JP7435524B2 - Composite beam - Google Patents

Composite beam Download PDF

Info

Publication number
JP7435524B2
JP7435524B2 JP2021060193A JP2021060193A JP7435524B2 JP 7435524 B2 JP7435524 B2 JP 7435524B2 JP 2021060193 A JP2021060193 A JP 2021060193A JP 2021060193 A JP2021060193 A JP 2021060193A JP 7435524 B2 JP7435524 B2 JP 7435524B2
Authority
JP
Japan
Prior art keywords
composite beam
cross
steel
section
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021060193A
Other languages
Japanese (ja)
Other versions
JP2022156476A (en
Inventor
雅人 竹内
敏弘 梅田
隆行 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021060193A priority Critical patent/JP7435524B2/en
Publication of JP2022156476A publication Critical patent/JP2022156476A/en
Application granted granted Critical
Publication of JP7435524B2 publication Critical patent/JP7435524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

本発明は、H形鋼と、該H形鋼の上面にシアコネクタを介して接合されたコンクリートスラブとを備える合成梁に関する。 The present invention relates to a composite beam comprising an H-section steel and a concrete slab joined to the upper surface of the H-section steel via a shear connector.

鉄骨造の建築物では、鉄骨梁を構成するH形鋼の上フランジに、頭付きスタッド等のシアコネクタが溶接され、このシアコネクタを介してH形鋼とコンクリートスラブとを一体化することが多い。このようにすると、H形鋼及びコンクリートスラブは一体的に合成梁として機能し、シアコネクタが設けられない場合に比べて、鉄骨梁の剛性及び耐力が向上する。 In steel-frame buildings, a shear connector such as a headed stud is welded to the upper flange of the H-beam that makes up the steel beam, and it is possible to integrate the H-beam and concrete slab through this shear connector. many. In this way, the H-shaped steel and the concrete slab function as a composite beam, and the rigidity and strength of the steel beam are improved compared to the case where no shear connector is provided.

このような合成梁において、H形鋼の形状を工夫して、より合理的な構造にすることが考えられる。例えば、特許文献1では、合成梁のH形鋼の下フランジの下面に面が接するようにして鋼板を溶接により取り付けることで、従来の合成梁と同等の曲げ剛性を有しながら、鉄骨梁の使用鋼材重量を削減することが提案されている。 In such a composite beam, it is possible to create a more rational structure by devising the shape of the H-beam. For example, in Patent Document 1, by attaching a steel plate by welding so that its surface is in contact with the lower surface of the lower flange of the H-shaped steel of a composite beam, it has the same bending rigidity as a conventional composite beam, while maintaining a steel beam. It has been proposed to reduce the weight of steel used.

しかし、特許文献1を含め、合成梁においてH形鋼の形状を工夫する従来技術は、そのほとんどが、合成梁の両端が単純支持されて梁端部に負曲げモーメントが作用しない小梁を適用対象としている。これに対し、両端が柱に剛接合され梁端部に負曲げモーメントが作用する大梁を適用対象として、合成梁のH形鋼の形状を工夫し、より合理的な構造とする従来技術は、ほとんど存在しない。 However, most of the conventional techniques for devising the shape of H-beams in composite beams, including Patent Document 1, apply small beams in which both ends of the composite beam are simply supported and no negative bending moment is applied to the beam ends. It is targeted. On the other hand, the conventional technology, which is applied to large beams where both ends are rigidly connected to columns and where a negative bending moment acts on the beam ends, devises the shape of the H-shaped steel of the composite beam to create a more rational structure. Almost non-existent.

特開2008-280687号公報Japanese Patent Application Publication No. 2008-280687

「各種合成構造設計指針・同解説」2010年11月、日本建築学会、2010年11月、pp.63~73、123~133“Various composite structure design guidelines and explanations” November 2010, Architectural Institute of Japan, November 2010, pp. 63-73, 123-133

大梁では、小梁よりも大断面のH形鋼が用いられるため、鋼材量の低減によるメリットが出やすい。また、近年の建築物の大型化に伴って、梁の大スパン化が進んでいることから、合成梁の鉄骨梁には、大断面化が可能な溶接組立てH形鋼が多く用いられるようになってきている状況もある。 Large beams use H-beams with a larger cross section than small beams, so they tend to benefit from a reduction in the amount of steel used. In addition, as buildings have become larger in recent years, beams are becoming larger in span, so welded H-beams, which can be made into large cross-sections, are increasingly being used for composite steel beams. In some cases, this is becoming the case.

そこで、本発明者らは、両端が柱に剛接合され梁端部に負曲げモーメントが作用する大梁を適用対象として、合成梁のH形鋼の形状を工夫してより合理的な構造とすることができないかに着目した。 Therefore, the present inventors devised the shape of the H-shaped steel of the composite beam to create a more rational structure, with the aim of applying it to large beams where both ends are rigidly connected to columns and a negative bending moment acts on the beam ends. We focused on what could be done.

非特許文献1によると、許容応力度設計により、大梁として用いられる合成梁の断面算定を行う場合、合成梁が負曲げモーメントを受けるときの許容曲げモーメントは、コンクリートスラブに配筋される鉄筋の許容引張応力度で決まる場合と、H形鋼の下フランジの許容圧縮応力度で決まる場合とがある。 According to Non-Patent Document 1, when calculating the cross section of a composite beam used as a girder using allowable stress design, the allowable bending moment when the composite beam receives a negative bending moment is the In some cases, it is determined by the allowable tensile stress, and in other cases, it is determined by the allowable compressive stress of the lower flange of the H-section steel.

合成梁が負曲げモーメントを受けるときに鉄筋の許容引張応力度で決まる許容曲げモーメントは、負曲げモーメントを受けるときにH形鋼の下フランジの許容圧縮応力度で決まる許容曲げモーメントよりも小さくなることが多い。これは、図3に示すように、合成断面の中立軸位置がH形鋼の重心からあまり上がらず、鉄筋の引張応力度が許容値に達した時のH形鋼の応力が、全体としてH形鋼のみのときに比べて小さくなる傾向があるためである。合成梁の許容曲げモーメントがH形鋼のみの値以下になることすらある。 When the composite beam is subjected to a negative bending moment, the allowable bending moment determined by the allowable tensile stress of the reinforcing bars is smaller than the allowable bending moment determined by the allowable compressive stress of the lower flange of the H-section steel when the composite beam is subjected to a negative bending moment. There are many things. This is because, as shown in Figure 3, the neutral axis position of the composite cross section does not rise much from the center of gravity of the H-beam, and when the tensile stress of the reinforcing bars reaches the allowable value, the stress of the H-beam as a whole is This is because it tends to be smaller than when only shaped steel is used. The allowable bending moment of composite beams may even be less than the value of H-beams alone.

さらに、合成梁が正曲げモーメントを受けるときにコンクリートの許容圧縮応力度で決まる許容曲げモーメント、及び正曲げモーメントを受けるときにH形鋼の下フランジの許容圧縮応力度で決まる許容曲げモーメントと比べても、特に大スパンに用いられるような断面の大きい梁の場合は、負曲げモーメントを受けるときに鉄筋の許容引張応力度で決まる許容曲げモーメントが最も小さくなる場合がほとんどである。 Furthermore, when the composite beam is subjected to a positive bending moment, the allowable bending moment is determined by the allowable compressive stress of the concrete, and when the composite beam is subjected to a positive bending moment, the allowable bending moment is determined by the allowable compressive stress of the lower flange of the H-section steel. However, especially in the case of beams with large cross-sections such as those used for large spans, the allowable bending moment determined by the allowable tensile stress of the reinforcing bars is often the smallest when subjected to a negative bending moment.

ここで、非特許文献1では、終局強度的に考えれば、鉄筋を入れればそれだけ耐力が上昇することが実験的に確かめられていることから、H形鋼が上下対象断面である場合には、鉄筋の許容引張応力度により決まる許容曲げモーメントの算出は省略し、H形鋼の下フランジの許容圧縮応力度で決まる許容曲げモーメントの算定を行うだけでよいとしている。 Here, in Non-Patent Document 1, considering the ultimate strength, it has been experimentally confirmed that the more reinforcing bars are inserted, the more the yield strength increases. The calculation of the allowable bending moment determined by the allowable tensile stress of the reinforcing bars is omitted, and it is only necessary to calculate the allowable bending moment determined by the allowable compressive stress of the lower flange of the H-shaped steel.

