JP7457886B2 - Multilayer varistor and method for manufacturing same - Google Patents

Multilayer varistor and method for manufacturing same Download PDF

Info

Publication number
JP7457886B2
JP7457886B2 JP2020065454A JP2020065454A JP7457886B2 JP 7457886 B2 JP7457886 B2 JP 7457886B2 JP 2020065454 A JP2020065454 A JP 2020065454A JP 2020065454 A JP2020065454 A JP 2020065454A JP 7457886 B2 JP7457886 B2 JP 7457886B2
Authority
JP
Japan
Prior art keywords
varistor
copper
cuo
diffusion
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020065454A
Other languages
Japanese (ja)
Other versions
JP2021163894A (en
Inventor
幹典 網沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020065454A priority Critical patent/JP7457886B2/en
Publication of JP2021163894A publication Critical patent/JP2021163894A/en
Application granted granted Critical
Publication of JP7457886B2 publication Critical patent/JP7457886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、各種電子機器に用いられる積層バリスタに関するものである。 The present invention relates to a multilayer varistor used in various electronic devices.

電子機器の軽薄短小化に伴い静電気対策部品としてバリスタ層と内部電極を積層した積層バリスタが用いられている。積層バリスタはZnOを主成分として特性を発現させるため粒界成分としてBi23を用いたものと、Pr611を用いたものが生産販売されている。ZnOは比抵抗が低いため素子表面抵抗が低いためめっき時にめっき流れが発生しやすい。そのため、Bi23を用いた積層バリスタについてはZn7Sb212、Zn2SiO4を中心とした高抵抗層を形成させる方法がとられている。一方、Pr611を用いた積層バリスタではガラス等の絶縁物を表面に形成させ高抵抗層を形成する方法や、Liをセラミック表面に拡散させ、その原子価制御により主成分であるZnOを高抵抗化させることによりこの問題を解決している。なお、この出願の発明に関連する先行技術文献情報としては、例として、特許文献1、2が知られている。 BACKGROUND OF THE INVENTION As electronic devices become lighter, thinner, and smaller, multilayer varistors, in which varistor layers and internal electrodes are laminated, are being used as static electricity countermeasure components. Laminated varistors are produced and sold in two types: one using Bi 2 O 3 as a grain boundary component and the other using Pr 6 O 11 as a grain boundary component in order to develop characteristics using ZnO as a main component. Since ZnO has a low specific resistance and thus has a low element surface resistance, plating flow tends to occur during plating. Therefore, for a multilayer varistor using Bi 2 O 3 , a method is used in which a high resistance layer is formed mainly of Zn 7 Sb 2 O 12 and Zn 2 SiO 4 . On the other hand, in multilayer varistors using Pr 6 O 11 , the main component ZnO can be reduced by forming an insulator such as glass on the surface to form a high resistance layer, or by diffusing Li on the ceramic surface and controlling its valence. This problem is solved by increasing the resistance. In addition, as prior art document information related to the invention of this application, Patent Documents 1 and 2 are known as examples.

特開昭57-145303号公報Japanese Unexamined Patent Publication No. 57-145303 特開昭59-218703号公報Japanese Patent Application Laid-Open No. 59-218703

