JP7449538B2 - Rare earth iron carbon-based magnetic powder and its manufacturing method - Google Patents

Rare earth iron carbon-based magnetic powder and its manufacturing method Download PDF

Info

Publication number
JP7449538B2
JP7449538B2 JP2020152108A JP2020152108A JP7449538B2 JP 7449538 B2 JP7449538 B2 JP 7449538B2 JP 2020152108 A JP2020152108 A JP 2020152108A JP 2020152108 A JP2020152108 A JP 2020152108A JP 7449538 B2 JP7449538 B2 JP 7449538B2
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetic
carbon
phase
powder according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020152108A
Other languages
Japanese (ja)
Other versions
JP2022046184A (en
Inventor
諭 杉本
昌志 松浦
徳行 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2020152108A priority Critical patent/JP7449538B2/en
Publication of JP2022046184A publication Critical patent/JP2022046184A/en
Application granted granted Critical
Publication of JP7449538B2 publication Critical patent/JP7449538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、希土類鉄炭素系磁性粉末及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a rare earth iron-carbon magnetic powder and a method for producing the same.

永久磁石は、自動車、電化製品、IT機器を始め、幅広い分野で用いられており、現代の産業において欠くことができない。特に永久磁石は、電力を必要とせず磁力を発生できるため、近年の地球温暖化対策や省エネルギーの観点から、その重要性がますます高まっている。 Permanent magnets are used in a wide range of fields including automobiles, electrical appliances, and IT equipment, and are indispensable in modern industry. In particular, permanent magnets can generate magnetic force without requiring electricity, so their importance has been increasing in recent years from the perspective of global warming countermeasures and energy conservation.

永久磁石の中でも希土類磁石は、磁石の基本特性(磁束密度、保磁力、最大エネルギー積)が、フェライトやアルニコなどの他の磁石を凌駕するほど優れている。特に希土類磁石は、最大エネルギー積(BHmax)が高く、小型で強力な磁石とすることが可能である。そのため部品の小型化及び高性能化の流れに応じて期待が高い。特に近年の電気自動車やハイブリッド自動車の実用化の流れに応じて、その使用量は急増しており、各種磁石の中でも金額ベースでの市場占有率が最も大きい。 Among permanent magnets, rare earth magnets are superior in basic magnetic properties (magnetic flux density, coercive force, maximum energy product) to those of other magnets such as ferrite and alnico. In particular, rare earth magnets have a high maximum energy product (BHmax) and can be made into small and powerful magnets. Therefore, expectations are high for this product in line with the trend toward smaller parts and higher performance. Particularly in recent years, with the trend toward practical use of electric vehicles and hybrid vehicles, the amount of magnets used has increased rapidly, and among the various types of magnets, magnets have the largest market share on a monetary basis.

希土類磁石の中では、ネオジム磁石がよく知られている。ネオジム磁石は、ネオジム鉄硼素(NdFe14B)系化合物を主相とする磁石であり、現在実用化されている磁石の中で最も高い最大エネルギー積を誇る。そのためネオジム磁石は、焼結磁石やボンド磁石として広範囲に利用されている。しかしながらネオジム磁石は高温環境下で使用することができないとの問題がある。すなわちネオジム磁石はキュリー温度(Tc)が312℃と低く、高温減磁の問題がある。またネオジム磁石は耐酸化性に劣る。すなわち希土類元素は原子番号の順に酸化し易く、軽希土類元素たるネオジム(Nd)を含むネオジム磁石は、メッキなどの表面処理を施さなければ実用に供することは困難である。 Among rare earth magnets, neodymium magnets are well known. Neodymium magnets are magnets whose main phase is a neodymium iron boron (Nd 2 Fe 14 B) compound, and boast the highest maximum energy product among the magnets currently in practical use. Therefore, neodymium magnets are widely used as sintered magnets and bonded magnets. However, neodymium magnets have a problem in that they cannot be used in high temperature environments. That is, neodymium magnets have a low Curie temperature (Tc) of 312° C. and have a problem of high-temperature demagnetization. Also, neodymium magnets have poor oxidation resistance. That is, rare earth elements are easily oxidized in order of atomic number, and it is difficult to put neodymium magnets containing neodymium (Nd), which is a light rare earth element, into practical use without surface treatment such as plating.

ネオジム磁石以外の希土類磁石として、サマリウム鉄窒素(SmFe17)系化合物やサマリウム鉄炭素(SmFe17)系化合物を用いた磁石が知られている。これらの化合物は、SmFe17の結晶格子間に窒素(N)又は炭素(C)原子が侵入した侵入型化合物である。このうちSmFe17系磁石は、優れた磁気特性、特にキュリー温度(Tc)と保磁力(Hc)が高いという特徴を活かして、ネオジム磁石とともに広く用いられている。SmFe17系磁性粉末は、x=3のときに最も優れた磁気特性を示し、その時のキュリー温度(Tc)は473℃と高い。また異方性磁場(H)が21MA/mと高く、この値はNdFe17B系化合物の3倍以上である。その上、飽和磁化(Ms)が1.57Tと、NdFe17B系化合物に匹敵するほど高い。 As rare earth magnets other than neodymium magnets, magnets using samarium iron nitrogen (Sm 2 Fe 17 N x )-based compounds and samarium iron carbon (Sm 2 Fe 17 C x )-based compounds are known. These compounds are interstitial compounds in which nitrogen (N) or carbon (C) atoms penetrate between the crystal lattices of Sm 2 Fe 17 . Among these, Sm 2 Fe 17 N x magnets are widely used together with neodymium magnets, taking advantage of their excellent magnetic properties, particularly their high Curie temperature (Tc) and high coercive force (Hc). Sm 2 Fe 17 N x based magnetic powder exhibits the best magnetic properties when x=3, and the Curie temperature (Tc) at that time is as high as 473°C. Further, the anisotropic magnetic field (H A ) is as high as 21 MA/m, which is more than three times that of the Nd 2 Fe 17 B-based compound. Moreover, the saturation magnetization (Ms) is 1.57 T, which is so high as to be comparable to Nd 2 Fe 17 B-based compounds.

しかしながらサマリウム鉄窒素(SmFe17)系化合物は低温で分解しやすいという問題がある。すなわちこの化合物は、窒素(N)量によって異なるが550~700℃程度の温度で分解し始める。そのため焼結磁石にすることが困難であり、ボンド磁石としての利用に留まっている。ボンド磁石は非磁性バインダー樹脂を必須成分にするため、磁束密度(B)及び最大エネルギー積(BHmax)を高める上で限界がある。 However, samarium iron nitrogen (Sm 2 Fe 17 N x )-based compounds have a problem in that they are easily decomposed at low temperatures. That is, this compound begins to decompose at a temperature of about 550 to 700°C, although it varies depending on the amount of nitrogen (N). Therefore, it is difficult to make it into a sintered magnet, and its use is limited to bonded magnets. Since bonded magnets include non-magnetic binder resin as an essential component, there are limits to increasing the magnetic flux density (B) and maximum energy product (BHmax).

これに対してサマリウム鉄炭素(SmFe17)系化合物は、サマリウム鉄窒素(SmFe17)系化合物に比べて熱安定性に優れている。実際、SmFe17系化合物は1000℃以上の高温でも分解しないため、これをボンド磁石のみならず焼結磁石にも適用できる。またSmFe17系化合物は、鉄(Fe)の一部をコバルト(Co)で置換することで、キュリー温度Tcを600℃程度にまで高めることができる。そのため高温減磁が少なく、高温用途の磁石への適用が可能である。したがってSmFe17系化合物は優れたポテンシャルを有する材料と言うことができる。 On the other hand, samarium iron carbon (Sm 2 Fe 17 C x ) compounds have better thermal stability than samarium iron nitrogen (Sm 2 Fe 17 N x ) compounds. In fact, since Sm 2 Fe 17 C x compounds do not decompose even at high temperatures of 1000° C. or higher, they can be applied not only to bonded magnets but also to sintered magnets. Further, in the Sm 2 Fe 17 C x based compound, the Curie temperature Tc can be raised to about 600° C. by replacing a part of iron (Fe) with cobalt (Co). Therefore, there is less high-temperature demagnetization, and it can be applied to magnets for high-temperature applications. Therefore, the Sm 2 Fe 17 C x based compound can be said to be a material with excellent potential.

SmFe17系化合物の合成を開示する文献として、特許文献1及び非特許文献1が挙げられる。特許文献1には、一般式RFe(1-x-y-z)の組成(RはSm等の希土類金属、MはTi等)を有し、かつRFe17型菱面体晶化合物を主相とする希土類磁石材料が開示されている(特許文献1の請求項1及び[0007])。また特許文献1にはこの磁石材料に関して、Nd-Fe-B系永久磁石と同等の磁気特性を確保できるばかりか、キュリー点の上昇により温度特性の大幅な向上を達成できる旨などが記載されている(特許文献1の[0038])。 Documents disclosing the synthesis of Sm 2 Fe 17 C x compounds include Patent Document 1 and Non-Patent Document 1. Patent Document 1 describes a compound having the general formula R x Fe ( 1-x-y-z) M y C z (R is a rare earth metal such as Sm, M is Ti, etc.), and has an R 2 Fe 17 type. A rare earth magnet material having a rhombohedral compound as a main phase is disclosed (Claim 1 and [0007] of Patent Document 1). Furthermore, Patent Document 1 describes that this magnetic material not only can secure magnetic properties equivalent to those of Nd-Fe-B permanent magnets, but also achieves a significant improvement in temperature characteristics by raising the Curie point. ([0038] of Patent Document 1).

非特許文献1には、SmFe17-xCo化合物について、FeをCoで置換すると、菱面体晶RhZn17型構造(2:17)が安定化される旨、Co量xが増えるにつれてキュリー温度が急増するとともに格子定数が小さくなる旨、SmFe12Co1.25化合物は、室温での飽和磁化μ=1.36T、異方性磁場μ=7.1T、キュリー温度Tc=874K、動作可能最高温度Tmが473Kより高い旨などが記載されている(非特許文献1のAbstract)。 Non-patent Document 1 states that in Sm 2 Fe 17-x C x C y compounds, when Fe is replaced with Co, the rhombohedral Rh 2 Zn 17 type structure (2:17) is stabilized, and the amount of Co is As x increases, the Curie temperature rapidly increases and the lattice constant decreases.The Sm 2 Fe 12 Co 5 C 1.25 compound has a saturation magnetization μ 0 M s =1.36T at room temperature, an anisotropic magnetic field μ 0 It is stated that H k =7.1 T, Curie temperature Tc = 874 K, and maximum operable temperature Tm is higher than 473 K (Abstract of Non-Patent Document 1).