ただし、大スパンの合成梁においてH形鋼が上下非対称断面で上フランジが小さい場合は、長期荷重により負曲げモーメントが作用する断面について、コンクリートとの合成効果を考慮した等価な断面係数として鉄筋の断面係数を用いた断面算定も行うべきとされている。 However, if the H-shaped steel in a large-span composite beam has a vertically asymmetrical cross-section and a small top flange, the equivalent section modulus of the reinforcing bar should be calculated as It is also recommended to calculate the cross section using the section modulus.

そこで、本発明者らは、合成梁の有効幅内に存在する鉄筋が、大梁として用いられる合成梁の負曲げモーメント作用部分において、合成梁の有効幅内に存在する鉄筋が負担する引張力を考慮して、H形鋼の形状を工夫し、より合理的な構造にすることについて鋭意研究開発を行った結果、本発明に思い至った。 Therefore, the present inventors proposed that the tensile force borne by the reinforcing bars existing within the effective width of the composite beam be reduced in the negative bending moment acting part of the composite beam used as a girder. Taking this into consideration, we conducted extensive research and development on devising the shape of H-beam steel and creating a more rational structure, and as a result, we came up with the present invention.

本発明は、鋼材量の低減によるメリットが出やすい大断面のH形鋼が用いられる大梁として用いられ、H形鋼に他の部材を取り付けたりして複雑な構造とすることなく、極めて簡単な構成で、従来の合成梁と同等の耐力を確保しつつ、H形鋼の使用鋼材量を削減して、合理的かつ経済的な構造とすることのできる合成梁を提供することを目的とする。 The present invention can be used as a girder using H-shaped steel with a large cross section, which is likely to have the advantage of reducing the amount of steel material. The objective is to provide a composite beam that can achieve a rational and economical structure by reducing the amount of H-shaped steel used while ensuring the same strength as a conventional composite beam. .

上記課題を解決するための手段は、以下のとおりである。
[1] 上下非対称断面を有するH形鋼と、該H形鋼の上面にシアコネクタを介して接合されたコンクリートスラブとを備える合成梁であって、前記H形鋼の上フランジの断面積tfa[mm]及び下フランジの断面積bfa[mm]が、前記合成梁の有効幅内に存在する鉄筋の合計断面積a[mm]に対し、下記(1)式の関係を満たす合成梁。
The means for solving the above problems are as follows.
[1] A composite beam comprising an H-beam having a vertically asymmetric cross section and a concrete slab joined to the upper surface of the H-beam via a shear connector, wherein the cross-sectional area tf of the upper flange of the H-beam a [mm 2 ] and the cross-sectional area of the lower flange bf a [mm 2 ] are expressed by the following equation (1) with respect to the total cross-sectional area r a [mm 2 ] of the reinforcing bars existing within the effective width of the composite beam. Composite beams that meet the requirements.

0<(bfa-tfa)≦a ……(1)
[2] 上下非対称断面を有するH形鋼と、該H形鋼の上面にシアコネクタを介して接合されたコンクリートスラブとを備える合成梁であって、
前記H形鋼の上フランジの断面積tfa[mm]及び下フランジの断面積bfa[mm]が、前記合成梁の有効幅内に存在する鉄筋の合計断面積a[mm]及び前記H形鋼の梁せいD[mm]に対し、下記(2)式の関係を満たす合成梁。
0<( bf a- tf a)≦ ra ...(1)
[2] A composite beam comprising an H-shaped steel having a vertically asymmetrical cross section and a concrete slab joined to the upper surface of the H-shaped steel via a shear connector,
The cross-sectional area tf a [mm 2 ] of the upper flange of the H-shaped steel and the cross-sectional area bf a [mm 2 ] of the lower flange are the total cross-sectional area r a [mm 2 ] of the reinforcing bars existing within the effective width of the composite beam. ] and the beam thickness s D [mm] of the H-shaped steel, a composite beam that satisfies the relationship of the following formula (2).

0<(bfa-tfa)≦(0.0004D+0.52)×a ……(2)
[3] 前記H形鋼は溶接組立H形鋼である、[1]又は[2]に記載の合成梁。
[4] 前記シアコネクタは、前記合成梁が全塑性モーメントを発揮するのに必要となる本数以上設けられている、[1]~[3]のいずれかに記載の合成梁。
[5] 前記鉄筋の断面係数’[mm]及び基準強度F[N/mm]から下記(3)式のとおり算出される前記合成梁の許容曲げモーメント’[kNm]と、前記H形鋼の断面係数[mm]及び基準強度F[N/mm]から下記(4)式のとおり算出される前記H形鋼の許容曲げモーメントM[kNm]との比’/Mが0.83以上である、[1]~[3]のいずれかに記載の合成梁。
0<( bf a- tf a)≦(0.0004 s D+0.52)× ra ...(2)
[3] The composite beam according to [1] or [2], wherein the H-section steel is a welded assembled H-section steel.
[4] The composite beam according to any one of [1] to [3], wherein the shear connectors are provided in a number equal to or greater than the number required for the composite beam to exert a total plastic moment.
[5] The allowable bending moment c M t ′ [ of the composite beam calculated from the section modulus c Z t ′ [mm 3 ] of the reinforcing steel and the reference strength r F [N/mm 2 ] according to equation (3) below . kNm], the section modulus s Z t [mm 3 ] of the H section steel, and the reference strength s F [N/mm 2 ], and the allowable bending moment s M of the H section steel, which is calculated according to the following equation (4). The composite beam according to any one of [1] to [3], wherein the ratio c M t '/ s M to [kNm] is 0.83 or more.

’=’×(F/1.5) ……(3)
M=×(F/1.5) ……(4)
ここで、前記鉄筋の断面係数’は、前記H形鋼の断面積a[mm]、前記H形鋼の高さD[mm]、前記H形鋼の上端から重心までの距離[mm]、前記合成梁の有効高さd’[mm]、及びH形鋼の断面二次モーメントI[mm]から、下記式(5)~式(7)を用いて求められる値とする。
c M t '= c Z t '×( r F/1.5) ...(3)
sM = sZt ×( sF / 1.5 )...(4)
Here, the section modulus c Z t ' of the reinforcing bar is the cross-sectional area s a [mm 2 ] of the H section steel, the height s D [mm] of the H section steel, and the distance from the upper end of the H section steel to the center of gravity. From the distance s x n [mm], the effective height r d' [mm] of the composite beam, and the moment of inertia s I [mm 4 ] of the H-section steel, the following formulas (5) to (7) are obtained. The value obtained using

’={a(D-)+a×d’}/(a+a)[mm] ……(5)
’=I+a×(x’+D)a×(d’-x’)[mm] ……(6)
’=’/(d’-x’)[mm] ……(7)
x n ' = { s a ( s D - s x n ) + ra × rd '} / ( s a + ra ) [mm] ... (5)
c I n '= s I + sa × (x n '+ s x n - s D) 2 + r a × ( r d' - x n ') 2 [mm 4 ] ... (6)
c Z t '= c I n '/( rd' -x n ') [ mm3 ]...(7)

本発明の合成梁によれば、H形鋼と、このH形鋼の上面にシアコネクタを介して接合されたコンクリートスラブとを備える合成梁において、上フランジの断面積tfaを、下フランジの断面積bfaよりも、上記(1)式を満たす範囲内で小さくすることにより、H形鋼に他の部材を取り付けたりして複雑な構造とすることなく、極めて簡単な構成で、従来の合成梁と同等の耐力を確保しつつ、H形鋼の使用鋼材量を削減することができる。 According to the composite beam of the present invention, in a composite beam comprising an H-section steel and a concrete slab joined to the upper surface of the H-section steel via a shear connector, the cross-sectional area tf a of the upper flange is By making the cross-sectional area bf a smaller within the range that satisfies the above formula (1), it is possible to create an extremely simple structure without attaching other parts to the H-beam steel to create a complicated structure, and it can be It is possible to reduce the amount of H-shaped steel used while ensuring the same strength as a composite beam.