しかしながらPr611を粒界成分とする積層バリスタではPr611の融点が高いためZn7Sb212、Zn2SiO4といったSb23、SiO2とZnOの化合物である高抵抗層の形成方法は中間生成層が形成しづらいため困難である。又、ガラス等による絶縁物の形成はその形成工程で材料費と労力がかかりコストがかかる。一方、Liをセラミック表面に拡散させる方法については、Liのイオン半径が小さいため処理条件によっては拡散速度が上がってしまい、結果、内部電極間のバリスタ層まで到達しZnOの抵抗をあげてしまうことから電気特性を悪化させたり、Liのイオン化傾向が大きいことから耐湿負荷性能が悪化してしまう問題があった。 However, in a laminated varistor containing Pr 6 O 11 as a grain boundary component, since the melting point of Pr 6 O 11 is high, high resistance materials such as Sb 2 O 3 such as Zn 7 Sb 2 O 12 and Zn 2 SiO 4 and compounds of SiO 2 and ZnO are used. The layer formation method is difficult because it is difficult to form an intermediate layer. Further, forming an insulator using glass or the like is expensive because the forming process requires material costs and labor. On the other hand, with regard to the method of diffusing Li onto the ceramic surface, the diffusion rate may increase depending on the processing conditions due to the small ionic radius of Li, and as a result, it may reach the varistor layer between internal electrodes and increase the resistance of ZnO. There have been problems in that the electrical properties are deteriorated due to this, and the moisture resistance load performance is deteriorated due to the large ionization tendency of Li.

本発明はこの課題に対して、表面に高抵抗層を設け電極にメッキ層を形成しやすい積層バリスタを提供することを目的とする。 The present invention aims to address this issue by providing a multilayer varistor that has a high resistance layer on its surface and makes it easy to form a plating layer on the electrode.

本発明は上記課題を解決するために、ZnOを主成分とし粒界成分をPr611とするバリスタ層に少なくとも一対の内部電極を有する積層バリスタであって、積層バリスタの表面から0.01mm内側まで設けられた銅の拡散層を有し、拡散層の中にはCuOに換算して5×10-7wt%以上、0.5wt%以下の銅が含まれているように構成したものである。 In order to solve the above problems, the present invention provides a laminated varistor having at least a pair of internal electrodes in a varistor layer whose main component is ZnO and whose grain boundary component is Pr6O11 , and which has a copper diffusion layer extending from the surface of the laminated varistor to a depth of 0.01 mm inward, and which is configured so that the diffusion layer contains 5 x 10-7 wt% or more and 0.5 wt% or less of copper, calculated as CuO.

以上のように構成することにより、内部のバリスタ層に影響を与えることなく、表面の絶縁抵抗を上げることができ、電極へのメッキ等も問題なく行うことができる。 By configuring it in this way, the surface insulation resistance can be increased without affecting the internal varistor layer, and plating of the electrodes can be performed without any problems.

本発明の一実施の形態における積層バリスタの断面図A cross-sectional view of a laminated varistor in an embodiment of the present invention

以下、本発明の一実施の形態における積層バリスタについて、図面を参照しながら説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A laminated varistor according to an embodiment of the present invention will be described below with reference to the drawings.

図1は本発明の一実施の形態における積層バリスタ11の断面図であり、一対の内部電極13がバリスタ層12の内部に対向するように積層されて積層体を構成し、一対の内部電極13はその端部が積層体の対向する両端面に交互に露出するよう積層されており、積層体の両端面に形成された一対の外部電極14に交互に接続されている。バリスタ層12はZnOを主成分とし粒界成分をPr611としている。この積層体の表面から内部にかけて銅が拡散された拡散層15となっている。この拡散層15は表面から0.01mm以上の深さまで拡散され、その拡散濃度をCuOに換算して約0.1wt%とし、これによって表面の絶縁抵抗を高めている。しかしながら一対の内部電極13によって形成されるバリスタ領域までは拡散層15が到達しないようにしている。このようにすることによりバリスタ特性に影響を与えることなく、表面のみを高抵抗にすることができ、メッキ等も問題なく行うことができる。拡散層15の中にはCuOに換算して5×10-7wt%以上、0.5wt%以下の銅が含まれているようにすることが望ましい。5×10-7wt%よりも少なくなると絶縁抵抗を十分に高くすることができず、0.5wt%より高くするとバリスタ領域まで拡散してバリスタ特性を劣化させる可能性があるためである。 FIG. 1 is a cross-sectional view of a laminated varistor 11 according to an embodiment of the present invention, in which a pair of internal electrodes 13 are stacked to face each other inside a varistor layer 12 to form a laminate. are stacked so that their ends are alternately exposed on both opposing end faces of the laminate, and are alternately connected to a pair of external electrodes 14 formed on both end faces of the laminate. The varistor layer 12 is mainly composed of ZnO and has a grain boundary component of Pr 6 O 11 . This laminate has a diffusion layer 15 in which copper is diffused from the surface to the inside. This diffusion layer 15 is diffused to a depth of 0.01 mm or more from the surface, and its diffusion concentration is approximately 0.1 wt% in terms of CuO, thereby increasing the insulation resistance of the surface. However, the diffusion layer 15 is prevented from reaching the varistor region formed by the pair of internal electrodes 13. By doing so, only the surface can be made high in resistance without affecting the varistor characteristics, and plating etc. can be performed without any problem. It is desirable that the diffusion layer 15 contains copper in an amount of 5×10 -7 wt% or more and 0.5 wt% or less in terms of CuO. This is because if it is less than 5×10 −7 wt%, the insulation resistance cannot be made sufficiently high, and if it is more than 0.5 wt%, it may diffuse into the varistor region and deteriorate the varistor characteristics.