特開平5-25592号公報Japanese Patent Application Publication No. 5-25592

Z. Altounian et al., J. Phys.: Condens. Matter 15 (2003) 3315-3322Z. Altounian et al., J. Phys.: Condens. Matter 15 (2003) 3315-3322

このようにサマリウム鉄炭素(SmFe17)系化合物は熱安定性が良好であり、優れたポテンシャルを有するものの、従来の技術では高い磁気特性を示す化合物を簡易なプロセスで合成することが困難であった。すなわちこの化合物は炭素量が多いほど、キュリー温度及び磁気異方性が高くなる。しかしながら従来のプロセスでは、十分な量の炭素(C)を結晶格子中に取り込むことができず、磁気特性向上を図る上で限界があった。そのためこの化合物は、その研究例が少なく、本発明者らの知る限り実用化された例はない。 Although samarium iron carbon (Sm 2 Fe 17 C x )-based compounds have good thermal stability and excellent potential, conventional techniques have not been able to synthesize compounds with high magnetic properties through simple processes. was difficult. That is, the higher the carbon content of this compound, the higher the Curie temperature and magnetic anisotropy. However, in the conventional process, it was not possible to incorporate a sufficient amount of carbon (C) into the crystal lattice, and there was a limit in improving the magnetic properties. Therefore, there are few research examples of this compound, and as far as the present inventors know, there is no example of it being put into practical use.

本発明者らは、このような問題点に鑑みて鋭意検討を行った。その結果、熱安定性に優れ且つ高い磁気特性を示すSmFe17系化合物からなる磁性粉末を工業的に利用可能なプロセスを用いて合成する上で、鉄(Fe)の一部をコバルト(Co)とガリウム(Ga)とによって同時に置換することが有効であることを見出した。さらに所定の組成を有するSmFe17系磁性粉末は飽和磁化(Ms)及び保磁力(Hc)のみならず角形性にも優れており、磁石の最大エネルギー積(BHmax)を高める上で好適であるとの知見を得た。 The present inventors conducted extensive studies in view of such problems. As a result, when synthesizing magnetic powder made of Sm 2 Fe 17 C x- based compounds that exhibit excellent thermal stability and high magnetic properties using an industrially available process, it is necessary to partially It has been found that simultaneous substitution with cobalt (Co) and gallium (Ga) is effective. Furthermore, the Sm 2 Fe 17 C x based magnetic powder with a predetermined composition has excellent not only saturation magnetization (Ms) and coercive force (Hc) but also squareness, which is useful in increasing the maximum energy product (BHmax) of the magnet. We found that it is suitable.

本発明は、このような知見に基づき完成されたものであり、熱安定性に優れ且つ高い磁気特性を示すサマリウム鉄炭素(SmFe17)系磁性粉末及びその製造方法の提供を課題とする。 The present invention was completed based on such knowledge, and an object of the present invention is to provide a samarium iron carbon (Sm 2 Fe 17 C x )-based magnetic powder that has excellent thermal stability and high magnetic properties, and a method for producing the same. shall be.

本発明は、下記(1)~(11)の態様を包含する。なお本明細書において「~」なる表現は、その両端の数値を含む。すなわち「X~Y」は「X以上Y以下」と同義である。 The present invention includes the following aspects (1) to (11). Note that in this specification, the expression "~" includes numerical values at both ends thereof. That is, "X to Y" is synonymous with "more than or equal to X and less than or equal to Y."

(1)サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含む菱面体晶系ThZn17型化合物を主相として含み、前記化合物が一般式:SmFe(17-m-n)CoGaで表される組成(ただし、2.0≦m≦3.5、1.5≦n≦3.0、1.00≦x≦1.75)を有する、希土類鉄炭素系磁性粉末。 (1) Contains a rhombohedral Th 2 Zn 17 type compound containing samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga) and carbon (C) as a main phase, and the compound has the general formula : Sm 2 Fe (17-m-n) C m Ga n C Composition represented by x (however, 2.0≦m≦3.5, 1.5≦n≦3.0, 1.00≦x ≦1.75), a rare earth iron carbon-based magnetic powder.

(2)前記m及びnが、0.30≦n/(m+n)≦0.60を満たす、上記(1)の磁性粉末。 (2) The magnetic powder according to (1) above, wherein m and n satisfy 0.30≦n/(m+n)≦0.60.

(3)前記xが、1.25≦z≦1.50を満たす、上記(1)又は(2)の磁性粉末。 (3) The magnetic powder according to (1) or (2) above, wherein x satisfies 1.25≦z≦1.50.

(4)前記磁性粉末の平均粒子径d50が5.0μm以下である、上記(1)~(3)のいずれかの磁性粉末。 (4) The magnetic powder according to any one of (1) to (3) above, wherein the average particle diameter d50 of the magnetic powder is 5.0 μm or less.

(5)サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含み、残部不可避不純物からなる、上記(1)~(4)のいずれかの磁性粉末。 (5) The magnetic powder according to any one of (1) to (4) above, containing samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga), and carbon (C), with the remainder consisting of unavoidable impurities. .

(6)α-Fe相の含有量が10体積%以下である、上記(1)~(5)のいずれかの磁性粉末。 (6) The magnetic powder according to any one of (1) to (5) above, wherein the content of α-Fe phase is 10% by volume or less.

(7)主相及びα-Fe相以外に異相を含まない、上記(1)~(6)のいずれかの磁性粉末。 (7) The magnetic powder according to any one of (1) to (6) above, which does not contain a foreign phase other than the main phase and the α-Fe phase.

(8)前記磁性粉末の飽和磁化(Ms)が90Wb・m/kg以上であり、且つ保磁力(Hc)が250kA/m以上である、上記(1)~(7)のいずれかの磁性粉末。 (8) The magnetic powder according to any one of (1) to (7) above, wherein the magnetic powder has a saturation magnetization (Ms) of 90 Wb·m/kg or more and a coercive force (Hc) of 250 kA/m or more. .

(9)前記磁性粉末の飽和磁化(Ms)が80Wb・m/kg以上であり、且つ保磁力(Hc)が300kA/m以上である、上記(1)~(7)のいずれかの磁性粉末。 (9) The magnetic powder according to any one of (1) to (7) above, wherein the magnetic powder has a saturation magnetization (Ms) of 80 Wb·m/kg or more and a coercive force (Hc) of 300 kA/m or more. .

(10)前記磁性粉末の飽和磁化(Ms)に対する残留磁化(Mr)の比(Mr/Ms比)が0.90以上である、上記(1)~(9)のいずれかの磁性粉末。 (10) The magnetic powder according to any one of (1) to (9) above, wherein the ratio of residual magnetization (Mr) to saturation magnetization (Ms) (Mr/Ms ratio) of the magnetic powder is 0.90 or more.

(11)上記(1)~(10)のいずれかの磁性粉末の製造方法であって、以下の工程;
サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含む原料を準備する工程、
準備した原料を配合する工程、
配合した原料を坩堝又は鋳型に入れた後に、溶解鋳造して鋳塊にする工程、
前記鋳塊に熱処理を施して均質化する工程、及び
均質化した前記鋳塊を粉砕して粉砕粉にする工程、
を含む、方法。
(11) A method for producing magnetic powder according to any one of (1) to (10) above, comprising the following steps;
preparing a raw material containing samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga) and carbon (C);
The process of blending the prepared raw materials,
The process of putting the blended raw materials into a crucible or mold and then melting and casting them into an ingot;
a step of heat-treating the ingot to homogenize it; and a step of crushing the homogenized ingot into pulverized powder.
including methods.

本発明によれば、熱安定性に優れ且つ高い磁気特性を示すサマリウム鉄炭素(SmFe17)系磁性粉末及びその製造方法が提供される。 According to the present invention, samarium iron carbon (Sm 2 Fe 17 C x )-based magnetic powder exhibiting excellent thermal stability and high magnetic properties and a method for producing the same are provided.

磁性粉末のヒステリシスカーブの一例を示す。An example of a hysteresis curve of magnetic powder is shown. 磁性粉末のヒステリシスカーブの別の一例を示す。Another example of the hysteresis curve of magnetic powder is shown. 磁性粉末のX線回折プロファイルの一例を示す。An example of an X-ray diffraction profile of magnetic powder is shown.

本発明の具体的な実施形態(以下、「本実施形態」という)について説明する。なお本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。 A specific embodiment of the present invention (hereinafter referred to as "this embodiment") will be described. Note that the present invention is not limited to the following embodiments, and various changes can be made without departing from the gist of the present invention.

<希土類鉄炭素系磁性粉末>
本実施形態の希土類鉄炭素系磁性粉末は、サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含む菱面体晶系ThZn17型化合物を主相として含む。またこの化合物は、一般式:SmFe(17-m-n)CoGaで表される組成を有する。ここでm、n及びxは、2.0≦m≦3.5、1.5≦n≦3.0、1.00≦x≦1.75の関係を満たす。
<Rare earth iron carbon-based magnetic powder>
The rare earth iron-carbon magnetic powder of this embodiment is mainly composed of a rhombohedral Th 2 Zn 17 type compound containing samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga) and carbon (C). Included as a phase. Further, this compound has a composition represented by the general formula: Sm 2 Fe (17-m−n) C m Ga n C x . Here, m, n, and x satisfy the following relationships: 2.0≦m≦3.5, 1.5≦n≦3.0, and 1.00≦x≦1.75.

本実施形態の磁性粉末は、一般式:SmFe(17-m-n)CoGaで表される組成を有するSmFe17系化合物を主相として含む。なお本明細書においてSmFe17系化合物とは、SmFe17を基本組成とする化合物のみならず、サマリウム(Sm)及び鉄(Fe)の一部が他の元素で置換された化合物を包含する。また本実施形態の主相化合物は、そのSmと(Fe+Co+Ga)の比が厳密に2:17である必要はない。格子空孔や欠陥の存在により2:17から偏倚することがあり、菱面体晶系ThZn17構造を維持できる限り、そのような偏倚は許容される。 The magnetic powder of this embodiment contains an Sm 2 Fe 17 C x -based compound having a composition represented by the general formula: Sm 2 Fe (17-m−n) C m Ga n C x as a main phase. In this specification, Sm 2 Fe 17 C x- based compounds refer not only to compounds whose basic composition is Sm 2 Fe 17 C x but also to compounds in which samarium (Sm) and iron (Fe) are partially replaced with other elements. This includes compounds that have been Further, in the main phase compound of this embodiment, the ratio of Sm to (Fe+Co+Ga) does not need to be strictly 2:17. It may deviate from 2:17 due to the presence of lattice vacancies or defects, and such a deviation is allowed as long as the rhombohedral Th 2 Zn 17 structure can be maintained.

本実施形態の化合物では、SmFe17の鉄(Fe)の一部がコバルト(Co)及びガリウム(Ga)で置換されている。またこの化合物の結晶構造は菱面体晶系ThZn17構造である。SmFe17系化合物は、その結晶構造がSmFe17と同一である。SmFe17は、低温では菱面体晶系ThZn17構造を安定相とし、高温では六方晶系ThNi17構造が安定相である。これらの構造はいずれも、希土類磁石材料として知られるSmCoが属する六方晶CaCu構造から派生したものである。例えばThZn17構造はCaCu構造のRサイト(Smサイト)の1/3をダンベル鉄(Fe-Fe)で規則的に置換したものに相当する。 In the compound of this embodiment, part of the iron (Fe) in Sm 2 Fe 17 C x is replaced with cobalt (Co) and gallium (Ga). The crystal structure of this compound is a rhombohedral Th 2 Zn 17 structure. The Sm 2 Fe 17 C x based compound has the same crystal structure as Sm 2 Fe 17 . Sm 2 Fe 17 has a rhombohedral Th 2 Zn 17 structure as a stable phase at low temperatures, and a hexagonal Th 2 Ni 17 structure as a stable phase at high temperatures. All of these structures are derived from the hexagonal CaCu 5 structure to which SmCo 5 , known as a rare earth magnet material, belongs. For example, the Th 2 Zn 17 structure corresponds to a CaCu 5 structure in which 1/3 of the R sites (Sm sites) are regularly replaced with dumbbell iron (Fe--Fe).