これにより、建築物全体の鉄骨重量を減らすことができ、長期荷重および短期荷重の低減を図り、合理的かつ経済的な構造とすることができる。 As a result, the weight of the steel frame of the entire building can be reduced, long-term loads and short-term loads can be reduced, and a rational and economical structure can be achieved.

図1は、本発明の合成梁の一例を示す断面図である。FIG. 1 is a sectional view showing an example of a composite beam of the present invention. 図2は、本発明の合成梁に発生する応力分布の例を示す図である。FIG. 2 is a diagram showing an example of stress distribution occurring in the composite beam of the present invention. 図3は、本発明の合成梁の効果を検証する数値計算において計算対象とした構造モデルを示す平面図である。FIG. 3 is a plan view showing a structural model that was used as a calculation target in numerical calculations to verify the effects of the composite beam of the present invention.

以下、図面を参照して、本発明の合成梁の実施形態について、具体的に説明する。 Hereinafter, embodiments of the composite beam of the present invention will be specifically described with reference to the drawings.

図1に、本実施形態の合成梁1の断面図を示す。合成梁1は、両端部が柱に剛接合される大梁として用いられるものであり、上下非対称断面を有するH形鋼10と、H形鋼10の上面に、頭付きスタッドからなるシアコネクタ30を介して接合されたコンクリートスラブ20とを備えている。コンクリートスラブ20のコンクリート21内には、鉄筋22が所定の間隔で配筋されている。 FIG. 1 shows a cross-sectional view of a composite beam 1 of this embodiment. The composite beam 1 is used as a large beam whose both ends are rigidly connected to columns, and includes an H-beam 10 having a vertically asymmetric cross section and a shear connector 30 made of a headed stud on the top surface of the H-beam 10. The concrete slab 20 is joined through the concrete slab 20. In the concrete 21 of the concrete slab 20, reinforcing bars 22 are arranged at predetermined intervals.

コンクリートスラブ20は、H形鋼10の上にフラットデッキ(図示せず)を敷設し、その上に鉄筋22を配筋してコンクリート21を打設することにより構成される。あるいは、これに代えて、H形鋼10の上に合成スラブ用デッキプレート(図示せず)を敷設し、その上に鉄筋22を配筋してコンクリート21を打設することにより構成される合成スラブであっても良い。 The concrete slab 20 is constructed by laying a flat deck (not shown) on the H-shaped steel 10, arranging reinforcing bars 22 thereon, and pouring concrete 21 thereon. Alternatively, instead of this, a composite slab constructed by laying a composite slab deck plate (not shown) on the H-beam 10, arranging reinforcing bars 22 on top of it, and pouring concrete 21. It may be a slab.

本実施形態の合成梁1では、H形鋼10の上フランジ11の断面積tfa[mm]及び下フランジ12の断面積bfa[mm]が、合成梁1の有効幅B[mm]内に存在する鉄筋22の合計断面積a[mm]及び前記H形鋼の梁せいD[mm]に対し、下記(1)式
0<(bfa-tfa)≦a ……(1)
又は下記(2)式
0<(bfa-tfa)≦(0.0004D+0.52)×a ……(2)
の関係を満たしている。
In the composite beam 1 of this embodiment, the cross-sectional area tfa [mm 2 ] of the upper flange 11 of the H-shaped steel 10 and the cross-sectional area bfa [mm 2 ] of the lower flange 12 are equal to the effective width B [mm 2 ] of the composite beam 1. ], the total cross-sectional area r a [mm 2 ] of the reinforcing bars 22 and the beam depth s D [mm] of the H-shaped steel are expressed by the following formula (1): 0<( bf a - tf a) ≦ r a ...(1)
Or the following formula (2) 0<( bf a- tf a)≦(0.0004 s D+0.52)× r a ...(2)
meets the relationship.

ここで、合成梁1の有効幅B[mm]は、H形鋼10の最大幅b[mm]、すなわち下フランジ12の幅に、非特許文献1に記載される方法で算出されるコンクリートスラブ20の協力幅b[mm]を加えることによって求められる。 Here, the effective width B [mm] of the composite beam 1 is the maximum width b [mm] of the H-beam 10, that is, the width of the lower flange 12, and the concrete slab calculated by the method described in Non-Patent Document 1. It is obtained by adding the cooperation width b a [mm] of 20.

本実施形態の合成梁1は、合成梁1に作用する負曲げモーメントに対して、下記(3)式のとおり算出される合成梁1の許容曲げモーメント’[kNm]と、下記(4)式のとおり算出されるH形鋼10単体の許容曲げモーメントM[kNm]との比’/Mが0.83以上となるように構成されていることが好ましい。このようにすれば、H形鋼10の上フランジ11の断面積Aを削減しない場合とほぼ同レベルまたはこれをわずかに下回る程度の耐力が確保されるからである。これについての詳細は、後述する。 The composite beam 1 of this embodiment has an allowable bending moment c M t ' [kNm] of the composite beam 1 calculated according to the following equation (3) with respect to a negative bending moment acting on the composite beam 1, and the following ( It is preferable that the ratio c M t '/ s M to the allowable bending moment s M [kNm] of the H-section steel 10 alone, which is calculated according to the formula 4), is 0.83 or more. This is because by doing so, a yield strength that is approximately the same level or slightly lower than that in the case where the cross-sectional area At of the upper flange 11 of the H-section steel 10 is not reduced can be ensured. Details regarding this will be described later.

’=’×(F/1.5) ……(3)
M=×(F/1.5) ……(4)
ここで、’[mm]は鉄筋22の断面係数、F[N/mm]は鉄筋22の基準強度、[mm]はH形鋼10の断面係数、F[N/mm]はH形鋼10を構成する鋼材の基準強度である。鉄筋22の断面係数’[mm]は、次のようにして求められる。
c M t '= c Z t '×( r F/1.5) ...(3)
sM = sZt ×( sF / 1.5 )...(4)
Here, c Z t ' [mm 3 ] is the section modulus of the reinforcing bar 22, r F [N/mm 2 ] is the standard strength of the reinforcing bar 22, s Z t [mm 3 ] is the section modulus of the H-section steel 10, s F [N/mm 2 ] is the standard strength of the steel material constituting the H-section steel 10. The section modulus c Z t ′ [mm 3 ] of the reinforcing bar 22 is determined as follows.

まず、合成梁1の中立軸の位置x’[mm](H形鋼10の下端からの高さ)は、H形鋼10の断面積a[mm]、鉄筋22の合計断面積a[mm]、H形鋼10の高さD[mm]、及びH形鋼10の上端から重心までの距離[mm]、合成梁1の有効高さd’[mm]を用いて、下記(5)式のとおり求められる。 First, the position x n ′ [mm] of the neutral axis of the composite beam 1 (height from the lower end of the H-section steel 10) is the cross-sectional area of the H-section steel 10 s a [mm 2 ], the total cross-sectional area of the reinforcing bars 22 r a [mm 2 ], the height s D [mm] of the H-beam 10, the distance from the upper end of the H-beam 10 to the center of gravity s x n [mm], the effective height of the composite beam 1 r d' [ mm] using the following formula (5).

’={a(D-)+a×d’}/(a+a) ……(5)
次に、合成梁1の断面二次モーメント’[mm]は、H形鋼10の断面二次モーメントI[mm]、及び上記(5)式により得られた合成梁1の中立軸の位置x’[mm]を用いて、下記(6)式のとおり求められる。
x n ' = { s a ( s D - s x n ) + ra × rd '} / ( s a + ra ) ... (5)
Next, the moment of inertia of area c I n ′ [mm 4 ] of the composite beam 1 is the moment of inertia of area s I [mm 4 ] of the H-beam 10, and the moment of inertia of the composite beam 1 obtained by the above equation (5). Using the position x n ′ [mm] of the neutral axis of , it is determined according to the following equation (6).

