JP7458048B2 - Substrates for electroless metal plating, decorative plates, metal wiring circuits, and laminates - Google Patents

Substrates for electroless metal plating, decorative plates, metal wiring circuits, and laminates Download PDF

Info

Publication number
JP7458048B2
JP7458048B2 JP2019168163A JP2019168163A JP7458048B2 JP 7458048 B2 JP7458048 B2 JP 7458048B2 JP 2019168163 A JP2019168163 A JP 2019168163A JP 2019168163 A JP2019168163 A JP 2019168163A JP 7458048 B2 JP7458048 B2 JP 7458048B2
Authority
JP
Japan
Prior art keywords
base material
metal plating
protrusions
electroless metal
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019168163A
Other languages
Japanese (ja)
Other versions
JP2021046566A (en
Inventor
和彦 清水
孝廣 工藤
亜希 後藤
恵一 柳瀬
英治 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2019168163A priority Critical patent/JP7458048B2/en
Publication of JP2021046566A publication Critical patent/JP2021046566A/en
Application granted granted Critical
Publication of JP7458048B2 publication Critical patent/JP7458048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、無電解金属めっき用基材、装飾板、金属配線回路、および積層体に関する。 The present invention relates to a substrate for electroless metal plating, a decorative plate, a metal wiring circuit, and a laminate.

従来、樹脂からなる基材上に金属からなる層を設けることが検討されており、例えば、無電解金属めっき法で金属層を形成すること等が検討されている。無電解金属めっき法では、樹脂表面に金属イオンを付着させ、当該金属イオンを還元して触媒部を形成する。そして、当該触媒部に無電解金属めっき溶液を接触させることで、樹脂表面に金属を析出させて金属層を形成する。 BACKGROUND ART Conventionally, it has been considered to provide a layer made of metal on a base material made of resin, and for example, forming a metal layer by electroless metal plating has been considered. In the electroless metal plating method, metal ions are attached to a resin surface, and the metal ions are reduced to form a catalyst part. Then, by bringing an electroless metal plating solution into contact with the catalyst portion, metal is deposited on the resin surface to form a metal layer.

しかしながら、一般的に、樹脂からなる基材上に形成された金属層は、その密着性が低い。また、十分な量の金属イオン(ひいては触媒部)を樹脂表面に付着させることも難しく、無電解金属めっき法によって均一な金属層を形成できないことがある。そこで、無電解金属めっき法を行う前に、樹脂表面に凹凸を形成し、金属イオンを付着しやすくしたりすることが提案されている。例えば、特許文献1では、エポキシ樹脂を含む基材を、有機溶剤やクロム酸液で処理する方法が提案されている(特許文献1等)。また、特許文献2では、基材中にフィラーを分散させておき、化学エッチングによりフィラーを取り除く方法が提案されている(特許文献2等)。 However, metal layers formed on resin substrates generally have low adhesion. In addition, it is difficult to attach a sufficient amount of metal ions (and thus catalyst parts) to the resin surface, and it may not be possible to form a uniform metal layer by electroless metal plating. Therefore, it has been proposed to form irregularities on the resin surface before performing electroless metal plating to make it easier for metal ions to attach. For example, Patent Document 1 proposes a method of treating a substrate containing an epoxy resin with an organic solvent or a chromic acid solution (Patent Document 1, etc.). Patent Document 2 proposes a method of dispersing a filler in the substrate and removing the filler by chemical etching (Patent Document 2, etc.).

特開昭63-297572号公報Japanese Patent Application Publication No. 63-297572 特開平5-59587号公報Japanese Patent Application Laid-Open No. 5-59587

近年、ポリエチレンやポリプロピレン等のポリオレフィン樹脂の表面に金属層を形成することも検討されている。しかしながら、ポリオレフィン樹脂は極性が小さく、上記特許文献1や特許文献2の技術によって、ポリオレフィン樹脂の表面に凹凸を形成することは難しい。またたとえ表面に凹凸を形成することができたとしても、無電解金属めっき法に用いられる多くの溶液は、水溶液である。そのため、これらの溶液を、ポリオレフィン樹脂表面に十分に濡れ広がらせることが難しい。したがって、基材と金属イオンや金属とを十分に接触させることができず、所望の金属層を形成できない、という課題があった。 In recent years, it has also been considered to form a metal layer on the surface of polyolefin resins such as polyethylene and polypropylene. However, polyolefin resin has low polarity, and it is difficult to form irregularities on the surface of polyolefin resin using the techniques disclosed in Patent Document 1 and Patent Document 2. Furthermore, even if it is possible to form irregularities on the surface, many solutions used in electroless metal plating are aqueous solutions. Therefore, it is difficult to sufficiently wet and spread these solutions on the surface of the polyolefin resin. Therefore, there was a problem in that the base material could not be brought into sufficient contact with the metal ion or metal, and a desired metal layer could not be formed.

本発明は、上記課題を鑑みてなされたものである。すなわち、ポリオレフィン樹脂を含み、かつ所望の領域に容易に金属層を形成可能な無電解金属めっき用基材、およびこれを用いた装飾板、金属配線回路、ならびに積層体の提供を目的とする。 The present invention has been made in view of the above problems. That is, the object of the present invention is to provide a base material for electroless metal plating that contains a polyolefin resin and can easily form a metal layer in a desired region, and a decorative plate, a metal wiring circuit, and a laminate using the same.

本発明は、以下の無電解金属めっき用基材を提供する。
ポリオレフィン樹脂を含む面を有し、前記面が、幅0.15μm以上かつ頂角100°以下の突起を、単位長さ10μm当たり5個以上有する、無電解金属めっき用基材。
The present invention provides the following base material for electroless metal plating.
A base material for electroless metal plating, which has a surface containing a polyolefin resin, and the surface has five or more protrusions with a width of 0.15 μm or more and an apex angle of 100° or less per unit length of 10 μm.

本発明は、以下の装飾板および金属配線回路も提供する。
上記無電解金属めっき用基材と、前記無電解金属めっき用基材の前記複数の突起上に配置された金属層と、を有する装飾板。
上記無電解金属めっき用基材と、前記無電解金属めっき用基材の前記複数の突起上に配置された金属層と、を有する金属配線回路。
The present invention also provides the following decorative plate and metal wiring circuit.
A decorative plate comprising: the base material for electroless metal plating; and a metal layer disposed on the plurality of protrusions of the base material for electroless metal plating.
A metal wiring circuit comprising: the base material for electroless metal plating; and a metal layer disposed on the plurality of protrusions of the base material for electroless metal plating.

本発明は、以下の積層体も提供する。
ポリオレフィン樹脂を含む基材と、前記基材に隣接して形成された金属層と、を有する積層体であって、前記基材の前記金属層と隣接する領域に、前記金属層側に突出し、幅0.15μm以上かつ頂角が100°以下である突起が、単位長さ10μm当たり5個以上配置されている、積層体。
The present invention also provides the following laminate.
A laminate comprising a base material containing a polyolefin resin and a metal layer formed adjacent to the base material, wherein a region of the base material adjacent to the metal layer protrudes toward the metal layer side, A laminate in which five or more protrusions having a width of 0.15 μm or more and an apex angle of 100° or less are arranged per unit length of 10 μm.

本発明によれば、ポリオレフィン樹脂を含むにも関わらず、所望の領域に容易に金属層を形成可能な無電解金属めっき用基材とすることができる。また、当該無電解金属めっき用基材を利用して、各種装飾板、金属配線回路、および積層体を得ることができる。 According to the present invention, a base material for electroless metal plating that can easily form a metal layer in a desired region can be obtained even though it contains a polyolefin resin. Moreover, various decorative plates, metal wiring circuits, and laminates can be obtained using the base material for electroless metal plating.