SmFe17系化合物は、SmFe17の結晶格子間に炭素(C)が侵入した炭素侵入型化合物(合金)である。SmFe17は、Sm-Fe化合物の中で、磁気モーメント(磁化)の担い手となる鉄(Fe)原子を最も多く含み、それ故、潜在的には大きな磁化を示す可能性がある。しかしながら実際には炭素を含まないSmFe17はキュリー温度(Tc)が低く、室温での飽和磁化が小さい。これは結晶格子中でのFe-Fe原子間距離が短すぎて、Fe原子に基づく強磁性的磁気秩序が不安定であるからと考えられている。またSmFe17は、磁気異方性定数Kが負であるため、面内磁気異方性を示す。面内磁気異方性を示す材料では、結晶中ab面内を磁化容易軸が回転するため、高い保磁力(Hc)を得ることができない。このような理由でSmFe17は、これ単独では優れた磁石材料にはならない。 The Sm 2 Fe 17 C x compound is a carbon interstitial compound (alloy) in which carbon (C) has entered between the crystal lattices of Sm 2 Fe 17 . Among Sm--Fe compounds, Sm 2 Fe 17 contains the largest amount of iron (Fe) atoms that carry magnetic moment (magnetization), and therefore potentially exhibits large magnetization. However, in reality, Sm 2 Fe 17 , which does not contain carbon, has a low Curie temperature (Tc) and low saturation magnetization at room temperature. This is thought to be because the distance between Fe and Fe atoms in the crystal lattice is too short, making the ferromagnetic magnetic order based on Fe atoms unstable. Further, Sm 2 Fe 17 exhibits in-plane magnetic anisotropy because the magnetic anisotropy constant K 1 is negative. In a material exhibiting in-plane magnetic anisotropy, the axis of easy magnetization rotates in the a-b plane in the crystal, making it impossible to obtain a high coercive force (Hc). For these reasons, Sm 2 Fe 17 alone is not an excellent magnetic material.

これに対してSmFe17に炭素(C)を加えてSmFe17にすることで、結晶格子が膨張してFe-Fe原子間距離が長くなる。そのため磁気秩序が安定化されて、キュリー温度(Tc)が大幅に上昇する。また加えられた炭素(C)は、鉄(Fe)原子の磁気モーメントやサマリウム(Sm)サイトの結晶場に影響を及ぼす。これに伴い、結晶中c軸方向に磁化容易軸が固定される一軸磁気異方性が発現するとともに、磁気異方性定数の絶対値が大きくなる。このような理由でSmFe17系化合物は、飽和磁化(Ms)及び保磁力(Hc)の高い優れた磁石材料になると考えられる。また結晶格子中に取り込まれる炭素(C)量が多いほど、磁気特性(Ms、Hc、Tc)がより優れたものになると期待される。 On the other hand, by adding carbon (C) to Sm 2 Fe 17 to form Sm 2 Fe 17 C x , the crystal lattice expands and the Fe-Fe atomic distance becomes longer. Therefore, the magnetic order is stabilized and the Curie temperature (Tc) increases significantly. The added carbon (C) also affects the magnetic moment of iron (Fe) atoms and the crystal field of samarium (Sm) sites. Along with this, uniaxial magnetic anisotropy in which the axis of easy magnetization is fixed in the c-axis direction in the crystal is developed, and the absolute value of the magnetic anisotropy constant becomes large. For these reasons, Sm 2 Fe 17 C x compounds are considered to be excellent magnetic materials with high saturation magnetization (Ms) and high coercive force (Hc). Further, it is expected that the larger the amount of carbon (C) incorporated into the crystal lattice, the better the magnetic properties (Ms, Hc, Tc) will be.

本実施形態の磁性粉末では、上述した一般式においてコバルト(Co)量mを2.0≦m≦3.5の範囲内に限定する。コバルト(Co)は、SmFe17系化合物の鉄(Fe)サイトを占めて、ThZn17結晶構造を安定化させるとともに、キュリー温度(Tc)を高める働きがある。コバルト(Co)量mが2.0未満であると、キュリー温度が低下する。そのため室温で高い飽和磁化(Ms)を得ることが困難になる。一方でmが3.5を超えると、保磁力(Hc)及び残留磁化(Mr)が低くなる。コバルト(Co)置換により格子が縮むため、過度な置換は磁気異方性に悪影響を及ぼすと推察される。mは3.0以上3.3以下がより好ましい。 In the magnetic powder of this embodiment, the amount m of cobalt (Co) in the above-mentioned general formula is limited within the range of 2.0≦m≦3.5. Cobalt (Co) occupies the iron (Fe) site of the Sm 2 Fe 17 C x -based compound, stabilizes the Th 2 Zn 17 crystal structure, and has the function of increasing the Curie temperature (Tc). When the cobalt (Co) amount m is less than 2.0, the Curie temperature decreases. Therefore, it becomes difficult to obtain high saturation magnetization (Ms) at room temperature. On the other hand, when m exceeds 3.5, coercive force (Hc) and residual magnetization (Mr) become low. Since the lattice shrinks due to cobalt (Co) substitution, excessive substitution is presumed to have a negative effect on magnetic anisotropy. More preferably, m is 3.0 or more and 3.3 or less.

本実施形態の磁性粉末では、ガリウム(Ga)量nを1.5≦n≦3.0の範囲内に限定する。ガリウム(Ga)は、SmFe17系化合物の鉄(Fe)サイトを占めて、結晶構造を安定化させる働きがある。ガリウム(Ga)量nが1.5未満であると、結晶構造が不安定になり、SmFe17系化合物が分解する恐れがある。分解によりα-Feなどの異相が生成し、その結果、保磁力(Hc)が低下する。nは1.7以上が好ましく、2.0以上がより好ましい。一方でnが3.0を超えると、飽和磁化(Ms)及び保磁力(Hc)が低下する。ガリウム(Ga)は非磁性元素である。そのためこれが過度に多く含まれると、単位胞あたりの磁気モーメント及びFe-Fe原子間の磁気秩序が弱くなると推察される。nは2.5以下がより好ましい。 In the magnetic powder of this embodiment, the amount n of gallium (Ga) is limited within the range of 1.5≦n≦3.0. Gallium (Ga) occupies the iron (Fe) site of the Sm 2 Fe 17 C x based compound and has the function of stabilizing the crystal structure. When the amount n of gallium (Ga) is less than 1.5, the crystal structure becomes unstable and there is a possibility that the Sm 2 Fe 17 C x based compound may be decomposed. Due to decomposition, foreign phases such as α-Fe are generated, resulting in a decrease in coercive force (Hc). n is preferably 1.7 or more, more preferably 2.0 or more. On the other hand, when n exceeds 3.0, saturation magnetization (Ms) and coercive force (Hc) decrease. Gallium (Ga) is a nonmagnetic element. Therefore, if it is included in an excessively large amount, it is presumed that the magnetic moment per unit cell and the magnetic order between Fe--Fe atoms become weak. More preferably, n is 2.5 or less.

本実施形態の磁性粉末は、好ましくはコバルト(Co)量m及びガリウム(Ga)量nが0.30≦n/(m+n)≦0.60を満たす。この範囲内であると、磁性粉末の飽和磁化(Ms)と保磁力(Hc)とをバランスよく高めることが可能になる。より好ましくは、m及びnが、0.34≦n/(m+n)≦0.40を満たす。 In the magnetic powder of the present embodiment, the amount m of cobalt (Co) and the amount n of gallium (Ga) preferably satisfy 0.30≦n/(m+n)≦0.60. Within this range, it becomes possible to increase the saturation magnetization (Ms) and coercive force (Hc) of the magnetic powder in a well-balanced manner. More preferably, m and n satisfy 0.34≦n/(m+n)≦0.40.

本実施形態の磁性粉末では、炭素(C)量xを1.00≦x≦1.75の範囲内に限定する。上述したように、炭素(C)には、結晶格子間に侵入して、キュリー温度(Tc)及び一軸磁気異方性を高める働きがある。炭素(C)量xが1.00未満であると、キュリー温度が低下して、室温での飽和磁化(Ms)が小さくなる。また磁化容易軸が面内異方性をもつようになり、保磁力(Hc)が低下してしまう。xは1.25以上であってもよい。一方でxが1.75を超えると、結晶構造が不安定になる。そのためα-Feなどの異相が生成して保磁力(Hc)が低下する。xは1.50以下であってもよい。 In the magnetic powder of this embodiment, the carbon (C) amount x is limited within the range of 1.00≦x≦1.75. As mentioned above, carbon (C) has the function of increasing the Curie temperature (Tc) and uniaxial magnetic anisotropy by penetrating between crystal lattices. When the carbon (C) amount x is less than 1.00, the Curie temperature decreases and the saturation magnetization (Ms) at room temperature decreases. Furthermore, the axis of easy magnetization has in-plane anisotropy, resulting in a decrease in coercive force (Hc). x may be 1.25 or more. On the other hand, when x exceeds 1.75, the crystal structure becomes unstable. Therefore, a different phase such as α-Fe is generated and the coercive force (Hc) decreases. x may be 1.50 or less.

本実施形態の磁性粉末は、上述した組成を満足する限り、その主相を構成する化合物(SmFe17系化合物)がサマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)以外の他の元素を含んでいてもよい。例えばサマリウム(Sm)以外に、ネオジム(Nd)やプラセオジウム(Pr)といった希土類元素を主相が含んでもよい。また炭素(C)以外に窒素(N)を含んでもよい。しかしながらサマリウム(Sm)以外の希土類元素を多量に含むと、主相化合物の一軸磁気異方性が弱くなり、保磁力が低下する恐れがある。また窒素(N)を多量に含むと、化合物の熱安定性が劣化する恐れがある。したがって主相に含まれる他の元素は少ないほど好ましい。他の元素の含有量は30原子%以下であってよく、10原子%以下であってよく、5原子%以下であってよく、1原子%以下であってもよく、0.1原子%以下であってもよい。 As long as the magnetic powder of this embodiment satisfies the above- mentioned composition, the compound (Sm 2 Fe 17 C (Ga) and other elements other than carbon (C) may be included. For example, the main phase may contain a rare earth element such as neodymium (Nd) or praseodymium (Pr) in addition to samarium (Sm). Further, nitrogen (N) may be included in addition to carbon (C). However, if a large amount of rare earth elements other than samarium (Sm) are included, the uniaxial magnetic anisotropy of the main phase compound may be weakened, leading to a decrease in coercive force. Furthermore, if a large amount of nitrogen (N) is included, the thermal stability of the compound may deteriorate. Therefore, the amount of other elements contained in the main phase is preferably as small as possible. The content of other elements may be 30 atomic % or less, 10 atomic % or less, 5 atomic % or less, 1 atomic % or less, 0.1 atomic % or less It may be.

