JP7438665B2 - Eccentric rocking type reduction gear, manufacturing method of eccentric body - Google Patents

Eccentric rocking type reduction gear, manufacturing method of eccentric body Download PDF

Info

Publication number
JP7438665B2
JP7438665B2 JP2019019056A JP2019019056A JP7438665B2 JP 7438665 B2 JP7438665 B2 JP 7438665B2 JP 2019019056 A JP2019019056 A JP 2019019056A JP 2019019056 A JP2019019056 A JP 2019019056A JP 7438665 B2 JP7438665 B2 JP 7438665B2
Authority
JP
Japan
Prior art keywords
eccentric
eccentric body
residual stress
gear
external gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019019056A
Other languages
Japanese (ja)
Other versions
JP2020125820A (en
Inventor
淳 為永
瞬 阿部
健嗣 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2019019056A priority Critical patent/JP7438665B2/en
Priority to CN202010070926.3A priority patent/CN111520441A/en
Priority to DE102020102588.2A priority patent/DE102020102588A1/en
Publication of JP2020125820A publication Critical patent/JP2020125820A/en
Priority to JP2023079889A priority patent/JP2023114462A/en
Application granted granted Critical
Publication of JP7438665B2 publication Critical patent/JP7438665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/14Making specific metal objects by operations not covered by a single other subclass or a group in this subclass gear parts, e.g. gear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/18Eccentric-shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/028Gearboxes; Mounting gearing therein characterised by means for reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ocean & Marine Engineering (AREA)
  • Retarders (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、偏心揺動型減速装置および偏心体の製造方法に関する。 The present invention relates to an eccentric rocking speed reduction device and a method for manufacturing an eccentric body.

本出願人は、特許文献1において、外歯歯車と、偏心体を有する偏心体軸とを有し、偏心体軸の偏心体を介して外歯歯車を偏心揺動させる偏心揺動型の減速機を開示した。特許文献1に記載の減速機は、外歯歯車と偏心体との間に配置されるころ偏心体軸受を有しており、この偏心体に熱負荷を付与したときに偏心体の材料特性が変化する特殊な硬化処理が施される。 In Patent Document 1, the present applicant has proposed an eccentric rocking type reduction gear that has an external gear and an eccentric shaft having an eccentric body, and eccentrically rocks the external gear via the eccentric body of the eccentric shaft. The machine was revealed. The reducer described in Patent Document 1 has a roller eccentric bearing disposed between an external gear and an eccentric, and when a thermal load is applied to the eccentric, the material properties of the eccentric change. A special hardening process is applied that varies.

特開2016-098860号公報JP2016-098860A

熱処理が施された偏心体は、熱処理を施す際に熱歪が発生するため、熱処理後の偏心体の表面に研削加工を施して熱歪を除去する場合がある。偏心体の研削加工としては、特許文献1に記載の切削研磨による方法を含めて、種々の方法が考えられる。しかし、研削加工の条件によっては偏心体の寿命が短くなる場合がある。 Since thermal distortion occurs in the heat-treated eccentric body during the heat treatment, the heat-treated eccentric body may be subjected to a grinding process to remove the thermal strain. Various methods can be considered for grinding the eccentric body, including the cutting and polishing method described in Patent Document 1. However, depending on the conditions of the grinding process, the life of the eccentric body may be shortened.

本発明は、偏心体の寿命の低下を抑制した偏心揺動型減速装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide an eccentric rocking type speed reduction device that suppresses a decrease in the life of an eccentric body.

上記課題を解決するために、本発明のある態様の偏心揺動型減速装置は、内歯歯車と、外歯歯車と、外歯歯車を揺動させる偏心体と、を備えた偏心揺動型減速装置であって、偏心体の表面から20μmにおける残留応力が圧縮応力である。 In order to solve the above problems, an eccentric rocking type reduction gear according to an aspect of the present invention includes an internal gear, an external gear, and an eccentric body for rocking the external gear. In the reduction gear device, the residual stress at 20 μm from the surface of the eccentric body is compressive stress.

本発明の別の態様は、偏心体の製造方法である。この方法は、内歯歯車と、外歯歯車と、外歯歯車を揺動させる偏心体と、を備えた偏心揺動型減速装置の偏心体の製造方法であって、偏心体に熱処理を施す熱処理工程と、熱処理後の偏心体に研削を施す研削工程と、を有する。研削工程においては、研削後の偏心体の表面から20μmにおける残留応力がマイナスとなる研削条件により研削を行う。 Another aspect of the invention is a method for manufacturing an eccentric body. This method is a method for manufacturing an eccentric body for an eccentric oscillating speed reduction device that includes an internal gear, an external gear, and an eccentric body that oscillates the external gear, and the eccentric body is subjected to heat treatment. The method includes a heat treatment step and a grinding step of grinding the eccentric body after the heat treatment. In the grinding process, grinding is performed under grinding conditions such that the residual stress at 20 μm from the surface of the eccentric body after grinding is negative.

なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を方法、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 Note that arbitrary combinations of the above-mentioned components and mutual substitution of the components and expressions of the present invention between methods, systems, etc. are also effective as aspects of the present invention.

本発明によれば、偏心体の寿命の低下を抑制した偏心揺動型減速装置を提供することができる。 According to the present invention, it is possible to provide an eccentric rocking type speed reduction device in which reduction in the life of an eccentric body is suppressed.

第1実施形態の偏心揺動型減速装置を概略的に示す側面断面図である。FIG. 1 is a side sectional view schematically showing an eccentric rocking type speed reduction device according to a first embodiment. 図1の偏心体の残留応力と耐久試験結果を示す表である。2 is a table showing residual stress and durability test results of the eccentric body in FIG. 1. FIG. 図1の偏心体の残留応力を示すグラフである。2 is a graph showing residual stress in the eccentric body of FIG. 1. FIG. 図1の偏心体の残留オーステナイト量を示すグラフである。2 is a graph showing the amount of retained austenite in the eccentric body of FIG. 1. FIG. 図1の偏心体の残留オーステナイト量と残留応力とを示すグラフである。2 is a graph showing the amount of retained austenite and residual stress of the eccentric body of FIG. 1. FIG. 図1の偏心体の研削工程を模式的に示す模式図である。2 is a schematic diagram schematically showing a grinding process of the eccentric body in FIG. 1. FIG. 図1の偏心体の平均切り粉厚みと残留応力との関係を示す散布図である。2 is a scatter diagram showing the relationship between the average chip thickness and residual stress of the eccentric body in FIG. 1. FIG. 第2実施形態の偏心揺動型減速装置を示す側面断面図である。FIG. 3 is a side sectional view showing an eccentric rocking type speed reduction device according to a second embodiment.

以下、本発明を好適な実施形態をもとに各図面を参照しながら説明する。実施形態、比較例および変形例では、同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において第1実施形態を説明する上で重要ではない部材の一部は省略して表示する。
また、第1、第2などの序数を含む用語は多様な構成要素を説明するために用いられるが、この用語は一つの構成要素を他の構成要素から区別する目的でのみ用いられ、この用語によって構成要素が限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on preferred embodiments with reference to the drawings. In the embodiments, comparative examples, and modified examples, the same or equivalent components and members are denoted by the same reference numerals, and redundant explanations will be omitted as appropriate. Further, the dimensions of members in each drawing are shown enlarged or reduced as appropriate to facilitate understanding. Further, in each drawing, some members that are not important for explaining the first embodiment are omitted.
Also, although ordinal terms such as first, second, etc. are used to describe various components, these terms are used only to distinguish one component from another; The components are not limited by this.