図1Aは、実施例2における、金属層を形成する前の基材の断面図であり、図1Bは、当該基材上に金属層を形成した後(積層体)の断面図である。FIG. 1A is a cross-sectional view of a substrate in Example 2 before a metal layer is formed, and FIG. 1B is a cross-sectional view of the substrate after a metal layer is formed thereon (laminate). 図2Aは、実施例2の積層体から金属層を剥離したときの金属層の剥離面の状態であり、図2Bは、金属層剥離後の基材の状態である。FIG. 2A shows the state of the peeled surface of the metal layer when the metal layer was peeled off from the laminate of Example 2, and FIG. 2B shows the state of the substrate after the metal layer was peeled off.

前述のように、ポリオレフィン樹脂の極性の低さから、ポリオレフィン樹脂を主に含む基材に対して、無電解金属めっきを行うことは困難であった。これに対し、本発明者らは、基材がポリオレフィン樹脂を含む面を有し、当該面に、幅0.15μm以上かつ頂角100°以下である突起を、単位長さ10μm当たり5個以上含む無電解金属めっき用基材(以下、単に「基材」とも称する)であることにより、その複数の突起上に金属層(無電解金属めっき層)を容易に形成できることを見出した。その理由は、以下のように考えられる。 As mentioned above, due to the low polarity of polyolefin resin, it has been difficult to perform electroless metal plating on a base material mainly containing polyolefin resin. In contrast, the present inventors have proposed that the base material has a surface containing a polyolefin resin, and that the surface has five or more protrusions with a width of 0.15 μm or more and an apex angle of 100° or less per unit length of 10 μm. It has been found that a metal layer (electroless metal plating layer) can be easily formed on the plurality of protrusions by using a base material for electroless metal plating (hereinafter also simply referred to as "base material") containing the following. The reason is thought to be as follows.

基材が上記形状の突起を複数有することで、無電解金属めっき用の溶液がこれらの隙間に入りこみやすくなる。また特に、無電解金属めっき用の触媒を塗布した場合にも、触媒となる金属が突起同士の間に入りこんで定着しやすくなり、その表面に金属層(無電解金属めっき層)が形成されやすくなる。そしてさらに、当該複数の突起と、当該複数の突起上に形成される無電解金属めっき層との間でアンカー効果が生じやすく、基材と無電解金属めっき層とが強固に密着する、と考えられる。 When the base material has a plurality of protrusions having the above shape, the solution for electroless metal plating can easily enter into these gaps. In addition, especially when a catalyst for electroless metal plating is applied, the metal serving as the catalyst tends to enter between the protrusions and become fixed, and a metal layer (electroless metal plating layer) is likely to be formed on the surface. Become. Furthermore, it is believed that an anchor effect is likely to occur between the plurality of protrusions and the electroless metal plating layer formed on the plurality of protrusions, and the base material and the electroless metal plating layer are firmly attached. It will be done.

なお、後述のように複数の突起を原子状酸素ビームによって作製した場合には、基材表面に含酸素官能基が導入される。したがってこの場合、無電解金属めっき用の触媒をより表面に定着させやすくなり、より強固に密着した金属層(無電解金属めっき層)を形成できる。以下、当該基材について、詳しく説明する。 Note that when a plurality of protrusions are produced using an atomic oxygen beam as described later, oxygen-containing functional groups are introduced into the surface of the base material. Therefore, in this case, it becomes easier to fix the catalyst for electroless metal plating on the surface, and it is possible to form a more firmly adhered metal layer (electroless metal plating layer). The base material will be described in detail below.

[無電解金属めっき用基材]
本発明の基材は、ポリオレフィン樹脂を含み、当該ポリオレフィン樹脂を含む面に、無電解金属めっき法を利用して金属層を形成するための基材である。本明細書では、基材の表面形状を分析したときに、平均突起高さHが0.05μm以上である領域を、突起を有する領域、と判断する。ここで、平均突起高さHとは、基材の表面形状を分析したときの算術平均粗さRaの2倍の値とする。
[Substrate for electroless metal plating]
The substrate of the present invention contains a polyolefin resin and is a substrate for forming a metal layer on a surface containing the polyolefin resin by using an electroless metal plating method. In this specification, when the surface shape of the substrate is analyzed, a region having an average protrusion height H of 0.05 μm or more is determined to be a region having protrusions. Here, the average protrusion height H is defined as twice the value of the arithmetic mean roughness Ra when the surface shape of the substrate is analyzed.

基材の算術平均粗さRaは、以下のように求められる。まず、基材の断面を走査型電子顕微鏡(以下、「SEM」とも称する)にて撮像する。そして、得られたSEM画像を処理して、表面をなぞる開折れ線を特定する。その後、当該開折れ線から、常法により傾きやうねりを除去し、粗さ曲線を得る。その粗さ曲線の任意の位置の10μm分について、絶対値の平均値を算術平均粗さRaとする。 The arithmetic mean roughness Ra of the base material is determined as follows. First, a cross section of the base material is imaged using a scanning electron microscope (hereinafter also referred to as "SEM"). Then, the obtained SEM image is processed to identify open polygonal lines tracing the surface. Thereafter, inclinations and waviness are removed from the open polygonal line by a conventional method to obtain a roughness curve. The average absolute value of 10 μm at any position on the roughness curve is defined as the arithmetic mean roughness Ra.

なお、上記突起を有する領域の算術平均粗さRaは、0.025μm以上3μm以下が好ましく、0.028~2μmがより好ましく、0.03~1.5μmがさらに好ましい。突起を有する領域の算術平均粗さRaが、当該範囲であると、上述のアンカー効果が十分に得られやすくなる。 The arithmetic mean roughness Ra of the region having the protrusions is preferably 0.025 μm or more and 3 μm or less, more preferably 0.028 to 2 μm, and even more preferably 0.03 to 1.5 μm. When the arithmetic mean roughness Ra of the region having the protrusions is within this range, the above-mentioned anchoring effect is easily and sufficiently obtained.

また本発明の基材は、上記突起を有する領域に、幅0.15μm以上かつ頂角100°以下の突起(以下、「特定の突起」ともと称する。)を、単位長さ10μm当たり5個以上有する。特定の突起の個数は、5~150個がより好ましく、6~120個がさらに好ましい。特定の突起の個数が当該範囲であると、上述のアンカー効果が十分に得られやすくなる。 Furthermore, the base material of the present invention has five protrusions per unit length of 10 μm (hereinafter also referred to as “specific protrusions”) having a width of 0.15 μm or more and an apex angle of 100° or less in the region having the above-mentioned protrusions. or more. The number of specific protrusions is more preferably 5 to 150, and even more preferably 6 to 120. When the number of specific protrusions is within this range, the above-mentioned anchor effect can be sufficiently obtained.

ここで、各突起の幅および頂角は、以下のように特定できる。まず、基材の断面のSEM画像の開折れ線の非閉鎖部側を突起の底部、底部に対する開折れ線側を突起とする。そして、各突起における開折れ線上の任意の1頂点と底部側における開折れ線上の任意の2頂点を結んで形成される三角形のうち、底部側の2頂点を結ぶ辺(底辺と呼ぶ)からの高さが最も大きな三角形の高さを、各突起の高さhとする。また、当該三角形の底辺をその突起の突起幅wとする。 Here, the width and apex angle of each protrusion can be specified as follows. First, the non-closed part side of the open folded line in the SEM image of the cross section of the base material is defined as the bottom of the protrusion, and the open folded line side with respect to the bottom is defined as the protrusion. Then, among the triangles formed by connecting any one vertex on the open polyline on each protrusion and any two vertices on the open polyline on the bottom side, the side (called the base) connecting the two vertices on the bottom side is The height of the triangle with the largest height is defined as the height ha of each protrusion. Further, the base of the triangle is defined as the protrusion width wa of the protrusion.