また本実施形態の磁性粉末は、SmFe17系化合物を主相とする限り、その他の相を含んでもよい。ここで主相とは、粉末中で50質量%以上の割合を占める成分のことを指す。またその他の相として、SmFe14C相、α-Fe相、サマリウム炭化物相(Sm3-x相等)、サマリウム鉄炭化物相、及びこれらの相にコバルト(Co)、ガリウム(Ga)及び/又は炭素(C)が固溶した相などが挙げられる。しかしながらSmFe17系化合物の優れた磁気特性を十分に生かすため、主相以外の成分の割合は少ないほど好ましい。粉末中の主相以外の成分の割合は30体積%以下であってよく、10体積%以下であってよく、5体積%以下であってよく、1体積%以下であってよく、0.1体積%以下であってもよい。磁性粉末が、サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含み、残部不可避不純物からなる組成を有してもよい。ここで不可避不純物は製造工程上不可避的に混入する成分であり、その量は典型的には1000ppm以下である。 Further, the magnetic powder of the present embodiment may contain other phases as long as the main phase is an Sm 2 Fe 17 C x compound. Here, the main phase refers to a component that accounts for 50% by mass or more in the powder. Other phases include Sm 2 Fe 14 C phase, α-Fe phase, samarium carbide phase (Sm 2 C 3-x phase, etc.), samarium iron carbide phase, and cobalt (Co) and gallium (Ga) in these phases. and/or a phase in which carbon (C) is solidly dissolved. However, in order to fully utilize the excellent magnetic properties of the Sm 2 Fe 17 C x based compound, it is preferable that the proportion of components other than the main phase be as small as possible. The proportion of components other than the main phase in the powder may be 30% by volume or less, 10% by volume or less, 5% by volume or less, 1% by volume or less, and 0.1% by volume or less. It may be less than % by volume. The magnetic powder may have a composition containing samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga), and carbon (C), with the remainder consisting of inevitable impurities. The unavoidable impurities are components that are unavoidably mixed during the manufacturing process, and the amount thereof is typically 1000 ppm or less.

本実施形態の磁性粉末は、好ましくはα-Fe相の含有量が10体積%以下である。ここでα-Fe相は、鉄(Fe)のみからなるものだけでなく、鉄(Fe)にコバルト(Co)やガリウム(Ga)が固溶したものを含む。α-Fe相は、磁気異方性をもたず、軟磁性を示す。そのためα-Fe相が多量に形成されると、粉末の保磁力(Hc)が低下する恐れがある。α-Fe相の量は、5体積%以下であってよく、1体積%以下であってよい。磁性粉末がα-Fe相を含まなくともよい。なおα-Fe相の含有量は、磁性粉末をX線回折により分析することで求めることができる。また「α-Fe相を含まない」とは、X線回折プロファイルにて、α-Fe相に基づく回折ピークが存在しない、又は存在したとしてもノイズ以下の強度であることを意味する。X線回折分析は、後述する実施例での条件に準じた条件で行う。 The magnetic powder of this embodiment preferably has an α-Fe phase content of 10% by volume or less. Here, the α-Fe phase includes not only one consisting only of iron (Fe) but also one in which cobalt (Co) or gallium (Ga) is dissolved in iron (Fe). The α-Fe phase has no magnetic anisotropy and exhibits soft magnetism. Therefore, if a large amount of α-Fe phase is formed, the coercive force (Hc) of the powder may decrease. The amount of α-Fe phase may be up to 5% by volume, and up to 1% by volume. The magnetic powder does not need to contain the α-Fe phase. Note that the content of the α-Fe phase can be determined by analyzing the magnetic powder by X-ray diffraction. Furthermore, "not containing an α-Fe phase" means that a diffraction peak based on the α-Fe phase does not exist in the X-ray diffraction profile, or even if it exists, the intensity is below noise. X-ray diffraction analysis is performed under conditions similar to those in Examples described later.

本実施形態の磁性粉末は、好ましくは主相及びα-Fe相以外に炭化物などの異相を含まない。SmFe17系化合物の合成反応が不十分な場合、あるいは炭素(C)量が過剰な場合には、遊離炭素が発生し、この遊離炭素が他の元素と反応して炭化物を形成することがある。このような炭化物が形成されると、SmFe17系化合物を構成する炭素(C)の量が実質的に少なくなる。そのためキュリー温度(Tc)や結晶磁気異方性が低下する結果、飽和磁化(Ms)や保磁力(Hc)といった磁気特性が劣化する恐れがある。なお異相の存在は、磁性粉末をX線回折することで確認することができる。また「異相を含まない」とは、X線回折プロファイルにて、異相に基づく回折ピークが存在しない、又は存在したとしてもノイズ以下の強度であることを意味する。 The magnetic powder of this embodiment preferably does not contain a foreign phase such as carbide other than the main phase and the α-Fe phase. When the synthesis reaction of Sm 2 Fe 17 C x -based compounds is insufficient or when the amount of carbon (C) is excessive, free carbon is generated and this free carbon reacts with other elements to form carbides There are things to do. When such carbides are formed, the amount of carbon (C) constituting the Sm 2 Fe 17 C x- based compound is substantially reduced. As a result, the Curie temperature (Tc) and magnetocrystalline anisotropy decrease, and as a result, magnetic properties such as saturation magnetization (Ms) and coercive force (Hc) may deteriorate. Note that the presence of a different phase can be confirmed by subjecting the magnetic powder to X-ray diffraction. Moreover, "not containing a foreign phase" means that a diffraction peak based on a foreign phase does not exist in the X-ray diffraction profile, or even if it exists, the intensity is below noise.

本実施形態の磁性粉末は、好ましくはその平均粒子径(d50)が5.0μm以下である。SmFe17系化合物は、SmFe17系化合物と同様に、ニュークリエーション型の磁化反転機構を有すると考えられる。ニュークリエーション型の機構では、逆磁区の核形成に基づき磁化が反転する。そのため平均粒子径が5.0μmを超えて過度に大きくなると、逆磁区の核が多くなり、保磁力が低下する恐れがある。平均粒子径は3.0μm以下であってよく、2.5μm以下であってよく、2.0μm以下であってもよい。一方で平均粒子径が過度に小さいと、粉砕歪の蓄積や化合物の分解が生じる恐れがあるとともに、極度にサイズが小さい超常磁性粒子の影響を無視し得なくなる。平均粒子径は0.1μm以上であってよく、0.5μm以上であってよい。 The magnetic powder of this embodiment preferably has an average particle diameter (d 50 ) of 5.0 μm or less. It is thought that the Sm 2 Fe 17 C x based compound has a nucleation type magnetization reversal mechanism like the Sm 2 Fe 17 N x based compound. In the nucleation type mechanism, magnetization is reversed based on the nucleation of reverse magnetic domains. Therefore, when the average particle diameter becomes excessively large, exceeding 5.0 μm, there is a possibility that the number of nuclei of reversed magnetic domains increases and the coercive force decreases. The average particle diameter may be 3.0 μm or less, 2.5 μm or less, or 2.0 μm or less. On the other hand, if the average particle diameter is too small, there is a risk of accumulation of grinding strain and decomposition of the compound, and the influence of extremely small superparamagnetic particles cannot be ignored. The average particle diameter may be 0.1 μm or more, and may be 0.5 μm or more.

本実施形態の磁性粉末は、その飽和磁化(飽和質量磁化;Ms)が80Wb・m/kg(80emu/g)以上であってよく、90Wb・m/kg(90emu/g)以上であってよく、100Wb・m/kg(100emu/g)以上であってよく、110Wb・m/kg(110emu/g)以上であってもよい。このように高い飽和磁化(Ms)を示す磁性粉末は、磁束密度(Ms)が高く磁力の強い磁石を製造するための原料として有用である。 The magnetic powder of the present embodiment may have a saturation magnetization (saturation mass magnetization; Ms) of 80 Wb·m/kg (80 emu/g) or more, or 90 Wb·m/kg (90 emu/g) or more. , 100 Wb·m/kg (100 emu/g) or more, and may be 110 Wb·m/kg (110 emu/g) or more. Magnetic powder exhibiting such a high saturation magnetization (Ms) is useful as a raw material for manufacturing a magnet with a high magnetic flux density (Ms) and strong magnetic force.

本実施形態の磁性粉末は、その保磁力(Hc)が250kA/m(3.14kOe)以上であってよく、275kA/m(3.46kOe)以上であってよく、300kA/m(3.77kOe)以上であってよく、325kA/m(4.08kOe)以上であってよく、350kA/m(4.40kOe)以上であってもよい。このように高い保磁力(Hc)を示す磁性粉末は、高磁場下で減磁しにくい磁石を製造するための原料として有用である。 The magnetic powder of this embodiment may have a coercive force (Hc) of 250 kA/m (3.14 kOe) or more, 275 kA/m (3.46 kOe) or more, and 300 kA/m (3.77 kOe). ) or more, may be 325 kA/m (4.08 kOe) or more, and may be 350 kA/m (4.40 kOe) or more. Magnetic powder exhibiting such a high coercive force (Hc) is useful as a raw material for manufacturing magnets that are difficult to demagnetize under high magnetic fields.

好ましい態様では、飽和磁化(Ms)が90Wb・m/kg(90emu/g)以上であり、且つ保磁力(Hc)が250kA/m(3.14kOe)以上である。また別の好ましい態様では、飽和磁化(Ms)が80Wb・m/kg(80emu/g)以上であり、且つ保磁力(Hc)が300kA/m(3.77kOe)以上である。このように高い飽和磁化(Ms)及び保磁力(Hc)を示す磁性粉末は、高磁場下で減磁しにくく且つ強力な磁石、例えば高出力モーター用磁石を製造するための原料として有用である。 In a preferred embodiment, the saturation magnetization (Ms) is 90 Wb·m/kg (90 emu/g) or more, and the coercive force (Hc) is 250 kA/m (3.14 kOe) or more. In another preferred embodiment, the saturation magnetization (Ms) is 80 Wb·m/kg (80 emu/g) or more, and the coercive force (Hc) is 300 kA/m (3.77 kOe) or more. Magnetic powder exhibiting such high saturation magnetization (Ms) and coercive force (Hc) is difficult to demagnetize under high magnetic fields and is useful as a raw material for manufacturing strong magnets, such as magnets for high-output motors. .