次に本発明の一実施の形態における積層バリスタの製造方法について説明する。 Next, we will explain the manufacturing method of the laminated varistor in one embodiment of the present invention.

まず主成分であるZnOとPr611、Co34、K2CO3、Cr23などの添加物を含むバリスタ材料を混合粉砕後、有機バインダーとしてポリビニルブチラール樹脂、溶剤としてノルマル酢酸ブチル、可塑剤としてベンジルブチルフタレートなどを混合してスラリーを得る。そしてこのスラリーをドクターブレード法などにより成形し、バリスタ層となるセラミックシートを作製する。 First, the main component ZnO and varistor material containing additives such as Pr 6 O 11 , Co 3 O 4 , K 2 CO 3 and Cr 2 O 3 are mixed and ground, and then polyvinyl butyral resin is used as an organic binder and normal acetic acid is used as a solvent. Butyl and benzyl butyl phthalate as a plasticizer are mixed to obtain a slurry. This slurry is then molded using a doctor blade method or the like to produce a ceramic sheet that will become the varistor layer.

一方、導電性金属粉末としてPdを、有機バインダーとしてポリビニルブチラール樹脂、溶剤としてノルマル酢酸ブチル、可塑剤としてベンジルブチルフタレートなどを混合した後、さらにロールミル等を用いて混練して内部電極を形成するための金属ペーストを作製する。 Meanwhile, Pd is mixed as a conductive metal powder, polyvinyl butyral resin as an organic binder, normal butyl acetate as a solvent, benzyl butyl phthalate as a plasticizer, etc., and then further kneaded using a roll mill or the like to create a metal paste for forming the internal electrodes.

次にセラミックシートを所定の枚数積層し、所望の厚みを有するバリスタ層を積層して形成する。 Next, a predetermined number of ceramic sheets are laminated to form a varistor layer having a desired thickness.

このバリスタ層の上に所定の形状を持つ第1の内部電極を形成する。 A first internal electrode having a predetermined shape is formed on this varistor layer.

次に、この第1の内部電極を形成したセラミックシート上にセラミックシートを積層し、さらにセラミックシート上に所定の形状を持つ第2の内部電極を形成する。 Next, a ceramic sheet is laminated on the ceramic sheet on which the first internal electrode is formed, and a second internal electrode having a predetermined shape is further formed on the ceramic sheet.

ここで、第1、第2の内部電極はセラミックシートを挟んで、対向するように形成され一対の内部電極としているが、この第1、第2の内部電極は各々左右の外部電極に交互に接続されるようにずらして形成される。 Here, the first and second internal electrodes are formed to face each other with a ceramic sheet in between, forming a pair of internal electrodes. Formed in a staggered manner so as to be connected.