[第1実施形態]
以下、図面を参照して、第1実施形態に係る偏心揺動型減速装置10の構成について説明する。図1は、第1実施形態の偏心揺動型減速装置10を示す側面断面図である。本実施形態の偏心揺動型減速装置10は、内歯歯車と噛み合う外歯歯車を揺動させることで、内歯歯車及び外歯歯車の一方の自転を生じさせ、その生じた運動成分を出力部材から被駆動装置に出力する偏心揺動型減速装置である。
[First embodiment]
Hereinafter, with reference to the drawings, the configuration of the eccentric rocking type speed reduction device 10 according to the first embodiment will be described. FIG. 1 is a side sectional view showing an eccentric rocking type speed reduction device 10 according to a first embodiment. The eccentric rocking type reduction gear 10 of this embodiment causes one of the internal gear and the external gear to rotate by rocking the external gear that meshes with the internal gear, and outputs the generated motion component. This is an eccentric swing type speed reduction device that outputs output from a member to a driven device.

偏心揺動型減速装置10は、主に、入力軸12と、外歯歯車14と、内歯歯車16と、キャリヤ18、20と、ケーシング22と、主軸受24、26とを備える。以下、内歯歯車16の中心軸線Laに沿った方向を「軸方向」といい、その中心軸線Laを中心とする円の円周方向、半径方向をそれぞれ「周方向」、「径方向」とする。また、以下、便宜的に、軸方向の一方側(図中右側)を入力側といい、他方側(図中左側)を反入力側という。 The eccentric oscillating speed reduction device 10 mainly includes an input shaft 12, an external gear 14, an internal gear 16, carriers 18 and 20, a casing 22, and main bearings 24 and 26. Hereinafter, the direction along the central axis La of the internal gear 16 will be referred to as the "axial direction", and the circumferential direction and radial direction of a circle centered on the central axis La will be referred to as the "circumferential direction" and the "radial direction", respectively. do. Furthermore, for convenience, one side in the axial direction (the right side in the figure) will be referred to as an input side, and the other side (the left side in the figure) will be referred to as an anti-input side.

入力軸12は、駆動装置(不図示)から入力される回転動力によって回転中心線周りに回転させられる。本実施形態の偏心揺動型減速装置10は、入力軸12の回転中心線が内歯歯車16の中心軸線Laと同軸線上に設けられるセンタークランクタイプである。駆動装置は、たとえば、モータ、ギヤモータ、エンジン等である。 The input shaft 12 is rotated around a rotation center line by rotational power input from a drive device (not shown). The eccentric rocking type speed reduction device 10 of this embodiment is a center crank type in which the rotation center line of the input shaft 12 is coaxial with the center axis La of the internal gear 16. The drive device is, for example, a motor, a gear motor, an engine, or the like.

本実施形態の入力軸12は、外歯歯車14を揺動させるための複数の偏心体12aを有する偏心体軸である。偏心体12aの軸芯は、入力軸12の回転中心線に対して偏心している。本実施形態では3個の偏心体12aが設けられ、隣り合う偏心体12aの偏心位相は120°ずれている。入力軸12の入力側の端部には、駆動装置の出力部材から動力を受けるためのスプライン12bが形成される。 The input shaft 12 of this embodiment is an eccentric shaft having a plurality of eccentrics 12a for swinging the external gear 14. The axis of the eccentric body 12a is eccentric with respect to the rotation center line of the input shaft 12. In this embodiment, three eccentric bodies 12a are provided, and the eccentric phases of adjacent eccentric bodies 12a are shifted by 120°. A spline 12b is formed at the input end of the input shaft 12 for receiving power from the output member of the drive device.

偏心体12aの外周には、ころ軸受30を介して3枚の外歯歯車14が組み込まれている。各外歯歯車14は、内歯歯車16に内接噛合している。外歯歯車14が3列に並んで組み込まれているのは、伝達容量の増大、および偏心位相をずらすことによる低振動、低騒音化を意図したためである。各列の構成は、偏心位相が異なっている以外は同一である。 Three external gears 14 are installed on the outer periphery of the eccentric body 12a via roller bearings 30. Each external gear 14 is internally meshed with an internal gear 16. The reason why the external gears 14 are installed in three rows is to increase the transmission capacity and to reduce vibration and noise by shifting the eccentric phase. The configuration of each column is the same except for the eccentric phase.

外歯歯車14は、複数の偏心体12aのそれぞれに対応して個別に設けられる。外歯歯車14は、ころ軸受30を介して対応する偏心体12aに回転自在に支持される。外歯歯車14には、内ピン32が貫通する第1貫通孔13と、ころ軸受30が当接する第2貫通孔15とが設けられる。 The external gear 14 is provided individually corresponding to each of the plurality of eccentric bodies 12a. The external gear 14 is rotatably supported by a corresponding eccentric body 12a via a roller bearing 30. The external gear 14 is provided with a first through hole 13 through which the inner pin 32 passes, and a second through hole 15 into which the roller bearing 30 abuts.

第1貫通孔13は、外歯歯車14の中心からオフセットして設けられる。第1貫通孔13は、後述する内ピン32に対応して複数設けられる。この例では、周方向に60°間隔で6つの第1貫通孔13が設けられる。第2貫通孔15は、外歯歯車14の中心に設けられ、偏心体12aが挿通される孔である。 The first through hole 13 is provided offset from the center of the external gear 14. A plurality of first through holes 13 are provided corresponding to inner pins 32, which will be described later. In this example, six first through holes 13 are provided at intervals of 60 degrees in the circumferential direction. The second through hole 15 is provided at the center of the external gear 14, and is a hole through which the eccentric body 12a is inserted.

図1に示すように、ケーシング22は、全体として筒状をなし、その内周部には内歯歯車16が設けられる。内歯歯車16は、外歯歯車14と噛み合う。本実施形態の内歯歯車16は、ケーシング22と一体化された内歯歯車本体と、この内歯歯車本体に回転自在に支持され、当該内歯歯車16の内歯を構成する外ピン16a(ピン部材)とで構成されている。内歯歯車16の内歯数(外ピン16aの数)は、外歯歯車14の外歯数よりも僅かだけ(この例では1だけ)多い。 As shown in FIG. 1, the casing 22 has a cylindrical shape as a whole, and an internal gear 16 is provided on the inner circumference thereof. The internal gear 16 meshes with the external gear 14. The internal gear 16 of this embodiment includes an internal gear main body that is integrated with the casing 22, and an external pin 16a ( (pin member). The number of internal teeth of the internal gear 16 (the number of external pins 16a) is slightly larger (by 1 in this example) than the number of external teeth of the external gear 14.

キャリヤ18、20は、外歯歯車14の軸方向側部に配置される。キャリヤ18、20には、外歯歯車14の入力側の側部に配置される第1キャリヤ18と、外歯歯車14の反入力側の側部に配置される第2キャリヤ20とを含む。キャリヤ18、20は円盤状をなし、入力軸軸受34を介して入力軸12を回転自在に支持する。 The carriers 18, 20 are arranged on the axial sides of the external gear 14. The carriers 18 and 20 include a first carrier 18 disposed on the input side of the external gear 14 and a second carrier 20 disposed on the non-input side of the external gear 14. The carriers 18 and 20 are disk-shaped and rotatably support the input shaft 12 via the input shaft bearing 34.