本実施形態の磁性粉末は、好ましくは飽和磁化(Ms)に対する残留磁化(Mr)の比(Mr/Ms比)が0.900(90.0%)以上である。ここでMr/Ms比は角形性の指標となるものである。Mr/Ms比が低いと、ヒステリシスループ(J-H曲線)の第2象限(減磁曲線)において、ステップ状の段差(クニック)が観察されることがある。このような段差の存在は、減磁曲線の角形性を悪くするため好ましくない。すなわち飽和磁化(Ms)及び保磁力(Hc)が高い磁性粉末であっても、角形性が悪いと、この粉末を用いて作製した磁石の最大エネルギー積(BHmax)が小さくなる。最大エネルギー積が小さい磁石は、動作点での磁束密度が低いとともに、磁場変動や寸法変動に伴う磁束密度の変化の度合いが大きく、安定的に動作させることができない。これに対してMr/Ms比が高い磁性粉末を用いることで、最大エネルギー積の大きい磁石を作製することができる。Mr/Ms比は0.920(92.0%)以上であってよく、0.940(94.0%)以上であってよく、0.950(95.0%)以上であってもよい。Mr/Ms比の上限は1.000(100.0%)である。なおMr/Ms比は、十分に磁場配向させた磁性粉末について求めた飽和磁化(Ms)及び残留磁化(Mr)から算出する。 The magnetic powder of this embodiment preferably has a ratio of residual magnetization (Mr) to saturation magnetization (Ms) (Mr/Ms ratio) of 0.900 (90.0%) or more. Here, the Mr/Ms ratio is an index of squareness. When the Mr/Ms ratio is low, a step-like step (knick) may be observed in the second quadrant (demagnetization curve) of the hysteresis loop (JH curve). The presence of such a step is not preferable because it impairs the squareness of the demagnetization curve. That is, even if a magnetic powder has high saturation magnetization (Ms) and coercive force (Hc), if the squareness is poor, the maximum energy product (BHmax) of a magnet produced using this powder will be small. A magnet with a small maximum energy product has a low magnetic flux density at the operating point and has a large degree of change in magnetic flux density due to magnetic field fluctuations or dimensional fluctuations, and cannot be operated stably. On the other hand, by using magnetic powder with a high Mr/Ms ratio, a magnet with a large maximum energy product can be manufactured. The Mr/Ms ratio may be 0.920 (92.0%) or more, 0.940 (94.0%) or more, or 0.950 (95.0%) or more. . The upper limit of the Mr/Ms ratio is 1.000 (100.0%). Note that the Mr/Ms ratio is calculated from the saturation magnetization (Ms) and residual magnetization (Mr) determined for magnetic powder that has been sufficiently oriented in a magnetic field.

このように、本実施形態の磁性粉末は、飽和磁化(Ms)及び保磁力(Hc)のみならず角形性に優れている。そのためこの粉末を用いて、基本性能(磁束密度、保磁力、最大エネルギー積)に優れた磁石を製造することができる。さらにこの磁性粉末は、高温で分解することがなく、またキュリー温度(Tc)が高い。そのためボンド磁石のみならず焼結磁石の原料として用いることができる。その上、製造後の磁石の熱安定性を良好なものにすることが可能である。したがって磁石用原料として実用上の価値が高い。 As described above, the magnetic powder of this embodiment is excellent not only in saturation magnetization (Ms) and coercive force (Hc) but also in squareness. Therefore, using this powder, it is possible to manufacture a magnet with excellent basic performance (magnetic flux density, coercive force, maximum energy product). Furthermore, this magnetic powder does not decompose at high temperatures and has a high Curie temperature (Tc). Therefore, it can be used not only as a raw material for bonded magnets but also for sintered magnets. Moreover, it is possible to obtain good thermal stability of the magnet after manufacture. Therefore, it has high practical value as a raw material for magnets.

特に本実施形態の磁性粉末は、SmFe17系化合物の鉄(Fe)の一部を所定量のコバルト(Co)とガリウム(Ga)の両方で置換することで、炭素(C)を結晶格子中に効率よく取り込むことができる。そのため異相形成を抑制しつつも炭素量xを高めることができ、その結果、熱安定性に優れるとともに高い磁気特性(飽和磁化、保磁力、角形性)を示す磁性粉末にすることが可能である。実際、本発明者らは、コバルト(Co)とガリウム(Ga)の同時置換により、炭素量xが1.75と高いにも関わらず異相の少ない磁性粉末の合成に成功している。 In particular, the magnetic powder of this embodiment is made by substituting a part of the iron (Fe) of the Sm 2 Fe 17 C x compound with a predetermined amount of both cobalt (Co) and gallium (Ga). can be efficiently incorporated into the crystal lattice. Therefore, it is possible to increase the carbon content x while suppressing the formation of foreign phases, and as a result, it is possible to create a magnetic powder that has excellent thermal stability and exhibits high magnetic properties (saturation magnetization, coercive force, squareness). . In fact, the present inventors have succeeded in synthesizing a magnetic powder with few foreign phases despite the high carbon content x of 1.75 by simultaneous substitution of cobalt (Co) and gallium (Ga).

本発明者らの知る限り、このように高い磁気特性を示すSmFe17系磁性粉末を合成することは知られていない。例えば特許文献1には広範な組成を有するR-Fe-M-C化合物を主相とする希土類磁石材料が開示されているが、コバルト(Co)とガリウム(Ga)の組み合わせに基づく共置換に着目したものでなく、またその効果を示唆するものでない。実際、特許文献1では実施例においてチタン(Ti)とコバルト(Co)を同時に加えて磁石材料を作製することが開示されているが、チタン(Ti)は炭化物を生成し易い成分である(特許文献1の表2(試料番号21~25)及び[0011])。したがって特許文献1の磁石粉末では、異相たる炭化物(TiC)が形成されることで、主相結晶格子中に炭素を十分に取り込むことができないと推察される。その上、特許文献1には磁石粉末のMr/Ms比は開示がなく、この粉末の角形性は不明である。 As far as the present inventors know, it is not known to synthesize Sm 2 Fe 17 C x -based magnetic powder that exhibits such high magnetic properties. For example, Patent Document 1 discloses a rare earth magnet material whose main phase is an R-Fe-MC compound having a wide range of compositions. It is not intended to be of particular interest, nor is it intended to suggest its effects. In fact, Patent Document 1 discloses in Examples that a magnet material is prepared by simultaneously adding titanium (Ti) and cobalt (Co), but titanium (Ti) is a component that easily generates carbides (Patent Document 1). Table 2 of Document 1 (sample numbers 21 to 25) and [0011]). Therefore, in the magnet powder of Patent Document 1, it is presumed that carbon cannot be sufficiently incorporated into the main phase crystal lattice due to the formation of carbide (TiC) as a different phase. Moreover, Patent Document 1 does not disclose the Mr/Ms ratio of the magnet powder, and the squareness of this powder is unknown.

また非特許文献1はSmFe17系化合物についてコバルト(Co)置換を開示するものの、コバルト(Co)とガリウム(Ga)の共置換について何ら教示するものでない。また非特許文献1にもMr/Ms比は開示がなく、化合物の角形性は不明である。 Furthermore, although Non-Patent Document 1 discloses cobalt (Co) substitution for Sm 2 Fe 17 C x based compounds, it does not teach anything about co-substitution of cobalt (Co) and gallium (Ga). Moreover, the Mr/Ms ratio is not disclosed in Non-Patent Document 1, and the squareness of the compound is unknown.

<希土類鉄炭素系磁性粉末の製造方法>
本実施形態の磁性粉末は、上述した要件を満足する限り、その製造方法は限定されない。しかしながら好適な製造方法は、以下の工程;サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含む原料を準備する工程(準備工程)、準備した原料を配合する工程(配合工程)、配合した原料を坩堝又は鋳型に入れた後に、溶解鋳造して鋳塊にする工程(溶解鋳造工程)、鋳塊に熱処理を施して均質化する工程(均質化熱処理工程)、及び均質化した鋳塊を粉砕して粉砕粉にする工程(粉砕工程)、を含む。
<Method for producing rare earth iron carbon-based magnetic powder>
The manufacturing method of the magnetic powder of this embodiment is not limited as long as it satisfies the above-mentioned requirements. However, a preferred manufacturing method includes the following steps: a step (preparation step) of preparing raw materials containing samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga), and carbon (C); (compounding process), melting and casting the blended raw materials into a crucible or mold to form an ingot (melting casting process), and homogenizing the ingot by heat treating it (homogenization process). heat treatment step), and a step of pulverizing the homogenized ingot into pulverized powder (pulverization step).

準備工程では、サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含む原料を準備する。原料として、サマリウム、鉄、コバルト、ガリウム及び炭素のそれぞれを元素形態で含む原料を用いてもよく、あるいはこれらの組み合わせを化合物又は合金の形態で含むものを用いてもよい。例えば溶解鋳造法又は還元拡散法で作製したSm-Fe合金を用いてもよい。 In the preparation step, raw materials containing samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga), and carbon (C) are prepared. As the raw material, a raw material containing each of samarium, iron, cobalt, gallium, and carbon in elemental form may be used, or a raw material containing a combination of these in the form of a compound or alloy may be used. For example, an Sm--Fe alloy produced by a melt casting method or a reduction diffusion method may be used.

配合工程では、準備した原料を配合する。原料の配合は、製造後の磁性粉末が所定の組成になるように調整すればよい。ただしサマリウム(Sm)などの揮発し易い成分は、後続する溶解鋳造工程での揮発を見越して過剰になるように配合してもよい。例えば、サマリウム(Sm)を目標組成での必要量に対して5~30質量%過剰になる量で配合してもよい。 In the blending step, the prepared raw materials are blended. The blending of raw materials may be adjusted so that the magnetic powder after manufacture has a predetermined composition. However, an easily volatile component such as samarium (Sm) may be blended in excess in anticipation of volatilization in the subsequent melting and casting process. For example, samarium (Sm) may be added in an amount that is 5 to 30% by mass in excess of the amount required for the target composition.

溶解鋳造工程では、配合した原料を坩堝又は鋳型に入れた後に、溶解鋳造して鋳塊(インゴット)にする。溶解鋳造は、高周波溶解法やアーク溶解法などの公知の手法で行えばよい。またその条件も、原料が十分に溶解して鋳塊になるように適宜設定すればよい。 In the melting and casting process, mixed raw materials are put into a crucible or mold and then melted and cast into an ingot. Melting and casting may be performed by a known method such as a high frequency melting method or an arc melting method. Further, the conditions may be appropriately set so that the raw material is sufficiently melted to form an ingot.

必要に応じて、鋳塊の表面に研削加工などの加工処理を施して、表面変質層を除去する工程(加工処理工程)を設けてもよい。鋳造後の鋳塊の表面には酸化物層などの表面変質層が存在することがある。このような表面変質層は、製造後の磁性粉末の特性を劣化させる原因になるため、これを除去することが望ましい。加工処理は、表面変質層を除去できる限り限定されず、例えば研削加工や研磨加工が挙げられる。また加工処理は、溶解鋳造工程の直後に行ってもよく、あるいは後述する均質化熱処理後に行ってもよい。 If necessary, a step (processing step) of removing the surface altered layer by subjecting the surface of the ingot to processing such as grinding may be provided. A surface altered layer such as an oxide layer may exist on the surface of the ingot after casting. Since such a surface-altered layer causes deterioration of the characteristics of the magnetic powder after manufacture, it is desirable to remove it. The processing is not limited as long as the surface-altered layer can be removed, and examples thereof include grinding and polishing. Further, the processing treatment may be performed immediately after the melting and casting step, or after the homogenization heat treatment described below.

均質化熱処理工程では、得られた鋳塊に熱処理(均質化熱処理)を施して均質化する。鋳造後の鋳塊では、成分が偏析して、組成や組織が不均一になっている場合がある。不均一な組成や組織は、製造後の磁性粉末の特性を劣化させる原因になるため好ましくない。鋳塊に均質化熱処理を施すことで、組成及び組織の均質化を図ることができる。均質化熱処理は、例えばアルゴン(Ar)ガスなどの不活性雰囲気下1000~1200℃の温度で8~192時間行えばよい。 In the homogenization heat treatment step, the obtained ingot is subjected to heat treatment (homogenization heat treatment) to homogenize it. In the ingot after casting, the components may be segregated and the composition and structure may be non-uniform. Nonuniform composition and structure are undesirable because they cause deterioration in the properties of the magnetic powder after manufacture. By subjecting the ingot to homogenization heat treatment, it is possible to homogenize the composition and structure. The homogenization heat treatment may be performed, for example, at a temperature of 1000 to 1200° C. for 8 to 192 hours in an inert atmosphere such as argon (Ar) gas.