さらに、各突起について、その高さhおよびその幅wから、以下の式に基づき、その頂角θを算出する。

Figure 0007458048000001
Furthermore, for each protrusion, its apex angle θ a is calculated from its height h a and its width w a based on the following formula.
Figure 0007458048000001

そして、単位長さ10μm当たりに、特定の突起(wが0.15μm以上かつθが100°以下を満たす突起)が、いくつかあるかを特定する。なお、θの下限値は、通常1°である。 Then, it is determined whether there are a certain number of specific protrusions (protrusions satisfying w a of 0.15 μm or more and θ a of 100° or less) per unit length of 10 μm. Note that the lower limit of θ a is usually 1°.

ここで、本発明における基材は、ポリオレフィン樹脂を主に含んでいればよく、本発明の目的および効果を損なわない範囲で、添加剤や他の樹脂を含んでいてもよい。ただし、基材の総質量に対するポリオレフィン樹脂の質量は、20質量%以上が好ましく、30質量%以上がより好ましい。一般的に、ポリオレフィン樹脂を上記範囲含む基材は、その表面に金属層を形成することが難しい。これに対し、本発明によれば、このような基材に対して無電解金属めっき法を利用して金属層を形成することが可能である。 Here, the substrate in the present invention may contain additives and other resins as long as they are not detrimental to the object and effect of the present invention. However, the mass of the polyolefin resin relative to the total mass of the substrate is preferably 20 mass% or more, more preferably 30 mass% or more. Generally, it is difficult to form a metal layer on the surface of a substrate containing polyolefin resin in the above range. In contrast, according to the present invention, it is possible to form a metal layer on such a substrate by using an electroless metal plating method.

基材が含むポリオレフィン樹脂の種類は特に制限されず、その例には、ポリエチレン(直鎖状低密度ポリエチレン(L-LDPE)、低密度ポリエチレン(LDPE)、および高密度ポリエチレン(HDPE)等を含む)や、ポリプロピレンが含まれる。 The type of polyolefin resin contained in the base material is not particularly limited, and examples thereof include polyethylene (linear low density polyethylene (L-LDPE), low density polyethylene (LDPE), high density polyethylene (HDPE), etc. ) and polypropylene.

また基材が含んでいてもよい添加剤の例には、公知のフィラー(充填剤)、滑剤、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止材、抗酸化剤、着色剤(染料、顔料)等が含まれる。これらの添加剤は、本発明の効果を阻害しない範囲で最適な組み合わせを選択して用いればよい。また、基材の用途や所望によっては、他の添加剤として有機物質(他の樹脂でもよい)や金属ナノ粒子等の無機物質を含んでいてもよい。 Examples of additives that the base material may contain include known fillers, lubricants, plasticizers, UV stabilizers, color inhibitors, matting agents, deodorants, flame retardants, and weatherproofing agents. agents, antistatic materials, antioxidants, colorants (dyes, pigments), etc. These additives may be used in an optimal combination within a range that does not impede the effects of the present invention. Further, depending on the use and desirability of the base material, other additives may include organic substances (other resins may be used) and inorganic substances such as metal nanoparticles.

また、基材の形状は無電解金属めっきを行うことが可能な形状であればよく、その例には、平板状、多角柱状、袋状、管状、繊維状や、さらに複雑な三次元形状等が含まれる。また、その大きさや厚み等は特に制限されない。 The shape of the substrate may be any shape that allows electroless metal plating, and examples include flat plates, polygonal columns, pouches, tubes, fibers, and more complex three-dimensional shapes. There are no particular limitations on the size or thickness of the substrate.

ここで、基材は、少なくとも一つの面に、上述の特定の突起を複数有していればよく、複数の面に上述の特定の突起を複数有していてもよい。また、基材の一つの面、もしくは複数の面の全体に、上述の特定の突起を複数有していてもよいが、例えば基材の一つの面もしくは複数の面の一部の領域のみに、上述の特定の突起を複数有していてもよい。基材の一部の領域のみに、上述の特定の突起を複数有する場合、当該領域にのみ、金属層を形成することができる。つまり、エッチング等を行うことなくパターン状の金属層を形成することができる。したがって、例えば装飾板の模様や、金属配線回路の配線等を容易に形成できる。 Here, the base material only needs to have a plurality of the above-mentioned specific protrusions on at least one surface, and may have a plurality of the above-mentioned specific protrusions on a plurality of surfaces. In addition, a plurality of the above-mentioned specific protrusions may be provided on one surface or all of multiple surfaces of the base material, but, for example, only in a partial area of one surface or multiple surfaces of the base material. , may have a plurality of the above-mentioned specific protrusions. When a plurality of the above-mentioned specific protrusions are provided only in a certain area of the base material, a metal layer can be formed only in that area. In other words, a patterned metal layer can be formed without performing etching or the like. Therefore, for example, patterns for decorative plates, wiring for metal wiring circuits, etc. can be easily formed.

ここで、上記基材の形成方法は、単位長さ当たりに、特定の突起が所望の量含まれるように表面を加工可能であれば特に制限されない。上述の複数の突起を形成する方法の一例には、原子状酸素ビームの照射やブラスト処理が含まれる。 Here, the method of forming the above-mentioned substrate is not particularly limited as long as the surface can be processed so that the desired amount of specific protrusions is included per unit length. Examples of methods for forming the above-mentioned multiple protrusions include irradiation with an atomic oxygen beam and blasting.

原子状酸素ビームの照射は、上記基材の表面のうち、突起を形成する領域に対して行う。原子状酸素ビームの生成は、気体力学膨張を利用する方法、イオン中性化法、電子刺激脱着(Electron Stimulated desorption:ESD)法、およびレーザーデトネーション法などの公知の方法で行うことができる。これらのうち、運動エネルギーが高い原子状酸素ビームを効率よく生成することができることから、レーザーデトネーション法が好ましい。 Irradiation with the atomic oxygen beam is performed on a region of the surface of the base material where protrusions are to be formed. The atomic oxygen beam can be generated by known methods such as a method using gas dynamic expansion, an ion neutralization method, an electron stimulated desorption (ESD) method, and a laser detonation method. Among these, the laser detonation method is preferred because it can efficiently generate an atomic oxygen beam with high kinetic energy.

レーザーデトネーション法では、酸素分子ガスおよびレーザー(特にはCOレーザー)をいずれもパルス状に射出し、酸素分子ガスへのレーザー照射によって酸素分子ガスをプラズマ化する。上記プラズマにさらに上記レーザーが照射されて爆撃波が発生する(デトネーション)と、プラズマの熱エネルギーが運動エネルギーに変換され、同時にプラズマ中のイオンと電子とが再結合して、原子状酸素のビームが発生する。 In the laser detonation method, both oxygen molecular gas and a laser (particularly a CO 2 laser) are emitted in a pulsed manner, and the oxygen molecular gas is turned into plasma by irradiating the oxygen molecular gas with the laser. When the plasma is further irradiated with the laser and a bombardment wave is generated (detonation), the thermal energy of the plasma is converted into kinetic energy, and at the same time, the ions and electrons in the plasma are recombined, resulting in a beam of atomic oxygen. occurs.