第1キャリヤ18と第2キャリヤ20は内ピン32を介して連結される。内ピン32は、外歯歯車14の軸芯から径方向にオフセットした位置において、複数の外歯歯車14を軸方向に貫通する。本実施形態の内ピン32は、第2キャリヤ20と一体的に設けられる。内ピン32は、キャリヤ18、20と別体に設けられていてもよい。内ピン32は、内歯歯車16の中心軸線La周りに所定の間隔で複数設けられる。本実施形態では、周方向に60°間隔で6つの内ピン32が設けられる。 The first carrier 18 and the second carrier 20 are connected via an inner pin 32. The inner pin 32 passes through the plurality of external gears 14 in the axial direction at a position offset in the radial direction from the axis of the external gear 14. The inner pin 32 of this embodiment is provided integrally with the second carrier 20. The inner pin 32 may be provided separately from the carriers 18, 20. A plurality of internal pins 32 are provided around the central axis La of the internal gear 16 at predetermined intervals. In this embodiment, six inner pins 32 are provided at intervals of 60 degrees in the circumferential direction.

内ピン32は、その先端部が第2キャリヤ20に形成された有底凹部18cに嵌入されており、第2キャリヤ20の入力側から挿入されたボルト36と共に第1キャリヤ18と第2キャリヤ20とを連結している。 The tip of the inner pin 32 is fitted into a bottomed recess 18c formed in the second carrier 20, and together with the bolt 36 inserted from the input side of the second carrier 20, the inner pin 32 is inserted into the first carrier 18 and the second carrier 20. are connected.

内ピン32は、外歯歯車14に形成された第1貫通孔13を貫通している。内ピン32の外周面32sには、摺動促進部材としてローラ35が回転自在に被せられている。ローラ35は、第1キャリヤ18の反入力側と、第2キャリヤ20の入力側とによって軸方向に移動規制される。ローラ35と第1貫通孔13の間には外歯歯車14の揺動成分を吸収するための遊びとなる隙間が設けられる。ローラ35と第1貫通孔13の内壁面とは一部で接触する。 The inner pin 32 passes through the first through hole 13 formed in the external gear 14. A roller 35 is rotatably placed on the outer circumferential surface 32s of the inner pin 32 as a sliding promotion member. The movement of the roller 35 in the axial direction is restricted by the opposite input side of the first carrier 18 and the input side of the second carrier 20. A gap is provided between the roller 35 and the first through hole 13 to provide play for absorbing the swinging component of the external gear 14. The roller 35 and the inner wall surface of the first through hole 13 partially contact each other.

被駆動装置(不図示)に回転動力を出力する部材を出力部材とし、偏心揺動型減速装置10を支持するための外部部材に固定される部材を被固定部材とする。本実施形態の出力部材は第2キャリヤ20であり、被固定部材はケーシング22である。出力部材は、被固定部材に主軸受24、26を介して回転自在に支持される。 A member that outputs rotational power to a driven device (not shown) is referred to as an output member, and a member that is fixed to an external member for supporting the eccentric rocking type reduction gear 10 is referred to as a fixed member. The output member of this embodiment is the second carrier 20, and the fixed member is the casing 22. The output member is rotatably supported by the fixed member via main bearings 24 and 26.

主軸受24、26には、第1キャリヤ18とケーシング22の間に配置される第1主軸受24と、第2キャリヤ20とケーシング22の間に配置される第2主軸受26とが含まれる。本実施形態において、主軸受24、26は、いわゆる背面組み合わせの状態で配置される。第1、第2キャリヤ18、20の外周は、それぞれ第1、第2主軸受24、26の内輪を構成している。本実施形態では、主軸受24、26として、球状の転動体42を有するアンギュラ玉軸受を例示する。主軸受24、26は、この他にも、テーパーローラ軸受、アンギュラころ軸受等の転がり軸受であってもよい。 The main bearings 24 and 26 include a first main bearing 24 disposed between the first carrier 18 and the casing 22 and a second main bearing 26 disposed between the second carrier 20 and the casing 22. . In this embodiment, the main bearings 24 and 26 are arranged in a so-called back-to-back arrangement. The outer peripheries of the first and second carriers 18 and 20 constitute inner rings of the first and second main bearings 24 and 26, respectively. In this embodiment, as the main bearings 24 and 26, angular ball bearings having spherical rolling elements 42 are illustrated. The main bearings 24 and 26 may also be rolling bearings such as tapered roller bearings or angular roller bearings.

以上のように構成された偏心揺動型減速装置10の動作を説明する。駆動装置から入力軸12に回転動力が伝達されると、入力軸12の偏心体12aが入力軸12を通る回転中心線周りに回転する。偏心運動する偏心体12aが第2貫通孔15と部分的に接触することにより外歯歯車14が揺動する。このとき、外歯歯車14は、自らの軸芯が入力軸12の回転中心線周りを回転するように揺動する。外歯歯車14が揺動すると、外歯歯車14と内歯歯車16の噛合位置が順次ずれる。この結果、入力軸12が一回転する毎に、外歯歯車14と内歯歯車16との歯数差に相当する分、外歯歯車14及び内歯歯車16の一方の自転が発生する。本実施形態においては、外歯歯車14が自転し、内ピン32を介して第2キャリヤ20から減速回転が出力される。 The operation of the eccentric rocking type speed reduction device 10 configured as above will be explained. When rotational power is transmitted from the drive device to the input shaft 12, the eccentric body 12a of the input shaft 12 rotates around a rotation center line passing through the input shaft 12. The external gear 14 swings when the eccentric body 12a that moves eccentrically comes into partial contact with the second through hole 15. At this time, the external gear 14 swings so that its axis rotates around the rotation center line of the input shaft 12. When the external gear 14 swings, the meshing positions of the external gear 14 and the internal gear 16 are sequentially shifted. As a result, each time the input shaft 12 rotates once, one of the external gear 14 and the internal gear 16 rotates by an amount corresponding to the difference in the number of teeth between the external gear 14 and the internal gear 16. In this embodiment, the external gear 14 rotates, and decelerated rotation is output from the second carrier 20 via the inner pin 32.

図2~図5を参照して、偏心体12aの耐久性を説明する。発明者らの検討の結果、偏心体12aの耐久性は、研削後の残留応力(以下、「Sr」と、表記することがある)および研削後の残留オーステナイト量(以下、「残留γ」と、表記することがある)と、によって変化することが判明している。このため、本発明者らは、残留応力Srと、残留γとを変化させたサンプルA~Dを作成し、このサンプルについて耐久試験を行った。 The durability of the eccentric body 12a will be explained with reference to FIGS. 2 to 5. As a result of the inventors' studies, the durability of the eccentric body 12a is determined by the residual stress after grinding (hereinafter sometimes referred to as "Sr") and the amount of retained austenite after grinding (hereinafter referred to as "residual γ"). It has been found that it varies depending on the For this reason, the present inventors created samples A to D in which the residual stress Sr and residual γ were varied, and conducted a durability test on these samples.

以下、残留応力を数値で示すとき、圧縮応力は「マイナス」を付した負の数値で示し、引張応力は符号を付さない正の数値で表される。また、「ある値以上」はその値から正方向側の値を意味し、「ある値以下」はその値から負方向側の値を意味し、「ある値未満」はその値より負方向側の値を意味する。また、圧縮残留応力が「ある値より高い」とは、残留応力がその値より負方向側の値であることを意味し、圧縮残留応力が「ある値より低い」とは、残留応力がその値より正方向側の値であることを意味する。 Hereinafter, when residual stress is expressed numerically, compressive stress is expressed as a negative numerical value with a "minus" sign, and tensile stress is expressed as a positive numerical value without a sign. Also, "more than a certain value" means a value in the positive direction from that value, "below a certain value" means a value in the negative direction from that value, and "less than a certain value" means a value in the negative direction from that value. means the value of Also, when the compressive residual stress is "higher than a certain value", it means that the residual stress is a value on the negative side of that value, and when the compressive residual stress is "lower than a certain value", it means that the residual stress is below that value. This means that the value is in the positive direction.