粉砕工程では、均質化した鋳塊を粉砕して粉砕粉にする。先述したようにSmFe17系化合物は、その磁化反転機構がニュークリエーション型である。そのため微細な粉末にすることで保磁力(Hc)が高くなる。粉砕は公知の手法で行えばよい。例えば鋳塊を粗粉砕し、得られた粗粉砕粉を微粉砕する手法が挙げられる。粗粉砕は、乳鉢、ジョークラッシャー及び/又はスタンプミルなど公知の破砕機を用いて行えばよい。また微粉砕は、ボールミル、振動ミル及び/又はアトライタなどの公知の粉砕機を用いて、乾式及び/又は湿式で行えばよい。 In the pulverization process, the homogenized ingot is pulverized into pulverized powder. As mentioned above, the magnetization reversal mechanism of the Sm 2 Fe 17 C x based compound is of the nucleation type. Therefore, by making it a fine powder, the coercive force (Hc) increases. The pulverization may be performed by a known method. For example, a method of coarsely pulverizing an ingot and pulverizing the obtained coarsely pulverized powder may be mentioned. Coarse pulverization may be performed using a known crusher such as a mortar, jaw crusher, and/or stamp mill. Fine pulverization may be carried out in a dry and/or wet manner using a known pulverizer such as a ball mill, a vibration mill, and/or an attritor.

ただし鋳塊や粉砕粉には、酸化しやすいサマリウム(Sm)や鉄(Fe)成分が含まれている。そのため粉砕工程は、アルゴン(Ar)ガスの不活性雰囲気下で行うことが好ましい。また保磁力が高い粉末を得るためには、微細な粉砕粉を得るように粉砕条件を設定することが好ましい。具体的には粉砕粉の平均粒子径(d50)が5μm以下になるまで粉砕することが好ましい。さらに粉砕歪を取り除く目的で、粉砕粉に熱処理を施してもよい。 However, the ingot and crushed powder contain samarium (Sm) and iron (Fe) components that are easily oxidized. Therefore, the pulverization step is preferably performed under an inert atmosphere of argon (Ar) gas. Furthermore, in order to obtain powder with high coercive force, it is preferable to set the grinding conditions so as to obtain finely ground powder. Specifically, it is preferable to grind until the average particle diameter (d 50 ) of the pulverized powder becomes 5 μm or less. Further, the pulverized powder may be subjected to heat treatment for the purpose of removing pulverization distortion.

このようにして本実施形態の磁性粉末を製造することができる。製造後の磁性粉末は、熱安定性が良好であるととともに磁気特性に優れている。そのためこの磁性粉末を用いて、熱安定性が良好で且つ基本性能に優れる磁石を製造することができる。 In this way, the magnetic powder of this embodiment can be manufactured. The manufactured magnetic powder has good thermal stability and excellent magnetic properties. Therefore, using this magnetic powder, a magnet with good thermal stability and excellent basic performance can be manufactured.

<ボンド磁石>
本実施形態の磁性粉末は、それ自体の磁気特性が優れている。したがってこの粉末は、磁性粉末の特性が直接反映されるボンド磁石を製造するための原料として好適である。特にこの磁性粉末は飽和磁化(Ms)及び保磁力(Hc)のみならず角形性に優れている。そのため最大エネルギー積(BHmax)の高いボンド磁石を得ることができる。ボンド磁石は、磁性粉末と樹脂バインダーとを混合してコンパウンドを作製し、得られたコンパウンドを成形して作製する。また樹脂バインダーの種類に応じて、成型体に硬化処理を施してもよい。
<Bond magnet>
The magnetic powder of this embodiment has excellent magnetic properties itself. Therefore, this powder is suitable as a raw material for manufacturing a bonded magnet, in which the characteristics of magnetic powder are directly reflected. In particular, this magnetic powder is excellent not only in saturation magnetization (Ms) and coercive force (Hc) but also in squareness. Therefore, a bonded magnet with a high maximum energy product (BHmax) can be obtained. Bonded magnets are manufactured by mixing magnetic powder and a resin binder to create a compound, and then molding the resulting compound. Further, depending on the type of resin binder, the molded body may be subjected to a curing treatment.

樹脂バインダーは熱可塑性樹脂及び熱硬化性樹脂のいずれであってよい。熱可塑性樹脂系バインダーは、その種類は特に限定されない。例えば、6ナイロン、6-6ナイロン、11ナイロン、12ナイロン、6-12ナイロン、芳香族系ナイロン、これらの分子を一部変性、または共重合化した変性ナイロン等のポリアミド樹脂、直鎖型ポリフェニレンサルファイド樹脂、架橋型ポリフェニレンサルファイド樹脂、セミ架橋型ポリフェニレンサルファイド樹脂、低密度ポリエチレン、線状低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合樹脂、エチレン-エチルアクリレート共重合樹脂、アイオノマー樹脂、ポリメチルペンテン樹脂、ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、アクリロニトリル-スチレン共重合樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、メタクリル樹脂、ポリフッ化ビニリデン樹脂、ポリ三フッ化塩化エチレン樹脂、四フッ化エチレン-六フッ化プロピレン共重合樹脂、エチレン-四フッ化エチレン共重合樹脂、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキサイド樹脂、ポリアリルエーテルアリルスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、芳香族ポリエステル樹脂、酢酸セルロース樹脂、前出の各樹脂系エラストマー等が挙げられる。またこれらの単重合体や他種モノマーとのランダム共重合体、ブロック共重合体、グラフト共重合体、他の物質での末端基変性品などが挙げられる。さらに熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂などを挙げることができる。 The resin binder may be either a thermoplastic resin or a thermosetting resin. The type of thermoplastic resin binder is not particularly limited. For example, polyamide resins such as nylon 6, nylon 6-6, nylon 11, nylon 12, nylon 6-12, aromatic nylon, modified nylon that is partially modified or copolymerized with these molecules, and linear polyphenylene. Sulfide resin, cross-linked polyphenylene sulfide resin, semi-cross-linked polyphenylene sulfide resin, low-density polyethylene, linear low-density polyethylene resin, high-density polyethylene resin, ultra-high molecular weight polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer resin, ethylene - Ethyl acrylate copolymer resin, ionomer resin, polymethylpentene resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polyvinyl Alcohol resin, polyvinyl butyral resin, polyvinyl formal resin, methacrylic resin, polyvinylidene fluoride resin, polytrifluorochloroethylene resin, tetrafluoroethylene-hexafluoropropylene copolymer resin, ethylene-tetrafluoroethylene copolymer resin, Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, polytetrafluoroethylene resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene oxide resin, polyallyl ether allyl sulfone resin, polyether sulfone resin, Examples include polyetheretherketone resin, polyarylate resin, aromatic polyester resin, cellulose acetate resin, and each of the above-mentioned resin-based elastomers. Further examples include homopolymers thereof, random copolymers with other types of monomers, block copolymers, graft copolymers, and end group-modified products with other substances. Furthermore, examples of thermosetting resins include unsaturated polyester resins and epoxy resins.

樹脂バインダーの配合量は、特に制限されるものではないが、コンパウンド100質量部に対して1~50質量部が好ましい。1質量部より少ないと著しい混練トルクの上昇、流動性の低下を招いて成形困難になるだけでなく、磁気特性が不十分になることがある。一方で50質量部よりも多いと、所望の磁気特性が得られないことがある。樹脂バインダーの配合量は、3~50質量部であってよく、5~30質量部であってよく、7~20質量部であってよい。 The amount of the resin binder blended is not particularly limited, but is preferably 1 to 50 parts by weight per 100 parts by weight of the compound. If it is less than 1 part by mass, not only will the kneading torque significantly increase and the fluidity decrease, making molding difficult, but also the magnetic properties may become insufficient. On the other hand, if the amount is more than 50 parts by mass, desired magnetic properties may not be obtained. The blending amount of the resin binder may be 3 to 50 parts by weight, 5 to 30 parts by weight, or 7 to 20 parts by weight.

コンパウンドには、反応性希釈剤、未反応性希釈剤、増粘剤、滑剤、離型剤、紫外線吸収剤、難燃剤や種々の安定剤などの添加剤、充填材を配合することができる。また求められる磁気特性に合わせて、本実施形態の磁性粉末以外の他の磁性粉末を配合してもよい。他の磁性粉末として通常のボンド磁石に用いるものを採用することができ、例えば希土類磁石粉、フェライト磁石粉及びアルニコ磁石粉などが挙げられる。 Additives such as reactive diluents, non-reactive diluents, thickeners, lubricants, mold release agents, ultraviolet absorbers, flame retardants, and various stabilizers, and fillers can be added to the compound. Further, other magnetic powders than the magnetic powder of this embodiment may be blended according to the required magnetic properties. As other magnetic powders, those used in ordinary bonded magnets can be used, such as rare earth magnet powder, ferrite magnet powder, and alnico magnet powder.

磁性粉末と樹脂バインダーとを混合する際には、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、単軸押出機、二軸押出機等の混練機を用いて溶融混練すればよい。またコンパウンドの成形は、射出成形、押出成形又は圧縮成形により行えばよい。 When mixing the magnetic powder and the resin binder, melt-kneading may be performed using a kneading machine such as a Banbury mixer, a kneader, a roll, a kneader-ruder, a single-screw extruder, or a twin-screw extruder. Further, the compound may be molded by injection molding, extrusion molding, or compression molding.

ボンド磁石は異方性磁石であってよく、あるいは等方性磁石であってもよい。しかしながら最大エネルギー積がより高い異方性磁石が好ましい。異方性ボンド磁石を作製する場合には、成形機の金型に磁気回路を組み込み、コンパウンドの成形空間(金型キャビティ)に配向磁場がかかるようして成形する。一方で配向磁場をかけなければ、等方性ボンド磁石が得られる。 The bonded magnet may be an anisotropic magnet or an isotropic magnet. However, anisotropic magnets with higher maximum energy products are preferred. When producing an anisotropic bonded magnet, a magnetic circuit is built into a mold of a molding machine, and the compound is molded by applying an orienting magnetic field to the molding space (mold cavity). On the other hand, if no orienting magnetic field is applied, an isotropic bonded magnet can be obtained.

<焼結磁石>
本実施形態の磁性粉末は磁気特性のみならず耐熱性に優れる。特にこの粉末は1000℃以上の高温でも分解しない。そのため焼結磁石を製造するための原料として好適である。焼結磁石は、磁性粉末を成形し、得られた成型体を焼結して作製する。成形性を改善するために、磁性粉末にステアリン酸などの潤滑剤(成形助剤)を加えてもよい。また焼結性を改善するために焼結助剤を加えてもよい。
<Sintered magnet>
The magnetic powder of this embodiment has excellent not only magnetic properties but also heat resistance. In particular, this powder does not decompose even at high temperatures of 1000°C or higher. Therefore, it is suitable as a raw material for manufacturing sintered magnets. A sintered magnet is produced by molding magnetic powder and sintering the resulting molded body. In order to improve moldability, a lubricant (molding aid) such as stearic acid may be added to the magnetic powder. A sintering aid may also be added to improve sinterability.