導入するレーザーのエネルギーは、8J/Pulse以上が好ましく、10J/Pulse以上がより好ましい。上記レーザーのエネルギーが8J/Pulse以上であると、上記基材に対して効率的に突起を形成できる。上記レーザーのエネルギーの上限は特に限定されないものの、20J/Pulse以下が好ましい。 The energy of the laser to be introduced is preferably 8 J/pulse or more, more preferably 10 J/pulse or more. When the energy of the laser is 8 J/Pulse or more, protrusions can be efficiently formed on the base material. Although the upper limit of the energy of the laser is not particularly limited, it is preferably 20 J/Pulse or less.

また、導入するレーザーの1秒間あたりの繰り返し数(パルスレート)は、5Hz以上が好ましく、12Hz以上がより好ましい。上記レーザーのパルスレートが12Hz以上であると、上記基材に対して効率的に突起を形成できる。上記レーザーのパルスレートの上限は特に限定されないものの、20Hz以下が好ましい。 Further, the number of repetitions per second (pulse rate) of the introduced laser is preferably 5 Hz or more, more preferably 12 Hz or more. When the pulse rate of the laser is 12 Hz or more, protrusions can be efficiently formed on the base material. Although the upper limit of the pulse rate of the laser is not particularly limited, it is preferably 20 Hz or less.

上記原子状酸素ビームの並進エネルギーは、1eV以上20eV以下が好ましく、2eV以上15eV以下がより好ましく、3eV以上10eV以下がさらに好ましい。 The translational energy of the atomic oxygen beam is preferably 1 eV or more and 20 eV or less, more preferably 2 eV or more and 15 eV or less, and even more preferably 3 eV or more and 10 eV or less.

上記原子状酸素ビームの速度は、5km/s以上13km/s以下が好ましく、6km/s以上10km/s以下がより好ましい。 The speed of the atomic oxygen beam is preferably 5 km/s or more and 13 km/s or less, more preferably 6 km/s or more and 10 km/s or less.

上記原子状酸素ビームの積算照射量は、1.0×1017atoms/cm以上が好ましく、1.0×1019atoms/cm以上がより好ましく、1.0×1020atoms/cm以上がさらに好ましい。特に、上記積算照射量が1.0×1020atoms/cm以上であると、上記基材に対して効率的に突起を形成できる。上記積算照射量の上限は特に限定されないものの、1.0×1022atoms/cm以下とすることができる。 The cumulative dose of the atomic oxygen beam is preferably 1.0×10 17 atoms/cm 2 or more, more preferably 1.0×10 19 atoms/cm 2 or more, and even more preferably 1.0×10 20 atoms/cm 2 or more. In particular, when the cumulative dose is 1.0×10 20 atoms/cm 2 or more, protrusions can be efficiently formed on the substrate. The upper limit of the cumulative dose is not particularly limited, but can be 1.0×10 22 atoms/cm 2 or less.

上記原子状酸素ビームの照射時間は、十分な量の突起を形成可能であれば特に限定されないが、4時間以上が好ましく、7時間以上がさらに好ましく、9時間以上が特に好しい。上記照射時間の上限は特に限定されないが、一定の時間を超えると効果が頭打ちになると思われるため、たとえば30時間とすることができる。 The irradiation time of the atomic oxygen beam is not particularly limited as long as a sufficient amount of protrusions can be formed, but is preferably 4 hours or more, more preferably 7 hours or more, and particularly preferably 9 hours or more. The upper limit of the irradiation time is not particularly limited, but it can be set to 30 hours, for example, since it is thought that the effect will reach a plateau if it exceeds a certain time.

これらの原子状酸素ビームの照射条件は、基材の種類および各種物性などに応じて適宜調整すればよい。例えば、原子状酸素ビームの照射条件は、予め測定されて定められた、基材の種類と、原子状酸素ビームの照射条件と、の関係を示す対応表を参照する等して、決定できる。あるいは、これらの原子状酸素ビームの照射条件は、機械学習などを施した処理装置に、基材の種類と、原子状酸素ビームの照射条件と、の関係を算出させたりして、決定してもよい。 The irradiation conditions of these atomic oxygen beams may be adjusted as appropriate depending on the type and various physical properties of the base material. For example, the irradiation conditions for the atomic oxygen beam can be determined by referring to a correspondence table that is measured and determined in advance and shows the relationship between the type of substrate and the irradiation conditions for the atomic oxygen beam. Alternatively, these atomic oxygen beam irradiation conditions can be determined by having a processing device using machine learning etc. calculate the relationship between the type of substrate and the atomic oxygen beam irradiation conditions. Good too.

(積層体)
本発明の積層体は、上述の基材と、当該基材に隣接して形成された金属層と、を有する。当該積層体の基材の金属層と隣接する領域には、金属層側に突出し、幅0.15μm以上かつ頂角100°以下である突起が、単位長さ10μm当たり5個以上配置されている。
(laminate)
The laminate of the present invention includes the above-described base material and a metal layer formed adjacent to the base material. In the area adjacent to the metal layer of the base material of the laminate, five or more protrusions that protrude toward the metal layer and have a width of 0.15 μm or more and an apex angle of 100° or less are arranged per unit length of 10 μm. .

上述のように、基材がポリオレフィン樹脂を含んでいたとしても、特定の形状の突起を複数有することで、その上に金属層を形成できるだけでなく、これらを強固に密着させることができる。ここで、積層体が有する金属層の種類は、無電解金属めっきを利用して形成可能であれば、特に制限されない。 As described above, even if the base material contains a polyolefin resin, by having a plurality of protrusions of a specific shape, it is possible not only to form a metal layer thereon but also to firmly adhere them. Here, the type of metal layer included in the laminate is not particularly limited as long as it can be formed using electroless metal plating.

また、金属層の厚みは、積層体の用途に合わせて適宜選択されるが、通常0.1~100μm程度が好ましく、0.5~80μmがより好ましく、1~50μmがさらに好ましい。金属層の厚みが当該範囲であると、金属本来の性質(例えば光沢や強度、導電性等)が得られやすくなる。 Further, the thickness of the metal layer is appropriately selected depending on the use of the laminate, but is usually preferably about 0.1 to 100 μm, more preferably 0.5 to 80 μm, and even more preferably 1 to 50 μm. When the thickness of the metal layer is within this range, properties inherent to metal (eg, gloss, strength, conductivity, etc.) can be easily obtained.

上述の基材上に金属層を形成する工程は、公知の無電解金属めっき法と同様とすることができる。具体的には、基材表面の突起を有する領域に、触媒粒子を付着させる触媒付着工程と、当該触媒を活性化させるアクセレーター工程と、当該基材を無電解金属めっき浴に浸漬して金属を析出させる金属析出工程と、を含む方法とすることができる。 The process of forming a metal layer on the above-mentioned substrate can be the same as a known electroless metal plating method. Specifically, the method can include a catalyst attachment process of attaching catalyst particles to the area of the substrate surface having protrusions, an accelerator process of activating the catalyst, and a metal deposition process of immersing the substrate in an electroless metal plating bath to deposit metal.