次に、前記第2の内部電極の上にセラミックシートを積層して加圧、圧着後、所定の形状に切断して積層チップバリスタ素子の成形体を得る。 Next, a ceramic sheet is laminated on top of the second internal electrode, pressurized and crimped, and then cut into a specified shape to obtain a molded body of a multilayer chip varistor element.

この成形体を1200℃の温度まで昇温速度200℃/hで昇温し、最高温度で2時間保持した後に、降温速度100℃/hで降温して焼成した。 This molded body was heated to a temperature of 1200°C at a heating rate of 200°C/h, held at the maximum temperature for 2 hours, and then lowered and fired at a cooling rate of 100°C/h.

焼成後、積層チップバリスタ素子の面取りを行い、(表1)記載の酸化物およびCuOを配合し混合した紛体中に焼結体を入れ昇温速度200℃/hで昇温し、(表1)記載の拡散処理温度で2時間保持した後に、降温速度100℃/hで降温してCuOの拡散処理を行った。 After firing, the multilayer chip varistor element was chamfered, and the sintered body was placed in a mixed powder of the oxides and CuO listed in (Table 1), and the temperature was raised at a heating rate of 200°C/h. After maintaining the diffusion treatment temperature described in ) for 2 hours, the temperature was lowered at a cooling rate of 100° C./h to perform a CuO diffusion treatment.

次にCuOの拡散処理を行った焼結体の内部電極が露出した端面にAgを主成分とする一対の外部電極を形成して焼付けめっきを行い、一対の外部電極を含む素子外形のL寸法1.6mm×W、T寸法0.8mmの(表1)に示す試料番号1~13の積層バリスタを得た。 Next, a pair of external electrodes containing Ag as a main component are formed on the end face of the sintered body where the internal electrodes are exposed after the CuO diffusion treatment, and baking plating is performed. Laminated varistors with sample numbers 1 to 13 shown in Table 1 having dimensions of 1.6 mm x W and 0.8 mm in T were obtained.

なお試料番号1については比較のためCuOの拡散処理していないものとなっている。 Note that sample number 1 was not subjected to CuO diffusion treatment for comparison.

高抵抗層深さについては素子断面にたいしEPMAを用い、CuOが検出される深さを確認するとともに拡散層中のCuO拡散量についてもバリスタ表面層から0.01mm内側の3点の平均値にて算出した。 Regarding the depth of the high resistance layer, we used EPMA on the cross section of the device to confirm the depth at which CuO is detected, and also determined the amount of CuO diffused in the diffusion layer using the average value of three points 0.01 mm inside from the varistor surface layer. Calculated by.

めっき流れについては、めっき後の素子表面のめっき流れ発生状態にたいし金属顕微鏡を用いn=100中のめっき流れ発生率を算出した。 Regarding the plating flow, the plating flow occurrence rate in n=100 was calculated using a metallurgical microscope with respect to the plating flow occurrence state on the element surface after plating.

次に、得られた積層バリスタのバリスタ電圧、制限電圧の測定方法について述べる。バリスタ電圧は、一対の外部電極に直流定電圧電源を接続し、1mAの電流を流したときの電圧値(V1mA)を測定した。制限電圧は波高値1Aの8/20μs標準波形のインパルス電流を印加したときの一対の外部電極端子間電圧波高値(V1A)を測定した。制限電圧比は波高値1Aの8/20μs標準波形のインパルス電流を印加したときのV1Aを1mAの電流を流したときの電圧値で割ったものであり、異なるバリスタ電圧での制限電圧を比較評価することに用いられる。この制限電圧は1に近いほど望ましい。 Next, a method for measuring the varistor voltage and limiting voltage of the obtained multilayer varistor will be described. The varistor voltage was measured by connecting a DC constant voltage power source to the pair of external electrodes and measuring the voltage value (V 1 mA ) when a current of 1 mA was applied. The limiting voltage was determined by measuring the voltage peak value (V 1A ) between a pair of external electrode terminals when an impulse current of 8/20 μs standard waveform with a peak value of 1 A was applied. The limiting voltage ratio is the V 1A when an impulse current of 8/20 μs standard waveform with a peak value of 1A is applied divided by the voltage value when a current of 1mA is applied, and the limiting voltage at different varistor voltages is compared. Used for evaluation. The closer this limit voltage is to 1, the more desirable it is.

