2017-10-17 2020-11-12 エルジー・ケム・リミテッド Pouch type battery case including crack prevention structure and its manufacturing method

Also Published As

Publication number Publication date
JP2022086298A (en) 2022-06-09

Similar Documents

Publication Publication Date Title
KR101147207B1 (en) Electrode assembly, and rechargeable battery using thereof
JP7468233B2 (en) Energy Storage Module
WO2023132181A1 (en) Electric power storage module
JP7459758B2 (en) Energy storage cell
JP7459774B2 (en) Energy storage cells and energy storage devices
JP7459764B2 (en) Storage cell and storage device
WO2022102286A1 (en) Power storage module
JP7359098B2 (en) Energy storage module
JP2022080243A (en) Power storage cell and power storage device
JP2022030155A (en) Power storage device
JP7517060B2 (en) Storage cell and storage device
WO2024062824A1 (en) Power storage module and power storage device
JP7489004B2 (en) Storage cell and storage device
WO2023145294A1 (en) Electric power storage module
WO2024034403A1 (en) Electric power storage module
EP4250426A1 (en) Power storage cell and power storage device
EP4325539A1 (en) Power storage device
WO2024106143A1 (en) Method for manufacturing power storage module, and power storage module
JP2022080684A (en) Power storage module
JP2023087348A (en) Method for manufacturing power storage device and power storage device
JP2024080295A (en) Power storage device
JP2022066723A (en) Power storage cell
JP2022026712A (en) Power storage cell and power storage device
JP2022138280A (en) Manufacturing method of power storage cell
JP2022077634A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7459774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150