’=I+a×(x’+D)a×(d’-x’) ……(6)
そして、上記(6)式により得られた合成梁1の断面二次モーメント’[mm]から、鉄筋22の断面係数’[mm]は、下記(7)式のとおり算出される。
c I n '= s I + sa × (x n '+ s x n - s D) 2 + r a × ( r d' - x n ') 2 ... (6)
Then, from the moment of inertia c I n ′ [mm 4 ] of the composite beam 1 obtained from the above equation (6), the section modulus c Z t ′ [mm 3 ] of the reinforcing bar 22 can be calculated using the following equation (7). Calculated as follows.

’=’/(d’-x’) ……(7)
上下非対称断面を有するH形鋼10は、例えば溶接組立H形鋼から構成できるが、上下対称断面を有するH形鋼10の上フランジの一部を切除することにより構成しても良い。
c Z t '= c I n '/( rd' -x n ')...(7)
The H-section steel 10 having a vertically asymmetric cross section can be constructed, for example, from a welded assembled H-section steel, but it may also be constructed by cutting a part of the upper flange of the H-section steel 10 having a vertically symmetrical cross section.

また、H形鋼10とコンクリートスラブ20とを接合するシアコネクタ30は、合成梁1が全塑性モーメントを発揮するのに必要となる本数以上設けられていることが好ましい。具体的には、合成梁1が全塑性モーメントを発揮するのに必要となる、塑性ヒンジ点と反曲点の区間のシアコネクタ30の本数nは、シアコネクタ30に作用する全水平せん断力Q[N]に対し、下記(8)式のとおり求められる。 Moreover, it is preferable that the number of shear connectors 30 for joining the H-shaped steel 10 and the concrete slab 20 is equal to or greater than that required for the composite beam 1 to exert a total plastic moment. Specifically, the number nr of shear connectors 30 in the section between the plastic hinge point and the recursion point, which is necessary for the composite beam 1 to exert the total plastic moment, is the total horizontal shear force acting on the shear connectors 30. Q h [N] is calculated according to the following equation (8).

=Q/q ……(8)
ここで、Q[N]はシアコネクタ30に作用する全水平せん断力であり、例えば非特許文献1に記載される方法で算出される。また、q[N]はシアコネクタ30の1本当たりの水平せん断耐力である。
(合成梁に作用する負曲げに対する許容曲げモーメント)
表1~表36に、合成梁1に作用する負曲げモーメントに対して、上記(3)式のとおり鉄筋22の許容引張応力度に基づいて算出される合成梁1の許容曲げモーメント’と、上記(4)式のとおり算出されるH形鋼10単体の許容曲げモーメントMとの比M’/Mの値を、種々の断面形状のH形鋼10について示す。
n r = Q h /q s ... (8)
Here, Q h [N] is the total horizontal shear force acting on the shear connector 30, and is calculated, for example, by the method described in Non-Patent Document 1. Further, q s [N] is the horizontal shear strength of each shear connector 30.
(Allowable bending moment for negative bending acting on composite beam)
Tables 1 to 36 show the allowable bending moment c M t of the composite beam 1 calculated based on the allowable tensile stress of the reinforcing bars 22 as shown in equation (3) above with respect to the negative bending moment acting on the composite beam 1. The ratio M t '/ s M of the allowable bending moment s M of the H-section steel 10 alone, which is calculated according to the above equation (4), is shown for the H-section steel 10 with various cross-sectional shapes.

具体的には、H形鋼10の高さD(700mm、800mm、900mm、1000mm、1100mm、1200mm)と、H形鋼10の最大幅b(250mm、30mm、350mm、400mm、450mm、500mm)、H形鋼10のフランジ厚t(12mm、16mm、19mm、22mm、25mm、28mm、32mm、36mm、40mm)、H形鋼10のウェブ13のウェブ厚t(12mm、16mm、19mm又は16mm、19mm、22mm)、H形鋼10の下フランジ12の断面積A[mm]に対する上フランジ11の断面積A[mm]の削減率(0.0、0.1、0.2、0.3)をパラメータとし、これらのパラメータの各値の組合せ毎に、M’/Mの値を示している。 Specifically, the height s D of the H-shaped steel 10 (700 mm, 800 mm, 900 mm, 1000 mm, 1100 mm, 1200 mm) and the maximum width b of the H-shaped steel 10 (250 mm, 30 mm, 350 mm, 400 mm, 450 mm, 500 mm) , the flange thickness t f of the H-shaped steel 10 (12 mm, 16 mm, 19 mm, 22 mm, 25 mm, 28 mm, 32 mm, 36 mm, 40 mm), the web thickness t w of the web 13 of the H-shaped steel 10 (12 mm, 16 mm, 19 mm, or 16 mm) , 19 mm, 22 mm), the reduction rate ( 0.0 , 0.1, 0 . 2, 0.3) as parameters, and the value of M t '/ s M is shown for each combination of values of these parameters.

ここで、上記(4)式は、上フランジ11の断面積Aが削減されていない上下対称断面を有するH形鋼の許容曲げモーメントM[kNm]を算出する式であるが、上フランジ11の断面積Aが削減率0.0、0.1、0.2、0.3で削減されている例についても、簡略のため同じ(4)式を用いて、M’/Mの値を算出している。H形鋼10の上フランジ11の断面積Aの削減によるM’/Mの値への影響を検討する上では、この簡略は安全側となる。 Here, the above formula (4) is a formula for calculating the allowable bending moment s M [kNm] of the H-section steel having a vertically symmetrical cross section in which the cross-sectional area A t of the upper flange 11 is not reduced. For examples where the cross-sectional area A t of No. 11 is reduced at reduction rates of 0.0, 0.1, 0.2, and 0.3, the same equation (4) is used for simplicity to calculate M t '/ s The value of M is being calculated. This simplification is on the safe side when considering the influence of reducing the cross-sectional area A t of the upper flange 11 of the H-section steel 10 on the value of M t '/ s M.

合成梁1の許容曲げモーメント’及びH形鋼10単体の許容曲げモーメントMの値の算出は、図3に示すように、合成梁1が、両端部が柱2に剛接合されるスパン12.0mの大梁として用いられる設計例を想定して行った。 The values of the allowable bending moment c M t ' of the composite beam 1 and the allowable bending moment s M of the H-beam 10 are calculated when the composite beam 1 is rigidly connected to the column 2 at both ends, as shown in Fig. 3. The design example was assumed to be used as a girder with a span of 12.0 m.

具体的には、H形鋼10として、日本産業規格JISG3136「建築構造用圧延鋼板」に規定されるSN490B(基準強度F=325N/mm)を用いるものとし、コンクリートスラブ20の厚さを150mmとした。コンクリートスラブ20には、日本産業規格JISG3112「鉄筋コンクリート用棒鋼」に規定されるSD295A(基準強度F=295N/mm)、サイズD10の鉄筋22が、水平方向に200mmピッチで上下二段に配筋されるものとした。コンクリートスラブ20のコンクリート21は、普通コンクリートFc21(基準強度F=21N/mm)とした。 Specifically, as the H-shaped steel 10, SN490B (standard strength s F = 325 N/mm 2 ) specified in Japanese Industrial Standard JIS G3136 "Rolled steel plate for building structures" is used, and the thickness of the concrete slab 20 is It was set to 150 mm. In the concrete slab 20, reinforcing bars 22 of SD295A (standard strength r F = 295 N/mm 2 ) and size D10 specified in the Japanese Industrial Standard JIS G3112 "Steel bars for reinforced concrete" are arranged in upper and lower two stages at a pitch of 200 mm in the horizontal direction. It was assumed that this would be followed. The concrete 21 of the concrete slab 20 was made of ordinary concrete Fc21 (standard strength F c =21 N/mm 2 ).

ここで、H形鋼10の下フランジ12の断面積Aに対する上フランジ11の断面積Aの削減率とは、(A-A)/Aの値である。 Here, the reduction rate of the cross-sectional area A t of the upper flange 11 with respect to the cross-sectional area A b of the lower flange 12 of the H-section steel 10 is the value of (A b −A t )/A b .