上記の検討により、CuOを拡散していないものおよびCuOの拡散量が5×10-7
t%を下回った場合、素子表面抵抗の低下によりめっき流れが発生する。一方CuOの拡散量が0.5wt%を上回った場合バリスタ層内部への拡散深さが深くなるため電気的特性を支配する内部電極間のセラミックまで銅が拡散してしまい、ZnO中の比抵抗が増加してしまうことにより、制限電圧が悪化してしまう可能性がある。このことから拡散層中のCuO量は5×10-7wt%以上、0.5wt%以下であることが望ましい。このCuO拡散量を得るためには金属酸化物中のCuO量が1×10-5wt%以上、10wt%以下とすることが望ましい。
Based on the above study, it was found that the amount of diffusion of CuO is 5×10 -7 w in the case where CuO is not diffused.
When it is less than t%, plating flow occurs due to a decrease in element surface resistance. On the other hand, if the amount of CuO diffused exceeds 0.5 wt%, the depth of diffusion into the varistor layer becomes deep, and copper diffuses into the ceramic between the internal electrodes that controls the electrical characteristics, resulting in a decrease in the specific resistance in ZnO. As a result, the limit voltage may deteriorate. From this, it is desirable that the amount of CuO in the diffusion layer is 5×10 -7 wt% or more and 0.5 wt% or less. In order to obtain this amount of CuO diffusion, it is desirable that the amount of CuO in the metal oxide is 1×10 -5 wt% or more and 10 wt% or less.

またCuOを混合する金属酸化物はZrO2、Al23、ZnOいずれにおいても効果に差は認められないことからZrO2、Al23、ZnOのいずれを使ってもよい。金属酸化物なしで直接CuO中で熱処理しても銅を拡散できるが拡散量の制御が困難であることから望ましくない。 In addition, since there is no difference in effect between ZrO 2 , Al 2 O 3 and ZnO as the metal oxide to be mixed with CuO, any of ZrO 2 , Al 2 O 3 and ZnO may be used. Copper can be diffused by heat treatment directly in CuO without a metal oxide, but this is not desirable because it is difficult to control the amount of diffusion.

CuOを拡散させる拡散処理温度については800℃~1100℃までの範囲であれば問題がない。 There is no problem as long as the diffusion treatment temperature for diffusing CuO is in the range of 800°C to 1100°C.

ZnOを主成分とする積層バリスタの材料系としては大きく分けて粒界層にBiO2とPr611を用いた2つの種類が存在するが、Pr611に比べBiO2は融点が低いため銅が拡散しやすいためバリスタ表面層の絶縁に必要な5×10-7wt%の銅を拡散させた場合、電気的特性が発生する内部電極に挟まれたバリスタ層にも銅が拡散されてしまうため、内部電極間セラミック層の抵抗まで上げてしまうことから、異常電圧が印加された際の抑制効果が低下(制限電圧の上昇)してしまうことから、融点が高いPr611を粒界成分とする積層バリスタに適用することが望ましい。 There are two main types of materials for multilayer varistors whose main component is ZnO: BiO 2 and Pr 6 O 11 in the grain boundary layer, but BiO 2 has a lower melting point than Pr 6 O 11 . Therefore, when 5×10 -7 wt% of copper, which is necessary for insulating the varistor surface layer, is diffused, copper is easily diffused into the varistor layer sandwiched between the internal electrodes where electrical characteristics occur. This increases the resistance of the internal interelectrode ceramic layer, which reduces the suppressing effect when an abnormal voltage is applied (increases the limiting voltage) . It is desirable to apply it to a laminated varistor in which the grain boundary component is a grain boundary component.