例えば触媒付着工程では、パラジウムを含む水溶性パラジウム化合物、塩化第1スズ、塩酸等を含む混合コロイド溶液中に、基材を浸漬し、酸化還元反応により触媒となるパラジウムとスズとを含む微粒子を基材表面に付着させる。水溶性パラジウム化合物の例には、塩化パラジウム、硫酸パラジウム、酸化パラジウム、ヨウ化パラジウム、臭化パラジウム、硝酸パラジウム、酢酸パラジウム、テトラアミンパラジウムクロライド、ジニトロジアミンパラジウム、ジクロロジエチレンジアミンパラジウム等が含まれる。水溶性パラジウム化合物の濃度は、浸漬時間等に応じて適宜調整される。なお、触媒付着工程を行う前に、触媒の定着性を高めるため基材を洗浄する工程や、基材を、界面活性剤含有溶液に浸漬させる工程等を必要に応じて行ってもよい。 For example, in the catalyst attachment step, the substrate is immersed in a mixed colloidal solution containing a water-soluble palladium compound containing palladium, stannous chloride, hydrochloric acid, etc., and fine particles containing palladium and tin that become catalysts are deposited through an oxidation-reduction reaction. Adhere to the surface of the base material. Examples of water-soluble palladium compounds include palladium chloride, palladium sulfate, palladium oxide, palladium iodide, palladium bromide, palladium nitrate, palladium acetate, tetraamine palladium chloride, dinitrodiamine palladium, dichlorodiethylenediamine palladium, and the like. The concentration of the water-soluble palladium compound is adjusted as appropriate depending on the immersion time and the like. Note that before performing the catalyst adhesion step, a step of washing the substrate, a step of immersing the substrate in a surfactant-containing solution, etc. may be performed as necessary to improve the fixing properties of the catalyst.

続いて、必要に応じて基材の表面に付着しているパラジウム(触媒)を活性化させるアクセレーター工程を行う。例えば、基材を濃度が0.1%~10%程度の硫酸に浸漬することにより、基材の表面に付着しているスズを除去しパラジウムの反応性を高める。これによって、無電解金属めっき反応における初期析出を促進することができる。 Subsequently, an accelerator step is performed to activate the palladium (catalyst) attached to the surface of the base material, if necessary. For example, by immersing the base material in sulfuric acid having a concentration of about 0.1% to 10%, tin adhering to the surface of the base material is removed and the reactivity of palladium is increased. Thereby, initial precipitation in the electroless metal plating reaction can be promoted.

その後、基材を無電解金属めっき浴に浸漬し、基材表面のパラジウムを触媒として金属を析出させる金属析出工程を行う。このとき、基材表面には、無電解金属めっき液が含有する金属成分の種類に応じた金属または合金が適宜析出する。また、浸漬時間は、所望の金属層の厚みに応じて適宜選択される。 Thereafter, the base material is immersed in an electroless metal plating bath, and a metal deposition step is performed in which metal is deposited using palladium on the surface of the base material as a catalyst. At this time, a metal or an alloy depending on the type of metal component contained in the electroless metal plating solution is appropriately precipitated on the surface of the base material. Further, the immersion time is appropriately selected depending on the desired thickness of the metal layer.

無電解金属めっき浴は、例えばCu、Ni、Co、Au、Ag、Pd、Rh、Pt、In、Sn、P、S、V、Cr、Mn、Fe、Zn、Mo、Cd、W、Re、Tl等を一種、もしくは複数含む浴とすることができる。これらの金属の種類や濃度は、積層体の用途に応じて適宜される。 Electroless metal plating baths include, for example, Cu, Ni, Co, Au, Ag, Pd, Rh, Pt, In, Sn, P, S, V, Cr, Mn, Fe, Zn, Mo, Cd, W, Re, The bath may contain one or more of Tl and the like. The types and concentrations of these metals are appropriately determined depending on the use of the laminate.

金属析出工程後、必要に応じてさらに無電解金属めっき処理または電解めっき処理を行ってもよい。電解めっき処理は、公知の方法で行うことができる。電解めっき処理に用いる金属の例には、銅、ニッケル、銅-ニッケル合金、酸化亜鉛、亜鉛、銀、カドミウム、鉄、コバルト、クロム、ニッケル-クロム合金、スズ、スズ-鉛合金、スズ-銀合金、スズ-ビスマス合金、スズ-銅合金、金、白金、ロジウム、パラジウム、又はパラジウム-ニッケル合金等が含まれる。 After the metal deposition step, electroless metal plating or electrolytic plating may be further performed as needed. Electrolytic plating treatment can be performed by a known method. Examples of metals used in electrolytic plating processes include copper, nickel, copper-nickel alloys, zinc oxide, zinc, silver, cadmium, iron, cobalt, chromium, nickel-chromium alloys, tin, tin-lead alloys, tin-silver. alloy, tin-bismuth alloy, tin-copper alloy, gold, platinum, rhodium, palladium, or palladium-nickel alloy.

上記積層体は、装飾板や金属配線回路等を含む、広汎な用途に使用可能である。 The above-mentioned laminate can be used for a wide range of purposes including decorative plates, metal wiring circuits, and the like.

上記装飾板の例には、建築物の各種外装材や内装材(壁紙等);自動車の内装材や各種部品;家電製品(炊飯器、電子レンジ、冷蔵庫、アイロン、ヘアードライヤー、エアコンおよび空気清浄機等)のパネルや筐体;電子機器およびその周辺機器(ノートパソコン、スマートフォン、タブレット、デジタルカメラ、医療用電子機器、POSシステム、プリンター、テレビ、マウスおよびキーボード等)の筐体等が含まれる。さらに、包装材料等にも適用可能である。 Examples of the above-mentioned decorative boards include various exterior and interior materials for buildings (wallpaper, etc.); interior materials and various parts for automobiles; and home appliances (rice cookers, microwave ovens, refrigerators, irons, hair dryers, air conditioners, and air purifiers). Includes panels and housings for electronic devices and their peripherals (laptops, smartphones, tablets, digital cameras, medical electronic equipment, POS systems, printers, televisions, mice, keyboards, etc.) . Furthermore, it is also applicable to packaging materials and the like.

また、金属配線回路は、各種電子機器およびその周辺機器の集積回路等がその一例としてあげられる。 Examples of metal wiring circuits include integrated circuits for various electronic devices and their peripheral devices.

以下、本発明の具体的な実施例を比較例とともに説明するが、本発明はこれらに限定されるものではない。 Specific examples of the present invention will be described below along with comparative examples, but the present invention is not limited to these.

1.樹脂組成物の成形体の表面処理
3種類の樹脂製フィルムを用意し、それぞれの樹脂製フィルムの表面に以下の条件で原子状酸素ビームを照射して、評価用サンプルを作製した。なお、原子状酸素ビームを照射しなかった比較用サンプルも用意した。
1. Surface Treatment of Molded Body of Resin Composition Three types of resin films were prepared, and samples for evaluation were prepared by irradiating the surface of each resin film with an atomic oxygen beam under the following conditions. Note that a comparative sample that was not irradiated with the atomic oxygen beam was also prepared.

(原子状酸素ビームの照射装置)
原子状酸素照射装置: PSI社製、FAST-II(レーザーデトネーション法)
レーザー照射装置: 株式会社宇翔製、IR-SP
レーザー種: COレーザー
レーザー波長: 10.6μm
(原子状酸素ビームの照射条件)
平均酸素量: およそ120sccm/12Hz
レーザーのエネルギー :10J/Pulse
レーザーのパルスレート:12Hz
ビーム速度: 8.11km/s
照射時間: 3時間、12時間、または24時間
照射量: 3.882×1019atoms/cm(3時間照射時)
1.553×1020atoms/cm(12時間照射時)
3.106×1020atoms/cm(24時間照射時)
照射温度: 室温
(Atomic oxygen beam irradiation device)
Atomic oxygen irradiation device: manufactured by PSI, FAST-II (laser detonation method)
Laser irradiation device: Manufactured by Usho Co., Ltd., IR-SP
Laser type: CO 2 laser Laser wavelength: 10.6μm
(Atomic oxygen beam irradiation conditions)
Average oxygen amount: Approximately 120sccm/12Hz
Laser energy: 10J/Pulse
Laser pulse rate: 12Hz
Beam speed: 8.11km/s
Irradiation time: 3 hours, 12 hours, or 24 hours Irradiation amount: 3.882×10 19 atoms/cm 2 (for 3 hours of irradiation)
1.553×10 20 atoms/cm 2 (at 12 hours of irradiation)
3.106×10 20 atoms/cm 2 (at 24 hour irradiation)
Irradiation temperature: room temperature