図2は、サンプルA~Dの残留応力と、耐久試験の結果を示す表である。図3は、サンプルA~Dの研削後の残留応力を示すグラフである。図4は、サンプルA~Dの研削後の残留オーステナイト量を示すグラフである。これらは、横軸に測定位置を示し、縦軸に測定結果を示している。図2の残留応力は、表面から20μmにおける研削後の残留応力Srを示す。図2の、切込量、ワーク回転数、切り粉厚みは、後述する研削工程の条件を示す指標である。 FIG. 2 is a table showing the residual stress of samples A to D and the results of the durability test. FIG. 3 is a graph showing the residual stress of samples A to D after grinding. FIG. 4 is a graph showing the amount of retained austenite after grinding for samples A to D. In these figures, the horizontal axis shows the measurement position, and the vertical axis shows the measurement results. The residual stress in FIG. 2 shows the residual stress Sr after grinding at 20 μm from the surface. The depth of cut, work rotation speed, and chip thickness in FIG. 2 are indicators indicating the conditions of the grinding process, which will be described later.

サンプルA~Dは、同じ熱処理条件(例えば、特許文献1記載の硬化処理例1)により熱処理された偏心体(以下、「ワーク」という)を、加工ストレスが異なる条件で研削されたものである。図3、図4において、測定位置は表面からの深さを意味し、電解研磨によって表面から徐々に表層を除去し、表面から20μm毎に各深さのデータを取得した。 Samples A to D are eccentric bodies (hereinafter referred to as "workpieces") that have been heat treated under the same heat treatment conditions (for example, hardening treatment example 1 described in Patent Document 1), but are ground under conditions with different processing stresses. . In FIGS. 3 and 4, the measurement position means the depth from the surface, and the surface layer was gradually removed from the surface by electrolytic polishing, and data at each depth was acquired every 20 μm from the surface.

図5は、サンプルA~Dの残留γと残留応力Srとの関連性を示すグラフである。この図から、表面から20μmでは、残留γが増加するにつれて残留応力Srが負方向側にシフトするといえる。また、表面でも、残留γと残留応力Srとは、同様の傾向を有する。 FIG. 5 is a graph showing the relationship between residual γ and residual stress Sr for samples A to D. From this figure, it can be said that at 20 μm from the surface, the residual stress Sr shifts in the negative direction as the residual γ increases. Furthermore, even on the surface, residual γ and residual stress Sr have similar tendencies.

図2の耐久試験の結果を説明する。この結果は、耐久性を表す指標として使用されうる。この耐久試験は、試料に、定格使用期間に定格負荷が加えられたものと同様と解される応力負荷を繰り返して付与するいわゆる加速試験である。耐久試験の結果は、試験後の劣化状態を記号で示している。図2において、記号×は、耐久試験中に異音が発生して試験を中断した場合を示す。記号△は、耐久試験後にフレーキング(表面損傷)が観察された場合を示す。記号〇は、耐久試験後に実使用可能な範囲の軽微な損傷が観察された場合を示す。記号◎は、耐久試験後に損傷は殆ど観察されなかった場合を示す。 The results of the durability test shown in FIG. 2 will be explained. This result can be used as an indicator of durability. This durability test is a so-called accelerated test in which a stress load, which is considered to be the same as a rated load applied during the rated use period, is repeatedly applied to the sample. The durability test results indicate the state of deterioration after the test using symbols. In FIG. 2, the symbol x indicates a case where an abnormal noise occurs during the durability test and the test is interrupted. The symbol △ indicates a case where flaking (surface damage) was observed after the durability test. Symbol 〇 indicates a case where slight damage within the range of practical use was observed after the durability test. The symbol ◎ indicates a case where almost no damage was observed after the durability test.

耐久試験の結果は、図2に示すように、サンプルAは「×」、サンプルBは「△」、サンプルCは「〇」、サンプルDは「◎」であった。つまり、サンプルA、Bは研削焼けの影響が大きく耐久性が劣り、サンプルC、Dは実使用可能な範囲の耐久性を有する。したがって、サンプルC、DをサンプルA、Bと区分できれば、研削焼けの影響を減らした偏心体12aを提供できるといえる。 As shown in FIG. 2, the results of the durability test were as follows: sample A was rated "x", sample B was rated "△", sample C was rated "○", and sample D was rated "◎". In other words, samples A and B are significantly affected by grinding burn and have poor durability, while samples C and D have durability within a practical range. Therefore, if samples C and D can be separated from samples A and B, it is possible to provide an eccentric body 12a that is less affected by grinding burn.

図3、図5に示すように、サンプルA、BとサンプルC、Dとは、表面から20μmでの残留応力Srによって区分できる。表面から20μmでのサンプルCの残留応力Srを参考に基準範囲を定めうる。この観点から、本実施形態では、偏心体12aの表面から20μmでの残留応力Srを圧縮応力(Sr<0MPa)として、耐久性をサンプルCより良いレベルでコントロールしている。表面から20μmでの残留応力Srを圧縮応力とすることにより、研削焼けの影響を抑え、偏心体12aについて実用的な耐久性を実現できる。 As shown in FIGS. 3 and 5, samples A and B and samples C and D can be distinguished by residual stress Sr at 20 μm from the surface. The reference range can be determined with reference to the residual stress Sr of sample C at 20 μm from the surface. From this point of view, in this embodiment, the residual stress Sr at 20 μm from the surface of the eccentric body 12a is set as compressive stress (Sr<0 MPa), and the durability is controlled at a better level than Sample C. By making the residual stress Sr at 20 μm from the surface a compressive stress, the influence of grinding burn can be suppressed and practical durability can be realized for the eccentric body 12a.

製造バラツキや使用条件のバラツキに対するマージンを持たせる観点から、表面から20μmにおける残留応力Srを-200MPa以下としてもよい。例えば、サンプルDの残留応力Srは-374MPaであり、この条件を実現している。この場合、研削焼けの影響をさらに抑制して、製造バラツキや使用条件のバラツキを考慮しても、偏心体12aについて実用的な耐久性を実現できる。 From the viewpoint of providing a margin against variations in manufacturing and usage conditions, the residual stress Sr at 20 μm from the surface may be set to -200 MPa or less. For example, the residual stress Sr of sample D is -374 MPa, which satisfies this condition. In this case, it is possible to further suppress the influence of grinding burn and achieve practical durability for the eccentric body 12a even when manufacturing variations and variations in usage conditions are considered.

図4、図5に示すように、サンプルA、BとサンプルC、Dとは、表面から20μmにおける残留γによっても区分できる。例えば、表面から20μmでのサンプルCの残留γを参考に基準範囲を定めうる。この観点から、偏心体12aの表面から20μmにおける残留オーステナイト量は30~45体積%としてもよい。この場合、残留応力Srに加えて、残留γという別の指標も用いるので耐久性を一層向上した偏心体12aを提供できる。 As shown in FIGS. 4 and 5, samples A and B and samples C and D can also be distinguished by residual γ at 20 μm from the surface. For example, the reference range can be determined with reference to the residual γ of sample C at 20 μm from the surface. From this point of view, the amount of retained austenite at 20 μm from the surface of the eccentric body 12a may be set to 30 to 45% by volume. In this case, in addition to the residual stress Sr, another index called residual γ is also used, so it is possible to provide the eccentric body 12a with further improved durability.