磁性粉末の成形は、射出成形、押出成形及び圧縮成形などの公知の手法で行えばよい。異方性磁石を作製する場合には、ボンド磁石と同様に、成形機の金型に磁気回路を組み込み、成形空間に配向磁場がかかるようして成形すればよい。また緻密化を図るために、得られた成型体に静水圧加圧成形(CIP)を施してもよい。 The magnetic powder may be molded by known methods such as injection molding, extrusion molding, and compression molding. When producing an anisotropic magnet, a magnetic circuit may be incorporated into a mold of a molding machine, and the magnet may be molded by applying an orienting magnetic field to the molding space, as in the case of bonded magnets. Further, in order to achieve densification, the obtained molded product may be subjected to hydrostatic pressing (CIP).

焼結は、常圧焼結、ホットプレス(HP)及び熱間等方圧加圧(HIP)などの公知の手法を用いて、不活性ガス又は真空中で成型体が緻密になるまで行えばよい。焼結が不足すると、焼結体の密度が高まらず、磁束密度(B)及び最大エネルギー積(BHmax)の高い磁石を得ることができない。一方で焼結が過度に進行すると、焼結体中の結晶粒子が粗大化して、保磁力が低下する恐れがある。したがって結晶粒子が過度に粗大化しない範囲で緻密な焼結体が得られる条件を選択すればよい。 Sintering can be performed in an inert gas or vacuum using known methods such as pressureless sintering, hot pressing (HP), and hot isostatic pressing (HIP) until the molded body becomes dense. good. If sintering is insufficient, the density of the sintered body will not increase, and a magnet with high magnetic flux density (B) and maximum energy product (BHmax) cannot be obtained. On the other hand, if sintering progresses excessively, the crystal grains in the sintered body may become coarse and the coercive force may decrease. Therefore, conditions may be selected so that a dense sintered body can be obtained without excessively coarsening the crystal grains.

本実施形態のボンド磁石や焼結磁石は、熱安定性が良好であるとともに、磁石の基本特性(磁束密度、保磁力、最大エネルギー積)に優れている。そのため自動車、一般家電製品、通信・音響機器、医療機器、一般産業機器等に至る幅広い分野において極めて有用である。 The bonded magnet and sintered magnet of this embodiment have good thermal stability and are excellent in basic magnetic properties (magnetic flux density, coercive force, maximum energy product). Therefore, it is extremely useful in a wide range of fields, including automobiles, general home appliances, communications and audio equipment, medical equipment, and general industrial equipment.

[例1~16]
(1)磁性粉末の作製
まず、原料として、金属サマリウム(Sm)、金属鉄(Fe)、金属コバルト(Co)、金属ガリウム(Ga)、及び炭素(C)粗粒(>1mm)を準備し、これらを所定の配合量となるように秤量した。仕込組成はサマリウム(Sm)の揮発を考慮してSmが15%過剰に含まれる組成にした。秤量した原料から高周波溶解法によりφ12mm×80~100mmLの大きさのSm-Fe-Co-Ga-C合金鋳塊を作製した。次いで均質化を目的として、得られた鋳塊をアルゴン(Ar)雰囲気下1080℃×50時間の条件で熱処理(均質化熱処理)した。均質化熱処理後に、鋳塊の外径がφ10.5mmになるまで表面を研削して、酸化物層などの表面変質層を除去した。
[Examples 1 to 16]
(1) Preparation of magnetic powder First, as raw materials, metal samarium (Sm), metal iron (Fe), metal cobalt (Co), metal gallium (Ga), and carbon (C) coarse particles (>1 mm) were prepared. , these were weighed so as to have a predetermined blending amount. Considering the volatilization of samarium (Sm), the charging composition was set to contain 15% excess Sm. A Sm-Fe-Co-Ga-C alloy ingot with a size of φ12 mm x 80 to 100 mm L was produced from the weighed raw materials by high-frequency melting. Next, for the purpose of homogenization, the obtained ingot was heat treated (homogenization heat treatment) under the conditions of 1080° C. for 50 hours in an argon (Ar) atmosphere. After the homogenization heat treatment, the surface of the ingot was ground until the outer diameter became φ10.5 mm to remove surface deterioration layers such as oxide layers.

続いてアルゴン(Ar)雰囲気のグローブボックス中で、表面研削した鋳塊を鉄製乳鉢で粗粉砕し、その後、ふるいがけして粒径45~250μmの粗粉末を得た。得られた粗粉末に分散剤としてステアリン酸を適量加えてボールミル粉砕した。ボールミル粉砕は、遊星型ボールミル装置を用いて、自転及び公転回転数300rpm又は600rpmの条件で60分間行った。また粉砕メディアとしてφ5mmのジルコニアボールを、溶媒としてヘプタンを用いた。これによりSm-Fe-Co-Ga-C粉末(磁性粉末)を得た。 Subsequently, in a glove box with an argon (Ar) atmosphere, the surface-ground ingot was coarsely ground in an iron mortar, and then sieved to obtain a coarse powder with a particle size of 45 to 250 μm. An appropriate amount of stearic acid was added as a dispersant to the obtained coarse powder, and the powder was ground in a ball mill. The ball milling was carried out using a planetary ball mill for 60 minutes at an autorotation and revolution speed of 300 rpm or 600 rpm. Zirconia balls with a diameter of 5 mm were used as the grinding media, and heptane was used as the solvent. As a result, Sm-Fe-Co-Ga-C powder (magnetic powder) was obtained.

(2)磁性粉末の評価
例1~16で得られた磁性粉末につき、各種特性の評価を以下に示すとおりに行った。
(2) Evaluation of magnetic powder The magnetic powders obtained in Examples 1 to 16 were evaluated for various properties as shown below.

<組成>
磁性粉末の組成をICP発光分析法により調べた。
<Composition>
The composition of the magnetic powder was investigated by ICP emission spectrometry.

<平均粒径>
磁性粉末の平均粒子径(d50)をレーザー回折法により測定した。具体的にはレーザー回折式乾式粒度分布測定装置(Sympatec社、HELOS&RODOS)を用いて、体積粒度分布における50%累積径を求めた。
<Average particle size>
The average particle diameter (d 50 ) of the magnetic powder was measured by laser diffraction. Specifically, the 50% cumulative diameter in the volume particle size distribution was determined using a laser diffraction type dry particle size distribution analyzer (Sympatec, HELOS & RODOS).

<結晶相>
磁性粉末をX線回折(XRD)法により分析してX線プロファイルを求め、このX線プロファイルを用いて粉末中の結晶相を調べた。分析条件は、以下のとおりにした。
<Crystal phase>
The magnetic powder was analyzed by X-ray diffraction (XRD) to obtain an X-ray profile, and this X-ray profile was used to investigate the crystal phase in the powder. The analysis conditions were as follows.

‐X線回折装置:Rigaku SmartLab
‐線源:CuKα
‐管電圧:45kV
‐管電流:200mA
‐スキャン速度:8°/分
‐スキャン範囲(2θ):20~120°
-X-ray diffraction device: Rigaku SmartLab
-Radiation source: CuKα
-Tube voltage: 45kV
-Tube current: 200mA
-Scan speed: 8°/min -Scan range (2θ): 20-120°

またX線プロファイルをリートベルト法により解析して、粉末中のα-Fe相の量を求めた。 The X-ray profile was also analyzed by the Rietveld method to determine the amount of α-Fe phase in the powder.

<磁気特性>
磁性粉末の磁気特性(飽和磁化、残留磁化及び保磁力)を測定した。測定は、ボンド磁石試験方法ガイドブックBMG-2005(日本ボンド磁性材料協会)に則り、振動試料型磁力計(理研電子株式会社、VSM)を用いて行った。まずグローブボックス内のアルゴン雰囲気下において20mg程度の磁性粉末をデルリン製カプセル(内径6mm(外径7mm)×高さ5.5mm)に入れて、このカプセルをホットプレートに載せた。次にパラフィンを溶かしながらカプセル上限まで入れて、カプセルの蓋をしてから冷却した。グローブボックス外でカプセルを再度ホットプレートに載せてパラフィンを溶かし、カプセルの水平方向に18MA/mの磁場を印加して粉末を磁場配向させた。粉末が配向した後に冷却してパラフィンを固めて測定試料を作製した。6.4MA/mの磁場中で着磁した後に、測定試料をVSMのロッド先端にセットし、最大印加磁場1.6MA/mの条件で磁化曲線(ヒステリシスカーブ)を描かせた。得られたヒステリシスカーブから、飽和磁化(Ms)、残留磁化(Mr)及び保磁力(Hc)を読み取った。また飽和磁化と残留磁化より、Mr/Ms比を求めた。なお各例において、磁性粉末から取り出した3点のサンプルにつき磁気特性(飽和磁化、残留磁気、保磁力及びMr/Ms比)を求め、その平均値をそれぞれの磁気特性とした。
<Magnetic properties>
The magnetic properties (saturation magnetization, residual magnetization, and coercive force) of the magnetic powder were measured. The measurement was carried out using a vibrating sample magnetometer (RIKEN DENSHI Co., Ltd., VSM) in accordance with the Bonded Magnet Test Method Guidebook BMG-2005 (Japan Bonded Magnetic Materials Association). First, about 20 mg of magnetic powder was placed in a Delrin capsule (inner diameter 6 mm (outer diameter 7 mm) x height 5.5 mm) under an argon atmosphere in a glove box, and the capsule was placed on a hot plate. Next, the paraffin was melted and filled to the maximum capacity of the capsule, and the capsule was capped and cooled. The capsule was placed on a hot plate again outside the glove box to melt the paraffin, and a magnetic field of 18 MA/m was applied in the horizontal direction of the capsule to magnetically orient the powder. After the powder was oriented, it was cooled to solidify the paraffin to prepare a measurement sample. After being magnetized in a magnetic field of 6.4 MA/m, the measurement sample was set at the tip of the VSM rod, and a magnetization curve (hysteresis curve) was drawn under conditions of a maximum applied magnetic field of 1.6 MA/m. Saturation magnetization (Ms), residual magnetization (Mr), and coercive force (Hc) were read from the obtained hysteresis curve. Furthermore, the Mr/Ms ratio was determined from the saturation magnetization and residual magnetization. In each example, the magnetic properties (saturation magnetization, residual magnetism, coercive force, and Mr/Ms ratio) were determined for three samples taken from the magnetic powder, and the average value was taken as the respective magnetic properties.

(3)評価結果
例1~16について磁性粉末の特性を表1に示す。ここで例3、例4、例6、例14~例16が比較例サンプルであり、それ以外が実施例サンプルである。
(3) Evaluation results Table 1 shows the properties of the magnetic powders for Examples 1 to 16. Here, Examples 3, 4, 6, and 14 to 16 are comparative samples, and the others are example samples.

表1を見て分かるように、炭素量(x)が過度に多い比較例サンプル(例3、例4及び例14~例16)は、飽和磁化Msが95.2Wb・m/kg以上と比較的高いものの、保磁力Hcが246.4kA/m以下であった。またこれらのサンプルはMr/Ms比が80.3%以下であった。さらにこれらのサンプルは異相たるα-Fe相の量が10体積%超と多かった。ガリウム量(n)が過度に少ない比較例サンプル(例6)は、保磁力Hcが214.7kA/mと小さかった。 As can be seen from Table 1, the comparative samples (Example 3, Example 4, and Examples 14 to 16) with an excessively large amount of carbon (x) have a saturation magnetization Ms of 95.2 Wb·m/kg or more. Although the target was high, the coercive force Hc was 246.4 kA/m or less. Moreover, these samples had a Mr/Ms ratio of 80.3% or less. Furthermore, these samples had a large amount of α-Fe phase, which is a different phase, exceeding 10% by volume. The comparative sample (Example 6) with an excessively small amount of gallium (n) had a small coercive force Hc of 214.7 kA/m.