使用した基材フィルムは、以下の通りである。いずれの基材フィルムも、50mm×50mm角形の形状を有していた。
ポリエチレン(L-LDPE):三井化学東セロ株式会社製、TUS-TCS#60、厚さ53μm
ポリプロピレン(CPP):東レフィルム加工株式会社製、トレファン ZK93FM、厚さ60μm
フッ素系樹脂(FEP):アズワン製、厚さ50μm
The base film used is as follows. Both base films had a 50 mm x 50 mm square shape.
Polyethylene (L-LDPE): manufactured by Mitsui Chemicals Tohcello Co., Ltd., TUS-TCS#60, thickness 53 μm
Polypropylene (CPP): Toray Film Processing Co., Ltd., Torefan ZK93FM, thickness 60 μm
Fluorine resin (FEP): Manufactured by As One, thickness 50μm

2.評価
(各基材の表面状態の特定)
各サンプル(基材)について、以下の手順で表面状態を測定した。なお、各サンプルについて、液体窒素を用いた凍結破断法、またはイオンミリング法により断面を露出させて、その断面観察を行った。得られた断面のSEM画像を画像処理してサンプル(基材)の表面をなぞる開折れ線から一次近似直線を導出し、その傾きを除去した。さらに、当該開折れ線からうねりを除去して粗さ曲線を得た。その後、当該粗さ曲線から、単位長さ10μm分の絶対値の平均値を算出し、これを算術平均粗さRaとした。そして、当該算術平均粗さRaの2倍を、平均突起高さHとした。表1に結果を示す。
2. Evaluation (Identification of surface condition of each base material)
The surface condition of each sample (substrate) was measured according to the following procedure. Note that the cross section of each sample was exposed by a freeze-fracture method using liquid nitrogen or an ion milling method, and the cross section was observed. The SEM image of the obtained cross section was image-processed to derive a first-order approximate straight line from the open folded line tracing the surface of the sample (substrate), and its slope was removed. Furthermore, the undulations were removed from the open polygonal line to obtain a roughness curve. Thereafter, from the roughness curve, the average value of the absolute values for a unit length of 10 μm was calculated, and this was defined as the arithmetic mean roughness Ra. Then, twice the arithmetic mean roughness Ra was defined as the average protrusion height H. Table 1 shows the results.

得られた平均突起高さHが0.05μm以上である場合に、基材に突起があると判断し、平均突起高さHが0.05μm未満である場合は、基材に突起がない、と判断した。突起があるとしたサンプルについて、各突起の構造を以下のように詳しく確認した。そして、基材の突起を有する領域が、幅0.15μm以上かつ頂角100°以下の突起(特定の突起)を単位長さ10μm当たりにいくつ含むか、また全ての突起の平均高さ、および全ての突起の平均幅をそれぞれ以下の方法で特定した。 When the obtained average protrusion height H is 0.05 μm or more, it is determined that there is a protrusion on the base material, and when the average protrusion height H is less than 0.05 μm, there is no protrusion on the base material. I decided that. For samples that were supposed to have protrusions, the structure of each protrusion was confirmed in detail as follows. Then, how many protrusions (specific protrusions) with a width of 0.15 μm or more and an apex angle of 100° or less are included per unit length of 10 μm in the region having protrusions of the base material, and the average height of all protrusions. The average width of all protrusions was determined using the following method.

具体的には、上述のSEM画像の開折れ線の非閉鎖部側を突起の底部、底部に対する開折れ線側を突起とし、各突起における開折れ線上の任意の1頂点と底部側における開折れ線上の任意の2頂点を結んで形成される三角形のうち、底部側の2頂点を結ぶ辺(底辺と呼ぶ)からの高さが最も大きな三角形における高さを、各突起の高さhとした。また、上記三角形の底辺をその突起の幅wとした。 Specifically, the non-closed part side of the open fold line in the above-mentioned SEM image is the bottom of the protrusion, the open fold line side with respect to the bottom is the protrusion, and any one vertex on the open fold line in each protrusion and the open fold line on the bottom side Among the triangles formed by connecting two arbitrary vertices, the height of the triangle with the largest height from the side connecting the two vertices on the bottom side (referred to as the base) was defined as the height ha of each protrusion. Further, the base of the triangle was defined as the width wa of the protrusion.

さらに、各突起について、その高さhおよびその幅wから、以下の式に基づき、その頂角θを算出した。

Figure 0007458048000002
Further, for each protrusion, its apex angle θ a was calculated from its height h a and its width w a based on the following formula.
Figure 0007458048000002

そして、上記開折れ線から、単位長さ10μm当たりに存在する、突起の幅w0.15μm以上、かつθ100°以下である突起の個数を特定した。表1に結果を示す。 Then, the number of protrusions present per unit length of 10 μm and having a protrusion width wa of 0.15 μm or more and θ a of 100° or less was determined from the above-mentioned open polygonal line. Table 1 shows the results.

さらに、全ての突起の高さhの平均値を平均突起高さhとし、全ての突起の幅wの平均値を平均突起幅wとした。表1に結果を示す。 Further, the average value of the heights ha of all the protrusions was defined as the average protrusion height h, and the average value of the widths wa of all the protrusions was defined as the average protrusion width w. Table 1 shows the results.

(各基材上に作製した金属層の剥離強度)
各サンプルの突起を有する面(原子状酸素ビームを照射した面)に、以下の手順により金属層を形成した。
(Peel strength of metal layer prepared on each base material)
A metal layer was formed on the surface of each sample having protrusions (the surface irradiated with the atomic oxygen beam) by the following procedure.

各サンプルをエタノールに浸漬し、1分間超音波洗浄処理を行った。超音波洗浄処理後、各サンプルを、30~40℃のカチオン系界面活性剤(ヘキサデシルトリメチルアンモニウム・クロリド(コンディライザーFR、奥野製薬工業社製))に1分間浸漬させ、さらに水洗した。 Each sample was immersed in ethanol and subjected to ultrasonic cleaning for 1 minute. After the ultrasonic cleaning treatment, each sample was immersed in a cationic surfactant (hexadecyltrimethylammonium chloride (Condylizer FR, manufactured by Okuno Pharmaceutical Industries, Ltd.)) at 30 to 40°C for 1 minute, and then washed with water.

続いて、各サンプルを、30~40℃のパラジウム触媒添着剤(キャタリストC-7、奥野製薬社製)中に1分間浸漬させ、さらに水洗した。各サンプル表面にパラジウムが添着し、各サンプル表面が少し黒く変色した。 Next, each sample was immersed in a palladium catalyst impregnating agent (Catalyst C-7, Okuno Pharmaceutical Co., Ltd.) at 30-40°C for 1 minute, and then rinsed with water. Palladium was impregnated onto the surface of each sample, causing the surface to slightly blacken.

さらに、各サンプルを、30~40℃のアクセレーター処理液(硫酸(濃度:100mL/L)および塩酸(濃度:5mL/L)の混合液)中に浸漬し、さらに水洗した。その後、各サンプルを、35℃の無電解ニッケル処理液(Ni-P(EXC-A、奥野製薬工業社製(濃度:80ml/L)および化学ニッケル(濃度150g/L)の混合液)中に2分間浸漬した。 Furthermore, each sample was immersed in an accelerator treatment solution (a mixed solution of sulfuric acid (concentration: 100 mL/L) and hydrochloric acid (concentration: 5 mL/L)) at 30 to 40°C, and then washed with water. Thereafter, each sample was placed in an electroless nickel treatment solution (a mixed solution of Ni-P (EXC-A, manufactured by Okuno Pharmaceutical Co., Ltd. (concentration: 80 ml/L) and chemical nickel (concentration: 150 g/L)) at 35°C. Soaked for 2 minutes.