表1~表36では、削減率が0.1、0.2、0.3のM’/Mの値のうち、上記(1)式の関係を満たさないものに下線を付し、上記(2)式の関係を満たさないものを斜体文字で示している。付している。具体的には、コンクリートスラブ20の標準的な例として、厚さ150mmのコンクリートスラブ20に、鉄筋22が水平方向に200mmピッチで上下二段に配筋されている例を想定して、上記(1)式、上記(2)式を満たすか否かを判定している。上記(1)式の関係を満たさないものとは、上フランジ11の断面積Aの削減量(A-A)[mm]が、合成梁1の有効幅b[mm]内に存在する鉄筋22の断面積の合計a×(b+2b)[mm]よりも大きくなるものである。また、上記(2)式の関係を満たさないものとは、上フランジ11の断面積Aの削減量(A-A)[mm]が、合成梁1の有効幅b[mm]内に存在する鉄筋22の断面積の合計a×(b+2b)[mm]の(0.0004D+0.52)倍よりも大きくなるものである。 In Tables 1 to 36, among the values of M t '/ s M with reduction rates of 0.1, 0.2, and 0.3, those that do not satisfy the relationship of equation (1) above are underlined, Those that do not satisfy the relationship in equation (2) above are shown in italics. It is attached. Specifically, as a standard example of the concrete slab 20, the above (( It is determined whether or not Equation 1) and Equation (2) above are satisfied. What does not satisfy the relationship in equation (1) above means that the amount of reduction in the cross-sectional area A t of the upper flange 11 (A t - A b ) [mm 2 ] is within the effective width b a [mm] of the composite beam 1. This is larger than the total cross-sectional area of the reinforcing bars 22 present at x (b+2b a ) [mm 2 ]. In addition, the relationship that does not satisfy the above equation (2) means that the amount of reduction in the cross-sectional area A t of the upper flange 11 (A t - A b ) [mm 2 ] is equal to the effective width b a [mm 2 ] of the composite beam 1. ] is larger than (0.0004 s D + 0.52) times the total cross-sectional area of the reinforcing bars 22 existing in the area a t ×(b+ 2ba ) [mm 2 ].

Figure 0007435524000001
Figure 0007435524000001

Figure 0007435524000002
Figure 0007435524000002

Figure 0007435524000003
Figure 0007435524000003

Figure 0007435524000004
Figure 0007435524000004

Figure 0007435524000005
Figure 0007435524000005

Figure 0007435524000006
Figure 0007435524000006

Figure 0007435524000007
Figure 0007435524000007

Figure 0007435524000008
Figure 0007435524000008

Figure 0007435524000009
Figure 0007435524000009

Figure 0007435524000010
Figure 0007435524000010

Figure 0007435524000011
Figure 0007435524000011

Figure 0007435524000012
Figure 0007435524000012

Figure 0007435524000013
Figure 0007435524000013

Figure 0007435524000014
Figure 0007435524000014

Figure 0007435524000015
Figure 0007435524000015

Figure 0007435524000016
Figure 0007435524000016

Figure 0007435524000017
Figure 0007435524000017

Figure 0007435524000018
Figure 0007435524000018

Figure 0007435524000019
Figure 0007435524000019

Figure 0007435524000020
Figure 0007435524000020

Figure 0007435524000021
Figure 0007435524000021

Figure 0007435524000022
Figure 0007435524000022

Figure 0007435524000023
Figure 0007435524000023

Figure 0007435524000024
Figure 0007435524000024

Figure 0007435524000025
Figure 0007435524000025

Figure 0007435524000026
Figure 0007435524000026

Figure 0007435524000027
Figure 0007435524000027

Figure 0007435524000028
Figure 0007435524000028

Figure 0007435524000029
Figure 0007435524000029

Figure 0007435524000030
Figure 0007435524000030

Figure 0007435524000031
Figure 0007435524000031

Figure 0007435524000032
Figure 0007435524000032

Figure 0007435524000033
Figure 0007435524000033

Figure 0007435524000034
Figure 0007435524000034

Figure 0007435524000035
Figure 0007435524000035

Figure 0007435524000036
Figure 0007435524000036

表1~表36に示す各算定例のうち、合成梁1のH形鋼10の上フランジ11の断面積Aの削減率が0.0、すなわちH形鋼10が上下対称断面を有する場合の、’/Mの値の最小値は、H形鋼10の断面形状がD=700mm、b=500mm、t=40mm、t=16mmまたはt=19mmのとき(表6参照)の0.83である。 Among the calculation examples shown in Tables 1 to 36, when the reduction rate of the cross-sectional area A t of the upper flange 11 of the H-beam 1 of the composite beam 1 is 0.0, that is, the H-beam 10 has a vertically symmetrical cross section. The minimum value of the value of c M t '/ s M is when the cross-sectional shape of the H-section steel 10 is s D = 700 mm, b = 500 mm, t f = 40 mm, tw = 16 mm, or tw = 19 mm ( (see Table 6) is 0.83.

これに対し、合成梁1のH形鋼10の上フランジ11の断面積Aが、上記(1)式を満たす範囲内で、削減率0.1、0.2、0.3で削減されている合成梁1では、’/Mの値が0.78以上である。また、合成梁1のH形鋼10の上フランジ11の断面積Aが、上記(2)式を満たす範囲内で、削減率0.1、0.2、0.3で削減されている合成梁1では、’/Mの値が0.79以上である。 On the other hand, the cross-sectional area A t of the upper flange 11 of the H-shaped steel 10 of the composite beam 1 is reduced at a reduction rate of 0.1, 0.2, and 0.3 within the range that satisfies the above formula (1). In composite beam 1, the value of cMt ' / sM is 0.78 or more. In addition, the cross-sectional area A t of the upper flange 11 of the H-beam 10 of the composite beam 1 is reduced at a reduction rate of 0.1, 0.2, and 0.3 within the range that satisfies the above formula (2). In composite beam 1, the value of cMt ' / sM is 0.79 or more.

これより、合成梁1のH形鋼10の上フランジ11の断面積Aを削減しても、その削減量を上記(1)式又は上記(2)式を満たす範囲内とすれば、’/Mの値を、上フランジ11の断面積Aを削減しない場合とほぼ同レベル又はこれをわずかに下回る程度に維持できていることがわかる。 From this, even if the cross-sectional area At of the upper flange 11 of the H-shaped steel 10 of the composite beam 1 is reduced , if the amount of reduction is within the range that satisfies the above formula (1) or the above formula (2), c It can be seen that the value of M t '/ s M can be maintained at approximately the same level as in the case where the cross-sectional area A t of the upper flange 11 is not reduced or slightly lower than this.

つまり、表1~表36に示すとおり、合成梁1のH形鋼10の上フランジ11の断面積Aの削減量が、上記(1)式又は上記(2)式を満たす範囲内であれば、負曲げモーメントに対して鉄筋22の許容引張応力度により決まる許容曲げモーメントの値’の低下はわずかである。また、H形鋼10の下フランジ12の許容圧縮応力度により決まる許容曲げモーメントの値の低下も、非常にわずかである。 In other words, as shown in Tables 1 to 36, if the amount of reduction in the cross-sectional area A t of the upper flange 11 of the H-beam 10 of the composite beam 1 is within the range that satisfies the above formula (1) or the above formula (2). For example, the allowable bending moment value c M t ' determined by the allowable tensile stress degree of the reinforcing bars 22 decreases only slightly with respect to a negative bending moment. Further, the decrease in the allowable bending moment value determined by the allowable compressive stress degree of the lower flange 12 of the H-section steel 10 is also very small.

よって、合成梁1のH形鋼10の上フランジ11の断面積Aを、上記(1)式又は上記(2)式を満たす範囲内で削減すれば、H形鋼が上下対象断面を有する場合とほぼ同様の耐力を確保しつつ、H形鋼10の使用鋼材量を削減できる。換言すると、合成梁1のH形鋼10の上フランジ11の断面積Aの削減量を、上記(1)式又は上記(2)式を満たす範囲内とすれば、H形鋼が上下対象断面を有する場合と同様に、負曲げモーメントに対して鉄筋22の許容引張応力度により決まる許容曲げモーメントの算定を省略しても構わない。 Therefore, if the cross-sectional area At of the upper flange 11 of the H-beam 10 of the composite beam 1 is reduced within the range that satisfies the above formula (1) or the above-mentioned formula (2), the H-shape steel will have a vertically symmetrical cross section. The amount of steel used for the H-shaped steel 10 can be reduced while ensuring almost the same yield strength as in the case. In other words, if the amount of reduction in the cross-sectional area A t of the upper flange 11 of the H-shaped steel 10 of the composite beam 1 is within the range that satisfies the above formula (1) or the above-mentioned formula (2), then the H-shaped steel is vertically symmetrical. As in the case of having a cross section, calculation of the allowable bending moment determined by the allowable tensile stress of the reinforcing bars 22 with respect to the negative bending moment may be omitted.