これに対して、実施例サンプル(例1、例2、例5、例7~例13)は、保磁力Hcが252.7kA/m以上であり、Mr/Ms比が90.1%以上と高かった。またこれらのサンプルは飽和磁化Msが88.5Wb・m/kg以上と十分に高かった。特に例7、例8、例10及び例11は、飽和磁化Msが100Wb・m/kg以上且つ保磁力Hcが300kA/m以上と優れた磁気特性を示した。さらに実施例サンプルはα-Fe相量が10体積%以下と少なく、特に例5、例8及び例9は1体積%以下と極めて少なかった。 On the other hand, the example samples (Example 1, Example 2, Example 5, Examples 7 to 13) have a coercive force Hc of 252.7 kA/m or more and a Mr/Ms ratio of 90.1% or more. it was high. Further, these samples had a sufficiently high saturation magnetization Ms of 88.5 Wb·m/kg or more. In particular, Examples 7, 8, 10, and 11 exhibited excellent magnetic properties with a saturation magnetization Ms of 100 Wb·m/kg or more and a coercive force Hc of 300 kA/m or more. Furthermore, the example samples had a small amount of α-Fe phase, at 10% by volume or less, and particularly in Examples 5, 8, and 9, it was extremely small at 1% by volume or less.

Figure 0007449538000001
Figure 0007449538000001

実施例サンプルたる例8及び例12の磁化曲線(ヒステリシスカーブ)のそれぞれを図1及び図2に示す。これらを見て分かるように、ヒステリシス曲線の角形性が非常に良好であった。すなわち保磁力近傍での磁化曲線の立ち上がりが急峻であり、かつヒステリシス曲線の第2象限(減磁曲線)において、ステップ状の段差(クニック)が殆ど見られなかった。 Magnetization curves (hysteresis curves) of example samples 8 and 12 are shown in FIGS. 1 and 2, respectively. As can be seen from these figures, the squareness of the hysteresis curve was very good. That is, the rise of the magnetization curve near the coercive force was steep, and in the second quadrant (demagnetization curve) of the hysteresis curve, almost no step-like difference (knick) was observed.

実施例サンプルたる例8のX線回折プロファイルを図3に示す。なお図中に示される丸印(●)はSmFe17に基づく回折ピークが現れるべき位置であり、逆三角形印(▼)は、α-Feに基づく回折ピークが現れるべき位置である。 The X-ray diffraction profile of Example 8, which is an example sample, is shown in FIG. The circle mark (●) shown in the figure is the position where the diffraction peak based on Sm 2 Fe 17 C x should appear, and the inverted triangle mark (▼) is the position where the diffraction peak based on α-Fe should appear. .

図3には、SmFe17系化合物に基づく回折ピークが明瞭に見られる一方で、他の回折ピークは観察されなかった。特にα-Fe相の存在は確認されなかった。
In FIG. 3, while the diffraction peak based on the Sm 2 Fe 17 C x based compound is clearly seen, no other diffraction peaks were observed. In particular, the presence of α-Fe phase was not confirmed.

Claims (11)

サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含む菱面体晶系ThZn17型化合物を主相として含み、前記化合物が一般式:SmFe(17-m-n)CoGaで表される組成(ただし、2.0≦m≦3.5、1.5≦n≦3.0、1.00≦x≦1.75)を有する、希土類鉄炭素系磁性粉末。 The main phase is a rhombohedral Th 2 Zn 17 type compound containing samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga) and carbon (C), and the compound has the general formula: Sm 2 Fe (17-m-n) C m Ga n C Composition represented by x (however, 2.0≦m≦3.5, 1.5≦n≦3.0, 1.00≦x≦1. 75), a rare earth iron carbon-based magnetic powder. 前記m及びnが、0.3≦n/(m+n)≦0.6を満たす、請求項1に記載の磁性粉末。 The magnetic powder according to claim 1, wherein the m and n satisfy 0.3≦n/(m+n)≦0.6. 前記xが、1.25≦z≦1.50を満たす、請求項1又は2に記載の磁性粉末。 The magnetic powder according to claim 1 or 2, wherein the x satisfies 1.25≦z≦1.50. 前記磁性粉末の平均粒子径d50が5.0μm以下である、請求項1~3のいずれか一項に記載の磁性粉末。 The magnetic powder according to any one of claims 1 to 3, wherein the average particle diameter d50 of the magnetic powder is 5.0 μm or less. サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含み、残部不可避不純物からなる、請求項1~4のいずれか一項に記載の磁性粉末。 The magnetic powder according to any one of claims 1 to 4, comprising samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga), and carbon (C), with the remainder consisting of inevitable impurities. α-Fe相の含有量が10体積%以下である、請求項1~5のいずれか一項に記載の磁性粉末。 The magnetic powder according to any one of claims 1 to 5, wherein the content of α-Fe phase is 10% by volume or less. 主相及びα-Fe相以外に異相を含まない、請求項1~6のいずれか一項に記載の磁性粉末。 The magnetic powder according to any one of claims 1 to 6, which does not contain a foreign phase other than the main phase and the α-Fe phase. 前記磁性粉末の飽和磁化(Ms)が90Wb・m/kg以上であり、且つ保磁力(iHc)が250kA/m以上である、請求項1~7のいずれか一項に記載の磁性粉末。 The magnetic powder according to any one of claims 1 to 7, wherein the magnetic powder has a saturation magnetization (Ms) of 90 Wb·m/kg or more and a coercive force (iHc) of 250 kA/m or more. 前記磁性粉末の飽和磁化(Ms)が80Wb・m/kg以上であり、且つ保磁力(iHc)が300kA/m以上である、請求項1~7のいずれか一項に記載の磁性粉末。 The magnetic powder according to any one of claims 1 to 7, wherein the magnetic powder has a saturation magnetization (Ms) of 80 Wb·m/kg or more and a coercive force (iHc) of 300 kA/m or more. 前記磁性粉末の飽和磁化(Ms)に対する残留磁化(Mr)の比(Mr/Ms比)が0.90以上である、請求項1~9のいずれか一項に記載の磁性粉末。 The magnetic powder according to any one of claims 1 to 9, wherein the ratio of residual magnetization (Mr) to saturation magnetization (Ms) (Mr/Ms ratio) of the magnetic powder is 0.90 or more. 請求項1~10のいずれか一項に記載の磁性粉末の製造方法であって、以下の工程;
サマリウム(Sm)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)及び炭素(C)を含む原料を準備する工程、
準備した原料を配合する工程、
配合した原料を坩堝や鋳型に入れた後に、溶解鋳造して鋳塊にする工程、
前記鋳塊に熱処理を施して均質化する工程、及び
均質化した鋳塊を粉砕して粉砕粉にする工程、
を含む、方法。
A method for producing magnetic powder according to any one of claims 1 to 10, comprising the following steps;
preparing a raw material containing samarium (Sm), iron (Fe), cobalt (Co), gallium (Ga) and carbon (C);
The process of blending the prepared raw materials,
The process of putting mixed raw materials into a crucible or mold and then melting and casting them into an ingot.
a step of heat-treating the ingot to homogenize it, and a step of crushing the homogenized ingot into pulverized powder;
including methods.
JP2020152108A 2020-09-10 2020-09-10 Rare earth iron carbon-based magnetic powder and its manufacturing method Active JP7449538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020152108A JP7449538B2 (en) 2020-09-10 2020-09-10 Rare earth iron carbon-based magnetic powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020152108A JP7449538B2 (en) 2020-09-10 2020-09-10 Rare earth iron carbon-based magnetic powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022046184A JP2022046184A (en) 2022-03-23
JP7449538B2 true JP7449538B2 (en) 2024-03-14

Family

ID=80779808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020152108A Active JP7449538B2 (en) 2020-09-10 2020-09-10 Rare earth iron carbon-based magnetic powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7449538B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114015A (en) 1998-09-30 2000-04-21 Toshiba Corp Bond magnet and material thereof
JP2004107797A (en) 1999-03-30 2004-04-08 Hitachi Metals Ltd Rare earth magnet material for isotropic bond magnet
JP4322407B2 (en) 2000-07-11 2009-09-02 ローランド株式会社 Music control device
JP4323350B2 (en) 2004-03-08 2009-09-02 三井化学株式会社 Resin composition and high frequency circuit laminate using the same
JP6342706B2 (en) 2013-08-23 2018-06-13 矢崎エナジーシステム株式会社 Sheet material cutter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114015A (en) 1998-09-30 2000-04-21 Toshiba Corp Bond magnet and material thereof
JP2004107797A (en) 1999-03-30 2004-04-08 Hitachi Metals Ltd Rare earth magnet material for isotropic bond magnet
JP4322407B2 (en) 2000-07-11 2009-09-02 ローランド株式会社 Music control device
JP4323350B2 (en) 2004-03-08 2009-09-02 三井化学株式会社 Resin composition and high frequency circuit laminate using the same
JP6342706B2 (en) 2013-08-23 2018-06-13 矢崎エナジーシステム株式会社 Sheet material cutter

Also Published As

Publication number Publication date
JP2022046184A (en) 2022-03-23

Similar Documents

Publication Publication Date Title
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
KR101585483B1 (en) Sintered Magnet Based on MnBi Having Improved Heat Stability and Method of Preparing the Same
JP3846835B2 (en) R-T-B sintered permanent magnet
KR101585478B1 (en) Anisotropic Complex Sintered Magnet Comprising MnBi Which Has Improved Magnetic Properties and Method of Preparing the Same
JP2016032116A (en) Manganese-bismuth based magnetic material, manufacturing method thereof, manganese-bismuth based sintered magnet, and manufacturing method thereof
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
KR101936174B1 (en) Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
KR101585479B1 (en) Anisotropic Complex Sintered Magnet Comprising MnBi and Atmospheric Sintering Process for Preparing the Same
JPS63232301A (en) Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
JP2014132599A (en) Rare earth magnet powder, method for manufacturing the same, compound thereof, and bond magnet thereof
WO2021182591A1 (en) Iron base rare earth boron-based isotropic magnet alloy
CN114600205A (en) Sm-Fe-N based rare earth magnet, process for producing the same, and rare earth magnet powder
JP7449538B2 (en) Rare earth iron carbon-based magnetic powder and its manufacturing method
WO2018101409A1 (en) Rare-earth sintered magnet
JP2023127785A (en) Rare earth iron carbon boron magnetic powder and manufacturing method thereof
JP2016066675A (en) Rare earth isotropic bond magnet
JP7108258B2 (en) Iron nitride magnetic material
JP4725682B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP3645312B2 (en) Magnetic materials and manufacturing methods
Qian et al. Magnetic properties of MnBi bulk magnets with NaCl and C addition
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JPS6247455A (en) Permanent magnet material having high performance
JP4604528B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JPH07297013A (en) Manufacture method of magnetic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230622

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R150 Certificate of patent or registration of utility model

Ref document number: 7449538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150