本発明に係る積層バリスタは、バリスタ特性を損なうことなくメッキ可能な積層バリスタを得ることができ、産業上有用である。 The laminated varistor according to the present invention is industrially useful since it is possible to obtain a laminated varistor that can be plated without impairing the varistor properties.

11 積層バリスタ
12 バリスタ層
13 内部電極
14 外部電極
15 拡散層
11 Multilayer varistor 12 Varistor layer 13 Internal electrode 14 External electrode 15 Diffusion layer

Claims (4)

ZnOを主成分とし粒界成分をPr611とするバリスタ層に少なくとも一対の内部電極を有する積層バリスタであって、前記積層バリスタの表面から0.01mm内側まで設けられた銅の拡散層を有し、前記拡散層の中にはCuOに換算して5×10-7wt%以上、0.5wt%以下の銅が含まれている積層バリスタ。 A multilayer varistor having at least one pair of internal electrodes in a varistor layer containing ZnO as a main component and Pr 6 O 11 as a grain boundary component, the multilayer varistor having a copper diffusion layer provided up to 0.01 mm inside from the surface of the multilayer varistor. A multilayer varistor, wherein the diffusion layer contains copper in an amount of 5×10 -7 wt% or more and 0.5 wt% or less in terms of CuO. 主成分であるZnO粉末に添加物としてPr611を加えたものに溶剤、可塑剤を加えてセラミックシートを得る工程と、前記セラミックシートに電極ペーストを印刷する印刷工程と、前記電極ペーストを印刷したセラミックシートを積層、加圧、切断、焼成を行い焼結体を得る焼成工程と、CuOと金属酸化物の混合粉末中で前記焼結体を熱処理することにより前記焼結体の表面に銅を拡散させて拡散層を形成する拡散工程と、前記銅を表面に拡散させた焼結体の端面に外部電極を形成する工程と、を備えた積層バリスタの製造方法であって、前記積層バリスタの表面から0.01mm内側まで設けられた前記拡散層の中にはCuOに換算して5×10-7wt%以上、0.5wt%以下の銅が含まれている積層バリスタの製造方法。 A method for manufacturing a laminated varistor, comprising the steps of: obtaining a ceramic sheet by adding Pr6O11 as an additive to ZnO powder as the main component, and then adding a solvent and plasticizer to the resulting ceramic sheet; a printing step of printing an electrode paste on the ceramic sheet; a firing step of stacking, pressing, cutting and firing the ceramic sheets on which the electrode paste has been printed to obtain a sintered body; a diffusion step of heat-treating the sintered body in a mixed powder of CuO and metal oxide to diffuse copper onto the surface of the sintered body to form a diffusion layer; and a step of forming external electrodes on the end faces of the sintered body with copper diffused onto its surface, wherein the diffusion layer, which is provided 0.01 mm inward from the surface of the laminated varistor, contains 5 x 10-7 wt% or more and 0.5 wt% or less copper, calculated as CuO. 前記拡散工程では、ZrO2、Al23、ZnOのどれか一つ以上含む金属酸化物に銅がCuOに換算して1×10-5wt%以上、10wt%以下を配合した中で熱処理し拡散する請求項2記載の積層バリスタの製造方法。 In the diffusion step, heat treatment is performed in a metal oxide containing one or more of ZrO 2 , Al 2 O 3 , and ZnO in which copper is mixed in an amount of 1×10 -5 wt% or more and 10 wt% or less in terms of CuO. 3. The method for manufacturing a laminated varistor according to claim 2, wherein the varistor is diffused. 前記拡散工程では、800℃以上、1100℃以下の温度で熱処理を行う請求項2記載の積層バリスタの製造方法。 3. The method for manufacturing a laminated varistor according to claim 2, wherein in the diffusion step, heat treatment is performed at a temperature of 800° C. or more and 1100° C. or less.
JP2020065454A 2020-04-01 2020-04-01 Multilayer varistor and method for manufacturing same Active JP7457886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020065454A JP7457886B2 (en) 2020-04-01 2020-04-01 Multilayer varistor and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020065454A JP7457886B2 (en) 2020-04-01 2020-04-01 Multilayer varistor and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2021163894A JP2021163894A (en) 2021-10-11
JP7457886B2 true JP7457886B2 (en) 2024-03-29