上記表1~表36に示した算定例のうち、上下対称断面を有するH形鋼を備えた合成梁と、本発明の要件を満たしながら上フランジの断面積を削減した合成梁とを比較して、本発明の合成梁の効果を検証したので、これについて以下に説明する。 Among the calculation examples shown in Tables 1 to 36 above, a composite beam equipped with H-beams with vertically symmetrical cross sections and a composite beam with a reduced cross-sectional area of the upper flange while satisfying the requirements of the present invention were compared. The effect of the composite beam of the present invention was verified, and this will be explained below.

本検証では、表10に示した、材種SN490B、サイズH-800×400×12×25(ウェブ:FDランク、フランジ:FBランク)のH形鋼10の上フランジ11の幅を削減率0.1で削減して360mmとした合成梁1(本発明例)と、同じH形鋼の上フランジを削減せずに上下対象断面とした合成梁(比較例)とについて、比較を行った。 In this verification, the width of the upper flange 11 of the H-section steel 10 of grade SN490B and size H-800 x 400 x 12 x 25 (web: FD rank, flange: FB rank) shown in Table 10 was reduced to 0. A comparison was made between composite beam 1 (example of the present invention), which was reduced by .

合成梁に作用する負曲げモーメントに対して、上記(3)式のとおり鉄筋22の許容引張応力度に基づいて算出される合成梁の許容曲げモーメント’と、上記(4)式のとおり算出されるH形鋼10単体の許容曲げモーメントMとの比M’/Mの値は、次のとおりである。 With respect to the negative bending moment acting on the composite beam, the allowable bending moment c M t ' of the composite beam calculated based on the allowable tensile stress of the reinforcing bars 22 as shown in equation (3) above, and the equation (4) above. The value of the ratio Mt '/ sM to the allowable bending moment sM of the H-section steel 10 alone, which is calculated as follows, is as follows.

なお、H形鋼10の下フランジ12の許容引張応力度に基づいて算出される合成梁1の許容曲げモーメント’を、上記(5)式により得られる合成梁1の中立軸の位置x’[mm]、及び上記(7)式により得られる合成梁1の断面二次モーメント’から、下記(9)式及び(10)式のとおり求め、その値も併せて示している。 Note that the allowable bending moment c M c ' of the composite beam 1 calculated based on the allowable tensile stress degree of the lower flange 12 of the H-beam 10 is calculated from the position of the neutral axis of the composite beam 1 obtained by the above equation (5). x n ′ [mm] and the moment of inertia c I n ′ of the composite beam 1 obtained from the above equation (7), calculated according to the following equations (9) and (10), and the values are also shown. ing.

’=’/x’[mm] ……(9)
’=’×(F/1.5) ……(10)
<本発明例:上フランジの削減率0.1>
’=1920[kNm]
’=1605[kNm]
’/M=1605/1851=0.87
<比較例:上フランジの削減率が0>
’=1933[kNm]
’=1706[kNm]
’/M=1706/1851=0.92
このように、合成梁1のH形鋼10の上フランジ11の断面積Aを、上記(1)式又は上記(2)式を満たす範囲内で削減率0.1で削減した本発明例における’/Mの値0.87は、上フランジ11の断面積Aを削減しない比較例における’/Mの値0.92をわずかに下回る程度に維持できている。
c Z c '= c I n '/x n ' [ mm3 ]...(9)
c M c '= c Z c '×( rF /1.5)...(10)
<Example of the present invention: Reduction rate of upper flange 0.1>
c M c '=1920 [kNm]
c M t '=1605 [kNm]
c M t '/ s M=1605/1851=0.87
<Comparative example: Reduction rate of upper flange is 0>
c M c '=1933 [kNm]
c M t '=1706 [kNm]
c M t '/ s M=1706/1851=0.92
In this way, an example of the present invention in which the cross-sectional area A t of the upper flange 11 of the H-shaped steel 10 of the composite beam 1 is reduced at a reduction rate of 0.1 within the range that satisfies the above formula (1) or the above formula (2) The value of c M t '/ s M of 0.87 can be maintained to an extent slightly below the value of c M t '/ s M of 0.92 in the comparative example in which the cross-sectional area A t of the upper flange 11 is not reduced. There is.

また、本発明例における、負曲げモーメントに対して鉄筋22の許容引張応力度により決まる許容曲げモーメント’の値1605[kNm]は、比較例における’の値1706[kNm]からわずかに低下するにとどまっている。 Further, the value of the allowable bending moment c M t ' determined by the allowable tensile stress degree of the reinforcing bar 22 with respect to the negative bending moment in the present invention example, 1605 [kNm], is the value of c M t ' in the comparative example, 1706 [kNm]. It has only slightly decreased since then.

よって、本発明例では、比較例とほぼ同様の耐力を確保しつつ、H形鋼10の使用鋼材量を削減でき、比較例のようにH形鋼が上下対象断面を有する場合と同様に、負曲げモーメントに対して鉄筋22の許容引張応力度により決まる許容曲げモーメントの算定を省略しても構わない。 Therefore, in the example of the present invention, the amount of steel used for the H-beam 10 can be reduced while ensuring almost the same yield strength as the comparative example, and as in the case where the H-beam has a vertically symmetrical cross section as in the comparative example, Calculation of the allowable bending moment determined by the allowable tensile stress of the reinforcing bars 22 with respect to the negative bending moment may be omitted.

鉄筋22の許容引張応力度により決まる許容曲げモーメントの算定を省略する場合には、負曲げモーメントに対する合成梁1の許容曲げモーメントの算定には、H形鋼10の下フランジ12の許容引張応力度に基づいて算出される合成梁1の許容曲げモーメント’の値を用いることになる。本発明例における’の値1920[kNm]は、比較例における’の値1933[kNm]に比べると、1920/1933=0.993倍である。このように、H形鋼10の上フランジ11を削減することによる、H形鋼10の下フランジ12の許容圧縮応力度により決まる許容曲げモーメントの値の低下は、非常にわずかに抑えられている。 When calculating the allowable bending moment determined by the allowable tensile stress of the reinforcing bars 22, the allowable tensile stress of the lower flange 12 of the H-section steel 10 is used to calculate the allowable bending moment of the composite beam 1 for a negative bending moment. The value of the allowable bending moment c M c ' of the composite beam 1 calculated based on is used. The value of c M c ′ of 1920 [kNm] in the example of the present invention is 1920/1933=0.993 times the value of c M c ′ of 1933 [kNm] in the comparative example. In this way, the decrease in the allowable bending moment determined by the allowable compressive stress of the lower flange 12 of the H-section steel 10 due to the reduction of the upper flange 11 of the H-section steel 10 is suppressed to a very small extent. .

さらに、H形鋼10の下フランジ12の許容圧縮応力度で決まる合成梁1の許容曲げモーメントの算定に、H形鋼10の下フランジ12の座屈を考慮していないこと、及びH形鋼10の上フランジ11を削減した分だけ分布荷重が減少することを考慮すると、本発明例と比較例との差は、実際にはさらに小さくなる。 Furthermore, buckling of the lower flange 12 of the H-shaped steel 10 is not taken into account in calculating the allowable bending moment of the composite beam 1 determined by the allowable compressive stress degree of the lower flange 12 of the H-shaped steel 10, and Considering that the distributed load is reduced by the reduction of the upper flange 11 of 10, the difference between the example of the present invention and the comparative example actually becomes even smaller.

合成梁1が、両端部が柱2に剛接合されるスパン12.0mの大梁として用いられる場合には、本発明例の合成梁1は、比較例に比べて、鋼材量を約8%削減できる。 When the composite beam 1 is used as a large beam with a span of 12.0 m with both ends rigidly connected to the columns 2, the composite beam 1 of the present invention example reduces the amount of steel by about 8% compared to the comparative example. can.