さらに、電解ニッケル処理液(スルファミン酸ニッケル(濃度:300g/L)、塩化ニッケル(濃度:10g/L)、およびホウ酸(濃度:30g/L)を含む溶液)中で、10分間通電処理を行い、電解めっきした。その後、各サンプルを電解銅めっき処理液(硫酸銅溶液(濃度:125g/L)、トップルチナH-300SW、奥野製薬工業社製(濃度:2.5mL/L)、およびトップルチナメークアップ(濃度5mL/L)の混合液)中に浸漬し、揺動した状態で100分間通電処理して電解めっきした。そして、水洗し、65℃の乾燥機中で乾燥させた。電解めっきの際には、電解ニッケル処理液中での通電によりめっき層の厚さを1μmとし、電解銅めっき処理液への浸漬によってめっき層の厚さを30μm程度とした。 Furthermore, electricity was applied for 10 minutes in an electrolytic nickel treatment solution (a solution containing nickel sulfamate (concentration: 300 g/L), nickel chloride (concentration: 10 g/L), and boric acid (concentration: 30 g/L)). and electrolytically plated. After that, each sample was treated with electrolytic copper plating treatment solution (copper sulfate solution (concentration: 125 g/L), Top Lucina H-300SW, manufactured by Okuno Pharmaceutical Co., Ltd. (concentration: 2.5 mL/L), and Top Lucina Makeup (concentration: 5 mL). /L) and electrolytically plated by applying electricity for 100 minutes while shaking. Then, it was washed with water and dried in a dryer at 65°C. During electrolytic plating, the thickness of the plating layer was set to 1 μm by energization in an electrolytic nickel treatment solution, and the thickness of the plating layer was set to about 30 μm by immersion in an electrolytic copper plating solution.

(金属層の90°剥離測定)
金属層の形成後、長方形の台の上に両面テープを貼り、5mm幅にカットした積層体の基材(樹脂)側を台上に貼り付けた。そして、金属層の端部を基材から剥がし、金属層にガムテープ片を巻いて外側を補強した。その後、ガムテープ片を巻いた部分にオートグラフの剥離試験装置のクランプを挟み、基材と両面テープの接着面を剥離した。そして、基材から金属層を一定ペースで剥離した。
(Metal layer 90° peeling measurement)
After the metal layer was formed, double-sided tape was applied to a rectangular stand, and the substrate (resin) side of the laminate cut to a width of 5 mm was applied to the stand. Then, the end of the metal layer was peeled off from the substrate, and the metal layer was wrapped with a piece of packing tape to reinforce the outside. Then, the clamp of an autograph peel tester was clamped to the part wrapped with the packing tape, and the adhesive surface of the substrate and the double-sided tape were peeled off. Then, the metal layer was peeled off from the substrate at a constant pace.

(積層体の膜構造解析)
金属層および基材の膜構造解析を、電界放出型走査電子顕微鏡(FE-SEM、日立ハイテクノロジーズ社製 SU8220)で行った。図1Aに、実施例2において、金属層を形成する前の基材の断面図を示し、図1Bに当該基材上に金属層を形成した後(積層体)の断面図を示す。さらに、図2Aに、実施例2の積層体から金属層を剥離したときの金属層の剥離面の状態を示し、図2Bに金属層剥離後の基材の状態を示す。

Figure 0007458048000003
(Membrane structure analysis of laminate)
Film structure analysis of the metal layer and the base material was performed using a field emission scanning electron microscope (FE-SEM, SU8220, manufactured by Hitachi High-Technologies, Inc.). FIG. 1A shows a cross-sectional view of a base material before forming a metal layer in Example 2, and FIG. 1B shows a cross-sectional view after forming a metal layer on the base material (laminated body). Furthermore, FIG. 2A shows the state of the peeled surface of the metal layer when the metal layer was peeled off from the laminate of Example 2, and FIG. 2B shows the state of the base material after the metal layer was peeled off.
Figure 0007458048000003

上記表1に示されるように、基材の表面に幅0.15μm以上、頂角100°以下の突起を、単位長さ10μm当たり5個以上含む場合(実施例1~3)には、金属層を形成可能であり、さらにはその剥離強度が非常に高かった(剥がれ難かった)。また、複数の突起を有する基材(図1A参照)上に金属層を形成した場合、基材の突起の間に入りこむように、金属層が形成された(図1B参照)。そして、これらを剥離した場合、図2Aに示すように、金属層表面には糸状の樹脂(延伸された樹脂)が付着し、基材側でも、図2Bに示すように、樹脂の一部が延伸されて糸状となった。つまり、基材と金属層とが非常に強固に密着し、これらの間でアンカー効果が生じていたといえる。 As shown in Table 1 above, when the surface of the base material contains 5 or more protrusions with a width of 0.15 μm or more and an apex angle of 100° or less per unit length of 10 μm (Examples 1 to 3), metal It was possible to form a layer, and furthermore, the peel strength was very high (it was difficult to peel off). Further, when a metal layer was formed on a base material having a plurality of protrusions (see FIG. 1A), the metal layer was formed so as to fit between the protrusions of the base material (see FIG. 1B). When these are peeled off, filamentous resin (stretched resin) adheres to the surface of the metal layer, as shown in Figure 2A, and part of the resin also adheres to the base material side, as shown in Figure 2B. It was stretched into a filament. In other words, it can be said that the base material and the metal layer were in very strong contact with each other, and an anchor effect was produced between them.

これに対し、基材の表面に十分に突起がない場合(算術平均粗さが0.025μm以下である場合)には、金属層を形成できなかった(比較例1~4)。また、ポリオレフィン樹脂以外の樹脂(参考例のFEP)においては、たとえその表面に、幅0.15μm以上、頂角100°以下である突起を、単位長さ10μm当たり5個以上含むとしても、金属層の形成が困難であった。 On the other hand, when there were sufficiently no protrusions on the surface of the base material (when the arithmetic mean roughness was 0.025 μm or less), the metal layer could not be formed (Comparative Examples 1 to 4). In addition, in resins other than polyolefin resins (FEP in the reference example), even if the surface contains 5 or more protrusions with a width of 0.15 μm or more and an apex angle of 100° or less per unit length of 10 μm, metal It was difficult to form layers.

本発明の無電解金属めっき用基材によれば、従来無電解金属めっきを行うことができなかったポリオレフィン樹脂に対して無電解金属めっきすることができる。したがって、各種装飾板や、金属配線回路等、種々の用途に使用可能である。 According to the base material for electroless metal plating of the present invention, it is possible to perform electroless metal plating on polyolefin resins, which conventionally could not be subjected to electroless metal plating. Therefore, it can be used for various purposes such as various decorative boards and metal wiring circuits.