図3、図5に示すように、サンプルA、BとサンプルC、Dとは、表面における残留応力Srによっても区分できる。例えば、表面におけるサンプルDの残留応力Srを参考に基準範囲を定めうる。この観点から、偏心体12aの表面における残留応力Srは-800MPa以下としてもよい。この場合、表面から20μmでの残留応力Srに加えて、表面における残留応力Srも用いるので耐久性を一層向上した偏心体12aを提供できる。 As shown in FIGS. 3 and 5, samples A and B and samples C and D can also be classified based on the residual stress Sr on the surface. For example, the reference range can be determined with reference to the residual stress Sr of sample D on the surface. From this point of view, the residual stress Sr on the surface of the eccentric body 12a may be −800 MPa or less. In this case, in addition to the residual stress Sr at 20 μm from the surface, the residual stress Sr at the surface is also used, so it is possible to provide the eccentric body 12a with further improved durability.

図4、図5に示すように、サンプルA、BとサンプルC、Dとは、表面における残留γによっても区分できる。例えば、表面におけるサンプルCの残留γを参考に基準範囲を定めうる。この観点から、偏心体12aの表面における残留オーステナイト量は25~40体積%としてもよい。この場合、表面から20μmでの残留応力Srに加えて、表面における残留オーステナイト量も用いるので耐久性を一層向上した偏心体12aを提供できる。 As shown in FIGS. 4 and 5, samples A and B and samples C and D can also be distinguished by residual γ on the surface. For example, the reference range can be determined with reference to the residual γ of sample C on the surface. From this point of view, the amount of retained austenite on the surface of the eccentric body 12a may be set to 25 to 40% by volume. In this case, in addition to the residual stress Sr at 20 μm from the surface, the amount of retained austenite at the surface is also used, so it is possible to provide the eccentric body 12a with further improved durability.

次に、偏心体12aの製造方法を説明する。この製造方法は、機械加工により素材の外形を形成する粗加工工程と、偏心体12aに熱処理を施す熱処理工程と、熱処理後の偏心体12aに研削を施す研削工程と、を主に含む。この例の偏心体12aは、入力軸12と一体に製造される。 Next, a method for manufacturing the eccentric body 12a will be explained. This manufacturing method mainly includes a rough processing step in which the outer shape of the material is formed by machining, a heat treatment step in which the eccentric body 12a is heat treated, and a grinding step in which the eccentric body 12a after the heat treatment is ground. The eccentric body 12a in this example is manufactured integrally with the input shaft 12.

熱処理工程を説明する。偏心体12aの熱処理を限定するものではないが、一例として、熱処理工程の熱処理は、炭化物量の増加特性を有する硬化処理であってもよい。炭化物量の増加特性とは、材料特性が変化する熱負荷(試験用熱負荷)を付与する前と比較して付与後の方が、偏心体12aの表面部の炭化物量が増加する特性である。炭化物量の増加特性は試験用熱負荷を付与することによって容易に確認できる。炭化物量の増加特性を満足しうる硬化処理としては、例えば、特許文献1記載の硬化処理例1~4およびそのバリエーションを採用することができる。試験用熱負荷を限定するものではないが、一例として、試験用熱負荷は、偏心体12aを300℃以上の状態に3時間以上を晒すという熱負荷であってもよい。 The heat treatment process will be explained. Although the heat treatment of the eccentric body 12a is not limited, as an example, the heat treatment in the heat treatment step may be a hardening treatment having a characteristic of increasing the amount of carbide. The property of increasing the amount of carbide is a property that the amount of carbide on the surface of the eccentric body 12a increases after the heat load (test heat load) that changes the material properties is applied compared to before the heat load is applied. . The increase in carbide content can be easily confirmed by applying a test heat load. As a hardening treatment that can satisfy the characteristic of increasing the amount of carbide, for example, hardening treatment examples 1 to 4 described in Patent Document 1 and variations thereof can be adopted. Although the test heat load is not limited, as an example, the test heat load may be a heat load in which the eccentric body 12a is exposed to a temperature of 300° C. or higher for 3 hours or more.

次に、図6、図7を参照して研削工程を説明する。図6は、本実施形態の研削工程を模式的に示す模式図である。図6に示すように、研削工程は、回転する砥石82を所定の切込量Aeで偏心体(以下、この説明で「ワーク81」という)の表面を相対移動させることによりワーク81の表面を研削する。発明者らの検討の結果、主に、砥石82の周速Vc(m/s)と、ワーク81の送り速度Vw(mm/min)と、砥石82のストローク当たりの切込量Ae(mm)とが研削後の残留応力Srに関連していることが判明している。つまり、これらの研削条件を調整することにより所望の残留応力Srを実現できる。これらから、本実施形態の研削工程においては、研削後の偏心体の表面から20μmにおける残留応力Srがマイナス(Sr<0MPa)となる研削条件により研削を行う。なお、残留応力Srがマイナスとは、残留応力Srが圧縮応力であることを意味する。表面から20μmでの残留応力Srをマイナスとすることにより、研削焼けの影響を抑え、偏心体12aについて実用的な耐久性を実現できる。 Next, the grinding process will be explained with reference to FIGS. 6 and 7. FIG. 6 is a schematic diagram schematically showing the grinding process of this embodiment. As shown in FIG. 6, in the grinding process, the surface of the workpiece 81 is polished by moving the rotating grindstone 82 relative to the surface of the eccentric body (hereinafter referred to as "workpiece 81" in this explanation) by a predetermined depth of cut Ae. Grind. As a result of the inventors' studies, mainly the circumferential speed Vc (m/s) of the grindstone 82, the feed speed Vw (mm/min) of the workpiece 81, and the depth of cut Ae (mm) per stroke of the grindstone 82. It has been found that this is related to the residual stress Sr after grinding. In other words, a desired residual stress Sr can be achieved by adjusting these grinding conditions. Therefore, in the grinding process of this embodiment, grinding is performed under grinding conditions such that the residual stress Sr at 20 μm from the surface of the eccentric body after grinding is negative (Sr<0 MPa). Note that the residual stress Sr being negative means that the residual stress Sr is compressive stress. By setting the residual stress Sr at 20 μm from the surface to be negative, the influence of grinding burn can be suppressed and practical durability can be realized for the eccentric body 12a.

また、発明者らは、切込量Aeを変えて残留応力Srを評価し、平均切り粉厚みhmを調整することによって効率的に研削条件を設定できることを見出した。図7は、平均切り粉厚みhmと、表面から20μmにおける残留応力Srとの関係を示す散布図である。この図で、符号Kで示す白点は切込量Ae=0.015mmの場合の結果で、符号Jで示す黒点は切込量Ae=0.010mmの場合の結果である。また、破線は、平均切り粉厚みhmと残留応力Srとの回帰直線Mを示す。 In addition, the inventors have found that grinding conditions can be set efficiently by changing the depth of cut Ae, evaluating the residual stress Sr, and adjusting the average chip thickness hm. FIG. 7 is a scatter diagram showing the relationship between the average chip thickness hm and the residual stress Sr at 20 μm from the surface. In this figure, the white dots indicated by the symbol K are the results when the depth of cut Ae = 0.015 mm, and the black dots indicated by the symbol J are the results when the depth of cut Ae = 0.010 mm. Moreover, the broken line indicates the regression line M between the average chip thickness hm and the residual stress Sr.