1 合成梁
10 H形鋼
11 H形鋼の上フランジ
12 H形鋼の下フランジ
13 H形鋼のウェブ
20 コンクリートスラブ
21 コンクリート
22 鉄筋
30 シアコネクタ
tfa H形鋼の上フランジの断面積
bfa H形鋼の下フランジの断面積
a 合成梁の有効幅内に存在する鉄筋の合計断面積
B 合成梁の有効幅
b H形鋼の最大幅
D H形鋼の高さ
H形鋼のウェブ厚
H形鋼のウェブ厚
コンクリートスラブの協力幅
’ 中立軸の高さ
H形鋼の上端から重心までの距離
1 Composite beam 10 H-beam 11 Upper flange of H-beam 12 Lower flange of H-beam 13 Web of H-beam 20 Concrete slab 21 Concrete 22 Rebar 30 Shear connector
tf a Cross-sectional area of the upper flange of H-beam steel
bf a Cross-sectional area of lower flange of H-shaped steel
r a Total cross-sectional area of reinforcing bars existing within the effective width of the composite beam B Effective width of the composite beam b Maximum width of the H-beam
s D Height of H-beam t w Web thickness of H-beam t f Web thickness of H-beam b a Cooperation width of concrete slab x n ' Height of neutral axis
s x n Distance from the top of the H-beam to the center of gravity

Claims (7)

上下非対称断面を有するH形鋼と、該H形鋼の上面にシアコネクタを介して接合されたコンクリートスラブとを備える合成梁であって、
前記H形鋼の上フランジの断面積tfa[mm]及び下フランジの断面積bfa[mm]が、前記合成梁の有効幅内に存在する鉄筋の合計断面積a[mm]に対し、下記(1´)式の関係を満たす合成梁。
0.1 bf <(bfa-tfa)≦a ……(1´
A composite beam comprising an H-shaped steel having a vertically asymmetric cross section and a concrete slab joined to the upper surface of the H-shaped steel via a shear connector,
The cross-sectional area tf a [mm 2 ] of the upper flange of the H-shaped steel and the cross-sectional area bf a [mm 2 ] of the lower flange are the total cross-sectional area r a [mm 2 ] of the reinforcing bars existing within the effective width of the composite beam. ], a composite beam that satisfies the relationship of equation (1 ' ) below.
0.1 bf a <( bf a - tf a) ≦ r a ...(1 ' )
上下非対称断面を有するH形鋼と、該H形鋼の上面にシアコネクタを介して接合されたコンクリートスラブとを備える合成梁であって、
前記H形鋼の上フランジの断面積tfa[mm]及び下フランジの断面積bfa[mm]が、前記合成梁の有効幅内に存在する鉄筋の合計断面積a[mm]及び前記H形鋼の梁せいD[mm]に対し、下記(2´)式の関係を満たす合成梁。
0.1 bf <(bfa-tfa)≦(0.0004D+0.52)×a ……(2´
A composite beam comprising an H-shaped steel having a vertically asymmetric cross section and a concrete slab joined to the upper surface of the H-shaped steel via a shear connector,
The cross-sectional area tf a [mm 2 ] of the upper flange of the H-shaped steel and the cross-sectional area bf a [mm 2 ] of the lower flange are the total cross-sectional area r a [mm 2 ] of the reinforcing bars existing within the effective width of the composite beam. ] and a composite beam that satisfies the relationship of the following formula (2 ) with respect to the beam thickness s D [mm] of the H-beam steel.
0.1 bf a <( bf a - tf a) ≦ (0.0004 s D + 0.52) × r a ... (2 ' )
前記H形鋼は溶接組立H形鋼である、請求項1又は2に記載の合成梁。 The composite beam according to claim 1 or 2, wherein the H-section steel is a welded assembled H-section steel. 前記シアコネクタは、前記合成梁が全塑性モーメントを発揮するのに必要となる本数以上設けられている、請求項1~3のいずれかに記載の合成梁。 4. The composite beam according to claim 1, wherein the shear connectors are provided in a number equal to or greater than that required for the composite beam to exert a total plastic moment. 前記鉄筋の断面係数’[mm]及び基準強度F[N/mm]から下記(3)式のとおり算出される前記合成梁の許容曲げモーメント’[kNm]と、前記H形鋼の断面係数[mm]及び基準強度F[N/mm]から下記(4)式のとおり算出される前記H形鋼の許容曲げモーメントM[kNm]との比’/Mが0.83以上である、請求項1~3のいずれかに記載の合成梁。
’=’×(F/1.5) ……(3)
M=×(F/1.5) ……(4)
ここで、前記鉄筋の断面係数’は、前記H形鋼の断面積a[mm]、前記H形鋼の高さD[mm]、前記H形鋼の上端から重心までの距離[mm]、前記合成梁の有効高さd’[mm]、及びH形鋼の断面二次モーメントI[mm]から、下記式(5)~式(7)を用いて求められる値とする。
’={a(D-)+a×d’}/(a+a)[mm] ……(5)
’=I+a×(x’+D)a×(d’-x’)[mm] ……(6)
’=’/(d’-x’)[mm] ……(7)
The allowable bending moment c M t ′ [kNm] of the composite beam is calculated from the section modulus c Z t ′ [mm 3 ] of the reinforcing steel and the reference strength r F [N/mm 2 ] according to equation (3) below. , the allowable bending moment s M [kNm] of the H section steel calculated from the section modulus s Z t [mm 3 ] and the reference strength s F [N/mm 2 ] according to the following formula (4). The composite beam according to any one of claims 1 to 3, wherein the ratio c M t '/ s M is 0.83 or more.
c M t '= c Z t '×( r F/1.5) ...(3)
sM = sZt ×( sF / 1.5 )...(4)
Here, the section modulus c Z t ' of the reinforcing bar is the cross-sectional area s a [mm 2 ] of the H section steel, the height s D [mm] of the H section steel, and the distance from the upper end of the H section steel to the center of gravity. From the distance s x n [mm], the effective height r d' [mm] of the composite beam, and the moment of inertia s I [mm 4 ] of the H-section steel, the following formulas (5) to (7) are obtained. The value obtained using
x n ' = { s a ( s D - s x n ) + ra × rd '} / ( s a + ra ) [mm] ... (5)
c I n '= s I + sa × (x n '+ s x n - s D) 2 + r a × ( r d' - x n ') 2 [mm 4 ] ... (6)
c Z t '= c I n '/( rd' -x n ') [ mm3 ]...(7)
上下非対称断面を有するH形鋼と、該H形鋼の上面にシアコネクタを介して接合されたコンクリートスラブとを備える合成梁であって、A composite beam comprising an H-shaped steel having a vertically asymmetric cross section and a concrete slab joined to the upper surface of the H-shaped steel via a shear connector,
前記H形鋼の上フランジの断面積Cross-sectional area of the upper flange of the H-beam tftf a[mma [mm 2 ]及び下フランジの断面積] and the cross-sectional area of the lower flange bfbf a[mma [mm 2 ]が、前記合成梁の有効幅内に存在する鉄筋の合計断面積] is the total cross-sectional area of reinforcing bars existing within the effective width of the composite beam r a[mma [mm 2 ]に対し、下記(1)式の関係を満たし、], satisfies the relationship of equation (1) below,
前記鉄筋の断面係数Section modulus of the reinforcing bar c. Z t ’[mm’ [mm 3 ]及び基準強度] and standard strength r F[N/mmF[N/mm 2 ]から下記(3)式のとおり算出される前記合成梁の許容曲げモーメント] The allowable bending moment of the composite beam is calculated according to equation (3) below. c. M t ’[kNm]と、前記H形鋼の断面係数’ [kNm] and the section modulus of the H-beam steel s Z t [mm[mm 3 ]及び基準強度] and standard strength s F[N/mmF[N/mm 2 ]から下記(4)式のとおり算出される前記H形鋼の許容曲げモーメント] The allowable bending moment of the H-section steel is calculated according to equation (4) below. s M[kNm]との比Ratio to M [kNm] c. M t ’/'/ s Mが0.83以上である、合成梁。A composite beam in which M is 0.83 or more.
0<(0<( bfbf a-a- tftf a)≦a)≦ r a ……(1)a...(1)
c. M t ’=’= c. Z t ’×(’×( r F/1.5) ……(3)F/1.5) ...(3)
s M=M= s Z t ×(×( s F/1.5) ……(4)F/1.5) ...(4)
ここで、前記鉄筋の断面係数Here, the section modulus of the reinforcing bar is c. Z t ’は、前記H形鋼の断面積’ is the cross-sectional area of the H-shaped steel s a[mma [mm 2 ]、前記H形鋼の高さ], the height of the H-shaped steel s D[mm]、前記H形鋼の上端から重心までの距離D [mm], distance from the upper end of the H-shaped steel to the center of gravity s x n [mm]、前記合成梁の有効高さ[mm], effective height of the composite beam r d’[mm]、及びH形鋼の断面二次モーメントd’ [mm] and moment of inertia of H-beam steel s I[mmI [mm 4 ]から、下記式(5)~式(7)を用いて求められる値とする。], the value is determined using the following equations (5) to (7).
x n ’={’={ s a(a( s D-D- s x n )+)+ r a× r d’}/(d'}/( s a+a+ r a)[mm] ……(5)a) [mm] ...(5)
c. I n ’=’= s I+I+ s a×(xa×(x n ’+’+ s x n - s D)D) 2 + r a×(a×( r d’-xd'-x n ’)’) 2 [mm[mm 4 ] ……(6)] ...(6)
c. Z t ’=’= c. I n ’/('/( r d’-xd'-x n ’)[mm’) [mm 3 ] ……(7)] ...(7)
上下非対称断面を有するH形鋼と、該H形鋼の上面にシアコネクタを介して接合されたコンクリートスラブとを備える合成梁であって、A composite beam comprising an H-shaped steel having a vertically asymmetric cross section and a concrete slab joined to the upper surface of the H-shaped steel via a shear connector,
前記H形鋼の上フランジの断面積Cross-sectional area of the upper flange of the H-beam tftf a[mma [mm 2 ]及び下フランジの断面積] and the cross-sectional area of the lower flange bfbf a[mma [mm 2 ]が、前記合成梁の有効幅内に存在する鉄筋の合計断面積] is the total cross-sectional area of reinforcing bars existing within the effective width of the composite beam r a[mma [mm 2 ]及び前記H形鋼の梁せい] and the beam of the H-shaped steel s D[mm]に対し、下記(2)式の関係を満たし、For D [mm], satisfy the relationship of formula (2) below,
前記鉄筋の断面係数Section modulus of the reinforcing bar c. Z t ’[mm’ [mm 3 ]及び基準強度] and standard strength r F[N/mmF[N/mm 2 ]から下記(3)式のとおり算出される前記合成梁の許容曲げモーメント] The allowable bending moment of the composite beam is calculated according to equation (3) below. c. M t ’[kNm]と、前記H形鋼の断面係数’ [kNm] and the section modulus of the H-beam steel s Z t [mm[mm 3 ]及び基準強度] and standard strength s F[N/mmF[N/mm 2 ]から下記(4)式のとおり算出される前記H形鋼の許容曲げモーメント] The allowable bending moment of the H-section steel is calculated according to the following formula (4). s M[kNm]との比Ratio to M [kNm] c. M t ’/'/ s Mが0.83以上である、合成梁。A composite beam in which M is 0.83 or more.
0<(0<( bfbf a-a- tftf a)≦(0.0004a)≦(0.0004 s D+0.52)×D+0.52)× r a ……(2)a...(2)
c. M t ’=’= c. Z t ’×(’×( r F/1.5) ……(3)F/1.5) ...(3)
s M=M= s Z t ×(×( s F/1.5) ……(4)F/1.5) ...(4)
ここで、前記鉄筋の断面係数Here, the section modulus of the reinforcing bar is c. Z t ’は、前記H形鋼の断面積’ is the cross-sectional area of the H-shaped steel s a[mma [mm 2 ]、前記H形鋼の高さ], the height of the H-shaped steel s D[mm]、前記H形鋼の上端から重心までの距離D [mm], distance from the upper end of the H-beam to the center of gravity s x n [mm]、前記合成梁の有効高さ[mm], effective height of the composite beam r d’[mm]、及びH形鋼の断面二次モーメントd’ [mm] and moment of inertia of H-beam steel s I[mmI [mm 4 ]から、下記式(5)~式(7)を用いて求められる値とする。], the value is determined using the following equations (5) to (7).
x n ’={’={ s a(a( s D-D- s x n )+)+ r a× r d’}/(d'}/( s a+a+ r a)[mm] ……(5)a) [mm] ...(5)
c. I n ’=’= s I+I+ s a×(xa×(x n ’+’+ s x n - s D)D) 2 + r a×(a×( r d’-xd'-x n ’)’) 2 [mm[mm 4 ] ……(6)] ...(6)
c. Z t ’=’= c. I n ’/(’/( r d’-xd'-x n ’)[mm’) [mm 3 ] ……(7)] ...(7)
JP2021060193A 2021-03-31 2021-03-31 Composite beam Active JP7435524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021060193A JP7435524B2 (en) 2021-03-31 2021-03-31 Composite beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060193A JP7435524B2 (en) 2021-03-31 2021-03-31 Composite beam