Claims (6)

ポリオレフィン樹脂を含む面を有し、
前記面のうち、走査型電子顕微鏡にて撮像した画像の開折れ線から得られる粗さ曲線10μm分の絶対値の平均値である算術平均粗さの2倍の値である平均突起高さが0.05μm以上である領域に、
表面に含酸素官能基を有し、かつ幅0.15μm以上かつ頂角100°以下の突起を、単位長さ10μm当たり5個以上120個以下有する、
無電解金属めっき用基材。
has a surface containing polyolefin resin,
Among the surfaces, the average protrusion height is 0, which is twice the arithmetic mean roughness, which is the average of the absolute values of 10 μm of the roughness curve obtained from the open fold line of the image taken with a scanning electron microscope. In a region that is .05 μm or more,
Having an oxygen-containing functional group on the surface and having 5 to 120 protrusions per unit length of 10 μm with a width of 0.15 μm or more and an apex angle of 100° or less ,
Base material for electroless metal plating.
前記ポリオレフィン樹脂が、ポリエチレンまたはポリプロピレンである、
請求項1に記載の無電解金属めっき用基材。
the polyolefin resin is polyethylene or polypropylene,
The base material for electroless metal plating according to claim 1.
前記幅0.15μm以上かつ頂角100°以下の突起を有する領域の、走査型電子顕微鏡にて撮像した画像の開折れ線から得られる粗さ曲線10μm分の絶対値の平均値である算術平均粗さが、0.025μm以上3μm以下である、
請求項1または2に記載の無電解金属めっき用基材。
The arithmetic mean roughness, which is the average value of the absolute values of the roughness curve for 10 μm, obtained from the broken line of the image taken with a scanning electron microscope, of the region having protrusions with a width of 0.15 μm or more and an apex angle of 100° or less. The length is 0.025 μm or more and 3 μm or less,
The base material for electroless metal plating according to claim 1 or 2.
請求項1~3のいずれか一項に記載の無電解金属めっき用基材と、
前記無電解金属めっき用基材の前記複数の突起上に配置された金属層と、
を有する装飾板。
The base material for electroless metal plating according to any one of claims 1 to 3,
a metal layer disposed on the plurality of protrusions of the electroless metal plating base material;
Decorative board with.
請求項1~3のいずれか一項に記載の無電解金属めっき用基材と、
前記無電解金属めっき用基材の前記複数の突起上に配置された金属層と、
を有する金属配線回路。
The base material for electroless metal plating according to any one of claims 1 to 3,
a metal layer disposed on the plurality of protrusions of the electroless metal plating base material;
Metal wiring circuit with.
ポリオレフィン樹脂を含む基材と、前記基材に隣接して形成された無電解金属めっき層と、を有する積層体であって、
前記基材の前記無電解金属めっき層と隣接し、かつ走査型電子顕微鏡にて撮像した画像の開折れ線から得られる粗さ曲線10μm分の絶対値の平均値である算術平均粗さの2倍の値である平均突起高さが0.05μm以上である領域に、前記無電解金属めっき層側に突出し、表面に含酸素官能基を有し、かつ幅0.15μm以上かつ頂角が100°以下である突起が、単位長さ10μm当たり5個以上120個以下配置されている、
積層体。
A laminate comprising a base material containing a polyolefin resin and an electroless metal plating layer formed adjacent to the base material,
Twice the arithmetic mean roughness, which is the average value of the absolute values for 10 μm of the roughness curve adjacent to the electroless metal plating layer of the base material and obtained from the open fold line of the image taken with a scanning electron microscope. In a region where the average protrusion height is 0.05 μm or more , the area protrudes toward the electroless metal plating layer, has an oxygen-containing functional group on the surface, has a width of 0.15 μm or more, and has an apex angle of 100°. The following protrusions are arranged per unit length of 10 μm: 5 or more and 120 or less ,
laminate.
JP2019168163A 2019-09-17 2019-09-17 Substrates for electroless metal plating, decorative plates, metal wiring circuits, and laminates Active JP7458048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019168163A JP7458048B2 (en) 2019-09-17 2019-09-17 Substrates for electroless metal plating, decorative plates, metal wiring circuits, and laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019168163A JP7458048B2 (en) 2019-09-17 2019-09-17 Substrates for electroless metal plating, decorative plates, metal wiring circuits, and laminates

Publications (2)

Publication Number Publication Date
JP2021046566A JP2021046566A (en) 2021-03-25
JP7458048B2 true JP7458048B2 (en) 2024-03-29

Family

ID=74877852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019168163A Active JP7458048B2 (en) 2019-09-17 2019-09-17 Substrates for electroless metal plating, decorative plates, metal wiring circuits, and laminates

Country Status (1)

Country Link
JP (1) JP7458048B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001415A (en) 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp Optical functional material
JP2014100827A (en) 2012-11-19 2014-06-05 Fujimori Kogyo Co Ltd Method for manufacturing a resin molding
JP2014188723A (en) 2013-03-26 2014-10-06 Toppan Printing Co Ltd Laminate and package using the same
JP2015025053A (en) 2013-07-25 2015-02-05 大日本印刷株式会社 Water-repellent film, laminate, and packaging material
JP2016160461A (en) 2015-02-27 2016-09-05 株式会社ファルテック Manufacturing method of molded article for vehicle, and molded article for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001415A (en) 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp Optical functional material
JP2014100827A (en) 2012-11-19 2014-06-05 Fujimori Kogyo Co Ltd Method for manufacturing a resin molding
JP2014188723A (en) 2013-03-26 2014-10-06 Toppan Printing Co Ltd Laminate and package using the same
JP2015025053A (en) 2013-07-25 2015-02-05 大日本印刷株式会社 Water-repellent film, laminate, and packaging material
JP2016160461A (en) 2015-02-27 2016-09-05 株式会社ファルテック Manufacturing method of molded article for vehicle, and molded article for vehicle

Also Published As

Publication number Publication date
JP2021046566A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP6040487B2 (en) Surface treatment method and fabricated apparatus for promoting metal plating
AU598055B2 (en) Selective catalytic activation of polymeric films
JPS59104197A (en) Machining method for clarifying hole of printed circuit board by using permanganate and caustic treating solution
JP2014019947A (en) Insulating base plated with metal layer, plating method thereof, and transparent electrode including the insulating base
CN107113982A (en) Printing distributing board substrate, the method for making printing distributing board substrate, printing distributing board, the method and resin base material for making printing distributing board
US20110236565A1 (en) Electroless palladium plating solution and method of use
JP2007138224A (en) Surface working method for aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having surface worked by the method
TW201223639A (en) A composition of nanoparticles
TW201823511A (en) Method for producing printed wiring board
TWI645071B (en) Electroless palladium / gold plating method
WO1998037260A1 (en) Microporous copper film and electroless copper plating solution for obtaining the same
JP7458048B2 (en) Substrates for electroless metal plating, decorative plates, metal wiring circuits, and laminates
CN102021541A (en) Manufacturing process for workpiece for electroless plating
JP6184578B1 (en) Method for electroless copper plating and method for producing catalyst solution for electroless copper plating
JP3933128B2 (en) Resin film with metal foil, resin sheet with metal foil, metal-clad laminate
TWI687545B (en) Electroless nickel strike plating solution and method for forming nickel plating film
JP2012214895A (en) Production method for laminate having patterned metal films, and plating layer-forming composition
US20160186323A1 (en) Resin article having plating layer and manufacturing method thereof
JP2005113236A (en) Plating article and plating coated member and method for manufacturing the same
WO2019208077A1 (en) Printed-wiring board base material and method of manufacturing printed-wiring board base material
JP3562699B2 (en) Surface modification method for polyimide resin
JP4161904B2 (en) Resin film with copper foil, resin sheet with copper foil, copper-clad laminate
JP6130331B2 (en) Manufacturing method of resin product with metal film
JP2018195599A (en) Wiring board and manufacturing method of the same
JP6758064B2 (en) Electronic circuit boards and electronic devices

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240311

R150 Certificate of patent or registration of utility model

Ref document number: 7458048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150