符号K、Jの結果は、いずれも回帰直線Mとの乖離が少ないので、いずれの切込量Aeであっても、平均切り粉厚みhmによって、残留応力Srをコントロールできるといえる。回帰直線Mから、平均切り粉厚みhmが0.01μm以下であれば、上述の研削条件(表面から20μmにおける残留応力Srがマイナス(Sr<0MPa))を実現できる。これらから、本実施形態の研削工程においては、平均切り粉厚みを0.01μm以下に設定して研削を行う。 Since the results with symbols K and J both have little deviation from the regression line M, it can be said that the residual stress Sr can be controlled by the average chip thickness hm regardless of the depth of cut Ae. From the regression line M, if the average chip thickness hm is 0.01 μm or less, the above-mentioned grinding conditions (residual stress Sr at 20 μm from the surface is negative (Sr<0 MPa)) can be achieved. For these reasons, in the grinding process of this embodiment, grinding is performed with the average chip thickness set to 0.01 μm or less.

図6を参照して平均切り粉厚みhmを説明する。砥石82が1回転する間に、砥石82は実線の位置から破線の位置に相対移動する(実際はワーク81が移動する)。平均切り粉厚みhmは、砥石82が削り初めから削り終わりまでに生成する切り粉の厚みの平均であり、以下の式1により算出できる。
hm=(Ae・Vw)/(Vc・60・1000)・・(1)
(但し、hmは平均切り粉厚み[mm]、Aeは砥石82のストローク当たりの切込量[mm]、Vwはワーク81の送り速度[mm/min]、Vcは砥石82の周速Vc[m/s]である。)
The average chip thickness hm will be explained with reference to FIG. During one rotation of the grindstone 82, the grindstone 82 relatively moves from the position indicated by the solid line to the position indicated by the broken line (actually, the workpiece 81 moves). The average chip thickness hm is the average thickness of chips generated by the grinding wheel 82 from the beginning to the end of cutting, and can be calculated using the following equation 1.
hm=(Ae・Vw)/(Vc・60・1000)...(1)
(However, hm is the average chip thickness [mm], Ae is the depth of cut per stroke of the grindstone 82 [mm], Vw is the feed speed of the workpiece 81 [mm/min], and Vc is the circumferential speed of the grindstone 82 Vc[ m/s].)

式1に示すように、平均切り粉厚みhmは、切込量Aeと速度Vwとに比例し、周速Vcに反比例する指標であり、これらの研削条件を統合した指標といえる。平均切り粉厚みhmを用いることによって効率的に研削条件を設定できる。 As shown in Equation 1, the average chip thickness hm is an index that is proportional to the depth of cut Ae and the speed Vw and inversely proportional to the circumferential speed Vc, and can be said to be an index that integrates these grinding conditions. Grinding conditions can be set efficiently by using the average chip thickness hm.

図2をさらに説明する。図2のサンプルE~Gは、平均切り粉厚みhmが0.009μm~0.010μmになるように、切込量Ae等を調整したサンプルの耐久試験の結果を示す。これらのサンプルでは残留応力Srが-200MPa~-500MPaの範囲であり、耐久試験後の損傷は殆ど観察されず良好であった。サンプルE~Gの結果もまた、上述の研削条件が適切であることを支持する。なお、生産性を確保する観点から、表面から20μmにおける残留応力Srは-1000MPa以上であってもよいし、平均切り粉厚みhmは0.001μm以上であってもよい。 FIG. 2 will be further explained. Samples E to G in FIG. 2 show the results of durability tests of samples in which the depth of cut Ae, etc. were adjusted so that the average chip thickness hm was 0.009 μm to 0.010 μm. These samples had residual stress Sr in the range of -200 MPa to -500 MPa, and were in good condition with almost no damage observed after the durability test. The results for samples E-G also support that the grinding conditions described above are appropriate. From the viewpoint of ensuring productivity, the residual stress Sr at 20 μm from the surface may be −1000 MPa or more, and the average chip thickness hm may be 0.001 μm or more.

以上が、第1実施形態の説明である。第1実施形態の偏心揺動型減速装置10によれば、偏心体12aについて研削焼けの影響を抑え、偏心体12aの寿命の低下を抑制した偏心揺動型減速装置を提供できる。 The above is the description of the first embodiment. According to the eccentric rocking type speed reduction device 10 of the first embodiment, it is possible to provide an eccentric rocking type speed reduction device in which the influence of grinding burn on the eccentric body 12a is suppressed and a decrease in the life of the eccentric body 12a is suppressed.

[第2実施形態]
次に、図8を参照して、第2実施形態に係る偏心揺動型減速装置10の構成について説明する。第2実施形態の図面および説明では、第1実施形態と同一または同等の構成要素、部材には、同一の符号を付する。第1実施形態と重複する説明を適宜省略し、第1実施形態と相違する構成について重点的に説明する。図8は、第2実施形態の偏心揺動型減速装置10を示す側面断面図であり、図1に対応する。
[Second embodiment]
Next, with reference to FIG. 8, the configuration of the eccentric rocking type speed reduction device 10 according to the second embodiment will be described. In the drawings and description of the second embodiment, components and members that are the same or equivalent to those of the first embodiment are given the same reference numerals. Descriptions that overlap with those of the first embodiment will be omitted as appropriate, and configurations that are different from the first embodiment will be mainly described. FIG. 8 is a side sectional view showing the eccentric rocking type speed reduction device 10 of the second embodiment, and corresponds to FIG. 1.

第1実施形態はセンタークランクタイプの偏心揺動型減速装置を例に説明した。本実施形態の偏心揺動型減速装置は、いわゆる振り分けタイプの偏心揺動型減速装置である。偏心揺動型減速装置10は、主に、入力歯車70、入力軸12と、外歯歯車14と、内歯歯車16と、キャリヤ18、20と、ケーシング22と、主軸受24、26とを備える。本実施形態は、第1実施形態と比べ、主には、複数の入力歯車70および入力軸12を備え、外歯歯車14の数の点で異なる。 The first embodiment has been described using a center crank type eccentric swing type speed reduction device as an example. The eccentric rocking type speed reduction device of this embodiment is a so-called distribution type eccentric rocking type speed reduction device. The eccentric oscillating reduction gear 10 mainly includes an input gear 70, an input shaft 12, an external gear 14, an internal gear 16, carriers 18 and 20, a casing 22, and main bearings 24 and 26. Be prepared. This embodiment differs from the first embodiment mainly in that it includes a plurality of input gears 70 and input shafts 12, and the number of external gears 14.

複数の入力歯車70は、内歯歯車16の中心軸線La周りに配置される。本図では一つの入力歯車70のみを示す。入力歯車70は、その中央部に挿通される入力軸12により支持され、入力軸12と一体的に回転可能に設けられる。入力歯車70は、中心軸線La上に設けられる回転軸(不図示)の外歯部と噛み合う。回転軸には、不図示の駆動装置から回転動力が伝達され、その回転軸の回転により入力歯車70が入力軸12と一体的に回転する。 The plurality of input gears 70 are arranged around the central axis La of the internal gear 16. In this figure, only one input gear 70 is shown. The input gear 70 is supported by the input shaft 12 inserted through the center thereof, and is provided to be rotatable integrally with the input shaft 12. The input gear 70 meshes with external teeth of a rotating shaft (not shown) provided on the central axis La. Rotational power is transmitted to the rotating shaft from a drive device (not shown), and the input gear 70 rotates integrally with the input shaft 12 due to the rotation of the rotating shaft.