Publications (2)

Publication Number Publication Date
JP2022156476A JP2022156476A (en) 2022-10-14
JP7435524B2 true JP7435524B2 (en) 2024-02-21

Family

ID=83559152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060193A Active JP7435524B2 (en) 2021-03-31 2021-03-31 Composite beam

Country Status (1)

Country Link
JP (1) JP7435524B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151281A1 (en) 2017-02-16 2018-08-23 新日鐵住金株式会社 Method for designing beam joint structure, method for manufacturing beam joint structure, and beam joint structure
JP2020076226A (en) 2018-11-06 2020-05-21 日本製鉄株式会社 Shape steel, floor structure, and construction method of floor structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151281A1 (en) 2017-02-16 2018-08-23 新日鐵住金株式会社 Method for designing beam joint structure, method for manufacturing beam joint structure, and beam joint structure
JP2020076226A (en) 2018-11-06 2020-05-21 日本製鉄株式会社 Shape steel, floor structure, and construction method of floor structure

Also Published As

Publication number Publication date
JP2022156476A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
CN108978471B (en) Supporting device for increasing rigidity of cable-stayed bridge special-shaped cable tower and mounting method thereof
JP6919672B2 (en) H-shaped steel beam
JP7435524B2 (en) Composite beam
JP4696843B2 (en) Composite beam structure
KR101773509B1 (en) Long-span composite beam using square shape steel pipe for slim floor and the construction method therefor
JP6680005B2 (en) Steel beam and beam-column joint structure
KR102051255B1 (en) Steel girder formed semicircle column stiffener filling concrete
KR20210068270A (en) Reinforcing structure for Column and Beam
KR101698807B1 (en) Manufacturing method of the psc girder using the corrugated steel plate and the psc girder manufactured thereby
JP7234084B2 (en) Steel beam with floor slab and its reinforcement method
KR101188367B1 (en) Punching shear reinforcement for reinforcing flat-plate slab
KR101940857B1 (en) Steel tube and composite column using the same
KR102597270B1 (en) Prestressed composite steel beam for building and the construction method using the same
JP7314030B2 (en) Steel frame beam with floor slab having opening and its reinforcement method
KR102173788B1 (en) Double composite box girder with gradual stiffness reduction, and construction method thereof
KR20080110235A (en) Precast concrete - girder
JP2009091743A (en) Continuous i-beam bridge and structure near its intermediate supporting point
JP6988046B2 (en) building
KR102586169B1 (en) H-beam having tube upper-flange
JP6892010B1 (en) Synthetic beam
KR102586172B1 (en) H-beam having tube upper-flange
KR102656176B1 (en) A T-type unit using H-beam and a composite structure system with reduced floor height combined with a steel plate built-up composite column and composite beam
JP7207056B2 (en) Rolled H-section steel and composite beams
JP7172779B2 (en) Rolled H-section steel and composite beams
JP7207055B2 (en) Rolled H-section steel and composite beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7435524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150