Family

ID=78005119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020065454A Active JP7457886B2 (en) 2020-04-01 2020-04-01 Multilayer varistor and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP7457886B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124007A (en) 1998-10-13 2000-04-28 Murata Mfg Co Ltd Chip thermistor and method of producing the same
JP4170004B2 (en) 2002-03-28 2008-10-22 日本板硝子株式会社 Compound semiconductor multilayer structure
JP2008277786A (en) 2007-03-30 2008-11-13 Tdk Corp Voltage non-linear resistance porcelain composition and voltage non-linear resistance element
JP5121211B2 (en) 2006-05-11 2013-01-16 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Optical fiber distribution cable and structure thereof
JP2014120605A (en) 2012-12-17 2014-06-30 Tdk Corp Chip varistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124007A (en) 1998-10-13 2000-04-28 Murata Mfg Co Ltd Chip thermistor and method of producing the same
JP4170004B2 (en) 2002-03-28 2008-10-22 日本板硝子株式会社 Compound semiconductor multilayer structure
JP5121211B2 (en) 2006-05-11 2013-01-16 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Optical fiber distribution cable and structure thereof
JP2008277786A (en) 2007-03-30 2008-11-13 Tdk Corp Voltage non-linear resistance porcelain composition and voltage non-linear resistance element
JP2014120605A (en) 2012-12-17 2014-06-30 Tdk Corp Chip varistor

Also Published As

Publication number Publication date
JP2021163894A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
KR102089692B1 (en) Multilayered ceramic electronic component
JP4715248B2 (en) Multilayer ceramic electronic components
US20080238605A1 (en) Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
JP4915153B2 (en) Multilayer varistor
JP5452244B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
CN112820543A (en) Ceramic electronic component and method for manufacturing same
US20080241585A1 (en) Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
JP5527404B2 (en) Multilayer ceramic electronic components
JP7457886B2 (en) Multilayer varistor and method for manufacturing same
JP2004022976A (en) Stacked voltage nonlinear resistor and method of manufacturing the same
JP5830715B2 (en) Multilayer varistor and manufacturing method thereof
JP4184172B2 (en) Voltage nonlinear resistor ceramic composition, electronic component and multilayer chip varistor
JP5833929B2 (en) Varistor ceramic, multilayer component including varistor ceramic, and method for producing varistor ceramic
JP5527400B2 (en) Multilayer ceramic electronic components
JP5527403B2 (en) Multilayer ceramic electronic components
WO2020213320A1 (en) Laminated varistor
JP5282332B2 (en) Manufacturing method of zinc oxide laminated chip varistor
KR20090112005A (en) Composite chip device of thermistor-varistor and manufacturing method thereof
JP4539671B2 (en) Electronic component and manufacturing method thereof
JP2666605B2 (en) Stacked varistor
JP5034640B2 (en) Multilayer varistor and manufacturing method thereof
JPH0547508A (en) Laminated semiconductor porcelain and manufacture thereof
CN112408975B (en) Ceramic composition, ceramic sintered body, multilayer ceramic electronic component and method for producing the same
JP4292801B2 (en) Manufacturing method of laminated varistor
JP2504226B2 (en) Stacked Varistor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R151 Written notification of patent or utility model registration

Ref document number: 7457886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151