本実施形態の入力軸12は、内歯歯車16の中心軸線Laからオフセットした位置に周方向に間を置いて複数(例えば、3本)配置される。本図では一つの入力軸12のみを示す。各入力軸12には、互いに偏心位相は180°ずれた2個の偏心体12aが軸方向に並んで設けられている。 A plurality (for example, three) of the input shafts 12 of this embodiment are arranged at positions offset from the central axis La of the internal gear 16 and spaced apart in the circumferential direction. In this figure, only one input shaft 12 is shown. Each input shaft 12 is provided with two eccentric bodies 12a aligned in the axial direction, the eccentric phases of which are shifted by 180° from each other.

偏心体12aの外周には、ころ軸受30を介して2枚の外歯歯車14が組み込まれている。各外歯歯車14は、内歯歯車16に内接噛合している。各外歯歯車14の構成は、偏心位相が異なっている以外は同一である。 Two external gears 14 are installed on the outer periphery of the eccentric body 12a via roller bearings 30. Each external gear 14 is internally meshed with an internal gear 16. The configuration of each external gear 14 is the same except for the eccentric phase.

以上の本実施形態の偏心揺動型減速装置10の動作を説明する。駆動装置から回転軸に回転動力が伝達されると、回転軸から複数の入力歯車70に回転動力が振り分けられ、各入力歯車70が同じ位相で回転する。各入力歯車70が回転すると、入力軸12の偏心体12aが入力軸12を通る回転中心線周りに回転し、その偏心体12aにより外歯歯車14が揺動する。外歯歯車14が揺動すると、第1実施形態と同様、外歯歯車14と内歯歯車16の噛合位置が順次ずれ、外歯歯車14及び内歯歯車16の一方の自転が発生する。入力軸12の回転は、外歯歯車14と内歯歯車16の歯数差に応じた減速比で減速されて、出力部材から被駆動装置に出力される。 The operation of the eccentric rocking type speed reduction device 10 of the present embodiment described above will be explained. When rotational power is transmitted from the drive device to the rotating shaft, the rotating power is distributed from the rotating shaft to the plurality of input gears 70, and each input gear 70 rotates in the same phase. When each input gear 70 rotates, the eccentric body 12a of the input shaft 12 rotates around the rotation center line passing through the input shaft 12, and the external gear 14 swings due to the eccentric body 12a. When the external gear 14 swings, the meshing positions of the external gear 14 and the internal gear 16 are sequentially shifted, and one of the external gear 14 and the internal gear 16 rotates. The rotation of the input shaft 12 is reduced by a reduction ratio according to the difference in the number of teeth between the external gear 14 and the internal gear 16, and is output from the output member to the driven device.

第1実施形態で説明した偏心体12aの残留応力Srおよび残留γの特徴は、本実施形態の偏心体12aも同様に備える。 The eccentric body 12a of this embodiment also has the characteristics of the residual stress Sr and residual γ of the eccentric body 12a described in the first embodiment.

第1実施形態で説明した偏心体12aの製造方法は、本実施形態の偏心体12aにも適用できる。 The method for manufacturing the eccentric body 12a described in the first embodiment can also be applied to the eccentric body 12a of this embodiment.

以上が、第2実施形態の説明である。第2実施形態の偏心揺動型減速装置10によれば、第1実施形態と同様の作用効果を奏し、偏心体12aについて研削焼けの影響を抑え、偏心体12aの寿命の低下を抑制した偏心揺動型減速装置を提供できる。 The above is the description of the second embodiment. According to the eccentric rocking type reduction gear device 10 of the second embodiment, the eccentricity that exhibits the same effect as the first embodiment, suppresses the influence of grinding burn on the eccentric body 12a, and suppresses the decrease in the life of the eccentric body 12a. A swing type reduction gear can be provided.

以上、本発明の実施形態の例について詳細に説明した。上述した実施形態は、いずれも本発明を実施するにあたっての具体例を示したものにすぎない。実施形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除などの多くの設計変更が可能である。上述の実施形態では、このような設計変更が可能な内容に関して、「実施形態の」「実施形態では」等との表記を付して説明しているが、そのような表記のない内容に設計変更が許容されないわけではない。 Examples of embodiments of the present invention have been described above in detail. The embodiments described above are merely specific examples of implementing the present invention. The contents of the embodiments do not limit the technical scope of the present invention, and many design changes such as changes, additions, and deletions of constituent elements may be made without departing from the spirit of the invention defined in the claims. It is possible. In the above-mentioned embodiment, contents that allow such design changes are explained with the notations such as "in the embodiment" and "in the embodiment", but the design does not include such notations. This does not mean that changes are not allowed.

以下、変形例を説明する。変形例の図面および説明では、実施形態と同一または同等の構成要素、部材には、同一の符号を付する。実施形態と重複する説明を適宜省略し、第1実施形態と相違する構成について重点的に説明する。 A modified example will be explained below. In the drawings and description of the modified example, the same reference numerals are given to the same or equivalent components and members as in the embodiment. Explanation that overlaps with the embodiment will be omitted as appropriate, and configurations that are different from the first embodiment will be mainly explained.

第1実施形態では外歯歯車14が3枚の例を、第2実施形態では外歯歯車14が2枚の例を示したが、外歯歯車14は、所望の特性に応じて、1枚であってもよいし、4枚以上であってもよい。 The first embodiment shows an example in which the number of external gears 14 is three, and the second embodiment shows an example in which the number of external gears 14 is two. or four or more sheets.

第1実施形態では、第1主軸受24および第2主軸受26が内輪を有しない例を説明したが、本発明はこれに限られない。第1主軸受24と第2主軸受26との少なくとも一方は、内輪を有する軸受であってもよい。 In the first embodiment, an example has been described in which the first main bearing 24 and the second main bearing 26 do not have inner rings, but the present invention is not limited to this. At least one of the first main bearing 24 and the second main bearing 26 may be a bearing having an inner ring.

実施形態の出力部材はキャリヤ18、20であり、外部部材にはケーシング22が固定される例を説明した。この他にも、出力部材はケーシング22であり、外部部材にはキャリヤ18、20が固定されてもよい。 An example has been described in which the output members of the embodiment are the carriers 18 and 20, and the casing 22 is fixed to the external member. Alternatively, the output member may be the casing 22 and the carriers 18, 20 may be fixed to the outer member.

上述の各変形例は第1実施形態と同様の作用効果を奏する。 Each of the above-mentioned modifications has the same effects as the first embodiment.

上述した各実施形態と変形例の任意の組み合わせもまた本発明の実施形態として有用である。組み合わせによって生じる新たな実施形態は、組み合わされる各実施形態および変形例それぞれの効果をあわせもつ。 Any combination of the above-described embodiments and modifications are also useful as embodiments of the present invention. A new embodiment resulting from the combination has the effects of each of the combined embodiments and modifications.

10・・偏心揺動型減速装置、 12・・入力軸、 12a・・偏心体、 14・・外歯歯車、 16・・内歯歯車、 18、20・・キャリヤ、 24、26・・主軸受、
32・・内ピン、 70・・入力歯車。
10...Eccentric oscillation type reduction gear, 12...Input shaft, 12a...Eccentric body, 14...External gear, 16...Internal gear, 18, 20...Carrier, 24, 26...Main bearing ,
32...Inner pin, 70...Input gear.

Claims (3)

内歯歯車と、外歯歯車と、前記外歯歯車を揺動させる偏心体と、前記外歯歯車と偏心体との間に配置される偏心体軸受と、を備えた偏心揺動型減速装置であって、
前記偏心体の前記偏心体軸受が配置される表面から20μmにおける残留応力が圧縮応力であり、
前記偏心体の前記偏心体軸受が配置される表面における残留応力が-800MPa以下であり、
前記偏心体の表面から20μmにおける残留オーステナイト量が、3~45体積%であることを特徴とすることを特徴とする偏心揺動型減速装置。
An eccentric rocking speed reduction device comprising an internal gear, an external gear, an eccentric body that rocks the external gear, and an eccentric bearing disposed between the external gear and the eccentric body. And,
Residual stress at 20 μm from the surface of the eccentric body on which the eccentric body bearing is arranged is a compressive stress,
The residual stress on the surface of the eccentric body on which the eccentric body bearing is arranged is -800 MPa or less,
An eccentric rocking type speed reduction device characterized in that the amount of retained austenite at 20 μm from the surface of the eccentric body is 35 to 45% by volume.
前記偏心体の表面から20μmにおける残留応力が-200MPa以下であることを特徴とする請求項1に記載の偏心揺動型減速装置
請求項1に記載の歯車装置。
The eccentric rocking type speed reduction device according to claim 1, wherein the residual stress at 20 μm from the surface of the eccentric body is −200 MPa or less. The gear device according to claim 1.
前記偏心体の表面における残留オーステナイト量が、30~40体積%であることを特
徴とする請求項1又は請求項2に記載の偏心揺動型減速装置。
The eccentric rocking type speed reduction device according to claim 1 or 2, wherein the amount of retained austenite on the surface of the eccentric body is 30 to 40% by volume.
JP2019019056A 2019-02-05 2019-02-05 Eccentric rocking type reduction gear, manufacturing method of eccentric body Active JP7438665B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019019056A JP7438665B2 (en) 2019-02-05 2019-02-05 Eccentric rocking type reduction gear, manufacturing method of eccentric body
CN202010070926.3A CN111520441A (en) 2019-02-05 2020-01-21 Eccentric oscillating type speed reducer and method for manufacturing eccentric body
DE102020102588.2A DE102020102588A1 (en) 2019-02-05 2020-02-03 ECCENTRICALLY OSCILLATING REDUCTION GEAR AND PRODUCTION METHOD OF AN EXCENTRIC BODY
JP2023079889A JP2023114462A (en) 2019-02-05 2023-05-15 Eccentric oscillation type speed reducer, and manufacturing method of eccentric body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019056A JP7438665B2 (en) 2019-02-05 2019-02-05 Eccentric rocking type reduction gear, manufacturing method of eccentric body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023079889A Division JP2023114462A (en) 2019-02-05 2023-05-15 Eccentric oscillation type speed reducer, and manufacturing method of eccentric body

Publications (2)

Publication Number Publication Date
JP2020125820A JP2020125820A (en) 2020-08-20
JP7438665B2 true JP7438665B2 (en) 2024-02-27

Family

ID=71615264

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019019056A Active JP7438665B2 (en) 2019-02-05 2019-02-05 Eccentric rocking type reduction gear, manufacturing method of eccentric body
JP2023079889A Pending JP2023114462A (en) 2019-02-05 2023-05-15 Eccentric oscillation type speed reducer, and manufacturing method of eccentric body

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023079889A Pending JP2023114462A (en) 2019-02-05 2023-05-15 Eccentric oscillation type speed reducer, and manufacturing method of eccentric body

Country Status (3)

Country Link
JP (2) JP7438665B2 (en)
CN (1) CN111520441A (en)
DE (1) DE102020102588A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340221A (en) 2003-05-14 2004-12-02 Nsk Ltd Pinion shaft
JP2005291291A (en) 2004-03-31 2005-10-20 Nsk Ltd Manufacturing method for rolling device, manufacturing device of rolling device, and rolling bearing
JP5163526B2 (en) 2008-02-15 2013-03-13 セイコーエプソン株式会社 Scale manufacturing method and scale
JP2014152378A (en) 2013-02-13 2014-08-25 Ntn Corp Bearing component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303171B2 (en) * 1991-10-15 2002-07-15 光洋精工株式会社 Manufacturing method of steel for bearing race
JP2000061735A (en) * 1998-08-18 2000-02-29 Toshiba Corp Surface machining method of metal material
JP3939107B2 (en) * 2001-04-02 2007-07-04 本田技研工業株式会社 Grinding method of shaft member
JP5899102B2 (en) * 2012-11-01 2016-04-06 住友重機械工業株式会社 Planetary gear reduction device and manufacturing method thereof
JP2015007265A (en) * 2013-06-25 2015-01-15 日本精工株式会社 Rolling shaft
JP6466146B2 (en) * 2014-11-18 2019-02-06 住友重機械工業株式会社 Eccentric oscillation type reducer
KR20180091021A (en) * 2015-12-09 2018-08-14 에누티에누 가부시기가이샤 Shafts and bearings for bearings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340221A (en) 2003-05-14 2004-12-02 Nsk Ltd Pinion shaft
JP2005291291A (en) 2004-03-31 2005-10-20 Nsk Ltd Manufacturing method for rolling device, manufacturing device of rolling device, and rolling bearing
JP5163526B2 (en) 2008-02-15 2013-03-13 セイコーエプソン株式会社 Scale manufacturing method and scale
JP2014152378A (en) 2013-02-13 2014-08-25 Ntn Corp Bearing component

Also Published As

Publication number Publication date
DE102020102588A1 (en) 2020-08-06
JP2023114462A (en) 2023-08-17
JP2020125820A (en) 2020-08-20
CN111520441A (en) 2020-08-11

Similar Documents

Publication Publication Date Title
JP4847892B2 (en) Oscillating intermeshing planetary gear device and manufacturing method of eccentric shaft thereof
US10161480B2 (en) Eccentric oscillating speed reducer
WO2008041496A1 (en) Eccentric oscillating reduction gear and stabilizer shaft rotating device using eccentric oscillating reduction gear
AU2016349212A1 (en) Angular contact bearing and gear mechanism comprising a thrust washer
JP4747128B2 (en) Eccentric oscillation reduction device
KR101044071B1 (en) Reducer using needle roller bearing
JP2015083329A (en) Method for manufacturing eccentric oscillation type speed reducer
JP3009848B2 (en) Inner roller and outer roller of internal meshing planetary gear structure and method of manufacturing the same
JP7438665B2 (en) Eccentric rocking type reduction gear, manufacturing method of eccentric body
JP5797131B2 (en) Planetary gear reducer
KR20180091021A (en) Shafts and bearings for bearings
JP2016023695A (en) Speed reducer
JP2012149741A (en) Eccentric rocking type reduction gear
JP3982246B2 (en) Roller bearing for machine tool spindle support
JP7016329B2 (en) Manufacturing method of eccentric swing type speed reducer
JP2005188748A (en) Eccentrically rocking type reduction gear and joint of industrial machine equipped with the same
JP7433769B2 (en) Eccentric swing type reduction gear
JP7319784B2 (en) Manufacturing method for eccentric oscillating speed reducer and external gear
CN110425256B (en) Gear transmission device
JP2007162893A (en) Cylindrical roller bearing for gear device and gear device
JP6847192B2 (en) Eccentric swing type speed reducer
JP7191573B2 (en) gear structure
CN111322304B (en) Method for manufacturing eccentric body shaft
JP5531932B2 (en) Manufacturing method of eccentric oscillating speed reducer and grinding machine
JP2024082514A (en) Eccentric oscillating type reduction gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230522

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7438665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150